函数教案范文

时间:2023-02-24 01:40:53

函数教案

函数教案范文第1篇

1.了解对数函数的定义、图象及其性质以及它与指数函数间的关系,会求对数函数的定义域。

2.培养培养观察分析、抽象概括能力、归纳总结能力、逻辑推理能力、化归转化能力;

3.培养坚忍不拔的意志,培养发现问题和提出问题的意识、善于独立思考的习惯,体会事物之间普遍联系的辩证观点。

重点:对数函数的定义、图象、性质

难点:对数函数与指数函数间的关系

过程:

一、复习引入:

实例引入:回忆学习指数函数时用的实例

我们研究指数函数时,曾经讨论过细胞分裂问题,某种细胞分裂时,得到的细胞的个数是分裂次数的函数,这个函数可以用指数函数=表示。

现在,我们来研究相反的问题,如果要求这种细胞经过多少次分裂,大约可以得到1万个,10万个……细胞,那么,分裂次数就是要得到的细胞个数的函数。根据对数的定义,这个函数可以写成对数的形式就是

如果用表示自变量,表示函数,这个函数就是

由反函数概念可知,与指数函数互为反函数

这一节,我们来研究指数函数的反函数对数函数

二、新课

1.对数函数的定义:

函数叫做对数函数;它是指数函数的反函数。

对数函数的定义域为,值域为。

2.对数函数的图象

由于对数函数与指数函数互为反函数,所以的图象与的图象关于直线对称。因此,我们只要画出和的图象关于对称的曲线,就可以得到的图象,然后根据图象特征得出对数函数的性质。

活动设计:由学生任意取底数作图,观察分析讨论,教师引导、整理

3.对数函数的性质

由对数函数的图象,观察得出对数函数的性质。见P87表

质定义域:(0,+∞)

值域:R

过点(1,0),即当时,

时时

在(0,+∞)上是增函数在(0,+∞)上是减函数

活动设计:学生观察、分析讨论,教师引导、整理

4.应用

例1.(课本第94页)求下列函数的定义域:

(1);(2);(3)

分析:此题主要利用对数函数的定义域(0,+∞)求解。

解:(1)由>0得,函数的定义域是;

(2)由得,函数的定义域是

(3)由9-得-3,

函数的定义域是

注:此题只是对数函数性质的简单应用,应强调学生注意书写格式。

例2.求下列函数的反函数

①②

解:①

三、小结:对数函数定义、图象、性质

四、作业:

函数教案范文第2篇

②应用对数函数的性质可以解决:对数的大小比较,求复

合函数的定义域、值域及单调性。

③注重函数思想、等价转化、分类讨论等思想的渗透,提高

解题能力。

教学重点与难点:对数函数的性质的应用。

教学过程设计:

⒈复习提问:对数函数的概念及性质。

⒉开始正课

1比较数的大小

例1比较下列各组数的大小。

⑴loga5.1,loga5.9(a>0,a≠1)

⑵log0.50.6,logЛ0.5,lnЛ

师:请同学们观察一下⑴中这两个对数有何特征?

生:这两个对数底相等。

师:那么对于两个底相等的对数如何比大小?

生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

师:对,请叙述一下这道题的解题过程。

生:对数函数的单调性取决于底的大小:当0<a<1时,函数y=logax单

调递减,所以loga5.1>loga5.9;当a>1时,函数y=logax单调递

增,所以loga5.1<loga5.9。

板书:

解:Ⅰ)当0<a<1时,函数y=logax在(0,+∞)上是减函数,

5.1<5.9loga5.1>loga5.9

Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

5.1<5.9loga5.1<loga5.9

师:请同学们观察一下⑵中这三个对数有何特征?

生:这三个对数底、真数都不相等。

师:那么对于这三个对数如何比大小?

生:找“中间量”,log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

log0.50.6<1,所以logЛ0.5<log0.50.6<lnЛ。

板书:略。

师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函

数的单调性比大小,②借用“中间量”间接比大小,③利用对数

函数图象的位置关系来比大小。

2函数的定义域,值域及单调性。

例2⑴求函数y=的定义域。

⑵解不等式log0.2(x2+2x-3)>log0.2(3x+3)

师:如何来求⑴中函数的定义域?(提示:求函数的定义域,就是要

使函数有意义。若函数中含有分母,分母不为零;有偶次根式,

被开方式大于或等于零;若函数中有对数的形式,则真数大于

零,如果函数中同时出现以上几种情况,就要全部考虑进去,求

它们共同作用的结果。)

生:分母2x-1≠0且偶次根式的被开方式log0.8x-1≥0,且真数x>0。

板书:

解:2x-1≠0x≠0.5

log0.8x-1≥0,x≤0.8

x>0x>0

x(0,0.5)∪(0.5,0.8〕

师:接下来我们一起来解这个不等式。

分析:要解这个不等式,首先要使这个不等式有意义,即真数大于零,

再根据对数函数的单调性求解。

师:请你写一下这道题的解题过程。

生:<板书>

解:x2+2x-3>0x<-3或x>1

(3x+3)>0,x>-1

x2+2x-3<(3x+3)-2<x<3

不等式的解为:1<x<3

例3求下列函数的值域和单调区间。

⑴y=log0.5(x-x2)

⑵y=loga(x2+2x-3)(a>0,a≠1)

师:求例3中函数的的值域和单调区间要用及复合函数的思想方法。

下面请同学们来解⑴。

生:此函数可看作是由y=log0.5u,u=x-x2复合而成。

板书:

解:⑴u=x-x2>0,0<x<1

u=x-x2=-(x-0.5)2+0.25,0<u≤0.25

y=log0.5u≥log0.50.25=2

y≥2

xx(0,0.5]x[0.5,1)

u=x-x2

y=log0.5u

y=log0.5(x-x2)

函数y=log0.5(x-x2)的单调递减区间(0,0.5],单调递增区间[0.5,1)

注:研究任何函数的性质时,都应该首先保证这个函数有意义,否则

函数都不存在,性质就无从谈起。

师:在⑴的基础上,我们一起来解⑵。请同学们观察一下⑴与⑵有什

么区别?

