数学建模论文范文

时间:2023-03-21 15:26:40

数学建模论文

数学建模论文范文第1篇

近年来,随着全国大学生数学建模竞赛的深入开展,数学建模教学和竞赛培训在全国高职院校如雨后春笋般蓬勃兴起,并且有力的推动了高等数学课程教学改革。同时,许多院校的实践经验证明,在学时有限的情况下把数学建模的思想方法渗透到高等数学课程中来是高职数学课改的有效途径。

1数学建模融入数学课程能够培养和提高学生的学习兴趣

学习兴趣对学生的学习效果有着决定性的作用,只有让学生培养对数学的学习兴趣,才能从根本上解决高职数学教学中存在的问题。数学建模是一个将实际问题用数学的语言、方法,去近似刻画、建立相应模型并加以解决的过程。数学建模的过程符合学生认知问题、处理问题、反思问题的全过程,能极大提高学生的学习主动性和数学的趣味性,学生能够从实践中体会到数学的作用,从而增加对数学学习的兴趣。

2数学建模思想融入数学课程能够加快高职学校素质教育的步伐

高等职业教育的培养目标是培养高素质技能型人才。要求既要能动脑又要能动手。因此高职教育的培养目标决定了数学教学应该以培养技能型人才为目的,理论知识服务于实际应用。高职学生毕业后将成为国家各行业的生力军,如果他们能够运用已有的数学知识与方法不断革新工艺、改进方法、提高效率、增强产品竞争力,必将会为我国的建设与发展做出巨大贡献。清华大学姜启源教授曾说:相对于本科院校而言,以培养技能型、应用型人才为目标的高职院校,将数学建模作为数学教学的重要组成部分,更有其必要性和可行性。

3数学建模思想融入数学课程能够提升学生各方面的能力

学生在学习过程中,通过对数学建模这种科学的前沿的教学方式的反复实践,能够有效地提高自己的各方面能力。由于建模对计算机的应用较多,所以能够加强学生对计算机功能的掌握,数学建模需要将数学与其他知识相结合,需要极大的信息量和知识面,计算机能有效的扩大学生的知识面,使得学生能够更全面科学的进行数学建模;同时,数学建模能培养学生的团队意识和协作能力,学生也能通过建模来找到自己在团队的合适位置。

二、数学建模教学实践及学生创新能力的提高

近年来,我院在把数学建模的思想方法融入高等数学课程方面进行了深入的探索与实践,许多教学与实践相结合的教学方法与手段以及新颖的教学内容正逐步进入高等数学课堂,对提高学生学习数学、应用数学的积极性,提高学生分析问题、解决问题的能力起到了非常大的作用。

1融入数学建模思想精心设计教学内容

按照“知识导入、案例展开、由浅入深、拓展思考”的思路精心设计课堂教学内容。由贴近生活.与实际联系密切的趣味问题导入,在教学中创设问题情境,发散学生的思维,吸引学生积极动脑,主动地参与学习。同时鼓励学生用已有的知识和经验去推理、观察、比较、分析、综合、概括、归纳等寻求解决问题的方法,实现快乐学习的理念。在建模案例的挑选上,尽量从问题背景简单,容易入手的题目开始,让学生了解建模的一般过程,然后再由浅入深。每个案例之后设置拓展思考,培养探索精神,通过典型案例分析基本知识讲解触类旁通举一反三,归纳总结掌握一类问题的处理方法的过程,达到应用数学能力的全面提升。实施情景案例、项目驱动、任务导向教学,在建立实际问题的模型过程中,穿插介绍必要的理论知识点,让学生带着问题学知识,并在实践中运用知识、提升能力,理论教学与实践教学相互渗透。

2灵活多样的教学方法与现代教学手段相结合

在数学建模教学中主要采用案例驱动教学法,以基础案例引入相关知识,解决问题过程中介绍相应建模方法及软件使用技能,有效的提高学生的学习兴趣。同时,在案例分析时教师与学生互换角色交流分析思路,角色互换法使学生在角色体验中既能加深对建模方法的理解,又能提高相应的逻辑思维与表达能力。另外,采用项目研究过程法,学生自行组队,通过项目申报、研究、解题汇报并提交论文等环节,全面培养学生的创新与动手能力。在教学手段方面,充分运用多媒体教学设备,如电子课件、数学软件演示、计算机辅助教学、案例视频材料等,充分展示丰富的教学内容,化抽象为直观,化复杂计算为简单程序求解。有效利用网络资源,建立师生之间密切联系,为学生自主学习提供便利条件,提高学习效率。

