函数最值的应用范文

时间:2023-12-01 22:31:50

函数最值的应用

函数最值的应用篇1

误区一:二次函数的顶点纵坐标为最大值

在二次函数的实际应用中,二次函数的顶点纵坐标并不一定为最大值,我们应具体问题具体分析,如下题:

例1.如下图,某鸡场要建一个矩形的养鸡场ABCD,鸡场的一边靠墙,(墙长20米),另三边用木栏围成,木栏长100米,设AB=x米,矩形的面积为S平方米,那么x为多少时,S的值最大?

错解:AB=x BC=100-2x

S=AB・BC=x(100-2x)=-2x2+100x=-2(x-25)2+1250

a=-2

当x=25时,Smax=1250

正确解答:

AB=x BC=100-2x

S=AB・BC=x(100-2x)=-2x2+100x=-2(x-25)2+1250

由题意可得:0

解得:40≤x

a=-225

S随x的增大而减小

当x=40时,Smax=-2(40-25)2+1250=800

点评:很多学生在学习中经常犯这样的错误,他们认为利用二次函数求最大值,只要求出二次函数表达式,并将之化为顶点式,顶点纵坐标即为最大值,而没有考虑自变量的取值范围,此题中的顶点就不在自变量范围内,因此最大面积就不会取到1250,又由于自变量x的范围全部在对称轴x=25左侧,根据二次函数的增减性,我们可知当x=40时,S会有最大值。

误区二:二次函数开口向上没有最大值

例2.根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,如图(1)所示,种植花卉的利润y2与投资量x成二次函数关系,如图(2)所示(注:利润与投资量的单位:万元)。(1)分别求出利润y1与y2关于投资量x的函数关系式;(2)如果这位专业户以8万元资金投入种植花卉和树木,他至少获得多少利润?他能获得的最大利润是多少?

图(1) 图(2)

解:(1)设y1=kx(x≥0),设y2=ax2(x≥0)则由题意可得:

2=k,2=4a 解得:k=2,a=0.5 y1=2x,y2=0.5x2

(2)设这位专业户种植树木和花卉能获得的利润为w万元,其中投资x万元种植树木,则投资(8-x)万元种植花卉,由题意可得:w=y1+y2=2(8-x)+0.5x2=0.5x2-2x+16=0.5(x-2)2+14 a=0.5>0,当x=2时,wmin=140≤x≤8,在w=0.5(x-2)2+14中,当0≤x≤2时,w随x的增大而减小,当x=0时,wmax=(0-2)2+14=16当2≤x≤8时,w随x的增大而增大,当x=8时,wmax=(8-2)2+14=32 32>12,这位专业户能获得的最大利润是32万元。

点评:此题第(2)问,很多学生会说a=0.5,二次函数开口向上,应该没有最大值,其实不然,本题中自变量x的取值范围是0≤x≤8,在二次函数w=0.5(x-2)2+14对称轴x=2左侧(即当0≤x≤2时),由于w随x的增大而减小,故当x=0时,w有最大值16;在对称轴x=2右侧(即当2≤x≤8时),w随x的增大而增大,当x=8时,w有最大值32,通过比较16与32,我们得出最大值为32,此时自变量x=8。

总述:

在利用二次函数来求最大值问题时,一定要先求出自变量的取值范围,再看二次函数的开口方向。①当开口向下,顶点位于自变量范围内时(北师大九年级下教材中两节均为此种类型),顶点纵坐标为最大值;②当开口向下,顶点不位于自变量范围内时(如例1),要求出端点坐标,通过比较端点纵坐标大小来确定最大值;③当二次函数开口向上(如例2)时,也有最大值,直接比较两个端点纵坐标,大的即为最大值。

函数最值的应用篇2

【关键词】导数 切线方程 单调性 最值 极值 不等式

导数是数学分析课程中基本概念之一,它反映了函数的变化率,它的引出和定义始终贯穿着函数思想。近年来由于课改的的需要,将这一高等数学的内容扩充到中学数学选修部分,而且在近年来的高考中导数内容的比重逐年加大。由于其应用的广泛性,为我们解决所学过的有关函数问题,求曲线的切线问题提供了一般性方法,运用它可以简捷地解决一些实际问题。导数的应用主要体现在求曲线的切线方程、判断函数的单调性、求函数的极值、最值以及证明不等式等问题,下面举例谈谈运用导数的知识解决这些问题。

一、利用导数求曲线的切线方程

函数f(x)在点x0处导数的几何意义,就是曲线y=f(x)在点(x0,f(x0))处切线的斜率,也就是说,曲线y=f(x)在点P(x0,f(x0))处切线的斜率是f′(x0)。于是相应的切线方程是y一y0= f′(x0)(x一x0)。解决这类问题的关键是求切点和斜率。

(一) 已知过切点,求切线方程

分析:此类问题较简单,求出斜率f′(x0)带入点斜式方程就可以了。

例如:已知曲线f(x)=x3-3x2+1,过点(1,1)作切线,求切线方程。

解:由f′(x)=3x2-6x得k= f′(1)=-3,故所求切线方程为y-1=-3(x-1)即y=-3x+2

(二)已知过曲线外一点,求切线方程

分析:此类问题先判断点是否在曲线上,点在曲线上可用(一)法求解,若点不在曲线上应先设切点,再求切点。

例如:求过点A(1,0)且与曲线y=1x 相切的直线方程。

解:因为点A(1,0)不在曲线上,故设切点为P(x0,y0)则斜率k=y′|x=x0=-1x02

所以切线方程为y-y0=- 1x02 (x-x0)即y- 1x0=-1x02 (x-x0)

又已知切线过点(1,0)所以有0- 1x0=- =-1x02 (1-x0)

解得x0=12 所以y0=2,k=-4切线方程为y-2=-4(x-12)即4x+y-4=0

二、利用导数判断函数的单调性

利用导数判断函数单调性的步骤是:(1)确定函数的定义域;(2)求导数f′(x);(3)在函数定义域内解不等式f′(x)>0和f′(x)

例如:已知aR,求函数f(x)=x2eax的单调区间

解:f′(x)=2xeax+ax2eax=(2x+a x2)eax

(1)当a=0时,若x0

所以当a=0时,函数f(x)在区间(-∞,0)内是减函数,在区间(0,+∞)内是增函数 (2)当a>0时,由2x+a x2>0解得x0;由2x+a x2

所以当a>0时,函数f(x)在区间(- ∞,-2a )内是增函数,在区间(-2a ,0)内是减函数,在区间(0,+∞)内是增函数;