生:⑴的底数是常值,⑵的底数是字母。

师:那么⑵如何来解?

生:只要对a进行分类讨论,做法与⑴类似。

板书:略。

⒊小结

这堂课主要讲解如何应用对数函数的性质解决一些问题,希望能

通过这堂课使同学们对等价转化、分类讨论等思想加以应用,提高解题能力。

⒋作业

⑴解不等式

①lg(x2-3x-4)≥lg(2x+10);②loga(x2-x)≥loga(x+1),(a为常数)

⑵已知函数y=loga(x2-2x),(a>0,a≠1)

①求它的单调区间;②当0<a<1时,分别在各单调区间上求它的反函数。

⑶已知函数y=loga(a>0,b>0,且a≠1)

①求它的定义域;②讨论它的奇偶性;③讨论它的单调性。

⑷已知函数y=loga(ax-1)(a>0,a≠1),

①求它的定义域;②当x为何值时,函数值大于1;③讨论它的

单调性。

5.课堂教学设计说明

这节课是安排为习题课,主要利用对数函数的性质解决一些问题,整个一堂课分两个部分:一.比较数的大小,想通过这一部分的练习,

函数教案范文第3篇

2.若集合A中有m个元素,集合B中有n个元素,则从A到B可建立nm个映射

3.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三要素

4.相同函数的判断方法:①定义域、值域;②对应法则(两点必须同时具备)

5.求函数的定义域常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义⑥注意同一表达式中的两变量的取值范围是否相互影响

6.函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法④赋值法7.函数值域的求法:

①换元配方法。如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域。②判别式法。一个二次分式函数在自变量没有限制时就可以用判别式法去值域。其方法是将等式两边同乘以dx2+ex+f移项整理成一个x的一元二次方程,方程有实数解则判别式大于等于零,得到一个关于y的不等式,解出y的范围就是函数的值域。

③单调性法。如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域

8.函数单调性的证明方法:

第一步:设x1、x2是给定区间内的两个任意的值,且x1

第二步:作差¦(x1)-&brVBar;(x2),并对“差式”变形,主要采用的方法是“因式分解”或“配方法”;

第三步:判断差式¦(x1)-&brVBar;(x2)的正负号,从而证得其增减性

9、函数图像变换知识

①平移变换:

形如:y=f(x+a):把函数y=f(x)的图象沿x轴方向向左或向右平移

|a|个单位,就得到y=f(x+a)的图象。

形如:y=f(x)+a:把函数y=f(x)的图象沿y轴方向向上或向下平移|a|个单位,就得到y=f(x)+a的图象

②.对称变换y=f(x)y=f(-x),关于y轴对称

y=f(x)y=-f(x),关于x轴对称

③.翻折变换

y=f(x)y=f|x|,(左折变换)

把y轴右边的图象保留,然后将y轴右边部分关于y轴对称

y=f(x)y=|f(x)|(上折变换)

把x轴上方的图象保留,x轴下方的图象关于x轴对称

10.互为反函数的定义域与值域的关系:原函数的定义域和值域分别是反函数的值域及定义域;

11.求反函数的步骤:①求反函数的定义域(即y=f(x)的值域)②将x,y互换,得y=f–1(x);③将y=f(x)看成关于x的方程,解出x=f–1(y),若有两解,要注意解的选择;。

12.互为反函数的图象间的关系:关于直线y=x对称;

13.原函数与反函数的图象交点可在直线y=x上,也可是关于直线y=x对称的两点

14.原函数与反函数具有相同的单调性

15、在定义域上单调的函数才具有反函数;反之,并不成立(如y=1/x)

16.复合函数的定义域求法:

①已知y=f(x)的定义域为A,求y=f[g(x)]的定义域时,可令g(x)ÎA,求得x的取值范围即可。

②已知y=f[g(x)]的定义域为A,求y=f(x)的定义域时,可令xÎA,求得g(x)的函数值范围即可。

17.复合函数y=f[g(x)]的值域求法:

首先根据定义域求出u=g(x)的取值范围A,

在uÎA的情况下,求出y=f(u)的值域即可。

18.复合函数内层函数与外层函数在定义域内单调性相同,则函数是增函数;单调性不同则函数是减函数。增增、减减为增;增减、减增才减

①f(x)与f(x)+c(c为常数)具有相同的单调性

②f(x)与c·f(x)当c>0是单调性相同,当c<0时具有相反的单调性

③当f(x)恒不为0时,f(x)与1/f(x)具有相反的单调性

④当f(x)恒为非负时,f(x)与具有相同的单调性

⑤当f(x)、g(x)都是增(减)函数时,f(x)+g(x)也是增(减)函数

设f(x),g(x)都是增(减)函数,则f(x)·g(x)当f(x),g(x)两者都恒大于0时也是增(减)函数,当两者都恒小于0时是减(增)函数

19.二次函数求最值问题:根据抛物线的对称轴与区间关系进行分析,

Ⅰ、若顶点的横坐标在给定的区间上,则

a>0时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;

a<0时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;