3形成“课内、课外”互动的良好氛围,“教学、实践、竞赛”一体化的有效机制

根据高职院校数学课时较少学生基础较差的特点,设计课内课外互动的教学模式,课内教学环节系统培养学生建模思想方法,课外环节为学生创建进行建模实践的平台,两种教学模式结合实现综合能力的提高。融“教、学、做”为一体,理论与实践教学相互渗透。以建模课程推动建模竞赛,以建模竞赛带动校园数学文化,实现学生综合素养的提高。2010年以来,《数学建模与数学试验》作为公共选修课程,面向全院所有专业学生开设,每学期的选修人数均在200人以上,大大拓宽了学生的知识面,提高了学生数学建模的能力。由数学建模爱好者组成的院数学建模协会,以“基于学术、用于生活”为主要目标,以“导师指点、同学互促”为活动形式,着力培养学生创新精神和创新能力。活跃校园文化气息,促进学生全面发展。

4数学实验室初具规模,数学问题软件解决

为培养学生的创新能力,加强实践性教学,学院创建了数学建模实验室。数学建模实验室有32台计算机,实验室面积100余平方米,投入经费约20余万元。每台机器都安装了与数学建模有关的Matlab、Lingo、SPSS等软件,供学生上机实践。另外,学院创新实验室和大型多媒体教室可供数学建模培训和选修课上课使用。高等数学课程中每学期专门拿出18个实验学时,学习利用Matlab等数学软件解决数学问题,学生学习数学积极性大大提高。

5数学建模成绩与学生创新能力稳步提高

数学建模教学方面的探索反过来又推动数学课程内容和课程体系改革,为培养动手能力强、创新型人才做出贡献。高职数学课程改革,使学生掌握课程的基本概念、基本理论和基本方法,并能够逐步运用所学知识去分析和解决实际问题,并结合上机试验等实践环节,培养学生用计算机软件解决问题的能力,激发学生对数学建模的兴趣,近年来与数学课程相关的多项教改项目得以立项,《高职数学系列课程》被评为为学院精品课程群。近三年,学生学习数学的兴趣逐渐高涨,课堂教学效率提高,选修课人数多,效果好,建模协会活动丰富多彩,学生的数学素养明显提高,成功申请十余项专利。2013年4月莱芜职业技术学院数学建模协会被评为山东省优秀大学生科技社团。2014年10月由部分老师和学生共同参与制作多媒体课件《基于数学建模的MATLAB入门及在四杆机构中的应用》,在教育部课件大赛中获全国二等奖。虽然起步较晚,自从2010年我院首次参加全国大学生数模竞赛以来,累计培训数模爱好者在800人以上,组织校内数学建模竞赛4次,经过校内选拔,每年派出4至5队参加全国大学生数学建模竞赛,累计报名21队,共获得国家二等奖1项,山东赛区一等奖10项,二等奖5项,三等奖2项,成功参赛奖3项,获奖率100%,获奖成绩逐年稳步提高。竞赛成绩充分展现了我院学生的专业技能素质和教师的教学成果,培养了学生的团队意识,提高了学生的创新能力和分析、解决问题的能力,提高了学生的综合素质,调动了广大学生学习知识、掌握技能的积极性,使学生对数学课程产生了浓厚兴趣,培养了良好的学风。

数学建模论文范文第2篇

【论文摘要】阐述了数学建模对培养学生创新能力的意义,讨论了如何在数学建模的教学中培养学生的创新思维,探讨了数学建模的教学模式。

1引言

当今世界,创新取代了传统的比较优势,已经无可替代地成为国家竞争战略的基础。

因此,加强创新精神和创新能力的培养,已是世界各国教育改革的共同趋势,也是我国实现“科教兴国”战略的基本要求,创新教育已经成为高等教育的核心,多年来的教育实践证明,数学建模的教学与竞赛活动在高等学校的创新教育中的地位和意义已是举足轻重.