(3)当a0,解得0

所以当a

三、利用导数求函数的极值

求可导函数极值的步骤是:(1)确定函数的定义域,求导数f′(x);

(2)求f′(x)=0的所有实数根;(3)对每个实数根进行检验,检查f′(x)在方程f′(x)=0的根的左右两侧的值的符号,如果f′(x)的符号左正右负,则函数f(x)在这个根处取得极大值;如果f′(x)的符号左负右正,则函数f(x)在这个根处取得极小值;需要注意的是,如果f′(x)=0的根的左右两侧符号不变,则在这个根处的函数值不是函数的极值。

例如:求函数f(x)=x3-27x的极值

解:f′(x)=3x2-27=3(x+3)(x-3)令f′(x)=0得x=-3或x=3

当x变化时,y′、y的变化情况如下表:

由此可以看出:当x=-3时,函数f(x)有极大值f(-3)=54,当x=3时,函数f(x)有极小值f(3)=-54

四、利用导数求函数的最值

求可导函数最大(小)值的步骤是:(1)求函数的导数f′(x),解方程果f′(x)=0,

求出极值点;(2)比较函数在区间端点处的函数值和函数在极值点处的函数值的大小,确定最大者是最大值,最小者是最小值。在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较。

例如:求函数f(x)=-x4+2x2+3,X [-3,2]的最大值和最小值

解:由f′(x)=-4x3+4x令f′(x)=0即-4x3+4x=0

解得x=-1,或x=0或x=1

又f(-3)=-60,f(-1)=4,f(0)=3,f(1)=4,f(2)=-5

所以,当x=-3时,函数f(x)有最小值-60

当x= 1时,函数f(x)有最大值4

五、利用导数证明不等式

利用导数证明不等式是近年高考中出现的一种热点题型.其方法可以归纳为“构造函数,利用导数研究函数的单调性,再利用函数单调性和常用的证明不等式的方法证明不等关系”.

例如:已知x>2,求证x-1>lnX

证明:构造函数f(x)=x-1-lnx(x>2)则f′(x)=1-1x =x-1x

x>2 f′(x)>0 函数f(x)在(2,+∞)内是增函数

当x>2时,f(x)=x-1-lnx>f(2)=1-ln2>1-lne=0

f(x)>0即x-1-lnx>0 x-1>lnx(x>2)

函数最值的应用篇3

应用一 利用导数研究函数的单调性

这一类题主要考查利用导数研究函数的单调性,及函数单调性的应用.通过求导将函数与方程、不等式结合起来,考查运算求解能力.

例1 已知函数φ(x)=ax+1,a为正常数.

(1)若f(x)=lnx+φ(x),且a=92,求函数f(x)的单调区间;

(2)若g(x)=|lnx|+φ(x),且对任意x1,x2∈(0,2],x1≠x2,都有g(x2)-g(x1)x2-x1<-1,求a的取值范围.

解析:本题主要考查利用导数求函数的单调区间.第(2)问求解的关键是将已知不等式g(x2)-g(x1)x2-x1<-1转化为函数的单调性,进而构造新函数,利用导数求解.

(2)由g(x2)-g(x1)x2-x1<-1,

点评:该题信息给出的是不等式,不少同学在转化时无从下手,挖掘不等式的本质可知,其实不等式对应的是函数的单调性问题.拨开云雾看问题,分析出h(x)具备的单调性后,就可以无招胜有招.

在代数中,“元”是很重要的概念,不少问题都带有两个“元”,即x1,x2,在解方程组时最根本的方法是消元.但是本题中的两个元x1,x2如何转化?从上面的分析可以得知,挖掘出隐含的函数单调性,即达到了“消”的目的,从该题中挖掘出蕴含的思想方法,诠释其内容,回到基本概念中去,分析题目的信息,联系基础知识与基本思想方法,联系已知与未知的关系,获得解题思路.在具体运算求解过程中,需要解决含参不等式恒成立问题,这类题考查同学们分析问题、解决问题的能力,一般情况下可以分离参数,转化为新函数的值域(最值),或直接求导,分类讨论求值域.

通过导数把函数的单调性问题化为不等式问题颇受各地命题专家的青睐.虽然试题千变万化,但是解决问题的思想方法基本相同.

在建立目标函数后,另辟蹊径,极富成效的进行变形,问题就迎刃而解.对试题的异样的分析与解答,拓宽我们的视野,提高思维的灵活性,加深对数学本质的认识,提升数学综合素养.所以,在平时的学习中要善于注意一题多解,一解多用.

应用二 利用导数研究函数的极值及参数的取值范围 用导数研究参数的取值范围,其实质就是转化为研究函数的单调性、极值与最值的问题,这类问题的实质就是函数的单调性与函数的极(最)值的应用.问题的难点在于如何联系参数和所求得的函数的极(最)值,破解的方法是根据题目的要求,画出函数的大致图象,探求函数极(最)值,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现.

例2 已知函数f(x)=3ax4-2(3a+1)x2+4x.

点评:(1)根据函数的单调性确定参数范围是高考的一个热点题型,其根据是函数在某区间上单调递增(减)时,函数的导数在这个区间上大(小)于或者等于零恒成立,转化为不等式恒成立问题解决.

(2)在形式上的二次函数问题中,极易忽略的就是二次项系数可能等于零的情况,这样的问题在函数的单调性的讨论中是经常遇到的,值得考生特别注意.

应用三 利用导数研究方程根的分布

研究方程的根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根的情况,这是导数这一工具在研究方程中的重要应用.将方程、不等式等有关知识和导数结合的综合性问题,主要考查综合运用有关知识分析问题、解决问题的能力.

利用导数证明不等式,就是把不等式问题转化为函数问题,通过构造函数,转化为利用导数求函数最值.应用这种方法的难点是如何根据不等式的结构特点或者根据题目证明目标的要求,构造出相应的函数关系式.破解的基本思路是从函数的角度分析要证明的不等式的结构特点,然后去构造函数式,或者从不等式证明的放缩方向上去构造函数式,使所构造出的函数是不等式证明所需要的最佳函数.