Ⅱ、若顶点的横坐标不在给定的区间上,则

a>0时:最小值在离对称轴近的端点处取得,最大值在离对称轴远的端点处取得;

a<0时:最大值在离对称轴近的端点处取得,最小值在离对称轴远的端点处取得

20.一元二次方程实根分布问题解法:

①将方程的根视为开口向上的二次函数的图像与x轴交点的横坐标

②从判别式、对称轴、区间端点函数值三方面分析限制条件

21.分式函数y=(ax+b)/(cx+d)的图像画法:

①确定定义域渐近线x=-d/c②确定值域渐近线y=a/c③根据y轴上的交点坐标确定曲线所在象限位置。

22.指数式运算法则23.对数式运算法则:

24.指数函数的图像与底数关系:

在第一象限内,底数越大,图像(逆时针方向)越靠近y轴。

25.对数函数的图像与底数关系:

在第一象限内,底数越大,图像(顺时针方向)越靠近x轴。

26.比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较

27.抽象函数的性质所对应的一些具体特殊函数模型:

①f(x1+x2)=f(x1)+f(x2)Þ正比例函数f(x)=kx(k¹0)

②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2)Þy=ax;

③f(x1•x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2)Þy=logax

28.如果f(a+x)=f(b-x)成立,则y=f(x)图像关于x=(a+b)/2对称;

特别是,f(x)=f(-x)成立,则y=f(x)图像关于y轴对称

29.a>f(x)恒成立Ûa>f(x)的最大值

a

30.a>f(x)有解Ûa>f(x)的最小值

函数教案范文第4篇

1、培养学生看图识图的能力.

2、在识图过程中,渗透数形结合的数学思想.

3、从不同知识的背景提取的对象,可以使学生认识到数学的广泛应用性.

4、激发学生学习数学的兴趣,培养学生的探索精神

教学重点:培养学生看图识图的能力

教学难点:渗透数形结合的数学思想

教学用具:计算机、投影机

教学方法:谈话法、分组讨论

教学过程:

1、阅读习题13.3的第四题

学生阅读后,老师可以提问学生,分别回答:

下图是北京春季某一天的

2、提出看图说图的重要性

随着计算机的普及,很多软件都可以做到输入解析式后,立刻显示出函数图象来,这样看图、识图就变得相当重要了.从上题就可以看出,图形的表示更直观,一目了然.也便于分析结论.数学不仅有数的一面,也有“形”的一面.美国著名数学家M克莱茵曾指出:“只要代数同几何分道扬镳,它们的进展就缓慢,它们的应用就狭窄.但是当这两门科学结合成伴侣时,它们就相互吸取新鲜的活力,从那以后,就以快速的步伐走向完善.”数学具有广泛的应用性,其它学科和日常生活都可以找到应用数学解决问题的例子.

3、为学生提供相对丰富的素材,体会以图识性.

例1、如图所示,A、B两条曲线表示A、B两种物质在不同温度时的相应溶解度,现有未饱和的A、B溶液各一杯,它们的温度都是.如果不准增加A、B两种溶质,请你想一想,用什么办法能分别把它们变成饱和溶液?

(读题后,可组织学生分组讨论.若学生还没有学习相应的化学知识,老师可以解释一下.一般学生都能理解.关键是学生都从图中看出了什么.既有定量的分析,又能得出定性的规律).

从A、B的溶解度曲线分析,随着温度升高,A物质的溶解度增大很快,而物质B的溶解度变化不大,针对这两种不同的特征,可以采用不同的方法.

如对未饱和的A溶液,可以采用降低温度的使它饱和因为根据A物质的曲线,可以看出,降低温度,物质A的溶解度会迅速减小.

而对B物质来讲,它的溶解度受温度的影响变化不大,要把不饱和溶液变为饱和,就需要用减少溶剂的办法.把溶液加热,使溶剂蒸发掉一些.溶剂逐渐减少到一定程度,不饱和的溶液就会变成饱和的了.

例2、如图,是各月气温的分配图

能从图中找出气温最低的月份,气温最高的月份.

并判断出该地所处的气温带.

分析:最高气温在7月,最低在2月.气温曲线的

下限也在以上,即~之间,因此可判断出

该地位于亚热带.

(从数字的变化中,找出事物发展的规律.数学为其它科学所用,数学能力也包括科学的收集信息,整理信息,分析信息的能力.本课例也在试图探索出一条数学与其它学科综合的课例,让学生切实地体会出画图象的好处,体会到数学的用处.数学收集的是数量,但我们可以凭借这些数量,发现它们背后的科学规律.

例3、没有创新就没有发展.因此现代社会要求人必须具有创造性的思维.你想过有关创造性的问题吗?人的创造性思维发展是否随着年龄的增大而呈直线上升趋势?男女之间有区别吗?你可以谈一谈你的想法.

参考资料:思维的流畅性,是指在限定时间内产生观念数量的多少.在短时间内产生的观念多,思维流畅性大;反之,思维缺乏流畅性.以研究智力结构和创造性思维而闻名的美国心理学家吉尔福特把思维流畅性分为四种形式:①用词的流畅性,一定时间内能产生含有规定的字母或字母组合的词汇量的多少;②联想的流畅性,在限定的时间内能够从一个指定的词当中产生同意词(或反义词)数量的多少;③表达的流畅性,按照句子结构要求能够排列词汇量的数量的多少;④观念的流畅性,能够在限定的时间内产生满足一定要求的观念的多少,也就是提出解决问题的答案的多少.

