数学建模中的常用算法范文

时间:2023-12-19 11:22:05

数学建模中的常用算法

数学建模中的常用算法篇1

关键词:数学建模;计算机技术;应用;计算机软件

改革开放以来,我国社会步入高速进步的轨道,各个领域都得到持续性的发展,并取得阶段性的成果,其中数学这门科学在整个社会进步过程中也起到非常关键的作用。数学虽然是一门基础的学科,但是物理、生物、化学等自然科学领域在各个层面上穿插了对数学的应用,社会不断深入发展,数学也在发展过程中的作用也越来越重要。不止于自然科学领域,数学也在研究事务性扩展上做出贡献。在现实生活中,当遇到非常复杂、包含多个逻辑的问题时,可将数学应用在问题的解决上:找到研究问题的规律后,使用数字、符号等数学符号对问题进行描述,翻译成数学语言,然后使用计算机技术对翻译出的数学语言进行建模、运行,最后就可得到想要的问题解决方案。本文简单介绍数学建模和计算机技术两者间的联系,然后深入一个层次,对计算机技术在数学建模中的应用进行研究,希望对推广和研究使用计算机技术进行数学建模提供一定的理论基础。

1数学建模和计算机技术两者间的联系

1.1数学建模

数学建模不同于数学研究,它偏重于解决生活中的实际问题,有着独特的特点。数学建模将我们所遇到的实际问题进行分析,对后续的建模过程做准备;然后把错综复杂的情况进行简化,用数学语言进行抽象的表达;在根据问题的条件设定假说对研究过程进行制约;然后对所需数据进行调查整理,观察、剖析现实中该问题的普遍规律和各项特征,正式构造出符合问题的数学模型,将混乱、复杂的实际问题转化为清晰、明了,便于解决的数学问题;再进行数学模型的求解,得出问题的解决方案;接下来对根据求解结果对模型进行分析和检验;上述两个步骤合格、过关才能将数学模型投入应用。简化整个数学建模的流程如图1所示,总共包含七个步骤:建模准备、建模假设、模型构造、模型求解、模型分析、模型检测及模型应用。其中最重要的就是模型分析和模型检测,它们决定模型的的合理性和对解决实际问题的能力。

1.2计算机技术

计算机是具备数据存储,数据处理,实现对逻辑运算的现代化的智能电子设备,计算机技术建立在计算机的基础之上,指计算机领域中所运用到的技术方法和技术手段,或者说是硬件技术、软件技术和应用技术的结合。它的综合特性非常明显,涵盖多方面的技术:运算方法的基本原理、运算设计、中央处理器设计、流水线设计、存储体系、指令系统等。计算机技术的发明极大推动人类科技进步的水平,是在未来科技发展道路中必不可少的一项工具。

1.3计算机技术和数学建模的联系

发展至今,数学建模已达到非常高的水平,几乎所有的建模都需大量的计算,换个角度说,计算机技术几乎不可避免在现代的数学建模中,它在数学建模计算过程中占据无与伦比的地位,两者在这一过程中都相互促进和影响。计算机技术起源于数学建模过程,在1980年代,在计算导弹飞行过程中的轨迹,由于计算量过于庞大,人工操作无法满足这一过程中对计算准确度和计算速度的要求,开始将计算机技术在这一背景下应用。人工计算处理过程和实际需要计算过程间巨大的差距激发着计算机科研人员的动力,在研究计算机技术上竭尽全力,使各式各样的计算机软件应运而生。计算机技术也逐渐起源,提高世界数学建模的整体水平,两者息息相关,紧密相联。

2计算机技术在数学建模应用中的一些优势

2.1计算机可存储和处理大量的数据

人们对1942年世界上第一台计算机———Atanasoff-Berry计算机进行实验,这个实验是成功的,虽然它只能对线性的方程组进行求解,但这台计算机的一小步,是计算机技术发展的一大步,以致它的设计思路现在依然被沿用。第一台计算机的发明至今不过70几年,但发展速度是以前从不敢想象的,现代计算机的计算量与存储量都是从前的千万倍,即使现代的一台普通的家用计算机都可存储下几百吉字节。这样的存储能力可满足一般情况下的数学建模,当存储能力不够时还可通过对计算机添加硬盘获得更大的存储能力。现代计算机在进行气象学分析、流体力学分析等过程时,其强大的计算能力和超大的存储能力可使其在运行这些过程时游刃有余、非常轻松;

2.2计算机能以可视化展示数学模型

计算机在对数学模型进行模拟后,可通过连接信息输出设备,在屏幕上对数学模型的图像甚至声音等结果进行展示,让数学模型研究人员更好地获得数学建模的数据,更直观地观察数学模型在运行计算后的结果,提高结果信息的传递效率。这是计算机技术在数学建模中应用非常关键的一个优势,在复杂的问题简化的同时让不易理解的结果更直观地展示,方便研究人员的同时降低使用者的技术要求;

2.3计算机软件使用便捷

在设计计算机软件的运行程序时,研究人员在软件的智能化上花费许多的精力,程序通常可自动对模型进行分析和检测,保证检测结果准确性的同时还可把模型中逻辑不通顺的地方进行标记,方便进行修正,在修正后还可直接将修正后的运行过程直接进行展示。计算机在数学建模方面软件的智能性让越来越多的人愿意使用,促进它的发展,能帮助分析与检测模型可在很大程度上降低研究的时间成本,并提高结果的准确性;

2.4计算机技术降低数学建模过程中的资源消耗和时间成本

在对实际问题进行数学建模后,实际问题的复杂性让数学模型在运行时需不断地调整,调整过程需进行不断地实验来确定调整的正确与否。在计算机技术应用于数学建模过程以前,需耗费大量的人力、物力来完成这一过程,过于复杂的模型不仅不能及时得到答案,还极大程度上消磨研究人员的意志力。计算机技术的强大计算能力引进数学建模,让数学建模的模拟过程变得便捷,快速,降低数学建模的成本、保证数学建模的效率。

3计算机技术在数学建模中的具体应用

3.1数学处理

数学建模在使用计算机技术来解决数学问题时,会用到很多软件诸如:MATLAB、Mathematica、Maple等。这些软件都有不同的应用环境和用法,为不同数学建模的结果导出提供高效率、高精度的运算。例如MATLAB软件,它能同时满足数值计算、矩阵计算、画图、建模等需求,十分常见于自然科学领域的研究过程,属于最通用的数学建模计算机软件;Mathematica软件相较于MATLAB的运行逻辑更为先进、优秀,它的运行由前端系统和核心系统两个系统控制,它偏向于运算符号和根据模型绘制图形,可直观地观察出数学模型的形态,是在数学建模中常用的数学软件。例如函数可用Mathematica软件绘制出如图2的函数图像,在软件中输入f[x]:Integrate[Cos[Pit^2/2],{t,o,x}]就可直接运行,并在显示器上看到函数图像;

3.2统计分析

需要进行数学建模的实际问题中很大一部分是数学的统计学问题,通常对大量数据进行统计时会用到SPSS。SPSS有查询数据分析各种信息的功能,还能保存在处理工作过程中的相关数据,应用范围非常广泛:因子研究、回归研究、类别和定义研究、非参数检验、数据研究分析、类别和定义的研究等。例如,在产品销售量与价格、广告成本、生产成本等因素间的关系进行研究时,可使用SPSS8.0进行回归相关分析,建立销售量和影响因素间的数学回归模型。首先调查收集模型涉及的数据,对数据进行分析,绘制散点图,然后根据散点图进行曲线估计,估计出线性曲线、二次项曲线、立方曲线三种曲线回归数学模型,选择与数据拟合度最高的曲线模型来建立数学模型在进行求解,建立与实际问题最接近的回归数学模型。通过SPSS模拟出的残差直方图如果如图3所示,则说明正态分布的标准化残差的回归模型与调查数据的拟合度最高,所建立模型较为合理;