点评:该题的难点有两个,一个是第(2)问中求解函数的极值要根据b的取值范围进行分类讨论;二是证明关于n的不等式,解决此类问题的一般思路是将不等式直接转化为关于n的函数的最值问题来解决.

同学们在求解导数综合题时还要注意以下几点:首先研究函数的有关性质时要求解出函数的定义域.如果不注意函数定义域的限制,则讨论就会更加麻烦;其次利用函数证明不等式的关键是根据不等式的结构特征构造合适的函数,然后利用导数研究函数的单调性和最值;最后求参数范围问题常常转化为不等式恒成立问题或存在性问题,求解函数零点或方程根的分布问题常常先研究函数的单调性和函数的最值(极值),作出函数的大致图象,转化为函数图象与x轴的交点问题.

函数最值的应用篇4

题型1 利用导数研究函数的单调区间

点评:对于函数y=f(x),如果在某区间上f′(x)>0,那么f(x)在该区间上是增函数,如果f′(x)0、f′(x)

题型2 利用导数研究函数的极值、最值

点评:1.设函数f(x)在点x0及其附近可导,且f′(x0)=0.如果f′(x)的符号在点x0的左右由正变负,则f(x0)为函数f(x)的极大值;如果f′(x)的符号在点x0的左右由负变正,则f(x0)为函数f(x)的极小值;特别地,如果f′(x)的符号在点x0的左右不变号,则f(x0)不为函数f(x)的极值.求可导函数极值的基本步骤:①确定函数定义域;②求导函数f′(x);③求出f′(x)=0全部实根;④检查f′(x)在方程f′(x)=0的根的左、右两侧的符号,完成表格,写出极值.特别注意,极值点是函数f(x)的定义域中的内点,因而端点绝不是函数的极值点.

2.求函数f(x)在[a,b]上的最大值与最小值的步骤:①求函数f(x)在(a,b)的极值;②将函数f(x)的各极值与端点处的函数值f(a)、f(b)比较,其中最大的一个是最大值,最小的一个是最小值.

题型3 利用导数研究函数的零点

结合f(x)的单调性可知:

当f(x)的极大值-ln2-9+a=0时,f(x)有1个零点;

当f(x)的极大值-ln2-9+a>0时,f(x)有2个零点;

当f(x)的极大值-ln2-9+a

即:当aln2+9时,f(x)=lnx-2x-8+a有2个零点.

点评:函数y=f(x)的零点是指函数f(x)的图象与x轴交点的横坐标,也是方程f(x)=0的实根.借助导数,通过对函数单调区间、极值的研究,画出函数y=f(x)的草图,再通过数形结合,便可解决有关函数零点(或方程的根)的问题.

题型4 导数在实际问题中的应用

例4 某公司为一家制冷设备厂设计生产一种长方形薄板,其周长为4米,这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后,AB′交DC于点P.当ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.

(1)设AB=x米,用y表示图中DP的长度,并写出x的取值范围;

(2)若要求最节能,应怎样设计薄板的长和宽?

(3)若要求制冷效果最好,应怎样设计薄板的长和宽?

故当薄板长为2米,宽为2-2米时,节能效果最好.

(3)记凹多边形ACB′PD的面积为S2,

关于x的函数S2在(1,32)上递增,在(32,2)上递减.所以当x=32时,S2取得最大值.

故当薄板长为32米,宽为2-32米时,制冷效果最好.

点评:生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为最优化问题.在解决最优化问题时一般先设自变量,因变量,建立函数关系式,并确定函数的定义域,利用求函数最值的方法求解,结果应与实际情况相结合.注意:用导数求解实际问题中的最大(小)值时,如果函数在区间内只有一个极值点,那么依据实际意义,该极值点也就是最值点.

题型5 已知函数性质研究含有参数的问题 1.已知函数单调性求参数的范围

(2)已知f(x)=x3-3x2在区间(2a-4,3a)上单调递增,则a的取值范围 .

解析:令f′(x)=3x2-6x>0,得x>2或x

则y=f(x)的增区间为(-∞,0)和(2,+∞),

所以由题可知(2a-4,3a)(-∞,0)或者(2a-4,3a)(2,+∞),

所以2a-4

点评:以上两个问题都是函数在已知单调性的条件下求参数范围问题,可是方法却不一样,一类是转化为恒成立问题解决,关于不等式恒成立问题,可以转化为求函数的最值来研究,如a≥f(x)(x∈D),得a≥f(x)max;如a≤f(x)(x∈D),得a≤f(x)min.另一类是转化为区间之间的关系来解决,前提是函数的单调区间是可以求,还要注意端点处等号问题.

2.已知函数的极值或最值求参数的值

点评:可导函数f(x)在点x0处有极值,必有f′(x0)=0,而f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,而不是充分条件,所以根据f′(x0)=0求出参数值,需要进行验证.

函数在开区间上存在最值,必然是相应的极值点在该区间内,但是要注意与极值点处取得相同函数值的点是否在该区间内.

3.求含有参数的单调区间

点评:分类讨论是数学上一类重要思想,对含有参数的函数求单调区间时,求导后仍有参数,可转化为解含有参数的不等式问题,解含有参数的不等式常通过分类讨论来完成.

点评:函数f(x)在点x0处的导数f′(x0)的几何意义是在曲线y=f(x)上点x=x0处的切线的斜率,相应的切线方程为y-y0=f′(x0)(x-x0).审题的关键字是“在点”和“过点”,这两个是不一样的,这类问题只要抓住两个关键即可:切点和斜率.

通过上述热点题型的分析,我们发现导数这部分自身的知识难度并不大,但是其应用能力及与其它知识的综合能力要求较高,正是由于导数的引入,对函数的考查已不再拘泥于低次多项式函数、简单的指数函数、对数函数等形态.研究函数的目标也不再局限于定义域,值域,单调性,奇偶性,对称轴,周期性等内容,而是把高次多项式函数,分式函数,指数型函数,对数型函数以及基本初等函数的和差积商更多地作为考查对象,试题的命制往往融函数、导数、不等式、方程、甚至数列、解析几何等知识于一体,通过演绎、证明、运算、推理等理性思维,来解决单调性、极值、最值、切线、方程的根的分布、不等式的解证、参数的范围等问题.试题往往难度大,综合性强,内容、背景、方法上颇为新颖,倍受命题者青睐.