一年一度的全国大学生数学建模竞赛活动是由国家教育部高教司直接组织领导,面向全国高校,规模最大,参与院校最多,涉及面最广的一项科技竞赛活动.其宗旨是“创新意识,团队精神;重在参与,公平竞争”。自1992年举办第一届竞赛以来,参赛队数以平均每年近30%的速度增加,2006年已达到864所院校9985个参赛队的规模.正是由于数学建模竞赛活动的深入开展,它积极地推动了大学数学教学改革的开展,并已取得了显著的成果。

2数学建模对培养学生创新能力的意义

高校作为人才培养的基地,围绕加快培养创新型人才这个主题,积极探索教学改革之路,是广大教育工作者面临的一项重要任务。正是在这种形势下,数学建模与数学建模竞赛,这个我国教育史上新生事物的出现,受到了各级教育管理部门的关心和重视,也得到了科技界和教育界的普遍关注。这主要是数学建模的教学和竞赛活动有利于人才的培养,特别是人才的综合能力、创新意识、科研素质的培养.也正因为如此,数学建模活动的实际效果正在不断的显现出来,“数学建模的人才”和“数学建模的能力”正在实际工作中发挥着积极的作用。

数学建模本身就是一个创造性的思维过程。数学建模的教学内容、教学方法以及数学建模竞赛培训都是围绕创新能力的培养这一核心主题进行的,其内容取材于实际,方法结合于实际,结果应用于实际.数学建模的教学和竞赛培训,为学生的探索性学习和研究性学习搭建了平台。数学建模的教学和竞赛,注重培养学生敏锐的观察力、科学的思维力和丰富的想象力,既要求学生具有丰富的知识,又要求学生具有较强的实践操作能力;既有智力和能力要求,又有良好的个性心理品质要求;既要求敢于竞争,又要求善于合作.数学建模真正体现了开发学生潜能、培养学生优秀心理品质以及积极探索态度的良好结合.在数学建模的教学与竞赛中,特别注重发挥学生的主动性、积极性、创造性、耐挫折性,特别是提倡探索精神、创造精神、批判精神、团队协作精神等.知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现.实践正在证明,数学建模的教学与竞赛活动是培养大学生创新思维和创新能力的一种极其重要的方法和途径。

3在数学建模的教学中培养学生的创新思维

创新型人才是指具有较强的创新精神、创造意识和创新能力,并善于将创造能力化为创造性成果和产品的人才.尽管创新精神、创造意识和创新能力的培养不是一个学科或一门课程的教学所能完成的,但大量的中外教育实践充分证明,数学教育在创新型人才的培养中具有其他学科不可替代的优势和作用.因为数学中的理论和方法是人们从量的侧面研究现实世界所得到的客观规律,是研究各种科学技术不可缺少的语言和工具.

而数学建模的过程则恰好是将数学中的理论和方法又重新应用于解决现实问题,即是理论来源于实践又要服务于实践的一个完美体现.这一过程高度反映了人的创新精神、创造意识和创新能力。

数学本身包含着许多重要的思想方法,比如由特殊到一般的思想、从有限到无限的思想、归纳类比的思想、倒推逆向分析思维、试探思想等,其本质都是创造性思维方法.我们在数学建模的教学过程中不刻意地去追求运算技巧和方法,而将重点放在数学思想方法的传授上,运用对数学思想方法的体会去启迪学生的创新思维,激发学生的创新欲望。

数学上的归纳和类比思维是一种非常典型的创新思维,著名的数学家拉普拉斯说过“在数学里,发现真理的主要工具和手段是归纳和类比”.而大多数数学模型的建立、修改或改进,很多时侯都是依靠这种归纳与类比思维.在寻找模型求解的算法时,也常常用类比思维,利用相似的算法加以优化和改进而得到,有时甚至可以发现新的更好的算法.

发散思维是许多科学家非常重视的一种思维形式,科学家运用发散思维获得重要发现的例子不胜枚举.我们在数学建模的教学过程中倡导学生养成发散思维的习惯,通过一些具体的建模实例,让学生感受到在科学上要敢于联想,敢于突破条条框框,敢于标新立异。

逆向思维,即“反过来想一想”。人们思考问题时常常只注重于已有的联系,沿着合乎习惯的正向顺推,但有时如果采用“倒过来”思考的逆向思维方式,往往会产生意想不到的效果.比如,2004年全国大学生数学建模竞赛A题:奥运会临时超市网点设计中的第三个问题:若有两种大小不同规模的迷你超市(Mini-Supermarket)类型供选择,给出图2中20个商区MS网点的设计方案(即每个商区内不同类型MS的个数,并满足题中三个基本要求:满足奥运会期间的购物需求、分布基本均衡、商业上盈利).在设计MS网点时为考虑满足商业上盈利这一要求,如果单从正面去考虑商业上的盈利模型,则有很多未知的因素无法确定,诸如商品种类、数量、价格、销售额等,因而无法建立模型.但若运用逆向思维,从市场需求去预测可能的盈利能力,因为市场需求量可利用前述问题中已得到的商区的人流量的分布,从而为后面的规划模型的建立与求解提供了关键性的办法。