3.3图形绘制

数学建模所处理的对象往往是一些有着千丝万缕联系、数量庞大的数据,在建立数学模型和展示最后运行结果时都会遇到较大的困难。通常情况下,通过绘图软件就可对数据进行绘制,但如需根据数据凭空想象出一个符合的模式,这时绘图软件就不能帮助数据的处理。而PS、GeoGebra等数学建模类的软件就可满足这一条件,它们可根据数据设计适合的图形对其进行描述。这些图形绘制方面的工具可以帮助创造、完善、丰富图形,同时以更加具体、容易理解的方式对建模的内容进行展示。在数学建模中对计算机技术的使用,极大程度上提高数学模型的质量和工作效率,使其有了更广阔的应用范围,目前在这方面计算机技术是不可或缺的工具,随着数学建模的深入与不断进步。例如GeoGebra5.0中,新增一项功能———3D技术,可直接根据数学的解析式做出抛物面、椭圆和马鞍面等立体3D图像如图4所示,它是解析式和通过GeoGebra做出的图像。

4结语

数学建模在今后一定会深入渗透到各个领域,发挥它不可取代的作用。计算机技术和数学建模两者间在发展过程中是互补、互相促进的,计算机技术在数学建模中的应用让其研究开发过程更加方便、快捷,帮助数学模型在各大领域的进步和普及,这一过程也反向促进计算机技术的不断完善、发展,因此两者间的关系相辅相成。本文基于数学建模的角度,研究计算机技术的产生、发展与数学建模的关系,深入分析计算机技术在数学建模领域的不同应用,认识到计算机技术在数学建模中的重要作用。希望在未来的时间看到越来越多计算机技术的扩展,然后用到数学建模领域,帮助解决各个方面的实际问题。

参考文献

[1]施思远.计算机技术在数学建模中的应用[J].电子技术,2021,50(08):242-243.

[2]施思远.计算机技术在数学建模领域的应用[J].科技经济市场,2021(07):25-26.

[3]张少凤.计算机技术在数学建模中的有效应用[J].信息与电脑(理论版),2020,32(22):17-18.

[4]杨静雅.计算机技术在数学建模中的应用[J].中国科技信息,2020(09):43-44.

[5]穆帅.计算机技术在数学建模领域中的应用研究[J].计算机产品与流通,2018(09):19-20.

[6]刘晓力.计算机技术在数学建模中的应用优势分析[J].现代职业教育,2020(13):194-195.

[7]郭沛正.计算机技术在数学建模中的应用探讨[J].现代商贸工业,2019,40(09):186.

[8]裴秀艳.计算机技术在数学建模中的应用研究[J].信息记录材料,2019,20(08):117-119.

数学建模中的常用算法篇2

关键词: 电工数学建模 计算机技术 融合教学

全国各类数学建模竞赛的举办推动了数学建模突飞猛进的发展,数学建模的重要性也越来越受到重视和认可,进而数学建模教学工作也成为各高校教师研究的课题。由于数学建模与计算机技术之间有着紧密的联系,讨论数学建模教学工作就不得不谈及计算机技术,怎样在教学中把二者有机结合成为每一个数学建模课程教师不得不考虑的问题。

一、数学建模课程现状分析

从我参加数学建模竞赛辅导的情况来看,经常会有一些学生对某个问题有好的思路、好的想法,但是在算法实现阶段却出现问题,有时甚至困难重重,难以下手;有的是算法运行效率低下,无法在有限的时间内及时得到结果;有的甚至根本无法实现自己的思路。这些问题直接影响了模型后续对所采用数学方法的正确性和合理性的检验分析,从而影响了学生对问题的有效解决。

产生这种现象的原因在于尽管现在学生的计算机应用水平有了很大的提高,但大部分学生的编程仍然停留在初级水平。特别是由于数学建模与计算机技术所属专业的不同,很多大学的数学建模老师只注重强调数学方法的重要性,而忽视了与计算机技术的互动教学,将数学建模与计算机技术的教学完全割裂开。在计算机编程语言等课程的教学中学生编写的程序通常是较小的练习型程序,与数学建模课程中的编程要求还有不小的差距。另外,目前开设的计算机课程大部分是纯粹的计算机语言课程,与数学类课程的结合并不是很密切,这也导致学生无法很快将数学算法实现。而数学建模课程中又不可能详细介绍编程语言的用法,甚至不会详细介绍模型的具体求解过程。

鉴于这些实际问题,如何充分利用数学建模课堂教学时间,将数学原理的应用与计算机技术相融合,让学生不仅掌握数学建模的原理和方法,而且掌握算法的实现,成为教师关注的一个重点。

二、电工数学建模与计算机技术的结合

为了加强学生的计算机水平,提高运用数学知识解决实际问题的能力,我从以下几个方面进行了探索。

1.在软件平台的选择上突出重点,兼顾专用软件包的介绍。一方面,建模中采用的数学方法多种多样,需要效率最高的求解工具,另一方面,大量优秀的专用软件和工具包的出现,如Matlab、Maple、Lingo等,极大地提高了求解效率。但是课堂教学时间毕竟是有限的,教师不可能把这些优秀的工具一一介绍。因此教师可以根据数学建模课程的特点,学生的基础,以及工具软件的难易程度,选择以Matlab为主要的编程平台,在实际教学中模型求解时围绕Matlab展开介绍其基本用法,充分利用Matlab入门快、数学运算能力强大等特点。同时,在一些具体案例中,如果有需要,可结合数学方法和相应的专用软件包,比如Maple、Lingo等,介绍其基本的使用方法。

2.数学建模课程中对计算机技术的教学侧重在基本知识点的讲授和对自学能力的培养。计算机技术是数学建模解决实际问题中的一个重要部分,但在数学建模的教学中毕竟不是主要内容。最好的教学方法是教会学生学习的能力。因此,在数学建模的教学中,教师除了利用少量的时间介绍Matlab的基本知识、基本操作外,重点是让学生知道如何利用Matlab的帮助文档学习Matlab的编程方法技巧,以及如何利用网络等公共资源提高编程水平。这样可有效地发挥学生的主观能动性,起到事半功倍的效果。特别是鼓励学生充分利用开放的网络和丰富的信息量,自我学习,提高编程和软件应用能力。

3.课堂穿插实例,结合介绍相应的应用软件的使用和模型的求解方法。数学建模课程通常采用以案例教学为主的教学方法,对一些常用的专业软件包,课堂上结合具体的例子来介绍。比如在线性规划时结合Lingo的用法比较详细地讲授软件的使用方法与模型的求解。这样可以利用有限的时间让学生对该类软件的使用有一个基本的了解,一旦以后需要使用该软件就可以结合课堂范例和软件的帮助文件来完成。

4.详细介绍数学算法及其流程。数学建模中数学方法是核心,在教学中教师对经典的数学方法一定要详细介绍,掌握其精髓,达到能熟练运用的目的。因此,在教学中教师应通过具体的实例尽量讲透彻明白,如果有必要可以画出流程图,这样学生可以根据流程图编写相应的程序,实现算法。

5.课后布置相应数学建模模拟题让学生独立完成,使学生进一步熟练掌握数学方法的运用和计算机编程的练习,提高综合应用水平。计算机技术是一门实际操作性强的学科,只有在实践中不断摸索才能逐步提高。这些模拟题既是对课堂教学质量的一个检验,又是对学生的一个有力促进,通过独立认真的思考和亲自的动手实践,学生才能真正领会数学方法的巧妙、提高解决问题的能力。

三、结语

在数学建模课程的教学环节中,教师应通过数学方法和计算机技术等学科知识的融合教学,充分调动学生的兴趣,发挥学生的主观能动性,营造良好的学习氛围,培养学生的创新意识和应用所学知识解决实际问题的能力,为学生将来走上实际工作岗位打下良好基础。

参考文献:

[1]姜启源,谢金星,叶俊.数学模型(第三版)[M].第二版,北京,高等教育出版社,2003.8.

[2]朱成杰.现代数学思想方法教学研究的几项新成果[J].数学通报,1996,(1):33-36.