笔者认为,涉及到函数与导数的问题,要养成做题就画图的习惯,复杂问题一画图眉目就清,灵感顿生,即“复杂问题,一画就灵”;要求学会总结,善于总结,熟练掌握基本套路,尤其是“通性通法”:

1.切线问题抓住“切点”不放.

2.方程根(零点)个数问题离开“图象”不说话.

3.导数问题,函数“单调性”是主旋律,就抓住了这个根本,所有问题随之就迎刃而解.

4.不等式有关的范围以及证明不等式问题,构造函数(分离构造、取差构造)是首选,抓住最值是关键.即理清思路,顺藤摸瓜,直达本质.

函数最值的应用篇5

关键词:平方关系;sin?x+cos?x=1;三角函数最值

三角函数的最值问题是数学运算的重点和难点,其对三角函数的恒等变形能力及综合应用要求均较高。本文通过对sin?x+cos?x=1平方关系的灵活运用,对三角函数求最值过程中,直接利用平方关系,引进一个或两个参变量求最值的运算方法,以实际例题形式进行了归纳总结。 一、三角函数重要公式应用

在三角函数sin?x+cos?x=1平方关系的背景下,要将其灵活有效的运用,首先要注意在运算时,对几个常见、常用的三角函数进行熟练记忆和后学后用。比如,①二倍角公式: ; 等。②半角公式: ; ; 。以及三角函数中相应的倒数关系、商关系和平方关系等。

二、3种利用平方关系的sin?x+cos?x=1三角函数最值应用

为探讨平方关系背景下利于sin?x+cos?x=1求三角函数最值,笔者特从直接套用、引入单一变量,和引入两个变量3个方面对sin?x+cos?x=1的应用进行了阐述。

1、直接套用sin?x+cos?x=1求三角函数最值

直接利用在sin?x+cos?x=1求三角函数最值即类似于以下的最值问题。例题:设0

解: y=sin = sin .(1+2cos? -1)=2 sin .cos?

= = · (1)

有(1)≤ · (3)

又 sin? +cos? =1(2)

有(1)≤ · = = = .

上述运算中当且仅当 = ,即 =2arctan 时,(1)和(3)等号成立,

y = .

在本题三角函数最大值的计算中,除了相应的三角函数关系式的使用,关键在于将问题利用三项均值不等式转化为较为简单的平方关系,即sin?x+cos?x=1的形式,进而求得最大值。下面,我们研究直接利用平方关系求最小值的转化和计算过程。

例题:设0< < ,0< < ,求y= 的最小值。

解: y= =

= (1)

又 ≤sin

≥ ,即式(1)= ≥

= =5+tan +4cot (2)

0< < ,0< < ,

当且仅当 = ,则 =arctan ,即 =1,tan =2cot 时等号成立。即式(2)≥5+2 =9.

y =9.

2、在sin?x+cos?x=1引入单一变量求三角函数最值

在三角函数的最值运算中,引入变量往往会让计算变得更加简单,下面我们便以实际例题为例,分析在三角函数中引入一个变量时的最值计算方法。

例题:已知函数y=(sin +2 )·(cos +2 ),求函数y的最大值和最小值。将函数等式展开,可得y= sin cos +2 sin +2 cos +8

= sin cos +2 (sin + cos )+8(1)

由式(1)直接求函数y的最大或最小值显然并不明朗。

对此,我们可根据平方关系,即从sin?x+cos?x=1推算得出的(sinx+ cosx) =1+2sinx·cosx, 针对此题,我们可以设d=sin +cos ,则通过计算即可得出,sin cos = ,且d [- , ].

式(1)即可演变为 ,

整理得 , d [- , ],

当d=- 时,y为最小值,即y = ;

当d= 时,y为最大值,即y = 。

本题求最值的关键在于d的引入,即利用(sinx+cosx) =1+2sinx·cosx,从而将原问题转化成二次函数在闭合区间上的最值问题,达到了将较难问题转为成简单问题进而快速求解的目的。

3、在sin?x+cos?x=1引入两个变量求三角函数最值

例题:求函数y=2sin +cos 的最小值,且 (0, )。

解:设正参数 >0, >0,

y=2sin + = sin + sin + ≥3 (1)

根据两项和三项均值不等式公式可得:

(1)=3 ·sin ·cos + ≥2 cos ,

y=2sin + cos ≥3 ·sin +2 cos - - ,

为计算简便,可设引入的正参数3 =2 (2),则上式可简化为y=3 - - .

综上得到等号成立的充要条件方程组 联合sin?x+cos?x=1可得出 ,与(2)组成方程组,可解得 ,

即当 = 时,函数y为最小值,y =3 - - = 。

上题是根据不同的指数,巧妙地引入正参数 和 ,如此将相对复杂均值不等式“变成”了简单的平方关系,以确保不等式中的等号成立,进而便于快速求出三角函数的最值。

总结:

三角函数最值的问题是中学数学运算中的重点和难点,要达到融会贯通的目的,需要在牢牢掌握相应三角函数关系式和其内在意义的基础上多作练习,本文仅通过平方关系sin?x+cos?x=1,以及其相应推算出的公式对三角函数求最值的典型问题进行了分析,其效果是显著的,但三角函数最值问题涉及的知识面广,求解方法亦并非一成不变,所以在解题时,应抓住题的内在特征,以最恰当的解题方法尽可能的简化过程,以求事半功倍。

参考文献:

[1] 陆军.三角函数最值问题的八种求解策略[J].廷边教育学院学报

[2] 熊斌,冯志刚.奥数精讲与测试[M].学林出版社

函数最值的应用篇6

关键词:二次函数 中数学 应用

中图分类号:G633 文献标识码:A 文章编号:1674-098X(2014)06(c)-0219-01

最早接触二次函数是在初中,受学习能力的限制,学生初步学次函数的掌握程度较低,不能将学到的理论充分运用到高中知识里。高中数学阶段二次函数极其重要,想要完全掌握并且运用的炉火纯青就必须从基础一点点抓起,循序渐进做到得心应手。

1 二次函数的基本知识点

通常判断一个函数是不是二次函数,首先观察它的表达式,形如其中a不等于零。这个是它的一般表达式,另外常用的它还有顶点式跟交点式这两种,比如f(x)=2(x-1)(x-4)这个是交点式,1跟4分别是函数跟x轴的两个交点。

