数学思维论文范文

时间:2023-11-20 02:59:27

数学思维论文

数学思维论文篇1

在教学中培养学生的概括能力,教师首先应提供足够直观的背景材料。“直观”包括学生熟知的知识、经验、手段、工具、策略等,这是材料的“质”;“足够”的材料,是准确而完整地概括所必需的最少例证,这是材料的“量”。

有了背景材料的质、量保证,就为学生科学地概括提供了充分条件。

其次,要恰当变换问题的具体情境。面对一种思维情境,没有显而易见的解决方法,这样的情境就是问题,问题解决就是从已知状态到目标状态的运动过程。

小学生概括的肤浅性,往往表现为从问题次要的、表面的形式上去观察和比较,而对问题主要的、本质的东西视而不见。针对这种现象,教学的,教师应当先显示标准的常式,再出示非标准的变式,即先揭示概念的内涵后揭示概念的外延。

提供的变式材料,一定要注意改变事物的非本质属性和非特定情形,不要改变事物的本质属性,这样能使学生的概括集中指向事物的本质要素,不致于干扰和阻碍概括的过程。

第三,发挥解题模式的诱发功能。目前,小学数学界对题型分类和解题模式一直争论不休。现行统编教材编排更是十分忌讳模式或类型。然而无论怎么改变,模式却是客观存在的。事实上,一个公式、一条定律、一道范例,都自然成了学生思维的模式。就连最简单的20以内的进位加法中的“凑十法”也是地道的模式。

模式就是可供模仿的原型。在思考问题的,任何人总要把新问题归结成记忆力已知的认知图式或解题模式。因此,在解数学问题时,在学生进行数学概括时,教师应适时引导学生联想相关的解题模式及其要素、在模式的指导下进行有的放矢的思维,这样可以缩短概括的过程,提高概括水平。

第四,教会学生概括的主要方法。简单地讲有以下4种:

1.从观察和比较中概括。

要让学生养成耐心、全面地观察,精细、认真地比较的良好习惯,特别是要能从相同中发现不同点,或从相异处找出相同点。让学生经常自问:有哪些相同的地方?不同处在哪里?

2.从类比和归纳中概括。

类比是从特殊到特殊的推理,归纳是从特殊到一般的推理,这两种推理的结论,都必须进行概括。类比实质上是从提供的原型中找到模式,再利用模式获得新的概括,如把比例尺的关系式同百分数应用题的数量关系式类比,可以发现它们的相同点:比例尺相当于百分率,图上距离相当于标准量,实际距离相当于比较量,这样可合二为一获得新的概括--比例尺应用题实质上可归结为百分数应用题的解题思路。并且这样解题更加简捷明快。归纳是建构模式中不可能少的环节,演绎则是对模式的具体应用,由于教材封闭性的特点,大多数内容只能以演绎体系呈现,实质上就减少了概括的过程,通过归纳,不仅可以复原结论的形成过程,而目可以在归纳中学会概括一类事物的本质属性,提高概括能力,扇形面积公式就是通过旧纳而概括成的。

3.从直观和抽象中概括。

直观的板书、演示、操作等,为小学生的概括减少了难度,定律、法则等内容较多的结论,可借助板书帮助概括。在抽象中概括,主要指联合各独立的数学条文,形成包摄程度更高更为一般的概括、如从分数乘以整数、一个数乘以分数以及带分数乘法中概括出分数乘法的统一法则就属这一情形。

4.从小结和评价中概括。

解题后的小结与评价都需用概括化的语言表达;每堂课的小结和评价也同样需用语言加以概括,概括语言的精练、准确,反映着概括水平达到了一定程度。

数学思维论文篇2

归纳和演绎是一切科学研究常用的两种思维方式,小学数学中是不自觉地运用过这两种思维方法。例如,从一些特例归纳出运算律,然后用运算律指导运算,我们教师应努力挖掘这些因素,在能力上对学生进行有意的培养,而不停留在知识的传授上,例如:“商不变的性质”“数的整除的特征”“三角形三内角和等于180度”等一些基本概念、公式、方法中,都有一个不完全归纳的过程。如果简单地把结论端出,就失去了培养思维能力的机会,如果引导学生自己去发现这些规律得出结论,那就会得到归纳能力的训练。从特殊到一般的认识过程中有观察、分析、概括、检验和表达等复杂心理活动。观察有个由表及里的过程,分析有个剔除个性、显出共性的问题,概括有个抽象出事物本质属性的能力问题,检验有个完善自己认识的习惯问题,最后归纳成某种结论,还有个语言表达的能力问题。因此,要引导学生真正从特例归纳出一个定理、法则是要一些时间和心思,与其花很多时间讲题目,倒不如花点时间让学生对知识发生过程作些必要的探索,因为这样可培养学生的思维能力。

演绎在小学的应用主要形成是说理,例如:“三角形的面积公式,圆锥体的体积公式”是推理办法解决的,虽然我们在讲这些法则时还要借助实例给以印证,但至少应渗透“从已有的正确判断推出新的判断”这种思想,又如:梯形的面积公式推导,都要贯彻说理精神,长此下去,才能培养出演绎推理的习惯。同时,在演绎推理训练中又要穿插归纳法。

总之,要交叉地训练这两种能力,这恐怕是引导学生进入逻辑思维之门的台阶。

2逻辑思维与直觉思维的能力

直觉思维是指没有经过深思,迅速地对问题作出答案,作出合理的猜测或判断的思维。或者说是在百思不得其解时突然领悟到的思维。直觉思维与逻辑思维不同,逻辑思维是经过一步一步分折,作出科学的结论;直觉思维是很快领悟到的一些猜想。小学生学数学,主要是使用直觉思维,例如:计算9+9+9+7+7学生会得出①(9+7)×3;②8×6这两个乘法式,这不是简单的模仿,而是直觉思维的成果。

我们在教学中,在注重培养学生逻辑思维的同时,要适当运用直觉思维思维方法进行教学,这对培养思维的敏捷性、灵活性和创造性有着重要的意义。这两者的关系是:分析思维为主,渗透直觉思维,鼓励思维简缩,分析验证跟上。