以上的参考资料教师可视学生的情形灵活处理,可以作为预习作业提前下发,也可以在上课时,由老师进行通俗的解释.

右图是以美国心理学家对小学一年级学生至成年人进行大规模有组织的的创造性思维测验后,根据其中的流畅性分数绘制的曲线图.

(1)从图中可以看出,创造性思维的发展不是直线的,而是成犬齿形曲线

(2)男女生曲线基本相似,波峰与波谷基本出现在同一点上.

(3)小学一至三年级呈直线上升状态;小学四年级下跌;小学年级又回复上升;小学六年级至初中一年级第二次下降;以后直至成人基本保持上升趋势.

(注)虽然图中曲线只是儿童期创造性思维的流畅性曲线,但心理学家认为,它也从一定程度上说明了儿童期创造力发展的一般进度.

4、小结:从上面的例题可以看出,数学正突破传统的应用范围向几乎所有的人类知识领域渗透,并越来越直接地为人类物质生产与日常生活做出贡献.因此现代数学的特点之一是它广泛的应用性.数学的学习需要我们有搜集信息分析整理信息的能力.通过观察、归纳、总结出规律,并能应用规律解决问题.

函数教案范文第5篇

2.若集合A中有m个元素,集合B中有n个元素,则从A到B可建立nm个映射

3.函数定义:函数就是定义在非空数集A,B上的映射,此时称数集A为定义域,象集C={f(x)|x∈A}为值域。定义域,对应法则,值域构成了函数的三要素

4.相同函数的判断方法:①定义域、值域;②对应法则(两点必须同时具备)

5.求函数的定义域常涉及到的依据为①分母不为0;②偶次根式中被开方数不小于0;③对数的真数大于0,底数大于零且不等于1;④零指数幂的底数不等于零;⑤实际问题要考虑实际意义⑥注意同一表达式中的两变量的取值范围是否相互影响

6.函数解析式的求法:

①定义法(拼凑):②换元法:③待定系数法④赋值法7.函数值域的求法:

①换元配方法。如果一个函数是二次函数或者经过换元可以写成二次函数的形式,那么将这个函数的右边配方,通过自变量的范围可以求出该函数的值域。②判别式法。一个二次分式函数在自变量没有限制时就可以用判别式法去值域。其方法是将等式两边同乘以dx2+ex+f移项整理成一个x的一元二次方程,方程有实数解则判别式大于等于零,得到一个关于y的不等式,解出y的范围就是函数的值域。

③单调性法。如果函数在给出的定义域区间上是严格单调的,那么就可以利用端点的函数值来求出值域

8.函数单调性的证明方法:

第一步:设x1、x2是给定区间内的两个任意的值,且x1

第二步:作差¦(x1)-&brVBar;(x2),并对“差式”变形,主要采用的方法是“因式分解”或“配方法”;

第三步:判断差式¦(x1)-&brVBar;(x2)的正负号,从而证得其增减性

9、函数图像变换知识

①平移变换:

形如:y=f(x+a):把函数y=f(x)的图象沿x轴方向向左或向右平移

|a|个单位,就得到y=f(x+a)的图象。

形如:y=f(x)+a:把函数y=f(x)的图象沿y轴方向向上或向下平移|a|个单位,就得到y=f(x)+a的图象

②.对称变换y=f(x)y=f(-x),关于y轴对称

y=f(x)y=-f(x),关于x轴对称

③.翻折变换

y=f(x)y=f|x|,(左折变换)

把y轴右边的图象保留,然后将y轴右边部分关于y轴对称

y=f(x)y=|f(x)|(上折变换)

把x轴上方的图象保留,x轴下方的图象关于x轴对称

10.互为反函数的定义域与值域的关系:原函数的定义域和值域分别是反函数的值域及定义域;

11.求反函数的步骤:①求反函数的定义域(即y=f(x)的值域)②将x,y互换,得y=f–1(x);③将y=f(x)看成关于x的方程,解出x=f–1(y),若有两解,要注意解的选择;。

12.互为反函数的图象间的关系:关于直线y=x对称;

13.原函数与反函数的图象交点可在直线y=x上,也可是关于直线y=x对称的两点

14.原函数与反函数具有相同的单调性

15、在定义域上单调的函数才具有反函数;反之,并不成立(如y=1/x)

16.复合函数的定义域求法:

①已知y=f(x)的定义域为A,求y=f[g(x)]的定义域时,可令g(x)ÎA,求得x的取值范围即可。

②已知y=f[g(x)]的定义域为A,求y=f(x)的定义域时,可令xÎA,求得g(x)的函数值范围即可。

17.复合函数y=f[g(x)]的值域求法:

首先根据定义域求出u=g(x)的取值范围A,

在uÎA的情况下,求出y=f(u)的值域即可。

18.复合函数内层函数与外层函数在定义域内单调性相同,则函数是增函数;单调性不同则函数是减函数。增增、减减为增;增减、减增才减

①f(x)与f(x)+c(c为常数)具有相同的单调性

②f(x)与c·f(x)当c>0是单调性相同,当c<0时具有相反的单调性

③当f(x)恒不为0时,f(x)与1/f(x)具有相反的单调性

④当f(x)恒为非负时,f(x)与具有相同的单调性

⑤当f(x)、g(x)都是增(减)函数时,f(x)+g(x)也是增(减)函数

设f(x),g(x)都是增(减)函数,则f(x)·g(x)当f(x),g(x)两者都恒大于0时也是增(减)函数,当两者都恒小于0时是减(增)函数

19.二次函数求最值问题:根据抛物线的对称轴与区间关系进行分析,

Ⅰ、若顶点的横坐标在给定的区间上,则

a>0时:在顶点处取得最小值,最大值在距离对称轴较远的端点处取得;

a<0时:在顶点处取得最大值,最小值在距离对称轴较远的端点处取得;