1.1 利用表达式透露出的知识点

函数表达式中的abc这三个参数决定了函数的性质,二次函数的曲线是抛物线,以x=-b/2a对称轴,以(-b/2a,(4ac-bb)/4a)为定点的坐标,还可以根据函数二次项参数a的正负来判断曲线的开口方向,当参数a为正数时向上参数a为负数时向下。函数的判别式为m=bb-4ac,通过判别式中m的符号断定曲线跟横轴的交点个数,m为正时是两个交点,m为负时是没有交点,m为零时是一个交点,也就是两个交点重合,曲线相切于横轴。抛物线的这几方面能够有效地帮助学生学次函数,加深理解跟背诵。

利用上面所说到的知识点,学生们可以轻松地解决一些简单的计算题,比如函数是二次函数,给出函数跟横轴的交点,我们就可以利用待定系数法求出函数的确切表达式。

1.2 二次函数的单调性

单调性的大体概念跟含义我们在初中数学中已经接触到了,但当时并没有经过严格的科学性的定义跟论证,高中数学二次函数的学习给单调性做出了一个有理论依据做基础的解释。二次函数的单调性是分两部分的,这两部分以抛物线的对称轴为界限,一边单调递增,而另一边就会单调递减。学生在学习过程中,对于自变量有范围,判断起来比较困难的分段函数,结合图形分析给人以直观性,是一种很好的方法。

1.3 二次函数的极值特性

已经提到二次函数的图像是抛物线,那么对于不限定自变量范围的函数,对称轴处的函数值便是函数的最大值或者最小值。学生要把函数的基础知识熟记于心,这样做起题来才能如鱼得水。例如:假设二次函数f(x)=3xx-12x+10,它在[a,a+1]上存在最小值,并且是g(a)。要求:得出g(a)的表达式。

解析:f(x)=3xx-12x+10=3(x-2)(x-2)-2所以容易看出函数在自变量x的值是2时得到最小值-2。当2在[a,a+1]这个区间内时最小值g(a)为-2,此时a在[1,2]这个区间中;当a大于2时,g(a)=f(a)=3aa-12a+10;当a小于1时,g(a)=f(a+1)=3aa-6a+4。通过上面的分析计算得出结论。

想要正确得到这个题的结果,必须充分理解二次函数的极值问题。二次函数一般情况下在自变量范围不限制时肯定只有一个最大值或者肯定只有一个最小值,但伴随着自变量定义域的改变,极值的情况也会发生改变。比如对称轴是x=2,自变量的定义域是[3-4],那函数就在3处取得最小值,在4处取得最大值;倘若定义域是(2,5),那这个函数既没有最大值有没有最小值等等,不同的范围对应不同的情况,这样的例子不胜枚举。

2 二次函数的简单应用

2.1 与一元二次不等式接轨

中学数学的学习过程中,肯定接触到了一元二次不等式的内容。也就是根据一致的不等式求解范围。第一步首先看判别式。第二步把不等式暂且看做等式,求解出变量值。第三步是依据二次项正负判断开口,画出假想函数的大致图像。最后看图像找所要求的变量范围。第三步中的画图识图就是将二次函数的知识充分运用到求解不等式当中来,这一步是求解的关键。如果化简后的不等式是大于零,那么自变量的取值范围就选取图像上方的部分。如果化简后的不等式小于零,那么自变量的取值范围就选取图像下方的部分。另外要格外注意等于零的不为的选取与否,最后得到的不等式解集就是正确答案了。

2.2 与求函数的定义域、值域相融合

例如:已知函数y=lg(xx+2mx+2),求:如果函数的定义域是全部实数集,试得出m范围;如果值域是全部实数集,试得出m范围。

第一问:问题等价于xx+2mx+2恒大于零,得出m大于负根号2小于正根号2。

第二问:问题等价于xx+2mx+2大于零恒有解,得出m大于等于根号2或者m小于等于负根号2。

这样的问题最能迷惑学生的双眼,将学生的思维搞混乱,追根究底关键还是没能对所学的知识进行完全吸收。

2.3 结合映射跟函数

函数是一种映射,而二次函数作为函数的一种自然也属于映射,只是情况比较特殊。二次函数是一个不空的定义域到不空的值域的映射,两个之中的元素一一对应,并且没一个定义域中的元素只有一个值域中的元素相对应,而值域中的元素可以有两个定义域中的元素与之对应。这样在二次函数的作用下,学生更深刻、更深入地加深了对映射、对函数的理解,这种认识的明确,对解决遇到的难题大有帮助。

3 为加深二次函数的应用需注意几点

作为老师,在讲解二次函数时,要把基础知识放在首要地位。即使是一个小概念也要充分理解它的含义,对于给出的公式定理,首先了解,深入理解,然后学生自己完成公式的推导,定理的演示,然后结合联系进行巩固训练,熟记于心。最初学习,时间充沛,老师要多查阅资料查找由简单逐步到复杂的典型试题,来锻炼学生举一反三的能力。老师决不能为赶教学进度而马马虎虎,这样对学生高三的冲刺阶段形成很大的隐患。

充分掌握大多数学生学次函数的心理,来适当调节自己讲解的方法。

不建议死读书、读死书,要灵活记忆,灵活掌握每个要点。每堂课、每个小时分别给学生分配不同的任务,制定不同的学习目标,学习目标的明确能够极大极高学生学次函数的效率。

高中二次函数的题型复杂,内涵丰富,文章通过分析二次函数的基础知识点引出了它在高中数学教学其它知识上的完美应用,相信在更多的题目应用中学生能够更好的把握解题技巧。

参考文献

[1] 赵立国.浅谈二次函数的重要作用[J]. 考试(教研),2011(3).

[2] 孙丽静.浅析二次函数在高中数学中的简单应用[J].现代交际,2012(12).