如教学“较简单的求平均数应用题”,在学生认识了求平均数应用题的特征,理解了“移多补少”的实质,掌握了“总数÷总份数=平均数”关系后,解答“在一个鱼塘里,选择五个不同的地方,测得水深分别是200厘米,150厘米、220厘米、250厘米、180厘米,求这个鱼塘的平均水深”。让学生列式后说出怎样想的。他们说:“要求平均水深,就要知道测了几次及测得水深的总和。”这反映了学生思维能力。教师再启发学生运用“移多补少”的道理,观察五个数的特点,直接地“看”出答案来,这就在逻辑思维的基础上渗透了直觉思维的训练。

教师又出示:“某校三年级有三个班,甲班40人,乙班比甲班多5人,丙班比甲班多7人,平均每班多少人?”让学生想一想,能用几种方法解答,哪一种最快。一个学生很快算出平均每班有44人,他们想法是:每班至少有40人,三个班还多出(5+7)人。12÷3=4(人)所以平均每班44人。通过讨论比较,大家一致肯定这种解法比较简捷合理,这说明经过培养,思维简缩性有了提高。

教师再出示两道选择题:

(1)一辆汽车第一天运货15吨,第二天运17吨,第三天上午9吨,下午7吨,平均每天运货多少吨?

A:16吨B:12吨

(2)小金期末考试成绩语文90分,数学89分,思品比语文少3分,自然比数学多5分,求四科的平均成绩。

A:小于90分B:大于90分C:等于90分

要求学生有根据、有条理地说出选择答案的理由,这样,又运用逻辑思维对直觉的结论进行了论证。

3集中思维和扩散思维的能力

目前,许多心理学家认为,创造性思维有赖于扩散思维与集中思维的协调结合。集中思维是从一个背景出发,遵循一种常用的既定的思维渠道达到思维目标,它们几何形态可描绘为从一点出发的一条射线。所谓扩散思维,即从同一背景出发,遵循尽可能多的新的不同的渠道达到思维目标,它的几何形态可描绘为从一点出发的空间一束射线,前者表现为模仿、继承,后者表现于外部行为,就表现为一个人的创造能力,它通常具有变通性、流畅性,创造性的特点,是创造性思维的基础。例如:当问"1=?"时,一些学生回答:1+0=1、100-99=1、1×1=l、2÷2=1、5-4=1、5+3-7=1……等等。有的学生干脆说:“写不完”,“写不完”就是流畅性的表现,能从各个方面用各种方式运算,是变通性的表现;对"1=?"的回答,各个学生各有其特点,是其独创性的表现。

当然,强调发散思维的重要性,并不意味着可以将创造性思维与扩散思维简单等同,也不能因此可以忽视集中思维。扩散思维是多向思考,提供多种可能性方案,但没提供最佳方案,它还需要经过集中思维的分析筛选,寻找一种最佳方案。创造性地解决问题总是发散后集中,所以,我们要把发散思维训练作为一项重要任务,自觉地纳入日常的教学活动中。要根据班级实际引导思维发散、反对形式上的“活跃”而不扎实的发散,也要防止忽视集中思维。

一题多解、一题多变、一题多问等练习可培养学生发散思维的能力。但这类练习要收到好的效果。必须做到适时扩散的能力。但这类练习要收到收的效果,必须做到适时扩散、适时收敛、适时引导、适时评价。

4正向思维与逆向思维的能力

世界上许多事物的运动形态都是双向的,数学中的双向思维比比皆是,运算与逆运算,分析与综合等等。当人们习惯于正向思维时,某种逆向思维就会产生新的境界,许多发明创造就是这样萌发的。如火箭冲天对气球腾空来论,其原理是逆向的。在数学教学中也是这样,当学生经过努力从正向理解了某个规定、公式、法则后,若适当引导学生逆向思考下,往往会跨进新的知识领域。例如学了加法后再学减法,学了乘法再学除法。我们教师在教学中通过已知条件和问题的可逆性变换来打开学生的思路,培养学生的逆向思维能力。

在教学中要重视运用变式的方法精心设计练习,防止思维刻板僵化。既应用正向思维的题目,也应有逆向思维的题目,把正逆思维交融在一起。如:

()÷7=6……5

57÷()=8……1

200+÷600=350120X(35+)=6000

数学思维论文篇3

在当前的经济社会发展中,我国的“中国制造”如何才能打造成“中国创造”是我国是否能成为经济强国,经济大国的重大问题。要“中国制造”需要大批的创造型人才。而大批创造型人才的培养,必然落到了教育的学校方面来。全国第三次教育工作会议指出:“面对世界科技飞速发展的挑战,我们必须把增强民族创新能力提到关系中华民族兴衰存亡的高度来认识。”、“教育在培育创新精神和培养创造性人材方面,肩负着特殊的使命。”所以如何培养大批具有创新能力的人材是我们教育战线面临的至关重要的问题。是我们每一个教师的职责。

作为教师在教学过程中,如何进行创造性教学,使学生具有创造思维的头脑。是教师的应该深入研究的课题。本文就数学教学过程中如何进行培养学生创造思维一些做法作一些探索。

关于创造思维的概念

创造思维的概念。

所谓创造思维—是指带有创见性的新思维。它是在创造性的活动中,应用新的方案和程序,创造新的思维产品的思维活动。其不因循守旧,标新立异。主动探索,独立思索,独立分析,充满个性。具体体现在数学活动中,比如独立地,创造性地掌握数学知识,对数学问题的系统新的阐述;对已知的定理或者公式:“重新发现”或“独立证明”,提出一定价值的新见解等。均可视为学生创造性思维结果。

创造性思维具有如下特点:

一)独创性。它具有思维不受过去习惯和已有的模式束缚,创造了新异的,独特的东西。具有自己创造性的形象。或者有新思路,或者在思考的结论上有首创性,开拓性。

二)发散思维。也叫求异思维。它具有思维标新立异思想。对长期传统思想方法,不迷信,不遵循,对它们大胆质疑,挑战和背叛。它具四个特征,1)流畅性:在短时间内表达出观点和设想的数量;2)灵活性:多方向、多角度思考问题的灵活程度;3)独创性:产生与众不同的新奇思想的能力;4)精致性:对事物描述的细致、准确程度。

三)联想性。面对某一情景,思维方向可向纵深发展,反向发展。也可向横向发展。也可向上,下发展。多方向发展。根据亚里士多德的联想定律,我们可以从三个方面进行联想:1)相似联想:性质、外形有某种相似性的事物表象进行联想;2)相反联想:对性质相反或外形有鲜明对比的事物表象进行联想;3)相关联想:对并不相似但在逻辑上有某种关联的事物表象进行联想。联想的事物都是在性质上、外形上或逻辑上具有某种联系,按上述三方面联想出的表象愈多,愈有利于对表象的整合与重构,即愈有利于想象。