4数学建模教学模式的探索

刚踏入大学校门的大一新生,首先接受的是基础数学教育,虽然这一阶段将决定着学生毕业后能否成为创新型人才,但学校要想培养出高质量的创新型人才,基础的数学教育是以知识传授为主体的教与学的过程,多年来的事实证明,这一过程很难肩负对学生创新能力的培养.随着数学建模与数学建模竞赛这一事物的出现,人们很快发现,数学建模教学,尤其是数学建模竞赛的培训是实现这一目标的一条很好的途径。经过多年来的摸索,我们对数学建模的教学模式做了如下探索。

第一,充分再现数学发现的思维过程.学生学习的数学知识,尽管是前人创造性思维的成果,学生作为学习的主体处于再发现的地位,给学生展示数学发现的思维过程,就是引导学生重走数学知识的发现之路,使得学生的再发现得以顺利完成.而这实质上也是对学生创新思维的一种培养过程.然而这一点常常被许多数学教师所忽视,他们只注重数学知识的传授,而隐去了数学知识的发现过程,这就无形地扼制了学生创新思维的发展.而数学建模的教学却能弥补基础数学教学的这一缺陷,能让学生在数学建模的过程中充分体会数学发现的创造性乐趣,从而培养其创新思维。

第二,更新教学形式.传统的单一满堂灌、填鸭式、保姆式的课堂教学形式,容易养成学生对老师的依赖心理,不利于调动学生的主观能动性,更不利于激发学生的创造性思维.因而要想在培养学生的创新能力方面有所突破,必须打破原有的单一教学模式,探索和尝试一些行之有效的新的教学形式.近几年来,我们根据数学建模的具体要求,有意识的尝试了不同于以往传统的教学模式,将多种不同的教学形式进行了优化组合,力求变以教师为中心为以学生为中心,充分调动学生的主观能动性和思维的积极性,培养创新意识和创新能力。

5我校数学建模的教学模式

我校自1994年第一次组队参加全国大学生数学建模竞赛以来,已走过15年的风风雨雨。15年来,在利用数学建模培养学生创新能力方面,我们不断地反思并总结经验和教训。

经过多年来的反复实践和深入探索,我们以培养和提升学生创新能力为目标,以数学建模选修课和数学建模竞赛培训课为载体激发学生的创新欲望,以少数学生影响并带动大多数学生参与数学建模活动体验创新乐趣,作为我们制定数学建模教学大纲、教学计划、确定教学模式的宗旨.下面介绍我校数学建模的教学模式。

数学建模的教学内容分为两部分:

第一部分:数学建模选修课。该课总课时36小时,由4或5位教师每人2或3次课讲完,每位教师每次课主讲一个数学建模方法方面的专题,专题的讲解以先介绍案例再引出理论或先讲述理论再介绍案例的方式进行,每位教师至少布置一道题目,原则上要求每位学生在选修课学完后须上交一份作业,该作业可以是选做教师布置的某一题,也可以自己找题并求解,以论文形式上交.由于时间的限制,选修课中没有介绍论文写作,所以对学生的作业论文并不做严格要求,只注重其内容中是否有闪光的创意之处,并作为后续选拔数学建模竞赛选手的一个重要依据。

第二部分:数学建模竞赛培训课。培训课分三个阶段进行。第一阶段是软件和数学建模方法的培训。软件培训主要介绍的MatLab、Spss、Lingo的使用和基本操作;数学建模方法包括:最优化方法建模、微分方程建模、数理统计方法建模、层次分析法建模、网络图的方法建模、神经网络建模、模糊数学建模、遗传算法建模、概率仿真建模.第二阶段是专题培训.首先从历年全国大学生数学建模竞赛题目中选出9个分为3组,然后由3位多年来的资深指导教师讲解如何审题、破题;如何查找资料、整理资料;如何分析问题、建立模型;如何分析并寻找合适的算法并对模型进行求解;如何对模型求解结果进行分析并加以修改或改进;最后告诉学生如何对自己所做的工作加以总结并写成一篇规范的科技论文.第三阶段是模拟竞赛.给定三个题目,由各参选队任选一题,要求按全国大学生数学建模竞赛的所有规则进行模拟竞赛.三天后各队提交一篇论文,最后选定其中最好的10个队参加全国大学生数学建模竞赛。

参考文献

[1]谢云荪,成孝予,钟守铭.转变教育思想提高数学素质培养创造性人才[J].工科数学,1997,13(6):132-136.