函数最值的应用篇7

1.内容与要求

1.1 本章主要内容是任意角的概念、弧度制、任意角的三角函数、同角三角函数间的关系、诱导公式、两角和与差的三角函数、二倍角的三角函数,以及三角函数的图象和性质,已知三角函数值求角等

1.2 章头引言安排了一个实际问题――求半圆内接矩形的最大面积.这个问题可以用二次函数来解决,但如果设角度为自变量,就会得到三角函数式,学生尚未学过求它的最大值

第一大节是“任意角的三角函数” 教科书首先推广了角的概念,介绍了弧度制,接着把三角函数的概念由锐角直接推广到任意角(都用坐标定义),然后导出同角三角函数的两个基本关系式及正弦、余弦的诱导公式教科书在本大节的各小节中,都安排了许多实例以及知识的应用

第二大节是“两角和与差的三角函数” 教科书先引入平面内两点间距离公式(只通过画图说明公式的正确性,不予严格证明),用距离公式推出余弦的和角公式,然后顺次推出(尽量用启发式)其他公式,同时安排了这些公式的简单应用和实际应用,包括解决引言中的实际问题,引出半角公式、和差化积及积化和差公式让学生有所了解

第三大节是“三角函数的图象和性质” 教科书先利用正弦线画出函数 ,x∈[0, ]的图象,并根据“终边相同的角有相同的三角函数值”,把这一图象向左、右平行移动,得到正弦曲线;在此基础上,利用诱导公式,把正弦曲线向左平行移动个单位长度,得到余弦曲线接着根据这两种曲线的形状和特点,研究了正弦、余弦函数的性质,然后又研究了正弦函数的简图的画法,简要地介绍了利用正切线画出正切函数的图象以及正切函数的性质最后讲述了如何由已知三角函数值求角,并引进了arcsinx、arccosx、arctanx等记号,以供在后续章节中遇到求角问题时用来表示答案

1.3 本章的教学要求是:

1.3.1 使学生理解任意角的概念、弧度的意义;能正确地进行弧度与角度的换算

1.3.2 使学生掌握任意角的正弦、余弦、正切的定义,了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式

1.3.3 使学生掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式通过公式的推导,了解它们的内在联系,从而培养逻辑推理能力

1.3.4 使学生能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明(包括引出积化和差、和差化积、半角公式,但不要求记忆)

1.3.5 使学生会用单位圆中的三角函数线画出正弦函数、余弦函数、正切函数的图象,并在此基础上由诱导公式画出余弦函数的图象;理解周期函数与最小正周期的意义,并通过它们的图象理解这正弦函数、余弦函数、正切函数的性质;会用“五点法”画正弦函数、余弦函数和函数的简图,理解A、、φ的物理意义

1.3.6 使学生会由已知三角函数值求角,并会用符号arcsinx、arccosx、arctanx表示

2.考点要求

2.1 理解弧度的定义,并能正确地进行弧度和角度的换算。

2.2 掌握任意角的三角函数的定义、三角函数的符号、同角三角函数的关系式与诱导公式,了解周期函数和最小正周期的意义,会求的周期,或者经过简单的恒等变形可以化为上述函数的三角函数的周期能运用上述三角公式化简三角函数式,求任意角的三角函数值与证明较简单的三角恒等式

2.3 了解正弦、余弦、正切、余切函数的图象的画法,会用“五点法”画正弦、余弦函数和函数的简图,并能解决正弦、曲线有关的实际问题

2.4 能推导并掌握两角和、两角差、二倍角与半角的正弦、余弦、正切公式

2.5 了解三角函数的积化和差与和差化积公式

2.6 能正确地运用上述公式简化三角函数式、求某些角的三角函数值 证明较简单的三角恒等式以及解决一些简单的实际问题

2.7 掌握余弦定理、正弦定理及其推导过程、并能运用它们解斜三角形

3.考点分析

三角函数是一种重要的初等函数,由于其特殊的性质以及与其他代数、几何知识的密切联系,它既是研究其他各部分知识的重要工具,又是高考考查双基的重要内容之一

本章分两部分,第一部分是三角函数部分的基础,不要求引入难度过高,计算过繁,技巧性过强的题目,重点应放在结知识理解的准确性、熟练性和灵活性上

试题以选择题、填空题形式居多,试题难度不高,常与其他知识结合考查

复习时应把握好以下几点:

3.1 理解弧度制表示角的优点在于把角的集合与实数集一一对应起来,二是就可把三角函数看成以实数为自变量的函数

3.2 要区别正角、负角、零角、锐角、钝角、区间角、象限角、终边相同角的概念

3.3 在已知一个角的三角函数值,求这个角的其他三角函数值时,要注意题设中角的范围,并对不同的象限分别求出相应的值在应用诱导公式进行三角式的化简、求值时,应注意公式中符号的选取

3.4 单位圆中的三角函数线,是三角函数的一种几何表示,用三角函数线的数值来代替三角函数值,比由三角函数定义所规定的比值所得出三角函数值优越得多,因此,三角函数是讨论三角函数性质的一个强有力的工具

3.5 要善于将三角函数式尽可能化为只含一个三角函数的“标准式”,进而可求得某些复合三角函数的最值、最小正周期、单调性等对函数式作恒等变形时需特别注意保持定义域的不变性

3.6 函数的单调性是在给定的区间上考虑的,只有属于同一单调敬意的同一函数的两个函数值才能由它的单调性来比较大小

3.7 对于具有周期性的函数,在作图时只要先作它在一个周期中的图象,然后利用周期性就可作出整个函数的图象

3.8 对于,,等表达式,要会进行熟练的变形,并利用等三角公式进行化简

本章第二部分是两角和与差的三角函数,考查的知识共7个,高考中在选择题、填空题和解答题三种题型中都考查过本章知识,题目多为求值题,有直接求某个三角函数值的,也有通过三角变换求函数的变量范围,周期,最小、大值和讨论其他性质;以及少量的化简,证明题考查的题量一般为3―4个,分值在12―22分,都是容易题和中等题,重点考查内容是两角和与差的正弦、余弦及正切公式,和差化积、各积化和差公式

考生丢分的原因主要有以下两点:一是公式不熟,二是运算不过关,因此复习时要注意以下几点:

3.8.1 熟练掌握和、差、倍、半角的三角函数公式复习中注意掌握以下几个三角恒等变形的常用方法和简单技巧

①常值代换,特别是“1”的代换,如:,,,等等

②项的分拆与角的配凑

③降次与升次

④万能代换

另外,注意理解两角和、差、倍、半角公式中角的实质,可以把公式中的角看成一种整体形式,可以锦成其他变量或函数,这样可加大公式的应用范围和力度

3.8.2 要会运用和差化积与积化和差公式对三角函数和差式,要善于转化为积的形式,反之亦然,对于形如的式子,要引入辅助角并化成的形式,这里辅助角所在的象限由的符号决定,角的值由确定对这种思想,务必强化训练,加深认识