四)是直觉思维。直觉思维是指不受固定的逻辑规则约束,直接领悟事物本质的一种思维方式,在直觉思维过程,人们以已有的知识为根据,对研究所有问题提出合理的猜想和假设,其中含有一个飞跃的过程,往往表现为突然的认识和领悟,直觉思维的特性主要表现在思维对象的整体性,思维产生的突发性,思维过程的非逻辑性,思维结果中的创造性和超前性,以及思维模式的灵活性和敏捷性。亦具有偶然性、不可靠性,模糊性等特点。它在创造性思维活动的关键阶段起着极为重要的作用。扎实的基础是产生直觉的源泉。

关于数学教学中师生的创造思维的活动

一、在数学教学过程教师要有创造性思维教学的思想。

在数学教学过程中,首先是教师有创造思维的教学意识,其次要明确创造思维与数学如何联系,再次有创新的教学手段。例如,教师认真研究创造思维教学的特点,掌握创造思维教学方法。运用多媒体,互联网等现代先进教学手段。在创造性思维教学中,教师认真地设计问题,创造良好的情境,给予新的、又贴近学生的生活和数学水平的信息,以方便学生能与记忆系统里储存的数学信息相联系,利于学生产生联想,使学生对问题产生浓厚的兴趣,从而激发他们学习的热情。在教学上不要以为仅仅是能使学生理解一些概念、定理,掌握一些定理、公式,更重要的是能够使他们能应用这些知识和方法去解决数学中和现实中的比较新的问题。更进一步教会他们今后如何面对新的问题,如何找到新的解决问题的方法的能力。

二、在数学教学中如何培养学生的创造性思维

一)、注意发展学生的观察能力。

创造性思维仍然是一种思维形式。它脱立不了观察。它仍然由观察,分析经验开始的思维活动。因此我们引导学生学习的过程中,给学生一定的时间,对问题深入观察,去伪存真。找到隐藏的东西。例1、求值

此题注意观查到可即得=1;

例2、函数与在同一直角坐标系下的图象大致是()

通过仔细观察,当x=1,函数f(x),g(x)都过(1,1),x=2函数f(x),过点(2,2)g(x)过点(1,1/2)过故选C通过仔细观察产生联想,比较容易的解决问题。

二)注意培养学生的发散思维能力

(1)让学生有思维的空间,切忌满堂灌,注重过程。引导学生多方思考。可以通过从不同方面思考同一问题,如“一题多解”、“一事多写”、“一物多用”等方式,培养发散思维能力。多采用“头脑风暴法”,使每个学生都毫无顾忌地发表自己的观念,既不怕别人的讥讽,也不怕别人的批评和指责,使每个人都能提出大量新观念、提出创造性地解决问题的方法。

例3、已知在直棱柱中∠ABC=,∠BAC=,BC=1,M是中点,求证:平面

此题中易知下面主要是证明

。若想到用三角形相似方法证明

不快捷。若想到用解析几何,只证•=-1就容易。以C为Y轴以为X轴,建立直角坐标系,(0,0)、M(0,)、A()(0),=-,=,则•=-1,那么。若想到平面向量,只需证向量积=O亦容易。若想到空间向量则以为X轴以为Y轴C为Z轴,空间坐标点也不难建立。用空间向量证明,那么证得也容易。

三)、培养学生的联想能力

1)、充分信任、尊重学生,鼓励学生提出问题,发表不同意见。在解题思维上允许“百家争鸣”,对学生提出与众不同的意见,给予支持,鼓励学生的质疑。鼓励学生大胆猜想。在教学中师生互相交流,和谐互动,探求合理,最佳的解题途径和方案,激发学生的求知欲望,激发学生的想象力,开发学生的创造潜能。探求中让创新思维的翅膀,自由自在地异想开天空中飞翔,要注重教学过程,从学习思考中得到思维的发展。爱因斯坦说:想象力比知识更重要,因为知识是有限的,而想象力概括着世界一切。我们可经通相似类比联想,在教学通过同类形的问题供学生分析归纳,再抽象。寻找规律。通过数形联想,掌握相关联想。让学生思维空间更广阔。解决问题的方法更多。在学习中注意学生的逆向思维,让思维更活跃。使问题的解决更容易。例如:在研究指数时我们从定义域、值域、函数图象,函数的单调区间及函数的单调性进行研究,在讲对数函数时我们就引导学生联想指数函数,培养学生对比、相关联想,同时又更快更好的掌握这两个函数的图象及性质。我们在讲公式时注意公式的顺用,也要注意公式的逆用,培养学生的逆向思维。例3、求下式的值1);2)1)式中不查表不能计算出值来,但对照公式=逆向思维可得=;对于2)式打开但麻烦,若是逆向思想则有==tan(45+75)=tan120=-在教学中要注意把这种思想告诉学生。一些教师虽然这样做了,但是他不认识到这是一种创造思维中的逆向思维方式,这种思维方式还将使用到我们更广阔的现实生活当中。

四)、培养学生的直觉能力

过去过多的注重培养逻辑思维,培养的人才大多数习惯于按部就班、墨守成规,缺乏创造能力和开拓精神。而与逻辑思维不同的是:直觉思维是基于研究对整体上的把握,不专意于细节的推敲,是思维的最高层次。由于直觉思维的无意识性,它的想象才最是丰富的,发散的,使人的认知结构向外无限扩展,因而具有反常规律的独创性。教师要注意引导学生从整体观察,把握大方向,大胆猜想,大胆想象。因为基础知识、基础技能的掌握产生直觉的源泉。扎实的基础是培养学生直觉思维必备条件,所以教师必须注意学生的基础。设计问题时要与学生的基础紧密的联系。

例4)如下图。在多面体ABCDEF中,已知ABCD是边为1的正方形,且、均为正三角形,EF//AB,EF=2,则该多面体的体积为

左图中,取EG=HF=1/2,则GF=1,联结GA,GD;HB,HC。根据图形的对称性,要直觉判断出三棱锥E-GAD与三棱锥F-HBC的形状是相同的,体积是相等的。的所以其体积V=这道题,认真观察图形,根据对称产生一些判断,得出一些结论,加快了解答的速度,直觉思维起到了很好的作用。强调直觉思维,整体出发,直觉判断,大胆创新,将会使我们青年学生的思维更活跃,更建康地向前发展。