[2]傅英定,成孝予,彭年斌等.转变教育观念培养学生创造性思维能力的研究与实践.电子高等教育的理论与实践[M].成都:电子科技大学出版社,2000:181-184.

[3]安正玉,邓正隆.本科教学应突出创造能力的培养[J].高等科教管理,1997(2):43-46.

[4]李心灿.在高等数学的教学中培养学生创造性思维的一些实践与思考[J].工科数学,1999,15(6):35-41.

[5]韩中庚等.数学建模竞赛-获奖论文精选与点评[M].北京:科学出版社2007:201-216.

数学建模论文范文第3篇

那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:

某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:

(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。

(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。

(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)

(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。

本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:

方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)

方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;

方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;

然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。

通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

(一)在教学中传授学生初步的数学建模知识。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,

每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?

[简化假设]

(1)每间客房最高定价为160元;

(2)设随着房价的下降,住房率呈线性增长;

(3)设旅馆每间客房定价相等。

[建立模型]

设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此

由可知

于是问题转化为:当时,y的最大值是多少?

[求解模型]

利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),

[讨论与验证]

(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

(二)培养学生的数学应用意识,增强数学建模意识。

首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

(三)在教学中注意联系相关学科加以运用

在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

论文关键词:数学建模数学应用意识数学建模教学

论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。

参考文献:

1.《问题解决的数学模型方法》北京师范大学出版社,1999.8

2.普通高中数学课程标准(实验),人民教育出版社,2003.4

3.《数学建模基础》清华大学出版社,2004.6

数学建模论文范文第4篇

本文小编将以章节的形式为您展开数学建模论文格式的详细描述,并会陆续更新数学建模论文的经典范文,论文频道期待您的关注。

当我们完成一个数学建模的全过程后,就应该把所作的工作进行小结,写成论文。撰写数学建模论文和参加大学生数学建模时完成答卷,在许多方面是类似的。事实上数学建模竞赛也包含了学生写作能力的比试,因此,论文的写作是一个很重要的问题。

首先要明确撰写论文的目的。数学建模通常是由一些部门根据实际需要而提出的,也许那些部门还在经济上提供了资助,这时论文具有向特定部门汇报的目的,但即使在其他情况下,都要求对建模全过程作一个全面的、系统的小结,使有关的技术人员(竞赛时的阅卷人员)读了之后,相信模型假设的合理性,理解在建立模型过程中所用数学方法的适用性,从而确信该模型的数据和结论,放心地应用于实践中。当然,一篇好的论文是以作者所建立的数学模型的科学性为前提的。其次,要注意论文的条理性。

下面就论文的各部分应当注意的地方具体地来做一些分析。

(一) 问题提出和假设的合理性

在撰写论文时,应该把读者想象为对你所研究的问题一无所知或知之甚少的一个群体,因此,首先要简单地说明问题的情景,即要说清事情的来龙去脉。列出必要数据,提出要解决的问题,并给出研究对象的关键信息的内容,它的目的在于使读者对要解决的问题有一个印象,以便擅于思考的读者自己也可以尝试解决问题。历届数学建模竞赛的试题可以看作是情景说明的范例。

对情景的说明,不可能也不必要提供问题的每个细节。由此而来建立数学模型还是不够的,还要补充一些假设,模型假设是建立数学模型中非常关键的一步,关系到模型的成败和优劣。所以,应该细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。这部分内容就应该在论文的“问题的假设”部分中体现。由于假设一般不是实际问题直接提供的,它们因人而异,所以在撰写这部分内容时要注意以下几方面:

(1)论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解。

(2)所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考。

(3)假设应验证其合理性。假设的合理性可以从分析问题过程中得出,例如从问题的性质出发做出合乎常识的假设;或者由观察所给数据的图像,得到变量的函数形式;也可以参考其他资料由类 推得到。对于后者应指出参考文献的相关内容。