Ⅱ、若顶点的横坐标不在给定的区间上,则

a>0时:最小值在离对称轴近的端点处取得,最大值在离对称轴远的端点处取得;

a<0时:最大值在离对称轴近的端点处取得,最小值在离对称轴远的端点处取得

20.一元二次方程实根分布问题解法:

①将方程的根视为开口向上的二次函数的图像与x轴交点的横坐标

②从判别式、对称轴、区间端点函数值三方面分析限制条件

21.分式函数y=(ax+b)/(cx+d)的图像画法:

①确定定义域渐近线x=-d/c②确定值域渐近线y=a/c③根据y轴上的交点坐标确定曲线所在象限位置。

22.指数式运算法则23.对数式运算法则:

24.指数函数的图像与底数关系:

在第一象限内,底数越大,图像(逆时针方向)越靠近y轴。

25.对数函数的图像与底数关系:

在第一象限内,底数越大,图像(顺时针方向)越靠近x轴。

26.比较两个指数或对数的大小的基本方法是构造相应的指数或对数函数,若底数不相同时转化为同底数的指数或对数,还要注意与1比较或与0比较

27.抽象函数的性质所对应的一些具体特殊函数模型:

①f(x1+x2)=f(x1)+f(x2)Þ正比例函数f(x)=kx(k¹0)

②f(x1+x2)=f(x1)·f(x2);f(x1-x2)=f(x1)÷f(x2)Þy=ax;

③f(x1•x2)=f(x1)+f(x2);f(x1/x2)=f(x1)-f(x2)Þy=logax

28.如果f(a+x)=f(b-x)成立,则y=f(x)图像关于x=(a+b)/2对称;

特别是,f(x)=f(-x)成立,则y=f(x)图像关于y轴对称

29.a>f(x)恒成立Ûa>f(x)的最大值

a

30.a>f(x)有解Ûa>f(x)的最小值

函数教案范文第6篇

本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁

性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.

函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.

1.了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.

2.理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.

3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.

4、能在具体情境中,了解全集与空集的含义.

5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集,培养学生从具体到抽象的思维能力.

6.理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.

7.能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.

8.学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.

9.了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.

10.通过具体实例,了解简单的分段函数,并能简单应用.

11.结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.

12.学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.

13.通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.

二.编写意图与教学建议

1.教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力.教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.

教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.

2.教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念.教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

3.教材在例题、习题教学中注重运用集合的观点研究、处理数学问题,这一观点,一直贯穿到以后的数学学习中.

4.在例题和习题的编排中,渗透了集合中的分类思想,让学生体会到分类思想在生活中和数学中的广泛运用,这是学生在初中阶段所缺少的.在教学中,一定要循序渐进,从繁到难,逐步渗透这方面的训练.

5.教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,教师要准确把握这方面的要求,防止拨高教学.

6.函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念.在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

7.教材将映射作为函数的一种推广,进行了逻辑顺序上的调整,体现了特殊到一般的思维规律,有利于学生对函数概念学习的连续性.

8.教材加强了函数与信息技术整合的要求,通过电脑绘制简单函数动态图象,使学生初步感受到信息技术在函数学习中的重要作用.

9.为了体现教材的选择性,在练习题安排上加大了弹性,教师应根据学生实际,合理地取舍.

三.教学内容及课时安排建议

本章教学时间约13课时。

1.1集合4课时

1.2函数及其表示4课时

1.3函数的性质3课时

实习作业1课时

复习1课时

§1.1.1集合的含义与表示

一.教学目标:

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

(5)培养学生抽象概括的能力.

2.过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3.情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

二.教学重点.难点

重点:集合的含义与表示方法.

难点:表示法的恰当选择.

三.学法与教学用具

1.学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.

2.教学用具:投影仪.

四.教学思路

(一)创设情景,揭示课题

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?

引导学生回忆.举例和互相交流.与此同时,教师对学生的活动给予评价.

2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.

(二)研探新知

1.教师利用多媒体设备向学生投影出下面9个实例:

(1)1—20以内的所有质数;

(2)我国古代的四大发明;

(3)所有的安理会常任理事国;

(4)所有的正方形;

(5)湖南省在2004年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点;

(7)方程的所有实数根;

(8)不等式的所有解;

(9)洞口一中2007年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这9个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.

一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母…表示.

(三)质疑答辩,排难解惑,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流.

让学生充分发表自己的建解.

3.让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

(1)如果用A表示高—(3)班全体学生组成的集合,用表示高一(3)班的一位同学,是高一(4)班的一位同学,那么与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果是集合A的元素,就说属于集合A,记作.

如果不是集合A的元素,就说不属于集合A,记作.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};

(2)用例举法表示集合

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

(五)归纳整理,整体认识

在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习过哪些知识内容?

2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

(六)承上启下,留下悬念

1.课后书面作业:第13页习题

1.1A组第4题.

函数教案范文第7篇

1、知道一次函数与正比例函数的意义.

2、能写出实际问题中正比例关系与一次函数关系的解析式.

3、渗透数学建模的思想,使学生体会到数学的抽象性和广泛的应用性.