参考书目:

《创造性思维论-DC模型的建构与论证》北京师范大学现代教育技术研究所何克抗

《普通高等学校招生全国统一考试大纲的说明》教育部考试中心

数学思维论文篇4

关键词:数学思维、数学思维障碍

思维是人脑对客观现实的概括和间接的反映,反映的是事物的本质及内部的规律性。所谓高中学生数学思维,是指学生在对高中数学感性认识的基础上,运用比较、分析、综合、归纳、演绎等思维的基本方法,理解并掌握高中数学内容而且能对具体的数学问题进行推论与判断,从而获得对高中数学知识本质和规律的认识能力。高中数学的数学思维虽然并非总等于解题,但我们可以这样讲,高中学生的数学思维的形成是建立在对高中数学基本概念、定理、公式理解的基础上的;发展高中学生数学思维最有效的方法是通过解决问题来实现的。然而,在学习高中数学过程中,我们经常听到学生反映上课听老师讲课,听得很“明白”,但到自己解题时,总感到困难重重,无从入手;有时,在课堂上待我们把某一问题分析完时,常常看到学生拍脑袋:“唉,我怎么会想不到这样做呢?”事实上,有不少问题的解答,同学发生困难,并不是因为这些问题的解答太难以致学生无法解决,而是其思维形式或结果与具体问题的解决存在着差异,也就是说,这时候,学生的数学思维存在着障碍。这种思维障碍,有的是来自于我们教学中的疏漏,而更多的则来自于学生自身,来自于学生中存在的非科学的知识结构和思维模式。因此,研究高中学生的数学思维障碍对于增强高中学生数学教学的针对性和实效性有十分重要的意义。

一、高中学生数学思维障碍的形成原因

根据布鲁纳的认识发展理论,学习本身是一种认识过程,在这个课程中,个体的学是要通过已知的内部认知结构,对“从外到内”的输入信息进行整理加工,以一种易于掌握的形式加以储存,也就是说学生能从原有的知识结构中提取最有效的旧知识来吸纳新知识,即找到新旧知识的“媒介点”,这样,新旧知识在学生的头脑中发生积极的相互作用和联系,导致原有知识结构的不断分化和重新组合,使学生获得新知识。但是这个过程并非总是一次性成功的。一方面,如果在教学过程中,教师不顾学生的实际情况(即基础)或不能觉察到学生的思维困难之处,而是任由教师按自己的思路或知识逻辑进行灌输式教学,则到学生自己去解决问题时往往会感到无所适从;另一方面,当新的知识与学生原有的知识结构不相符时或者新旧知识中间缺乏必要的“媒介点”时,这些新知识就会被排斥或经“校正”后吸收。因此,如果教师的教学脱离学生的实际;如果学生在学习高中数学过程中,其新旧数学知识不能顺利“交接”,那么这时就势必会造成学生对所学知识认知上的不足、理解上的偏颇,从而在解决具体问题时就会产生思维障碍,影响学生解题能力的提高。

二、高中数学思维障碍的具体表现

由于高中数学思维障碍产生的原因不尽相同,作为主体的学生的思维习惯、方法也都有所区别,所以,高中数学思维障碍的表现各异,具体的可以概括为:

1.数学思维的肤浅性:由于学生在学习数学的过程中,对一些数学概念或数学原理的发生、发展过程没有深刻的去理解,一般的学生仅仅停留在表象的概括水平上,不能脱离具体表象而形成抽象的概念,自然也无法摆脱局部事实的片面性而把握事物的本质。由此而产生的后果:1〉学生在分析和解决数学问题时,往往只顺着事物的发展过程去思考问题,注重由因到果的思维习惯,不注重变换思维的方式,缺乏沿着多方面去探索解决问题的途径和方法。例如在课堂上我曾要求学生证明:如|a|≤1,|b|≤1,则。让学生思考片刻后提问,有相当一部分的同学是通过三角代换来证明的(设a=cosα,b=sinα),理由是|a|≤1,

|b|≤1(事后统计这样的同学占到近20%)。这恰好反映了学生在思维上的肤浅,把两个毫不相干的量(a,b)建立了具体的联系。2〉缺乏足够的抽象思维能力,学生往往善于处理一些直观的或熟悉的数学问题,而对那些不具体的、抽象的数学问题常常不能抓住其本质,转化为已知的数学模型或过程去分析解决。

例:已知实数x、y满足,则点P(x,y)所对应的轨迹为()(A)圆(B)椭圆(C)双曲线(D)抛物线。在复习圆锥曲线时,我拿出这个问题后,学生一着手就简化方程,化简了半天还看不出结果就再找自己运算中的错误(怀疑自己算错),而不去仔细研究此式的结构进而可以看出点P到点(1,3)及直线x+y+1=0的距离相等,从而其轨迹为抛物线。

2.数学思维的差异性:由于每个学生的数学基础不尽相同,其思维方式也各有特点,因此不同的学生对于同一数学问题的认识、感受也不会完全相同,从而导致学生对数学知识理解的偏颇。这样,学生在解决数学问题时,一方面不大注意挖掘所研究问题中的隐含条件,抓不住问题中的确定条件,影响问题的解决。如非负实数x,y满足x+2y=1,求x2+y2的最大、最小值。在解决这个问题时,如对x、y的范围没有足够的认识(0≤x≤1,0≤y≤1/2),那么就容易产生错误。另一方面学生不知道用所学的数学概念、方法为依据进行分析推理,对一些问题中的结论缺乏多角度的分析和判断,缺乏对自我思维进程的调控,从而造成障碍。如函数y=f(x)满足f(2+x)=f(2-x)对任意实数x都成立,证明函数y=f(x)的图象关于直线x=2对称.对于这个问题,一些基础好的同学都不大会做(主要反映写不清楚),我就动员学生看书,在函数这一章节中找相关的内容看,待看完奇、偶函数、反函数与原函数的图象对称性之后,学生也就能较顺利的解决这一问题了。

3.数学思维定势的消极性:由于高中学生已经有相当丰富的解题经验,因此,有些学生往往对自己的某些想法深信不疑,很难使其放弃一些陈旧的解题经验,思维陷入僵化状态,不能根据新的问题的特点作出灵活的反应,常常阻抑更合理有效的思维甚至造成歪曲的认识。如:z∈c,则复数方程所表示的轨迹是什么?可能会有不少学生不假思索的回答是椭圆,理由是根据椭圆的定义。又如刚学立体几何时,一提到两直线垂直,学生马上意识到这两直线必相交,从而造成错误的认识。