[3]经玲.试论数学思想方法的教学[J].中国科技信息,2005,(21):68-70.

数学建模中的常用算法篇3

关键词:水力计算;市政给排水;建模

中图分类号: S276文献标识码:A 文章编号:

在市政给水管网的设计中,水力计算是管网设计的计算基础。根据管网形状和管材不同,采用的参数或公式就不同。随着管材市场的不断发展,目前市场上出现的给水排水水管的规格和类别越来越多,这给水力计算带来了很大的麻烦。虽然有设计给水排水管道的相关设计手册中规定了针对各种管材的水力计算公式,但是还是不能够满足日益增多的管材规格,另外在查算时也非常不方便。在目前的管网设计中,通常通过建立微观管网模型来获取动态水力信息,进而进行水力计算,但是由于技术限制,这种方法在使用过程中受到限制。因此探究市政给水管网水力计算研究问题具有非常重要的意义。

供水管网模型

就目前研究的供水管网模型类型来看,管网模型的类型包括了宏观和微观两种管网模型。建立管网宏观模型时运用回归计算的方法,运用此方法的前提是基于大量的运行数据以及模型服从管网流量“比例负荷”。通过这种计算方法,能够建立控制点压力分布以及在管网中各个水厂的供水压力的函数关系。由于建立宏观模型是建立在统计的回归模型上,它的计算速度非常快,所以这种建模方法通常用在给水系统模块调度中,而在扩建、改建或者新建给水管网模块中并不适合。根据实际的管网情况,管网中的管段、水泵以及阀门等全部的元素,不通过简化处理而建立的模型即为微观模型。通过解环方程、解节点方程以及解管段方程能够将管网中节点以及管段的信息。通过建立微观模型能够将给水管网中水力的全部运行状态准确表达出来,其重点表达的是水力实时状态和信息。由于受到技术限制,一些管道的基础参数和拓扑关系的完整性很难获取,尤其是受到设备的限制,不能准确地将管网节点流量的动态数据准确获取。所以不能直接建立微观模型,必须将管网通过简化处理,利用简化后的管网进行水利计算。

管网水力计算方程

在管网设计中,水力计算是基础,也是分析管网中动态工况以及模拟管网系统的基础。进行管网水力计算的基础任务是在已知管网管径以及水管流量的前提下,求出各个管段的流量,用qij表示,并计算出水压(H)、流量(Q),同时各个节点的水压也需要计算出来。计算管网的基础方程包括回路方程、压降方程以及节点方程等。

回路方程。该方程是闭合环能量平衡方程,该方程表示的是在市政管网中任意一个闭合环内,管段的全部水头损失的代数和为零。方程可表示为,这里将基环k的水头损失表示为;是基环k的减压和增所形成的水压差。在管网中每一环都存在一个回路方程,在该方程中规定水头损失的正负号时可以设定为:如果环的方向和管段的流向相同,那么符号为正,相反则为负。

压降方程。该方程在管网设计中又被称作损失方程,它是各个管段的水头损失和管段两端的流量和水压的关系。如果只考虑水头损失时可以将方程表示为其中表示的是管段两端的两个节点的水压,表示的是管段的流量,表示的是管段的摩擦阻力,n设定为1.852-2.管段数即为方程数。

节点方程。每一个节点的流入和流出量的代数和都等于零,这是满足该方程的条件。用公式表示为:,这里将i点的流量表示为,将和节点i连接的每个管段的流量设定为,其中ij表示的是管段的起点和止点编号。

水力计算的简化原则

(1)简化管段。由于市政给水管网的铺设非常复杂,管材型号繁多,因此在进行水力计算时非常麻烦,所以为了方便计算通常在建立管网模型时通常需要在某一个已知的管径以上规模上建立,将小于该已知管径的管段进行删减或者合并,然后建立简化模型。但是要注意当某个比较小的管径对下游的管段压力分布有十分重要的影响作用时,该小管径不能进行简化处理,这样能够保证建立简化模型的计算准确度。在进行简化的过程中必定会对管段节点处的流量的分配造成一定的影响,另外经过简化后管网节点的流量也会因为不同的分配方法而造成模型中管网节点流量的不同。实际上,管网中的任何一个节点处的流量的分配方案都必须按照实际的管网情况而不断进行调整,只有这样才能够使简化后的模型的计算结果和实际管网的水力情况尽可能地吻合。

(2)简化流量。由于设计管网水力模型需要对管网进行简化,因此管段中的流量也必须进行相应的简化调整。简化后的管网流量设定为在连接管段处的管道节点处的流量。虽然这样设定是具有一定的必须要性和合理性,但是其也存在着一定的不确定性和主观性。例如在实际建模过程中我们遇到这样的情况,由于某大用户流量在分配时出现失误,将其分配到了错误节点上,最后导致建立的管网模型和实际的管网压力分布有很大的出入,计算结果不具备参考价值。

(3)简化局部阻力系数。由于在给水管网中,局部产生的水头损失比沿程损失相比非常小,所以为了简便计算,在建立管网模型时我们通常将局部水头损失忽略。

4、管网水力计算方法

(1)流量法。流量法进行水力计算的基础方程包括:节点方程、回路方程以及压降方程。流量法的原理是:把压降方程和回路方程联立可以得到下面的方程:

这个式子和节点方程联立后能够得到和管段数相同的方程组。通过解方程后就能够将各个管段的流量计算出来。通常求解时经常用逐步近似法求解。环状网在进行流量初分后就能够满足节点方程的求解条件,但是无法满足回路方程,所以需要将j-i个连续性方程进行联立,并将L个非线性回路方程进行联立,这样就能够求出能够满足回路和节点方程的管段流量。

(2)水压法。该法是利用水头损失流量表示的管网计算方法。该方法的基础方程主要有:一,N个用h(水头损失)表示q(管段流量)成为压降方程的关系式;二,J-M个节点方程,J表示节点数目,M表示配水源数量;三,E个回路方程,E是环数。用水压法求解的计算方程为:

将节点水压作为求解量,对J-M个方程进行求解,这样就能

够将各个节点的水压计算出来。求解方法和上文叙述的流量法求解方法相似,这里不作过多叙述。

结语

总之,通过建立简化管网模型可以有效地、方便地对市政管网中存在的供水问题进行实时分析。在建立管网模型时必须要根据系统的实际情况设计和实际情况的吻合度最高的水力模型,科学分析各类操作对市政供水管网运行产生的影响,从而对管网水系统进行科学的调度。

参考文献

[1]高延纲,张莉莉.缺水状态下给水管网水力计算方法分析[J].硅谷,2009,19(9):44-45.

[2]许余亮,叶跃忠.市政给水管网水力计算问题探析[J].科技信息,2012,26(33):221-222.

[3]周毅,陈永祥,李曦.压力决定的给水管网需水量计算方法[J].武汉大学学报(工学版),2011,6(1):36-37.