4、激发学生学习数学的兴趣,培养学生分析问题、解决问题的能力.

教学重点:对于一次函数与正比例函数概念的理解.

教学难点:根据具体条件求一次函数与正比例函数的解析式.

教学方法:结构教学法、以学生“再创造”为主的教学方法

教学过程:

1、复习旧课

前面我们学习了函数的相关知识,(教师在黑板上画出本章结构并让学生说出前三节的内容)

2、引入新课

就象以前我们学习方程、一元一次方程;不等式、一元一次不等式的内容时一样,我们在学习了函数这个概念以后,要学习一些具体的函数,今天我们要学习的是一次函数.

顾名思义,谁能根据一次函数这个名字,类比一元一次方程、一元一次不等式的概念能举出一些一次函数的例子?(学生完全具备这种类比的能力,所以要快、不要耽误太多时间叫几个同学回答就可以了.教师将学生的正确的例子写在黑板上)

这些函数有什么共同特点呢?(注意根据学生情况适当引导,看能否归纳出一般结果.)不难看出函数都是用自变量的一次式表示的,可以写成

()

的形式.

一般地,如果

(是常数,)(括号内用红字强调)

那么y叫做x的一次函数.

特别地,当b=0时,一次函数就成为

(是常数,)

3、例题讲解

例1、某油管因地震破裂,导致每分钟漏出原油30公升

(1)如果x分钟共漏出y公升,写出y与x之间的函数关系式

(2)破裂3.5小時后,共漏出原油多少公升

分析:y与x成正比例

解:(1)

(2)(升)

例2、小丸子的存折上已经有500元存款了,从现在开始她每个月可以得到150元的零用钱,小丸子计划每月将零用钱的60%存入银行,用以购买她期盼已久的CD随身听(价值1680元)

(1)列出小丸子的银行存款(不计利息)y与月数x的函数关系式;

(2)多长时间以后,小丸子的银行存款才能买随身听?

分析:银行存款数由两部分构成:原有的存款500元,后存入的零用钱

解:(1)

(2)1680=500+90x解得x=13.…

所以还需要14个月,小丸子才能买随身听

例3、已知函数是正比例函数,求的值

分析:本题考察的是正比例函数的概念

解:

说明:第一题让学生上黑板来完成,二、三题学生分组讨论每个组讨论出一个结果,写在黑板上

4、小结

由学生对本节课知识进行总结,教师板书即可.

5、布置作业

书面作业:1、书后习题2、自己写出一个实际中的一次函数的例子并进行讨论

探究活动

某居民小区按照分期付款的福利售房方式购房,政府给予一定的贴息.小明家购得一套现款价值120000元的房子,购房时首期(第一年)付款30000元,从第二年起,以后每年应付房款为5000元与上一年剩余欠款利息的和.(剩余欠款年利率为0.4%)

(1)若第x(年小明家交付房款y元,求y与x的函数关系式;

(2)求第三、第十年的应付房款值.

参考答案:

函数教案范文第8篇

1、教材的地位和作用:

函数是数学中最主要的概念之一,而函数概念贯穿在中学数学的始终,概念是数学的基础,概念性强是函数理论的一个显著特点,只有对概念作到深刻理解,才能正确灵活地加以应用。本课中学生对函数概念理解的程度会直接影响数学其它知识的学习,所以函数的第一课时非常的重要。

2、教学目标及确立的依据:

教学目标:

(1)教学知识目标:了解对应和映射概念、理解函数的近代定义、函数三要素,以及对函数抽象符号的理解。

(2)能力训练目标:通过教学培养学生的抽象概括能力、逻辑思维能力。

(3)德育渗透目标:使学生懂得一切事物都是在不断变化、相互联系和相互制约的辩证唯物主义观点。

教学目标确立的依据:

函数是数学中最主要的概念之一,而函数概念贯穿整个中学数学,如:数、式、方程、函数、排列组合、数列极限等都是以函数为中心的代数。加强函数教学可帮助学生学好其他的数学内容。而掌握好函数的概念是学好函数的基石。

3、教学重点难点及确立的依据:

教学重点:映射的概念,函数的近代概念、函数的三要素及函数符号的理解。

教学难点:映射的概念,函数近代概念,及函数符号的理解。

重点难点确立的依据:

映射的概念和函数的近代定义抽象性都比较强,要求学生的理性认识的能力也比较高,对于刚刚升入高中不久的学生来说不易理解。而且由于函数在高考中可以以低、中、高挡题出现,所以近年来高考有一种“函数热”的趋势,所以本节的重点难点必然落在映射的概念和函数的近代定义及函数符号的理解与运用上。

二、教材的处理:

将映射的定义及类比手法的运用作为本课突破难点的关键。函数的定义,是以集合、映射的观点给出,这与初中教材变量值与对应观点给出不一样了,从而给本身就很抽象的函数概念的理解带来更大的困难。为解决这难点,主要是从实际出发调动学生的学习热情与参与意识,运用引导对比的手法,启发引导学生进行有目的的反复比较几个概念的异同,使学生真正对函数的概念有很准确的认识。

三、教学方法和学法

教学方法:讲授为主,学生自主预习为辅。

依据是:因为以新的观点认识函数概念及函数符号与运用时,更重要的是必须给学生讲清楚概念及注意事项,并通过师生的共同讨论来帮助学生深刻理解,这样才能使函数的概念及符号的运用在学生的思想和知识结构中打上深刻的烙印,为学生能学好后面的知识打下坚实的基础。

学法:

四、教学程序

一、课程导入

通过举以下一个通俗的例子引出通过某个对应法则可以将两个非空集合联系在一起。

例1:把高一(12)班和高一(11)全体同学分别看成是两个集合,问,通过“找好朋友”这个对应法则是否能将这两个集合的某些元素联系在一起?