由此可见,学生数学思维障碍的形成,不仅不利于学生数学思维的进一步发展,而且也不利于学生解决数学问题能力的提高。所以,在平时的数学教学中注重突破学生的数学思维障碍就显得尤为重要。

三、高中学生数学思维障碍的突破

1.在高中数学起始教学中,教师必须着重了解和掌握学生的基础知识状况,尤其在讲解新知识时,要严格遵循学生认知发展的阶段性特点,照顾到学生认知水平的个性差异,强调学生的主体意识,发展学生的主动精神,培养学生良好的意志品质;同时要培养学生学习数学的兴趣。兴趣是最好的老师,学生对数学学习有了兴趣,才能产生数学思维的兴奋灶,也就是更大程度地预防学生思维障碍的产生。教师可以帮助学生进一步明确学习的目的性,针对不同学生的实际情况,因材施教,分别给他们提出新的更高的奋斗目标,使学生有一种“跳一跳,就能摸到桃”的感觉,提高学生学好高中数学的信心。

例:高一年级学生刚进校时,一般我们都要复习一下二次函数的内容,而二次函数中最大、最小值尤其是含参数的二次函数的最大、小值的求法学生普遍感到比较困难,为此我作了如下题型设计,对突破学生的这个难点问题有很大的帮助,而且在整个操作过程中,学生普遍(包括基础差的学生)情绪亢奋,思维始终保持活跃。设计如下:

1〉求出下列函数在x∈[0,3]时的最大、最小值:(1)y=(x-1)2+1,(2)y=(x+1)2+1,(3)y=(x-4)2+1

2〉求函数y=x2-2ax+a2+2,x∈[0,3]时的最小值。

3〉求函数y=x2-2x+2,x∈[t,t+1]的最小值。

上述设计层层递进,每做完一题,适时指出解决这类问题的要点,大大地调动了学生学习的积极性,提高了课堂效率。

2.重视数学思想方法的教学,指导学生提高数学意识。数学意识是学生在解决数学问题时对自身行为的选择,它既不是对基础知识的具体应用,也不是对应用能力的评价,数学意识是指学生在面对数学问题时该做什么及怎么做,至于做得好坏,当属技能问题,有时一些技能问题不是学生不懂,而是不知怎么做才合理,有的学生面对数学问题,首先想到的是套那个公式,模仿那道做过的题目求解,对没见过或背景稍微陌生一点的题型便无从下手,无法解决,这是数学意识落后的表现。数学教学中,在强调基础知识的准确性、规范性、熟练程度的同时,我们应该加强数学意识教学,指导学生以意识带动双基,将数学意识渗透到具体问题之中。如:设x2+y2=25,求u=的取值范围。若采用常规的解题思路,μ的取值范围不大容易求,但适当对u进行变形:转而构造几何图形容易求得u∈[6,6],这里对u的适当变形实际上是数学的转换意识在起作用。因此,在数学教学中只有加强数学意识的教学,如“因果转化意识”“类比转化意识”等的教学,才能使学生面对数学问题得心应手、从容作答。所以,提高学生的数学意识是突破学生数学思维障碍的一个重要环节。

3.诱导学生暴露其原有的思维框架,消除思维定势的消极作用。在高中数学教学中,我们不仅仅是传授数学知识,培养学生的思维能力也应是我们的教学活动中相当重要的一部分。而诱导学生暴露其原有的思维框架,包括结论、例证、推论等对于突破学生的数学思维障碍会起到极其重要的作用。

例如:在学习了“函数的奇偶性”后,学生在判断函数的奇偶性时常忽视定义域问题,为此我们可设计如下问题:判断函数在区间[2―6,2a]上的奇偶性。不少学生由f(―x)=―f(x)立即得到f(x)为奇函数。教师设问:①区间[2―6,2a]有什么意义?②y=x2一定是偶函数吗?通过对这两个问题的思考学生意识到函数只有在a=2或a=1即定义域关于原点对称时才是奇函数。

使学生暴露观点的方法很多。例如,教师可以与学生谈心的方法,可以用精心设计的诊断性题目,事先了解学生可能产生的错误想法,要运用延迟评价的原则,即待所有学生的观点充分暴露后,再提出矛盾,以免暴露不完全,解决不彻底。有时也可以设置疑难,展开讨论,疑难问题引人深思,选择学生不易理解的概念,不能正确运用的知识或容易混淆的问题让学生讨论,从错误中引出正确的结论,这样学生的印象特别深刻。而且通过暴露学生的思维过程,能消除消极的思维定势在解题中的影响。当然,为了消除学生在思维活动中只会“按部就班”的倾向,在教学中还应鼓励学生进行求异思维活动,培养学生善于思考、独立思考的方法,不满足于用常规方法取得正确答案,而是多尝试、探索最简单、最好的方法解决问题的习惯,发展思维的创造性也是突破学生思维障碍的一条有效途径。

当前,素质教育已经向我们传统的高中数学教学提出了更高的要求。但只要我们坚持以学生为主体,以培养学生的思维发展为己任,则势必会提高高中学生数学教学质量,摆脱题海战术,真正减轻学生学习数学的负担,从而为提高高中学生的整体素质作出我们数学教师应有的贡献。

参考文献:

1、任樟辉《数学思维论》(90年9月版)

2、郭思乐《思维与数学教学》(91年6月版)

数学思维论文篇5

[关键词]构造创新

什么是构造法又怎样去构造?构造法是运用数学的基本思想经过认真的观察,深入的思考,构造出解题的数学模型从而使问题得以解决。构造法的内涵十分丰富,没有完全固定的模式可以套用,它是以广泛抽象的普遍性与现实问题的特殊性为基础,针对具体的问题的特点而采取相应的解决办法,及基本的方法是:借用一类问题的性质,来研究另一类问题的思维方法。在解题过程中,若按习惯定势思维去探求解题途径比较困难时,可以启发学生根据题目特点,展开丰富的联想拓宽自己思维范围,运用构造法来解题也是培养学生创造意识和创新思维的手段之一,同时对提高学生的解题能力也有所帮助,下面我们通过举例来说明通过构造法解题训练学生发散思维,谋求最佳的解题途径,达到思想的创新。