数学建模中的常用算法篇4

关键词:CFD方法;流体机械设计;运用分析

DOI:10.16640/ki.37-1222/t.2017.01.094

0 前言

近几年来,我国的工业化进程开展的如火如荼,工业制造业作为支撑国民经济发展的主力军受到了广泛的关注。在科技时代的影响下,各种多样化的科学技术被应用在流体机械设计中,并且发挥着重要的作用。CFD技术是现代化工业经常使用的一种手段,在汽车制造业、航空航天、造船业等领域中的应用相当广泛。除此之外,CFD技术还被使用在喷水泵、压缩机等流体机械设计当中。不管从哪一个角度看,CFD技术的应用都推动了工业领域的可持续发展。

1 CFD方法的基本概述

CFD也叫计算流体动力学,是流体力学领域中的重要组成部分,在工业机械设计中占据了关键地位。CFD是数学和计算机有机结合的产物,作为一门具有强大生命力的边缘学科,不管是在数学领域还是计算机领域,CFD方法的重要性都是无可替代的。在使用CFD技术的时候,需要依赖电子计算机作为工具,通过各种离散化的数学方法的合理利用,解决流体力学计算中的各种问题。利用先进的科学仪器模拟数值实验,根据实验数据构建虚拟模型,并且针对模型进行细致的分析与研究,从而实现利用数学知识解决流体力学实际问题的目标。常用的CFD技术软件为FLUENT。

任何流体的运动都不是随机,而是遵循一定的自然规律,所以在利用CFD方法研究流体力学的时候,也应该遵守一定的规律。常用的自然规律有质量守恒定律、动量守恒定律、能量守恒定律等。流体的运动非常容易受到外界因素的影响,并且在外界因素的影响下会发生一定的变化,而CFD方法的应用恰恰能够解决这些问题。CFD方法的应用是建立在数值数学和流体力学的基础上,通过先进的计算机软件进行数据分析,根据数据分析结果构建离散型数字模型,通过对模型的分析与研究来实现计算的目的[1]。

2 CFD方法在流体机械设计中的应用

2.1 CFD方法在喷水泵设计中的应用

喷水泵属于流体机械的一种,而CFD方法在流体机械设计中的应用比较广泛,所以CFD技术也能够使用在喷水泵的设计当中。喷水泵是一种输送液体水的工具,生活中常见的喷水泵有单极轴流叶轮机械,主要组成部分为静子与转子。常用的CFD技术软件为FLUENT,只要是跟流体机械设计有关的工业都可以使用FLUENT。不仅能够提升数值计算的准确性,建立更加完善的物理模型,还具备强大的处理功能,为喷水泵设计的可靠性提供了基本保障。

(1)建立模型。FLUENT软件的使用是建立在模型的基础上,所以要想充分发挥出FLUENT软件的重要作用,构建模型是非常必要的。在构建模型的时候,需要根据转子片数和静子片数进行分析,假设静子和转子都只有一个叶片,且转速为1200r/min,利用假设实验对水流流动问题进行分析,将预先设定好的数据输入到FLUENT软件当中,就可以开始建立模型了。模型构建完毕后还要适当的进行简化,简化到一定程度之后就可以进行网络划分与网格设置[2]。

(2)数值计算。喷水泵模型构建结束之后,需要根据模型进行数值计算。利用FLUENT软件中的三维单精度求解器进行分析,在三维单精度求解器中选择恰当的计算模型,然后根据所选择的标准进行函数分析,通过使用混合面来对喷水泵进行喷水实验,观察静子和转子的运动情况。另外,在模拟的过程中,还需要对外界环境进行设置,因为CFD技术在使用的时候非常容易受到外界环境因素的影响,如果不进行科学的控制,就会影响到最终的实验结果。除了外界环境以外,还要检查进口压力,当所有的条件都在相关标准的控制之下,就可以利用FLUENT软件中的3D技术对模型进行数值计算,从而描绘出比较真实的喷水泵运行模拟图[3]。

2.2 CFD方法在压缩机设计中的应用

压缩机也属于流体机械,主要用于输送压缩气体和提高气体压力。在使用CFD方法设计压缩机的时候,需要对压缩机的缸壁和活塞进行设置。缸壁用圆柱体来表示,活塞用运动壁面来表示。一般情况下,会将曲柄角度设置为180°,让活塞自下而上进行运动,一点一点对缸内气体进行压缩,当活塞压缩到一定程度的时候,或者是当曲柄角度为360°的时候,活塞又会重新回到原来的位置,但是这一次运动的曲柄角度不再是180°,而是540°。

利用CFD方法中的Gambit软件进行压缩机模型的构建,模型构建完毕后还要适当的进行简化,简化的时候要严格遵守相关的简化步骤进行,指导压缩机模型简化到一定程度之后就可以进行网络划分与网格设置。当压缩机模型建立结束之后,就要开始根据模型进行数值计算了。依然是采用FLUENT三维软件对压缩机模型进行数值计算,根据三维单精度求解器的设置进行分析,启动非稳态的求解器,确保压缩机模型数值分析的准确性与可靠性[4]。

3 结论

综上分析可知,CFD方法在流体机械设计中的应用非常普遍,是在数学领域和计算机领域的基础上进行的,本文针对喷水泵和压缩机这两种流体机械的设计进行分析,从建立模型和数值计算两个角度进行研究,充分发挥出CFD方法在流体机械设计中的重要作用,了解了CFD技术在流体机械设计中的优势。

参考文献:

[1]严庆生.CFD方法在流体机械设计中的应用[J/OL].电子制作,2013(20)12.22-23

[2]彭志威.基于计算流体力学的虹吸式流道形状优化设计[D].湖南大学,2009.

[3]刘伟.基于CFD的现代造纸机布浆技术与布浆器的研究[D].华南理工大学,2013.

[4]吴子尧.离心式通风机整机三维数值模拟及其结构改型设计分析[D].东北大学,2010.

数学建模中的常用算法篇5

【关键词】数字模型;CG;三维动画

1.引言

三维模型经常用三维建模工具这种专门的软件生成,但是也可以用其它方法生成。作为点和其它信息集合的数据,三维模型可以手工生成,也可以按照一定的算法生成。尽管通常按照虚拟的方式存在于计算机或者计算机文件中,但是在纸上描述的类似模型也可以认为是三维模型。

三维模型广泛用任何使用三维图形的地方。实际上,它们的应用早于个人电脑上三维图形的流行。许多计算机游戏使用预先渲染的三维模型图像作为sprite用于实时计算机渲染。

现在,三维模型已经用于各种不同的领域。在医疗行业使用它们制作器官的精确模型;电影行业将它们用于活动的人物、物体以及现实电影;视频游戏产业将它们作为计算机与视频游戏中的资源;在科学领域将它们作为化合物的精确模型;建筑业将它们用来展示提议的建筑物或者风景表现;工程界将它们用于设计新设备、交通工具、结构以及其它应用领域;在最近几十年,地球科学领域开始构建三维地质模型。

图1 古墓丽影游戏中的角色模型

2.什么是数字模型、CG和三维动画

所谓数字模型,是指计算机用计算机语言,用0,1开关原理在计算机内部编写排列出来,在计算机中显示出来虚拟的空间图像信息。常用计算机或者其它视频设备进行显示。显示的物体可以是现实世界的实体,也可以是虚构的东西,既可以小到原子,也可以大到很大的尺寸。

CG(Computer Graphics)计算机图形图像学,是一种使用数学算法将二维或三维图形转化为计算机显示器的栅格形式的科学。如何在计算机中表示图形图像,以及如何利用计算机进行图形图像的生成、处理和显示的相关原理与算法,构成了计算机图形图像学的主要研究内容。图形图像通常由点、线、面、体等几何元素和灰度、色彩、线型、线宽等非几何属性组成。从处理技术上来看,图形图像主要分为两类,一类是由线条组成的图形,如工程图、等高线地图、曲面的线框图等,另一类是类似于照片的明暗图(Shading),也就是通常所说的真实感图像。计算机图形学图像的研究内容非常广泛,如图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。

三维动画又称3D动画,随着计算机软硬件技术的发展而产生的一新兴技术。三维动画软件在计算机中首先建立一个虚拟的世界,设计师在这个虚拟的三维世界中按照要表现的对象的形状尺寸建立模型以及场景,再根据要求设定模型的运动轨迹、虚拟摄影机的运动和其它动画参数,最后按要求为模型赋上特定的材质,并打上灯光。当这一切完成后就可以让计算机自动运算,生成最后的画面。

3.数字模型在不同风格CG动画中具体的应用

3.1数字模型在CG影视动画中的具体应用

在电影、电视广告、动漫产业上都有很好的应用。在受制于人力物力的局限性下,有些场景很难实现,例如张艺谋的《英雄》中那万箭齐发的场景,04年上映的《后天》中城市中被海水淹没这样浩大的场景,这些实现起来都非常困难。CG动画的运用均可称为画龙点睛的神来之笔,没有这些CG动画的加入,如何能展现这浩大的场景。还有些许场景,根本无法现实。无论是流星撞击地球场面,还是追溯到恐龙时代的场景,还有遥远的未来时空。这些种种在现实无法实现。电影应该是影片的想象空间非常广阔,为观众描绘出了神奇的世界。