3.8.3 归纳总结并熟练掌握好三角函数的化简与求值的常用方法和技巧

①三角函数化简时,在题设的要求下,首先应合理利用有关公式,还要尽量减少角的种数,尽量减少三角函数种数,尽量化同角、化同名等其他思想还有:异次化同次、高次化低次、化弦或化切、化和差为乘积、化乘积为和差、特殊角三角函数与特殊值互化等

②三角函数的求值问题,主要有两种类型 一关是给角求值问题;另一类是给值求角问题它们都是通过恰当的变换,设法再与求值的三角函数式、特殊角的三角函数式、已知某值的三角函数式之间建立起联系选用公式时应注意方向性、灵活性,以造成消项或约项的机会,简化问题

3.8.4 关于三角函数式的简单证明 三角恒等证明分不附加条件和附加条件两种,证明方法灵活多样一般规律是从化简入手,适当变换,化繁为简,不过这里的变换目标要由所证恒等式的特点来决定

①不附加条件的三角恒等式证明:多用综合法、分析法、在特定的条件下,也可使用数学归纳法

②附加条件的三角恒等式证明:关键在于恰当而适时地使用所附加的条件,也就是要仔细地寻找所附加条件和要证明的等式之间的内在联系常用的方法是代入法和消元法

三角恒等证明中要重点会用和差与积的互化公式,掌握等价转化的思想和变量代换的方法证明的关键是:发现差异――观察等式两边角、函数、运算间的差异;寻找联系――选择恰当公式,找出差异间的联系;合理转化促进联系,创造性地应用基本公式

而关于角的恒等式或条件恒等式的证明,一般来说,要证,先证明的同名三角函数值相等,即,再证明在三角函数的同一单调区间内,而后由函数的单调性得出

3.8.5 在解有关三角形的问题中,锐角三角函数的定义、勾股定理、正弦定理、余弦定理是常用的工具注意三角形面积公式,的妙用和三角形内角和的制约关系的作用

3.8.6 求三角函数最值的常用方法是:配方法、判别式法、重要不等式法、变量代换法、三角函数的单调性和有界性等其基本思想是将三角函数的最值转化为代数函数的最值

4.三角函数中应注意的问题

4.1 本章内容的重点是:任意角三角函数的概念,同角三角函数间的关系式、诱导公式及其运用,正弦、余弦的和角公式,正弦曲线的画法和正弦函数的性质难点是:弧度制的慨念,综合运用本章公式进行简单三角函数式的化简及恒等式的证明,周期函数的概念,函数的图象与正弦曲线的关系关键是:使学生熟练掌握任意角三角函数的定义,讲清余弦的和角公式的特征及其差角公式、正弦的和角公式的变化,正弦曲线的画法和正弦函数的性质

由于课时较紧,教学中应遵循大纲所规定的内容和要求,不要随意补充已被删简的知识点例如,三角函数基本上只讲正弦、余弦、正切三种;同角三角函数的基本关系式只讲,三个;除(k∈Z)外,其余诱导公式中,要求学生记住并能灵活运用的,只是用正弦、余弦表示那几个,以后求tan 可通过用科学计算器或者转化为来求;在推导正切的和角公式以及画正切函数的图象时,出现了正切的诱导公式,但这只作为推导的中间步骤,不要求学生记忆;积化和差与和差化积公式、半角公式也只是作为和(差)角公式的应用出现一下,结果不要求记忆,更不要求运用;此外,也不要补充“把化成一个角的三角函数的形式”这样的例习题

4.2 在讲述弧度制的优点、角度制的不足时,要注意科学性事实上,角的概念推广后,无论用弧度制还用角度制,都能在角的集合与实数集R及之间建立起一种一一对应的关系说“每个角都有唯一的实数与它对应”时,这个实数可以取这个角的弧度数,或度数,或角度制下的分数,或角度制下的秒数,所以对应法则不是唯一的,但每一种对应法则下对应的实数是唯一的所以不要认为只有弧度制才能将角与实数一一对应有的教师认为角度制的计量单位太小,而弧度制的计量单位大,而且可以省略不写,这种说法虽有一定道理,但在科学上并不具有充足的理由,因为小有小的好处,何况坐标系中两条数轴上的单位长度可以不一致关键在于用角度制表示角的时候,我们总是十进制、六十进制并用的,例如角其中61、21、12都是十进数,而度、分、秒之间的关系是六十进(退)位的,这样,为了找出与角对应的实数(我们学的实数都是十进数),要经过一番计算,这就不太方便了

4.3 定义了任意角的三角函数以后,严格地说,例如,只有,才可以说是正弦函数;六种函数统称三角函数,说明不是这六种函数的函数,都不能说是三角函数,例如可以说是2x的正弦函数(这时可说它是三角函数),也可以说是正弦函数与正比例函数的复合函数,但不能说是x的正弦函数另一点是函数的定义域,三角函数或与其相关的函数总是附带定义域的,所以教学中不宜随便说(或写)“正弦函数y=sinx”,需知“函数,”只是正弦函数的一个周期,不要把部分当作整体

4.4 关于已知三角函数值求角,在讲解相关例题时,可以利用设辅助角(即通过设辅助元素把未知转化为已知,这是化归思想的运用)来求解,把求解过程调整为:

4.4.1 如果函数值为正数,则先求出对应的锐角,如果函数值为负数,则先求出与其绝对值相应的锐角

4.4.2 决定角x可能是第几象限角

4.4.3 如果函数值为负数,则根据角x可能是第几象限角,得出 内对应的角――如果它是第二象限角,那么可表示为 ;如果它是第三或第四象限角,那么可表示为 或

也可以把上述辅助角看作参变量(x为自变量),那么所提供的方法就可以看作参数的应用新大纲把参数的知识分散在有关的教学内容中,教学时适时提醒学生注意使用,这是有好处的