1、构造函数

函数在我们整个中学数学是占有相当的内容,学生对于函数的性质也比较熟悉。选择烂熟于胸的内容来解决棘手问题,同时也达到了训练学生的思维,增强学生的思维的灵活性,开拓性和创造性。

例1、已知a,b,m∈R+,且ab求证:(高中代数第二册P91)

分析:由知,若用代替m呢?可以得到是关于的分式,若我们令是一个函数,且∈R+联想到这时,我们可以构造函数而又可以化为而我们又知道在[0,∞]内是增函数,从而便可求解。

证明:构造函数在[0,∞]内是增函数,

即得。有些数学题似乎与函数毫不相干,但是根据题目的特点,巧妙地构造一个函数,利用函数的性质得到了简捷的证明。解题过程中不断挖掘学生的潜在意识而不让学生的思维使注意到某一点上,把自己的解题思路搁浅了。启发学生思维多变,从而达到培养学生发散思维。

例2、设是正数,证明对任意的自然数n,下面不等式成立。

分析:要想证明≤只须证明

≤0即证

≥0也是

≥0对一切实数x都成立,我们发现是不是和熟悉的判别式相同吗?于是我们可以构造这样的二次函数来解题是不是更有创造性。

解:令

只须判别式≤0,=≤0即得

这样以地于解决问题是很简捷的证明通过这样的知识转移,使学生的思维不停留在原来的知识表面上,加深学生对知识的理解,掌握知识更为牢固和知识的运用能力。有利于培养学生的创新意识。

2、构造方程

有些数学题,经过观察可以构造一个方程,从而得到巧妙简捷的解答。

例3、若(Z-X)2-4(X-Y)(Y-Z)=0求证:X,Y,Z成等差数列。

分析:拿到题目感到无从下手,思路受阻。但我们细看,题条件酷似一元二次方程根的判别式。这里a=x-y,b=z-x,c=y-z,于是可构造方程由已知条件可知方程有两个相等根。即。根据根与系数的关系有即z–y=y-x,x+z=2y

x,y,z成等差数列。遇到较为复杂的方程组时,要指导学生会把难的先简单化,可以构造出我们很熟悉的方程。

例4、解方程组我们在解这个方程组的过程中,如果我们用常规方法来解题就困难了,我们避开这些困难可把原方程化为:

于是与可认为是方程两根。易求得再进行求解(1)或(2)

由(1)得此时方程无解。

由(2)得解此方程组得:

经检验得原方程组的解为:

通过上面的例子我们在解题的过程中要善于观察,善于发现,在解题过程中不墨守成规。大胆去探求解题的最佳途径,我们在口头提到的创新思维,又怎样去创新?创新思维是整个创新活动的关键,敏锐的观察力,创造性的想象,独特的知识结构及活跃的灵感是其的基本特征。这种创新思维能保证学生顺利解决问题,高水平地掌握知识并能把知识广泛地运用到解决问题上来,而构造法正从这方面增训练学生思维,使学生的思维由单一型转变为多角度,显得积极灵活从而培养学生创新思维。

在解题的过程中,主要是把解题用到的数学思想和方法介绍给学生,而不是要教会学生会解某一道题,也不是为解题而解题,给他们学会一种解题的方法才是有效的授之以鱼,不如授之以渔。在这我们所强调的发现知识的过程,创造性解决问题的方法而不是追求题目的结果。运用构造方法解题也是这样的,通过讲解一些例题,运用构造法来解题的技巧,探求过程中培养学生的创新能力。

华罗庚:“数离开形少直观,形离开数难入微。”利用数形结合的思想,可沟通代数,几何的关系,实现难题巧解。

3.构造复数来解题

由于复数是中学数学与其他内容联系密切最为广泛的一部分,因而对某些问题的特点,可以指导学生从复数的定义性质出发来解决一些数学难题。

例5、求证:≥

分析:本题的特点是左边为几个根式的和,因此可联系到复数的模,构造复数模型就利用复数的性质把问题解决。

证明:设z1=a+biz2=a+(1-b)iz3=(1-a)+(1+b)iz4=(1–a)+bi

则左边=|z1|+|z2|+|z3|+|z4|

≥|z1+z2+z3+z4|

≥|2+2i|=

即≥

例6、实数x,y,z,a,b,c,满足

且xyz≠0求证:

通过入微观察,结合所学的空间解析几何知识,可以构造向量

联想到≤结合题设条件

可知,向量的夹角满足,这两个向量共线,又xyz≠0

所以

利用向量等工具巧妙地构造出所证明的不等式的几何模型,利用向量共线条件,可解决许多用普通方法难以处理的问题对培养学生创新思维十分有益。

4.构造几何图形

对于一些题目,可借助几何图形的特点来达到解题目的,我们可以构造所需的图形来解题。

例7、解不等式||x-5|-|x+3||6

分析:对于这类题目的一般解法是分区间求解,这是比较繁杂的。观察本题条件可构造双曲线,求解更简捷。

解:设F(-3,0)F(5,0)则|F1F2|=8,F1F2的中点为O`(1,0),又设点P(x,0),当x的值满足不等式条件时,P点在双曲线的内部

1-31+3即-24是不等式的解。

运用构造法就可以避免了烦杂的分类讨论是不是方便得多了,引导学生掌握相关知识运用到解决问题上来。

又如解不等式:

分析:若是按常规的解法,必须得进行分类讨论而非常麻烦的,观察不等式特点,联想到双曲线的定义,却柳暗花明又一村可把原不等式变为

令则得由双曲线的定义可知,满足上面不等式的(x,y)在双曲线的两支之间区域内,因此原不等式与不等式组:同解

所以不等式的解集为:。利用定义的特点,把问题的难点转化成简单的问题,从而使问题得以解决。

在不少的数学竞赛题,运用构造来解题构造法真是可见一斑。

例8、正数x,y,z满足方程组:

试求xy+2yz+3xz的值。

分析:认真观察发现5,4,3可作为直角三角形三边长,并就每个方程考虑余弦定理,进而构造图形直角三角形ABC,∠ACB=90°三边长分别为3,4,5,∠COB=90°

∠AOB=150°并设OA=x,OB=,,则x,y,z,满足方程组,由面积公式得:S1+S2+S3=

即得:xy+2yz+3xz=24

又例如:a,b,c为正数求证:≥由是a,b,c为正数及等,联想到直角三角形又由联系到可成为正方形的对角线之长,从而我们可构造图形求解。

数学思维论文篇6

一、创造思维及其特征

思维就是平常所说的思考,创造思维就是与众不同的思考。数学教学中所研究的创造思维,一般是指对思维主体来说是新颖独到的一种思维活动。它包括发现新事物,提示新规律,创造新方法,解决新问题等思维过程。尽管这种思维结果通常并不是首次发现或前所末有的,但一定是思维主体自身的首次发现或超越常规的思考。