3.2数字模型在CG游戏动画中的具体应用

游戏中角色动画中,在数字模型构建上多采用模拟建模中的多边形建模,因为在游戏开发和应用中,受限于游戏引擎和带宽的限制,也是为了保障游戏画面流畅。在游戏产业中运用数字模型的就丰富多了,现在的3D游戏,都是在数字模型为基础,建立起来的。

3.3数字模型在CG插画创作中的具体应用

数字模型在构建的三维模型上,建立的立体感,转化为二维平面的视觉创作,在创作立体感的插画视觉这个方面更突出。

3.4数字模型在医疗、教育、军事中的具体应用

随着3D打印机的发展,可以将原本只能在电脑中实现的三维模型,打印成为实实在在的可以触摸到的三维模型,这一重大实现将可以大大的节约经济成本和人力成本等等,设计师可以在电脑中建立好数字模型,然后将其打印出来,作为样品,进行一系列的科学实验,在医疗和军事中,可以首先打印样品,在真真的生产之前,就可以试验是否可以实际应用。在教育中,可以使其成为实实在在的课件,让教育更加立体化。

参考文献:

[1]Donald Hearn.计算机图形学(第三版)[M].电子工业出版社,2010.

[2]孙家广.计算机图形学[M].清华大学出版社,1998.

[3]廖详忠.数字艺术论[M].中国广播电视出版社,2006.

数学建模中的常用算法篇6

(贵州省册亨县威旁乡小寨小学 552200)

【摘要】心理学研究表明:小学阶段是学生最容易受外界事物和自己情绪的支配,无意记忆占优势,常常在无意中记住一些事物,而有意记忆的内容反而记不住。小学数学计算教育的核心任务是以数学知识和技能为载体,培养学生数学技能的提高。因此,在长期的数学教学实践中,我体会到教学过程应是学生自己动手动脑的过程。我认为教师应积极创设数学环境,让学生在操作化、生活化、游戏化、故事化的数学教学活动中,有意无意地增加数学计算能力、亲近数学,愉快地步入数学世界。?

关键词 重要性 能力的培养 实际的应用结束语

一、从小学培养学生计算能力的重要性?

数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并进行广泛应用的过程。20世纪中叶以来,数学自身发生了巨大的变化,特别是与计算机的结合,使得数学在研究领域、研究方式和应用范围等方面得到了空前的拓展。数学可以帮助人们更好地探求客观世界的规律,并对现代社会中大量纷繁复杂的信息作出恰当的选择与判断,同时为人们交流信息提供了一种有效、简捷的手段。数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接为社会创造价值。?

义务教育阶段的数学课程,其基本出发点是促进学生全面、持续、和谐地发展。它不仅要考虑数学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。小学学生还只是初步的接触学习可塑性强,从小培养学生计算的能力为今后的数学学习打下基础。通过小学计算来增进学生对数学的学习兴趣。?

二、计算能力的培养?

在小升初及各种考试中,每次都会涉及到计算题目,而每次计算题目的得分率却低得惊人。这种现象不但存在于小学考试,初中和高中考试都存在这种现象。是题目很难,还是有其它的原因?怎样避免计算失分--提高学生的计算能力已迫在眉睫。那么从哪些方面去提升学生的计算能力呢??

1、关注问题情境。数学问题情境是一种以激发学生问题意识为价值取向的刺激性背景材料,是产生数学概念、提出和解决数学问题的条件。数的运算教学以问题为纽带,引导学生数学地描述问题、数学地思考问题,进而获得有关的数学概念、性质、法则和规律,不仅可以使学生深刻体验到数学与生活的联系,感受到数的运算学习内容的实际应用价值,还能使学生的运算能力、数学思考能力、解决实际问题的能力得到充分的发展,促进学生数学素养的培养和发展。?

2、重视基本口算。口算是笔算、估算和简便计算的基础,是计算能力的重要组成部分。要提高计算能力,必须打好口算基础。以苏教版教材为例,教学笔算之前,都会安排一些口算作为笔算的铺垫。教师也应该把口算训练贯穿于计算单元教学的始终,这是从时间上考虑的。从形式上来说,口算训练的形式必须多样,如“开火车”、“接力赛”、“抢答”等等,努力做到不让学生产生厌倦情绪。?

3、算法、算理并重。在计算过程中,算理和算法是相辅相成的,是内在地联系在一起的。相关研究表明,算法是自动化的,即使在不知道其背后原理的情况下,仍可以掌握和使用。但算理的探讨,有助于探索算法、掌握算法,还因为计算教学不仅要着眼于运算技能的形成,更应探讨并努力实践如何将“基本技能”变成发展学生各种“过程能力”基础。?

4、放大题组效应。苏教版教材中经常出现一些题组,既有口算题组,也有体现算法迁移的题组。通过题组对学生进行训练,可以在联系、渗透以及比较中放大题组关联的特征,使题组中的每一题在训练中“增值”。?

5、适时适当记忆。口算存在于生活的每一个角落,而计算则存在于数学学习的每一个领域。课堂上,在关注问题解决的同时,不可忽视相机的计算能力训练。让学生熟记20以内加、减法的计算结果,熟记乘法口诀,几乎是每一位数学教师都认可的事,但是对于其他的一些需要学生记忆的数值、公式、计算结果往往重视不够。像小学阶段常见的分数和小数互化的结果、20以内自然数的平方数、圆周率的一至九倍值,甚至常见的圆周长和面积、圆柱的表面积、体积的计算结果等,我们都可以安排学生在理解的基础之上进行适当的整理与记忆。?

三、学生对计算的实际应用?

在此笔者要强调的是,要使数学计算中应用意识的增强落到实处,一个重要的举措就是数学课程应对数学建模必须给予极大的关注.数学模型是为了一定的目的对现实原型作抽象、简化后所得的数学结构,它是使用数学符号、数学式子以及数量关系对现实原型简化的本质的描述。而对现实事物具体进行构造数学模型的过程称为数学建模。也就是说,数学建模一般应理解为问题解决的一个侧面、一个类型。它解决的是一些非常实际的问题,要求学生能把实际问题归纳成数学模型加以解决。从数学的角度出发,数学建模是对所需研究的问题作一个模拟,舍去无关因素,保留其数学关系以形成某种数学结构。从更广泛的意义上讲,建模则是一种技术、一种方法、一种观念。?

人们发现,这些应用都有一个共同点,就是把非数学问题抽象成数学问题,借助于数学方法获得解决。因此,数学模型作为一门课程首先在一些大学数学系里被提倡.后来,人们又发现,传统的中小学数学课本中的应用仅仅是:把日常生活中的经济、商业、贸易和手工业中的问题用一定程序表达,内容只涉及计数、四则运算和测量等。这种应用无论是方式还是内容,与数学在现实生活中的应用相比,相差甚远。于是数学建模作为一种教学方式在中小学受到重视,通过“做数学”达到“学数学”的目的。?

总之,小学数学计算能力的培养是今后学习与教学的基础,将计算应用到实际中是让学生知道学习的重要性,学习的在实际生活中的应用。让学生亲身经历将实际问题抽象成数学模型并进行解释与应用的过程,进而使学生获得对数学理解的同时,在思维能力、情感态度与价值观等多方面得到进步和发展。

参考文献?

[1] 小学基础教育的重要性社会发展与实践2011.07.01?