4.5 本章所使用的符号及其用法,全部与国家标准所规定的取得一致,在板书中逐渐达到规范化 物理教科书也是这样做的因此在布置和批改作业时,对于本章中的几道与物理(力学、电学)有关的习题,解答时使用的符号及其用法,应与教科书上的相同,以免与物理教师讲课时的要求发生矛盾,弄得学生无所适从

4.6 注意符合学生的认识规律 除了从实际问题引入数学概念之外,在这方面的措施有:(1)重建数形结构首先通过平面直角坐标系 (数形结合)定义任意角的三角函数,在得到“终边相同的角的同一三角函数的值相等”即第一组诱导公式后,就引入与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用它们的几何形式(三角函数线)表示出来;然后学习同角三角函数的两个基本关系式,其他诱导公式,以及两角和与差的三角函数,这一部分属于式的化简、求值、恒等关系的证明以及它们的简单应用,研究方法以数为主,以形为辅;最后学习三角函数的图象和性质、其应用包括已知三角函数值求角,这一部分的研究方法则以形为主,以数为辅 (2)利用学生已有的认知结构首先利用二次函数的知识来解决问题;建立任意角的概念时,利用学生观看体操节目已有的例如对于“转体720度”的直觉和语词记忆;画余弦函数的图象时,利用正弦曲线和诱导公式,已知三角函数值求角时,利用三角函数的图象和性质 (3)精简认知结构,略去或简化不必要的程序 例如,从锐角三角函数直接推广到任意角三角函数,略去了讲钝角三角函数这一程序这样做不仅节约了课时,而且密切了“任意角”与 “任意角三角函数”的联系,反而加强了后者这一知识的发生和形成过程

函数最值的应用篇8

函数f(x)在区间I上的最大值和最小值问题,本质上是一个最优化的问题。求解函数最大值与最小值的实际问题,包括三方面的工作:一是根据实际问题建立目标函数,通常总是选取待求的最优量为因变量:二是按上述的求解方法求出目标函数在相应区间上的最大值或最小值;三是对所求得的解进行相应实际背景的几何意义的解释。同时一方面要深刻理解题意,提高阅读能力,要加强对常见的数学模型的理解,弄清其产生的实际背景,把数学问题生活化;另一方面要不断拓宽知识面,提高间接的生活阅历,如了解一些诸如物价、行程、产值、利润、环保等实际问题,也涉及角度、面积、体积、造价等最优化问题,培养实际问题数学化的意识和能力。

最值问题综合性强,几乎涉及高中数学各个分支,要学好各个数学分支知识,透彻地理解题意,能综合运用各种数学技能,熟练地掌握常用的解题方法,才能收到较好的效果。

(1)代数法。代数法包括判别式法(主要是应用方程的思想来解决函数最值问题)配方法(解决二次函数可转化为求二次函数的最值问题)不等式法(基本不等式是求最值问题的重要工具,灵活运用不等式,能有效地解决一些给定约束条件的函数最值问题)④换元法(利用题设条件,用换元的方法消去函数中的一部分变量,将问题化归为一元函数的最值,以促成问题顺利解决,常用的换元法有代数换元法和三角换元法)。

①判别法:判别式法是等式与不等式联系的重要桥梁,若能在解多元函数最值过程中巧妙地运用,就能给人一种简单明快、耳目一新的感觉。而应用判别式的核心在于能否合理地构造二次方程或二次函数,还需注意是否能取等号。若函数可化成一个系数含有y的关于x的二次方程a(y)x2+b(y)x+c(y)=0,在a(y)≠0时,由于x,y为实数,必须有:=[b(y)]—4a(y)c(y)≥0,由此求出y所在的范围确定函数最值。

②配方法:配方法多使用于二次函数中,通过变量代换,能变为关于t(x)的二次函数形式,函数可先配方成为f(x)=a[t(x)—m]2+n的形式,再根据二次函数的性质确定其最值(此类题的解法关键在于用“配方法”将二次函数一般式化为顶点式,同时要考虑顶点的横坐标的值是否落在定义域内,若不在定义域内则需考虑函数的单调性)。

③不等式法:均值不等式求最值,必须符合“一正、二定、三相”这三个必要条件,因此当其中一些条件不满足时应考虑通过恰当的恒等变形,使这些条件得以满足“和定积最大,积定和最小”,特别是其等号成立的条件。(在满足基本不等式的条件下,如果变量的和为定值,则积有最大值;变量的积为定值,则和有最小值。本例中计算的目的,是利用隐含在条件之中的和为定值,当然这里还需要利用系数的凑合才能达到目的,具有一定技巧)

④换元法:换元法又叫变量替换法,即把某个部分看成一个式子,并用一个字母代替,于是使原式变得简化,使解题过程更简捷(在利用三角换元法求解问题时,关键还是要在掌握好三角函数常用关系式的基础上,结合所求解的函数式,慎重使用)。

(2)数形结合法。数形结合法是数学中的一种重要的思想方法,即考虑函数的几何意义,结合几何背景,把代数问题转化为几何问题,解法往往显得直观、简捷。通过数与形之间的对应和转化来解题,有许多的优越性。将抽象的数学语言和直观的图形结合起来,借助几何图形活跃解题思路,使解题过程简化。有时函数最值也借助数形结合方法来求解。

①解析式:解析法是观察函数的解析式,结合函数相关的性质,求解函数最值的方法。

②函数性质法:函数性质法主要是讨论利用已学函数的性质,如函数的单调性求函数最值等。

③构造复数法:构造复数法是在已经学习复数章节的基础上,把所求结论与复数的相关知识联系起来,充分利用复数的性质来进行求解。

④求导法(微分法):导数是高中现行教材新增加的内容,求导法求函数最值是应用高等数学的知识解决初等问题,可以解决一类高次函数的最值问题。找闭区间[a,b]上连续的函数f(x)的最大(或最小)值时,将不可导点、稳定点及a,b处的函数值作比较,最大(或最小)者即为最大(或最小)值。

综上可知,函数最值问题内涵丰富,解法灵活,没有通用的方法和固定的模式,在解题时要因题而异;而且上述方法并非彼此孤立,而是相互联系、相互渗透的,有时一个问题需要多法并举,互为补充,有时一个题目又会有多种解法。因此,解题的关键在于认真分析和思考,因题而异地选择恰当的解题方法,当一题有多种解法时,当然应该注意选择最优解法。

上一篇:公共卫生价值范文 下一篇:文学素养知识范文