创造思维就是创造力的核心。它具有独特性、求异性、批判性等思维特征,思考问题的突破常规和新颖独特是创造思维的具体表现。这种思维能力是正常人经过培养可以具备的。

二、培养创造思维的教学模式

教学模式是在一定教学思想指导下所建立起来的完成所提出教学任务的比较稳固的教学程序及其实施方法的策略体系。1它是人们在长期教学实践中不断总结、改良教学而逐步形成的。它源于教学实践,又反过来指导教学实践,是影响教学的重要因素。要培养学生的创造思维,就应该有与之相适应的,能促进创思维培养的教学模式,当前数学创新教学模式主要有以下几种形式。

1、开放式教学。这种教学模式在通常情况下,都是由教师通过开放题的引进,学生参与下的解决,使学生在问题解决的过程中体验数学的本质,品尝进行创造性数学活动的乐趣的一种教学形式。开放式教学中的开放题一般有以下几个特点。一是结果开放,对于用一个问题可以有不同的结果;二是方法开放,学生可以用不同的方法解决这个问题,而不必根据固定的解题程序;三是思路开放,强调学生解决问题时的不同思路。

2、活动式教学。这种教学模式主要是:“让学生进行适合自己的数学活动,包括模型制作、游戏、行动、调查研究等方式,使学生在活动中认识数学、理解数学、热爱数学。”

3、探索式教学。这种教学模式只能适应部分的教学内容。对于这类知识的教学,通常是采用“发现式”的问题解决,引导学生主动参与,探索知识的形成、规律的发现、问题的解决等过程。这种教学尽管可能会耗时较多,但是,磨刀不误砍柴工,它对于学生形成数学的整体能力,发展创造思维等都有极大的好处。三、怎样培养学生的创造思维能力

1、注意培养观察力

观察是信息输入的通道,是思维探索的大门。敏锐的观察力是创造思维的起步器。可以说,没有观察就没有发现,更不能有创造。儿童的观察能力是在学习过程中实现的,在课堂中,怎样培养学生的观察力呢?

首先,在观察之前,要给学生提出明确而又具体的目的、任务和要求。其次,要在观察中及时指导。比如要指导学生根据观察的对象有顺序地进行观察,要指导学生选择适当的观察方法,要指导学生及时地对观察的结果进行分析总结等。第三,要科学地运用直观教具及现代教学技术,以支持学生对研究的问题做仔细、深入的观察。第四,要努力培养学生浓厚的观察兴趣。

2、注意培养想象力

想象是思维探索的翅膀。爱因斯坦说:“想象比知识更重要,因为知识是有限的,而想象可以包罗整个宇宙。”在教学中,引导学生进行数学想象,往往能缩短解决问题的时间,获得数学发现的机会,锻炼数学思维。

想象不同于胡思乱想。数学想象一般有以下几个基本要素。第一,因为想象往往是一种知识飞跃性的联结,因此要有扎实的基础知识和丰富的经验的支持。第二,是要有能迅速摆脱表象干扰的敏锐的洞察力和丰富的想象力。第三,要有执着追求的情感。因此,培养学生的想象力,首先要使学生学好有关的基础知识。其次,新知识的产生除去推理外,常常包含前人的想象因素,因此在教学中应根据教材潜在的因素,创设想象情境,提供想象材料,诱发学生的创造性想象。另外,还应指导学生掌握一些想象的方法,像类比、归纳等。著名的哥得巴赫猜想就是通过归纳提出来的,而仿生学的诞生则是类比联想的典型实例。

3、注意培养发散思维

发散思维是指从同一来源材料探求不同答案的思维过程。它具有流畅性、变通性和创造性的特征。加强发散思维能力的训练是培养学生创造思维的重要环节。根据现代心理学的观点,一个人创造能力的大小,一般来说与他的发散思维能力是成正比例的。

在教学中,培养学生的发散思维能力一般可以从以下几个方面入手。比如训练学生对同一条件,联想多种结论;改变思维角度,进行变式训练;培养学生个性,鼓励创优创新;加强一题多解、一题多变、一题多思等。特别是近年来,随着开放性问题的出现,不仅弥补了以往习题发散训练的不足,同时也为发散思维注入了新的活力。

4、注意诱发学生的灵感

灵感是一种直觉思维。它大体是指由于长期实践,不断积累经验和知识而突然产生的富有创造性的思路。它是认识上质的飞跃。灵感的发生往往伴随着突破和创新。

在教学中,教师应及时捕捉和诱发学生学习中出现的灵感,对于学生别出心裁的想法,违反常规的解答,标新立异的构思,哪怕只有一点点的新意,都应及时给予肯定。同时,还应当应用数形结合、变换角度、类比形式等方法去诱导学生的数学直觉和灵感,促使学生能直接越过逻辑推理而寻找到解决问题的突破口。

例如,有这样的一道题:把、、、用“>”号排列起来。对于这道题,学生通常都是采用先通分再比较的方法,但由于公分母太大,解答非常麻烦。为此,笔者在教学中,曾经安排学生回头观察后桌同学抄的题目(--、--、--、--),然后再想一想可以怎样比较这些数的大小.倒过来的数字诱发了学生瞬间的灵感,使很多学生寻找到把这些分数化成同分子分数再比较大小的简捷方法。

总之,人贵在创造,创造思维是创造力的核心。培养有创新意识和创造才能的人才是中华民族振兴的需要,让我们共同从课堂做起。

参考书目

1《教学改革手册》,中央编译出版社,第3页。

数学思维论文篇7

一、在求异中培养发散思维

赞可夫说过:“凡是没有发自内心求知欲和兴趣和东西,是很容易从记忆中挥发掉的。”发散性思维的形成是以乐于求异的心理倾向作为一种重要的内驱力。教师要善于选择具体题例,创设问题情境,例如:一条水渠,甲单独修要8天完成,乙单独修要6天完成,现在甲先修了4天,剩下的让乙修。乙还要几天可以完成?学生都能按照常规思路作出(1-1/8×4)÷1/6解答,教师要求用别的方法解答,学生一时想不出,通过教师的引导学生得出了:6×(1-1/8×4),6-1/8×4÷1/6,教师精细地诱导他们的求异意识。对于学生在思维过程中时不时地出现的求异因素要及时给予肯定和热情表扬,并记上优分以资鼓励使学生真切体验到自己求异成果的价值,反馈出更大程度的求异积极性,对于学生欲寻异解而不能时,则要细心点拨。潜心诱导,帮助他们获得成功,让他们在对于问题的多解的艰苦追求并且获得成功中,备享思维发散这一创造性思维活动的乐趣,使学生渐渐生成自觉的求异意识,并日渐发展为稳定的心理倾向,在面临具体问题时,就会能动地作出“还有另解吗?”“试试看,再从××角度分析一下!”的求异思考。