数学建模中的常用算法篇7

关键字:数字地面模型 给水管网 不规则三角形 OpengGL应用

中图分类号: TU821 文献标识码: A

1引言

城市给水管网的水压、用户用水量以及水质的分布对了解整个管网的运行状况、服务质量以及管网的运行控制具有非常重要的指导意义。随着计算机技术、地理信息技术(GIS)和管网监测系统的发展,已有大部分成熟的商业软件和硬件设施可以用来帮助建立给水管网的微观和宏观模型,获得管网中各种运行参数已经越来越方便,并且通过图形化方式丰富多彩地进行展示。目前,给水管网参数图形化大都以等水压线、水压面或水质的区域分布图为主,通过空间散列点数据拟合技术对整个管网图形着色,从视觉上反映管网参数的分布及变化趋势,多以二维图形为主。国内部分文献[1, 2]采用曲面插值和线性内插的方法对管网的水压进行了三维模拟,取得了较好的效果,但是曲面插值顾及的是整体局势,一般不通过已知数据点,难以准确获得管网中任意点的模拟值。

本文在现有研究的基础上,尝试将地理信息系统中的数字地面模型概念应用至给水管网管网,对管网中的散列点数据进行建模,提出建立管网对象属性(标高、水压、水质等)与其地理空间位置对应的数字模型,对于实现城市给水管网的数字化和信息化管理具有一定的促进作用。

给水管网数字地面模型的建立将涉及到计算几何、计算机图形学和地图学的内容,文中采用不规则三角形网的方法对空间信息进行构网,数字地面模型的表达使用OPENGL图形库。

2数字地面模型简介

数字地面模型(digital terrain model,以下简称DTM)指将地表二维地理空间位置和其相关的地表属性信息用数字化进行表现。在数学上采用一个二维函数系列取值的有序集合来概括地表示[3]:

-编号为的地面点(或地面点的微小邻域,即地面元)上的第类地面特有信息的取值(特征值);

-编号为的地面点的二维坐标(包括投影坐标、经纬度坐标等,一般采用平面二维坐标);

-地面特征信息类型的数目;

-地面点个数。

式中A i 是任一地理位置( xi , yi ) 的地表特有信息值[4],一般有基本地貌信息,如高程、坡度、坡向等地貌因子;自然地理环境信息如土壤、植被、气候、地质分布等。根据不同的A i 值,其名称也稍有不同,当A i 为土壤分布时,称为数字土壤模型;如A i 为高程时,称为数字高程模型(Digital Elevation Model , DEM),DEM是DTM的一个子集,是DTM中最基本的部分,也是对地形表面的一种离散的数学表达。数字地面模型其实质就是对一种或多种地面特征空间分布的数字描述,是叠加在二维地理空间上的一位或多维地面特性向量空间,一言敝之,即对象属性信息与地理位置的映射关系(空间相关关系)。

3数字地面模型的表示方法:

数字地面模型建模主要有4 种方法[5]:基于点的建模方法、基于不规则三角形的建模方法、基于规则格网的建模方法和混合建模方法,其中用得较多的是基于不规则三角形的建模方法和基于规则格网的建模方法。

3.1规则格网法

规则格网法也称GRID方法,规则格网建立的整体思路首先在空间上对研究区域进行格网划分,形成覆盖整个区域的格网空间结构,数学上可以表示为一个矩阵,在计算机实现中则是一个二维数组,然后利用分布在格网点周围的采样点内插计算格网点的值,形成研究区域的格网[6]。规格格网生成DTM的方法主要有:按距离加权平均法、最小二乘曲面拟合方法、双线性插值法、双三次曲面插值法和克里格(Kriging)插值法。由于计算机处理矩阵比较方便,规则格网已经成为DTM最常用的形式,但仍然存在一定缺点:

(1)对于一些特征数据变化不大的简单的DTM存在大量的冗余数据;

(2)如果格网的大小不发生变化则很难适用于特征值变化程度不同的DTM;

(3)不能精确表示某些特殊的特征值(如高程模型中的峡谷、山峰等)。

3.2不规则三角网(TIN)法

不规则三角网(triangulated irregular network,TIN)在地图制图中专为产生DTM数据而设计的一种采样系统。TIN 是用一系列的互不交叉、互不重复的三角形单元逼近特征值表面,直接利用空间特征点(离散点) 构造出邻接的三角形,从而组成不规则三角网结构。 相对于规则格网,不规则三角网具有以下优点:利用原始资料作为网格结点;不改变原始数据和精度;能够保存原有关键的地形特征,以及能很好地适应复杂、不规则的特征值变化情况等[5],如图 1所示为一区域的TIN图。

够建TIN的原则有多种,常用的有最大―最小距离原则、圆原则、最大―最小角原则、最大―最小高原则、Tiessen原则等[7],所有TIN都应满足三个基本要求[3]:①唯一性,②最大最小角特性,③空圆特性。研究表明Delaunay三角剖分在建立TIN时最为出色,是给定区域点集的最佳三角剖分。本文选择TIN方法建立给水管网数字地面模型,并采用Delaunay方法对给定点集构网。

4数字地面模型的生成

DTM生成的主要工作包括对空间数据的构网和地面模型的显示。由于DTM反映地表属性与空间信息的映射关系,所以使用三维图形进行显示。

4.1构网

Delaunay三角网的生成算法分成两类:静态算法(射线算法、分治算法、渐次算法等)和动态算法(生长算法、重建算法)。文中选用国内学者提出的渐次插入算法[3]生成Delaunay三角网。

渐次插入算法的基本步骤描述如下:

(1)定义包括所有数据点的超三角形,初始化三角网,此时三角网中仅有一超三角形。

(2)插入一点到三角网中,找出所在的三角形;

(3)连接与的三个顶点,形成三个三角形;

(4)利用局部最优方法(主要是使三角网中的三角形满足最大化最小角原则)更新生成的三角形;

(5)重复(2)到(4),直到所有点插入结束;

(6)删除包含初始超三角形顶点的三角形,若三角网中仅有超三角形则不删除。

根据渐次插入法,笔者使用VC6.0编写了程序对测试数据进行了Delaunay三角构网,如图 1。

4.2数字地面模型的三维显示

为了更直观表现构网的结果,使用OpenGL图形库将特征值进行三维显示,该工作近似于水压面的三维绘制。OpenGL图形库是专业化的3DAPI,最早由SGI(Silicon Graphics)公司为图形工作站开发的[8]。随着OpenGL成为高性能图形与交互式视景处理的工业标准,目前是主流的三维图形开发工具。

根据空间点的特征值,调用OpenGL的基本绘图函数glVertex3f(double x, double y,double z),绘制剖分的三角形单元,效果如图 2所示。通过三维图形的绘制可以非常直观地看出模型区域内的特征值变化情况和变化趋势。

图 1区域平面构网

图 2 数字地面模型三维构网

4.3特征值提取

DTM模型建立成功,通过函数表达式即可求出模型区域中任何一点的特征值。特征值提取时:首先判断所在的三角单元,然后判断与三角形三个顶点之间的距离,若距离小于给定的,则返回最近顶点的特征值,否则通过三个顶点建立特征值平面方程:,将代入求解出相应的特征值,等价于平面线性插值。

5给水管网DTM的建立与应用

根据DTM的定义,尝试建立给水管网中水压、水质等模拟参数与管网空间信息的对应关系。笔者设计了给水管网DTM计算模块,建立了管网地面高程模型、绝对水压模型、管网余氯模型,通过调用DTM计算模块还可以生成用户用水量分布等其它模型。

DTM通用计算模块的接口为,只要输入任意数目大于三的散列点集,就能生成关于该特征值的数字地面模型。应用程序对DTM计算模块的调用流程如图 3所示。

图 3 DTM模块设计

如图 4所示的FS市给水管网实例,共有两个水源,供水方向从西向东,为了达到更好的观察管网模拟参数的变化情况,在绘制管网的各种DTM时,将整个管网逆时针方向进行了旋转,图中以颜色表示了某时刻管网的绝对水压分布。下文所有DTM的绘制均基于该实例,由于实例管网的数据量较大,故不在此处一一列出。

图 4实例管网图

5.1管网高程模型

管网高程模型可以直接应用于管网内节点的标高计算。根据现有的管网地形标高数据建立高程DTM,通过对DTM模块提取任意(x,y)坐标的标高值,提高节点标高拟合的自动化水平和精度。在管网新增节点,或从外部导入数据时,根据节点的(x,y)坐标自动从高程DTM中提取相应的标高值,大大减少管网建模的工作量。以实例管网节点的高程数据建立高程DTM,并进行着色,如图 5所示。