二.新课讲授:

(1)接着再通过幻灯片给出六组学生熟悉的数集的对应关系引导学生总结归纳它们的共同性质(一对一,多对一),进而给出映射的概念,表示符号f:AB,及原像和像的定义。强调指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的对应法则f。进一步引导学生总结判断一个从A到B的对应是否为映射的关键是看A中的任意一个元素通过对应法则f在B中是否有唯一确定的元素与之对应。

(2)巩固练习课本52页第八题。

此练习能让学生更深刻的认识到映射可以“一对多,多对一”但不能是“一对多”。

例1.给出学生初中学过的函数的传统定义和几个简单的一次、二次函数,通过画图表示这些函数的对应关系,引导学生发现它们是特殊的映射进而给出函数的近代定义(设A、B是两个非空集合,如果按照某种对应法则f,使得A中的任何一个元素在集合B中都有唯一的元素与之对应则这样的对应叫做集合A到集合B的映射,它包括非空集合A和B以及从A到B的对应法则f),并说明把函f:AB记为y=f(x),其中自变量x的取值范围A叫做函数的定义域,与x的值相对应的y(或f(x))值叫做函数值,函数值的集合{f(x):x∈A}叫做函数的值域。

并把函数的近代定义与映射定义比较使学生认识到函数与映射的区别与联系。(函数是非空数集到非空数集的映射)。

再以让学生判断的方式给出以下关于函数近代定义的注意事项:

2.函数是非空数集到非空数集的映射。

3.f表示对应关系,在不同的函数中f的具体含义不一样。

4.f(x)是一个符号,不表示f与x的乘积,而表示x经过f作用后的结果。

5.集合A中的数的任意性,集合B中数的唯一性。

6.“f:AB”表示一个函数有三要素:法则f(是核心),定义域A(要优先),值域C(上函数值的集合且C∈B)。

三.讲解例题

例1.问y=1(x∈A)是不是函数?

解:y=1可以化为y=0*X+1

画图可以知道从x的取值范围到y的取值范围的对应是“多对一”是从非空数集到非空数集的映射,所以它是函数。

[注]:引导学生从集合,映射的观点认识函数的定义。

四.课时小结:

1.映射的定义。

2.函数的近代定义。

3.函数的三要素及符号的正确理解和应用。

4.函数近代定义的五大注意点。

五.课后作业及板书设计

书本P51习题2.1的1、2写在书上3、4、5上交。

预习函数三要素的定义域,并能求简单函数的定义域。

函数(一)

一、映射:2.函数近代定义:例题练习

二、函数的定义[注]1—5

函数教案范文第9篇

下面就我们对这一重要教学内容的教案形成报告如下(具体教案略)。

在课堂教学中,我们主张有意义学习,反对机械学习。有意义学习,就是通过文字符号或其它符号使学生在头脑中获得相应的认知内容的学习。其学习过程的实质是符号所代表的新知识与学生认知结构中已有的适当知识建立非人为的(非任意的)和实质性的(非字面的)联系。

根据学习任务的复杂程度,有意义学习分为三种类型:代表学习、概念学习和命题学习。这是一堂典型的概念学习课,它的实质是让学生掌握事物的共同的关键特征(关键属性)。获得概念的形式有两种:一种是让学生从大量事物的不同例证中独立发现,称为概念形成,另一种是教师用定义的方式直接向学生呈现,然后由学生利用认知结构中原有的有关概念理解新概念,称为概念同化。

义务教育新教材对认知发展尚未成熟的初中学生,在理论上降低了逻辑严谨性要求。根据从具体到抽象的认知规律,教材比较多的运用了形象思维和直觉思维,减少了学生的学习困难。形象思维是借助对数学对象的具体形象和表象的联想来进行的思维,可以经常联系生活实际、图表和模型表现数学内容,通过联想、类比、归纳而抽象出数学概念,也可以使数学概念具体化、形象化。直觉思维是具有意识的人脑对数学对象的结构及规律性关系的敏锐想象和迅速判断。它的特点是思维过程无明确的意识,也没有清晰的推理过程,思维过程在一刹那间完成(即“顿悟”),主要形式是想象和猜测。可以这样说,逻辑是证明的工具,而直觉是发现的工具。因此根据本节课教材的组织程序和教学大纲要求,学生学习进行的方式可采用发现学习的形式(苏联奥苏伯尔观点,美国布鲁纳倡导),先用概念形成的程序引入函数概念,然后同化函数概念,达到获得函数概念的目的。经过研究,我们取得了如下的共识:

一、依据教学大纲和节前框,本节课的教学目标应该是要求学生能分清实例中出现的常量与变量、自变量与函数,使学生了解函数的意义及三种表示法。

二、紧扣教材,充分运用教材获得函数概念。

1.借助教材编写者精心设计的章头图(第82页)引入教学,体现函数这个重要的数学概念源于实践、寓于实践的哲学观点。

上课伊始,让学生观察章头图。这幅图分上、中、下三部分。通过对上、下四幅画的观察得到某日白天的气温高、风力小;深夜的气温低、风力大,具体生动地说明了时间和气温是两个变量,时间和风力也是两个变量。接着利用学生前节课(平面直角坐标系内容)刚刚获得的认知结构观察中间部分(气温图),发现一天二十四小时内,当时间每取一个值时,气温都有唯一的值与它对应,向学生展示了:在一个问题的研究过程中,往往存在两个变量的运动变化状况,并且它们满足某种函数关系这样一个数学现象(实例)。