二、在变通中培养发散思维

变通,是发散思维的显著标志。要对问题实行变通,只有在摆脱习惯性思考方式的束缚,不受固定模式的制约以后才能实现,因此,在学生较好地掌握了一般方法后,要注意诱导学生离开原有思维轨道,从多方面考虑问题,实行变通。当学生思路闭塞时,教师要善于调度原型帮助学生接通与有关旧知识和解题经验的联系,作出转换、假设、化归、逆反等变通,产生多种解决问题的设想。

三、在独创中培养发散思维

在分析和解决问题的过程中,学生能别出心裁地提出新异的想法和解法,这是思维独创的表现。尽管小学生的独创从总体上看是处于低层次的,但它蕴育着未来的大发明、大创造,教师应满腔热情地鼓励他们别出心裁地思考问题,大胆地提出与众不同的意见和质疑,独辟蹊径地解决问题,这样才能使学生思维从求异、发散向创新推进。

四、培养发散思维要加强基础

数学思维论文篇8

这是在同一来源中产生各种各样的为数众多的输出的分析性的思维形式,而教师可以引导学生从不同的方面探索问题的多种答案。如16—10,可以启发学生用不同的叙述方式表述这道算式。如①16减去10等于几?②16减去10还剩多少?③16与10的差是多少?④10与什么数的和是16?⑤16比10多多少?⑥10比16少多少?⑦16减去什么数等于10?⑧10加上什么数等于16?这样,既使学生透彻理解了数量关系,又训练了口头表达能力,更重要的是锻炼了学生的思维能力。其它如“一题多解”、“一题多变”等就不赘述了。

2.求同型

这是一种进行综合、概括的思维形式。如上例,教师亦可以用几种不同的叙述方法提出几个问题,让学生归纳出16—10的算式来。此外,还可以通过一些异中有同的习题来训练学生的抽象概括思维能力。如:

①甲乙两人接到加工54只零件任务,甲每天加工10只,乙每天加工8只,几天后完成任务?

②一件工程,甲独做10天完成,乙独做15天完成,两人合作几天完成?

像这些形异质同的问题,要引导学生自己总结出:工作总量÷工作效率=工作时间。只有这样,学生才能以不变应万变,解一题会多题,可以起到减轻学生负担的作用。

3.递进型

这是一种属于逻辑判断、推理的思维形式。例如,教师在讲授“已知一个数的百分之几是多少,求这个数。”一类题时,叮以引导学生用已掌握的“已知一个数几倍是多少,求这个数”的解题规律去进行逻辑推理,让学生自己发现新出现的百分数应用题的解题规律。教师不要越俎代疱,否则吃力不讨好,反而妨碍了学生思维能力的提高。

4.逆反型

这是一种敢于和善于突破习惯性思维束缚的反向思维形式。在数学教学中,可供训练的材料比比皆是,如加减、乘除、通分约分、正反比例等,问题是教师如何善于运用它。如教验算时,16-10=6,学生习惯地用16-6=10来验算,这时教师可启发学生用6+10=16来验算。经过训练,学生便可知道用加法验算减法、用减法验算加法、用乘法验算除法、用除法验算乘法了。

5.激化型

这是一种跳跃性、活泼性、转移性很强的思维形式。教师可通过速问速答来训练练学生。如问:3个5相加是多少?学生答:5+5+5=15或5×3=15。教师又问:3个5相乘是多少?学生答:5×5×5=125。紧接着问:3与5相乘是多少?学上答:3×5=15,或5×3=15。通过这样的速问速答的训练,发现学生思维越来越活跃,越来越灵活,越来越准确。

6.类比型

这是一种对并列事物相似性的个同实质进行识别的思维形式。这项训练可以培养学生思维的准确性。如:

①金湖粮店运来大米6吨。比运来的面粉少1/4吨、运来面粉多少吨?

②金湖粮店运来大米6吨,比运来的面粉少1/4,运来面粉多少吨?

以上两题,虽然相似,实质不同,一字之差,解法全异,可以点拨学生自己辨析。通过训练,学生今后碰到类似的问题便会仔细推敲,这样就大大地提高了解题的准确性。

7.转化型

这是解决问题遇到障碍受阻时把问题由一种形式转换成另一种形式,使问题变得更简单、更清楚,以利解决的思维形式。在教学中,通过该项训练,可以大幅度地提高学生解题能力。如:某一卖鱼者规定,凡买鱼的人必须买筐中鱼的一半再加半条。照这样卖法,4人买了后,筐中鱼尽,问筐中原有鱼多少条?该题对一些没有受过转化思维训练的学生来说,会感到一筹莫展。即使基础较好的学生也只能复杂的方程。

但经过转化思维训练后,学生就变得聪明起来了,他们知道把买鱼人转换成1人,显然鱼1条;然后转换成2人,则鱼有3条;再3人,则7条;再4人,则15条。

8.系统型

这是把事物或问题作为一个系统从不同的层次或不同的角度去考虑的高级整体思维形式。在高年级除结合综合应用题以外还可编制许多智力训练题来培养学生系统思维能力。如:123456789在不改变顺序前提下(即可以将几个相邻的数合在一起成为一个数,但不可以颠倒),在它们之间划加减号,使运算结果等于1OO。象这道题就牵涉到系统思维的训练。教师可引导学生把10个数看成一个系统,从不同的层次去考虑、第一层次:找100的最接近数,即89比100仅少11。第二个层次:找11的最接近数,很明显是前面的12。第三个层次:解决多l的问题。整个程序如下:12+3+4+5-6-7+89=100

经过像这样的训练,学生就会触类旁通,碰到难题就能产生新的思路和设想。

上一篇:素质考评范文 下一篇:所得税法论文范文