图 5高程DTM图

5.2管网水压模型

根据管网模拟计算结果自动生成节点自由水压和绝对水压的DTM,通过OpenGL对DTM进行着色,生成三维水压面(如图 6),直观显示管网的压力分布状况及其变化趋势。在翔实和准确的数据基础上建立的水压DTM,对于城市给水管网的日常运行管理和优化调度具有重要的参考价值。以实例管网节点的高程数据建立高程DTM,并进行着色,如图 6所示。

图 6绝对水压DTM图

5.3管网其它数字地面模型

基于设计的DTM模块,还可以建立水质DTM,用户用水量DTM等各种参数的DTM,为水司更全面了解整个管网参数分布提供有力的分析工具。

6结论与建议

数字地面模型在给水管网的应用对给水管网的数字化和信息化具有极大的推动作用,能够利用有限数据获得更大的信息量。建立好DTM后,使用DTM的特征值提取功能,就可提取任意位置的相应特征值,对管网的运行具有重要的指导意义。

在采用Delaunay三角法构网时,由于算法本身的复杂性和数据结构设计欠优良性,在建立大型给水管网DTM时还需对算法进行优化调整。

本文对数字地面模型在给水管网中应用进行了尝试性研究,仅考虑了空间信息中的(x,y)坐标与其对应的特征值的关系,实际上只建立了一个伪三维(或称2.5维)的数字模型。在此基础上可进一步扩展至真正的三维或是多维的数字模型研究。

参考文献

[1].信昆仑,刘遂庆,耿为民.城市给水管网三维水压面的绘制.给水排水,2002,28(6): p.83-86.

[2].张增荣,信昆仑,等.基于Matlab的GUI绘制给水管网等压线和三维水压面.中国给水排水,2007,23(4): p.51-54.

[3].闫浩文,褚衍东,等.2007.计算机地图制图原理与算法基础.北京: 科学出版社.

[4].刘学军,符锌砂.三角网数字地面模型的理论、方法现状及发展.长沙交通学院学报,2001,17(2): p.24-31.

[5].赖鸿斌,李永树.基于不规则三角网的DTM若干问题的探讨.重庆交通学院学报,2004,23(2): p.90-93.

[6].张恒国,王合龙,吴清香.基于ROAM 算法的数字地面模型研究与实现.工程地质计算机应用,2007,(3): p.8-11.

[7].吴立新.2003.地理信息系统原理与算法.北京: 科学出版社.

[8].郭兆荣,李菁,等.2006.Visual C++ OpenGL 应用程序开发.北京: 人民邮电出版社.

作者简介

数学建模中的常用算法篇8

谈到建模,大家首先联想到数学建模。数学建模是把一个称为原型的实际问题进行数学上的抽象,在作出了一系列的合理假设以后,原型就可以用一个或者一组数学方程来表示。

本文讨论的财务建模包括财务问题的数学建模,但是也包括下文谈到的计算机建模。因此我们定义,财务建模是用数学术语或者计算机语言建立起来的表达财务问题各种变量之间关系的学科。将一个问题用模型表述以后可以检验特定问题在不同假设条件下的不同结果,也可以用来预测在不同条件下特定问题未来的发展。

对于一个复杂的财务问题,有时要写出它的数学模型可能是不现实的或者不可能的。在此情况下如果我们能够用计算机来模拟该问题并且分析它的运行结果,就可以了解和掌握它的内在规律,预知它的未来发展。在这种情况下,虽然我们没有找到精确的数学模型,但是可以说找到了它的计算机模型。因此在上面财务建模的定义中我们增加了计算机模型的内容。

因此,财务建模是利用数学方法以及计算机解决财务问题的一种实践,是研究分析财务数量关系的重要工具。通过对实际问题的抽象、简化,再引入一些合理的假设就可以将实际问题用财务模型来表达。财务模型可以表现为变量之间关系的数学函数,也可以在完全不清楚数学表达式的情况下用计算机来模拟或者推测变量之间的依赖关系。前者是数学模型,后者是计算机模型。找出变量之间关系的数学模型可以为实际问题的解决提供非常方便的条件,但是面对当今复杂的经济问题和现象,并非所有的问题和现象都有明确的数学模型。在这种情况下,找出问题的计算机模拟模型也是非常有意义的。财务建模既包括财务问题的数学建模,也应包括相应问题的计算机建模。举一个例子,当前非常热点的问题:如何根据企业财务数据和其他有关数据对企业的风险作出评估,即如何建立企业财务预警模型就是一个典型的财务建模的例子。当然如果能够找到企业财务数据和风险之间的确定的数学关系对企业财务预警有很大的意义。但是如果这个关系一时不能找到,那么建立风险预警的计算机模拟系统对此问题的解决也是非常有帮助的。另外,文献[5]和[6]提供了一个股票估价模型的例子。在该例中,使用者可以输入贴现率、股利增长率、所要求的最低回报率等参数,然后模型可以计算出该只股票的价值,从而为股票投资提供参考。

财务建模是研究如何建立财务变量之间关系的理论和方法的科学。通过财务建模,我们可以找出财务变量之间的相互依存关系。现实世界中财务变量之间的关系有两种:一种是确定性的关系,另一种是随机性的关系。因此,财务模型也可分为确定性模型和随机性模型。确定性模型研究财务变量之间的确定定量关系,例如折现现金流模型等。随机性模型反映的是财务变量之间在一定概率意义下的相互依存关系,例如资本资产定价模型。因此,财务建模不仅讨论确定性模型建立的理论和方法,也探讨随机性模型建立的理论和方法。

财务建模是一门理论性很强的学科,具有坚实的理论基础和理论依据。它的理论基础包括数学、统计学、财务管理学、金融学、会计学、计算机程序设计等等,因此财务建模是一门交叉性很强的学科。

财务建模又是一门实用性很强的学科,是各级学生包括研究生、本科生都应掌握的一项技能。财务建模的基本内容应该包括:现金流计算模型、最优化模型、投资组合模型、估价模型、统计建模以及财务数据时间序列分析等[1]。这些内容在财务与金融计算中是非常有用的,是将来学生走上工作岗位以后必不可少的技能,因此应该在大学或者研究生阶段予以学习和掌握。

二、财务建模的意义

财务建模的意义可以总结为如下几点:

1.财务建模可以推动财务理论的向前发展

首先,财务问题的模型研究本身在财务理论研究中就占有非常重要的地位。文献[4]讨论了很多会计学和财务管理中非常重要的模型,例如,资本资产定价模型(CAPM)、投资组合模型、证券估价模型、Black-Scholes期权定价模型等。这些模型既是财务理论重要的内容,又是该学科最活跃的研究领域。很多作者由于对某个模型的研究而获得了很高的学术地位,有的甚至获得了诺贝尔奖。从理论上深入研究如何建立财务模型不仅可以追溯前人科学研究的足迹,而且可以为自己的财务研究打下良好的基础。财务建模对推动会计和财务理论的发展将起到不可忽视的作用。

另外,财务建模在财务理论与实际问题之间架起了一座桥梁。财务建模着力于用定量的方法刻画和解决实际问题。当找到了实际问题的数学模型,那么一个新的理论可能就宣告诞生;当将一个理论应用于实践并得出了与实践相辅的结论,那么该理论在这一经济体中就得到了验证。如果一个理论不能在一个经济体中得到很好的应用,那么我们就要思考对于当前的问题什么样的理论才是适合的理论。于是通过财务建模我们就去寻找符合实际的模型。该模型或者是原理论的修正,也可能是一个完全不同的新的结果。在这种情况下同样可能预示着一个新理论的诞生。当然,在一个模型上升为一个理论之前,可能该模型只适合于一个特定问题,但是我们也可以说财务建模为解决这一特定问题起到了巨大作用。财务建模不仅可以用于验证已有理论的观点和方法的正确性和严密性,同时也可以成为新理论诞生的土壤、契机和工具。