2.重点讲解第91页的例子:一辆汽车以30千米/小时的速度行驶,行驶的路程S(千米)与行驶时间t(时)有怎样的关系呢?利用学生已有的认知结构(匀速运动规律:S=Vt),开展学生学习活动。

通过讨论,采用列表的形式,发现在这个问题的研究过程中,速度V是常量,路程S和时间t是两个变量,并且当变量t每取一个值时,就可以相应地得出变量S有唯一的一个值。通过上述两例的知觉水平的分析,辨别不同的刺激模式,舍去事物的特定物质运动的形态,提炼出两个研究对象中共同的关键属性,抽象为数量及关系的研究,就得出了函数的定义,深入浅出地揭示了用语言文字符号表示函数(这一步属于有意义学习的代表学习的范畴)这个数学概念的形成过程,获得了反映现实或者说代表现实的一个抽象概念———函数。

三、同化概念,使函数的意义有效地固定在学生的认知结构中。

在初步获得函数要领的意义后,可通过第92页的圆的面积S(cm2)与半径R(cm)间的关系:S=πR2来理解常量与变量、自变量与函数这些新概念,并进一步综合上面引入函数定义的两例,将函数概念与学生认知结构中的有关观念进一步分化和融合贯通,指出两个变量构成的函数关系有的可以用数学式子(等式)表示,有的可以用列表或图表示,有的三种表示方法兼而有之,达到了同化概念、强化函数关键特征的目的,为以后学习具体函数及其图像奠定了基矗

四、把握好概念的掌握的教学环节。

所谓概念的掌握就是指获得了按一类事物的共同的关键属性进行反应的能力。教师在设计测验来检验学生是否真正获得概念时,有两点是值得注意的:(1)要区分学生是知识的理解还是知识的机械记忆;(2)要区分学生是根据关键特征掌握概念,还是根据无关特征回答有关概念问题。这是一个十分重要的教学环节,要形成学生主动学习的高潮。

1.用提问和板演的形式要求学生完成第92页练习的两题。学生根据常量与变量、自变量与函数的定义,直接从知觉上觉察它们的意义,迅速回答问题。

2.请学生举出实例,说明在一个问题的研究过程中存在两个变量,并且构成函数关系(即由学生举出肯定例证)。教师要抓住函数的关键特征,引导学生开展思维上活动,在学习和生活中推衍(寻找)出数学现象。教师在教学过程中,要特别尊重学生的发言和讨论,采用扩大有关特征(定义的特征)的方法促进教学,辨识肯定例证和否定例证,使函数真正成为科学概念。

张仲隐老师写成了教案,课前学生进行了预习。该授课采用了以激励学生学习为特征的、以学生为中心的讲练结合的启发式教学方法。在教学过程中呈现的概念的形成、掌握、深化的教学环节,环环相扣,自然流畅,使教材本身具有的逻辑意义与学生原有认知结构实现了

函数教案范文第10篇

(一)教学知识点:1.对数函数的概念;2.对数函数的图象和性质.

(二)能力训练要求:1.理解对数函数的概念;2.掌握对数函数的图象和性质.

(三)德育渗透目标:1.用联系的观点分析问题;2.认识事物之间的互相转化.

教学重点:

对数函数的图象和性质

教学难点:

对数函数与指数函数的关系

教学方法:

联想、类比、发现、探索

教学辅助:

多媒体

教学过程:

一、引入对数函数的概念

由学生的预习,可以直接回答“对数函数的概念”

由指数、对数的定义及指数函数的概念,我们进行类比,可否猜想有:

问题:1.指数函数是否存在反函数?

2.求指数函数的反函数.

①;

②;

③指出反函数的定义域.

3.结论

所以函数与指数函数互为反函数.

这节课我们所要研究的便是指数函数的反函数——对数函数.

二、讲授新课

1.对数函数的定义:

定义域:(0,+∞);值域:(-∞,+∞)

2.对数函数的图象和性质:

因为对数函数与指数函数互为反函数.所以与图象关于直线对称.

因此,我们只要画出和图象关于直线对称的曲线,就可以得到的图象.

研究指数函数时,我们分别研究了底数和两种情形.

那么我们可以画出与图象关于直线对称的曲线得到的图象.

还可以画出与图象关于直线对称的曲线得到的图象.

请同学们作出与的草图,并观察它们具有一些什么特征?

对数函数的图象与性质:

图象

性质(1)定义域:

(2)值域:

(3)过定点,即当时,

(4)上的增函数

(4)上的减函数

3.图象的加深理解:

下面我们来研究这样几个函数:,,,.

我们发现:

与图象关于X轴对称;与图象关于X轴对称.

一般地,与图象关于X轴对称.

再通过图象的变化(变化的值),我们发现:

(1)时,函数为增函数,

(2)时,函数为减函数,

4.练习:

(1)如图:曲线分别为函数,,,,的图像,试问的大小关系如何?

(2)比较下列各组数中两个值的大小:

(3)解关于x的不等式:

思考:(1)比较大小:

(2)解关于x的不等式:

三、小结

这节课我们主要介绍了指数函数的反函数——对数函数.并且研究了对数函数的图象和性质.

四、课后作业

上一篇:糖果教案范文 下一篇:初二教案范文