2.财务建模方法的讨论也可以为实证研究提供很好的方法论基础

财务建模不仅可以验证规范研究所提出的观点和方法的正确性和严密性,同时财务建模方法的讨论也可以为实证研究提供很好的方法论基础。在文献[3]中,作者深入研究并总结了当今实证会计研究的理论和方法。由于现在实证研究愈来愈受到重视,因此掌握实证研究的方法至关重要。财务建模的方法很多都可以用于实证研究,甚至可以说财务建模本身就是一种实证研究。因此,学习财务建模可以为实证研究打下非常好的基础。

财务建模的工具对于财务建模问题的研究至关重要。过去财务建模大多通过微软办公软件Excel来完成。对于统计建模,大家采用较多的有SAS、SPSS等。现在用MATLAB应用软件包建模使财务建模更加得心应手。MATLAB是一个功能完备,易学易用的工具软件包。MATLAB的主要特点是:计算能力强,绘图能力强,编程能力强。MATLAB的使用扩充了财务建模研究的内容,并为财务建模提供很好的计算机支持。用MATLAB作为工具不仅可以提高财务建模的效率,而且可以以非常直观的方式将自己的模型表现出来,更可以创造出适合于特定企业和特定情况的模型系统。笔者在总结多年财务建模研究的心得和体会的基础上,为研究生开设了“MATLAB财务建模与分析”课程并出版了同名教材[1]。在为研究生讲授此课的过程中,深感财务建模对研究生今后实证研究的重要作用,也体会到学生学习该门课程的热情和投入精神。同学们通过该课程的学习不仅掌握了财务建模的基本理论和方法,也提高了进一步学习会计和财务理论的兴趣和热情。MATLAB统计建模为财务随机模型的建立提供了非常强的工具。对财务数据进行统计分析或者根据统计分析的原理建立财务变量之间的相互依存关系是统计建模的重点内容。我们知道,在自然界和人类社会中,有些变量和变量之间表现出了确定的依存关系,但是大量的变量之间存在的却是不确定的,有时需要重复出现多次才能表现出来的关系。这样的关系就是变量之间的随机关系。随机关系需要根据统计原理应用统计分析的方法来建立。

MATLAB提供了专门用于统计分析和统计建模的统计工具箱。利用统计工具箱提供的标准函数,使用者可以完成统计上的绝大部分数据分析任务,如:假设检验、方差分析、回归分析、多元统计分析等。而且MATLAB还提供了易学、易用的图形用户界面,使用户在最短的时间内就可以掌握较复杂的统计分析技术。如果将MATLAB的编程能力和图形能力充分利用起来,那么用户还可以设计出能够完成特定功能、特定任务的模型系统。因此,笔者认为,财务建模的较理想的软件平台是MATLAB。建议在财务建模的理论研究和实践中使用MATLAB作为其工具。

3.新会计准则下财务建模对会计人员的意义

在新会计准则下,财务与会计的界线更加不明确。所以,财务建模在新会计准则下具有更重要的意义。过去会计人员可能只需要了解借贷原理就可以当好会计。但是新会计准则下如果只了解借贷就可能不会成为一名合格的会计。例如,在文献[2]中,作者论述了公允价值的引入使资产价值的计量和入账复杂化了。如果不了解如何利用现金流量模型估计公允价值,在某些情况下就不能准确入账。在文献[1]中,笔者还给出了其他一些新会计准则下财务建模的例子。

因此,新会计准则的采用使得原来只有财务管理人员才去考虑的问题现在会计人员也不得不考虑。财务建模可以帮助会计人员或者财务管理人员更好地、准确地贯彻新会计准则,提供更可信的会计信息。

4.财务建模可以作为管理决策的辅助工具

通过财务建模可以将大量的报表数据转化为更有价值的财务决策信息,因此财务建模可以作为管理决策的辅助工具。决策者可以利用模型输出的信息进行决策,提高决策的科学性和

财务建模为实际问题的解决提供了定量分析和计算的方法。有助于人们全面、系统地把握实际问题的特征、性质和结构,有助于对实际问题做出更进一步的认识。当将实际问题抽象为一个财务模型以后,人们就可以根据此财务模型对该实际问题的未来发展作出预测。因此,建模的目的不是为了建模而建模,而是为了利用模型对实际问题加以抽象,从而更好地把握问题。特别是为更好地把握实际问题未来的发展提供帮助。比如说,价值分析是当今财务理论研究中的一个非常重要的领域。如果我们能够找出一个根据财务数据及其他资料计算企业价值的分析模型,那么我们就可以根据此模型在股市中找出价值被低估的股票,从而指导我们的投资实践。另一方面这样的模型也可以为资本市场的监管部门提供股票异动及监管的客观依据,从而为资本市场的规范提供保障。

5.财务建模可以作为经济、管理等社会系统反复试验的重要工具

建模的另一个重要作用就是对于复杂的实际问题,当不可能对其做试验或试验代价太昂贵时,采用模拟建模可以有效地避免或减少试验的破坏程度和代价。例如,当评估一项财务决策对企业的未来发展有何影响时,显然不可能采取试验的方法或者试验带来的损失可能是巨大的、无可挽回的。在这种情况下,如果我们能建立一个模型用来模拟财务决策对企业的未来发展到底有何影响,那么就可以在不承担任何风险、花很少费用的情况下对财务决策的影响作出评估,从而避免盲目决策所付出的代价,为科学决策奠定基础。

根据宏观经济环境的变化和会计处理方法的不同,有些理论和模型可能需要进行不断地更正和调整使其符合特定的环境和特定的历史条件。因此,模型具有鲜明的地域性和时效性特征,而财务建模的理论和方法是使理论和模型适应这种变化的有力武器。财务建模必将成为未来财务人员的一项重要技能。不掌握这项技能,财务人员便不能适应社会的发展和环境的变化,最终将被历史所淘汰。

三、高等财经院校财务建模课程的建设设想

综上所述,财务建模在财务理论和实践中具有非常重要的意义和作用。财务建模是财务专业和相关专业学生应掌握的一项基本技能。因此,为财经院校的学生开设有关课程已势在必行。

首先,可以在有条件的院校为研究生开设选修课。笔者所在的院校属于财经院校。财经院校的学生对于掌握财务建模的知识和技能的要求更加迫切,因此首先应该在财经院校开设此课程。“十一五”以后国家加大了高校的投入力度,因此现在大多数院校都建立了自己的经济实验室、金融实验室、统计实验室或者会计实验室等。因此开设财务建模课程的硬件条件在大多数院校都已具备,只要再配以合适的软件系统即可。

第二步,待条件成熟以后,将财务建模课逐步推向本科生。财务建模的技能在本科阶段就应该全面掌握,不必等到研究生阶段。对于高年级的本科生,他们已经具备了学习财务建模的基本知识和必要的理论基础,因此在高年级本科生中开设此课程既有必要又有可能。笔者计划待条件成熟时首先为会计和金融专业的大四学生开设财务建模的选修课。

第三步,建议有关部门成立财务建模专业或者专业方向,使财经院校可以培养出财务建模的专门人才,为社会作出更大的贡献。新晨

主要参考文献

[1]段新生.MATLAB财务建模与分析[M].北京:中国金融出版社,2007.

[2]段新生.新会计准则的原则性及其影响[J].会计之友,2007(3).

[3]罗斯·瓦茨,杰罗尔德·齐默尔曼.实证会计理论[M].陈少华等译.大连:东北财经大学出版社,2006.

[4]RichardABrealey,StewartCMyers.PrinciplesofCorporateFinance[M].NY:4thEd.McGraw-Hill,1991.

[5]段新生.MATLAB股票估价模型研究[J].中国管理信息化,2007(9).

[6]段新生.基于MATLAB的股票估价模型设计[J].中国管理信息化,2008(4).

[论文关键词]财务建模;计算机模型;实证研究

上一篇:企业核心竞争力含义范文 下一篇:盈利模式和商业模式区别范文