(二) 模型的建立

在做出假设后,我们就可以在论文中引进变量及其记号,抽象而确切地表达它们的关系,通过一定的数学方法,最后顺利地建立方程式或归纳为其他形式的数学问题,此处,一定要用分析和论证的方法,即说理的方法,让读者清楚地了解得到模型的过程上下文之间切忌逻辑推理过程中跃度过大,影响论文的说服力,需要推理和论证的地方,应该有推导的过程而且应该力求严谨;引用现成定理时,要先验证满足定理的条件。论文中用到的各种数学符号,必须在第一次出现时加以说明。总之,要把得到数学模型的过程表达清楚,使读者获得判断模型科学性的一个依据。

(三)模型的计算与分析

把实际问题归结为一定的数学问题后,就要求解或进行分析。在数值求解时应对计算方法有所说明,并给出所使用软件的名称或者给出计算程序(通常以附录形式给出)。还可以用计算机软件绘制曲线和曲面示意图,来形象地表达数值计算结果。基于计算结果,可以用由分析方法得到一些对实践有所帮助的结论。

有些模型(例如非线性微分方程)需要作稳定性或其他定性分析。这时应该指出所依据的数学理论,并在推理或计算的基础上得出明确的结论。

在模型建立和分析的过程中,带有普遍意义的结论可以用清晰的定理或命题的形式陈述出来。结论使用时要注意的问题,可以用助记的形式列出。定理和命题必须写清结论成立的条件。

(四) 模型的讨论

对所作的数学模型,可以作多方面的讨论。例如可以就不同的情景,探索模型将如何变化。或可以根据实际情况,改变文章一开始所作的某些假设,指出由此数学模型的变化。还可以用不同的数值方法进行计算,并比较所得的结果。有时不妨拓广思路,考虑由于建模方法的不同选择而引起的变化。

通常,应该对所建立模型的优缺点加以讨论比较,并实事求是地指出模型的使用范围。

除正文外,论文和竞赛答卷都要求写出摘要。我们不要忽视摘要的写作。因为它会给读者和评卷人第一印象。摘要应把论文的主要思路、结论和模型的特色讲清楚,让人看到论文的新意。

语言是构成论文的基本元素。数学建模论文的语言与其他科学论文的语言一样,要求达意、干练。不要把一句句子写得太长,使人不甚卒读。语言中应多用客观陈述句,切忌使用你、我、他等代名词和带主观意向的语句。在英语论文写作中应多用被动语态,科学命题与判断过程一般使用现在时态。

最后,论文的书写和附图也都很重要。附图中的图形应有明确的说明,字迹力求端正。

点击返回:

数学建模论文范文第5篇

随着高职教育改革的不断深化,高职院校毕业生的就业能力和竞争力有所提高,就业状况不断改善,但毕业生就业形势仍然十分严峻。这固然有节节攀升的毕业生数、毕业生自身就业观念、供需结构失衡等方面的问题,但毕业生综合素质不够高、就业能力不够强等方面的问题依然突出。就业能力是指学生在校期间通过知识学习和综合素质开发而获得的能够实现就业理想,满足社会需要,保持工作及晋升和继续发展的内在素质和才能,是一种与职业相关的综合能力。“职业素养”、“专业知识与技能”、“学习能力”、“实践能力”、“社会适应能力”、“创新能力”、“与人交往能力”、“规划与应聘能力”等,是高职院校学生应具备的基本就业能力。对于高职院校毕业生,用人单位更看重其“专业技能”、“实际操作能力”、“学习能力”、“敬业精神”“、沟通协调能力”、“创新能力”等方面的能力素质。而“学习能力”、“运用知识解决问题能力”、“沟通协调能力”、“创新能力”这些基本就业能力是高职院校学生比较欠缺的素质。

二数学建模对培养学生就业能力的作用

笔者在指导学生参加全国大学生数学建模竞赛的过程中,体会到数学建模活动对高职院校的学生的综合素质和就业能力的提升起着十分重要的作用,有利于高职教育人才培养目标的实现。

1提升学生自主学习的能力

数学建模竞赛赛题所涉及的知识面较广,甚至有许多是学生未曾涉及过的领域(如,2012年赛题中的C题:“脑卒中发病环境因素分析及干预”与医学领域有关),学生仅凭已有的知识是难以甚至不能完成竞赛,这就要求学生不仅需要复习好已经学过的知识,还必须积极、主动去学习新知识,扩大知识面,如,数学软件的使用、论文写作方法、不包括在高职人才培养方案中的一些数学内容(如数值计算等)、查找相关文献资料并从大量文献中吸取所需知识的技巧等知识,学生都须通过自主学习的途径来掌握。这个过程有助于学生自主学习能力的提升。

2提升学生运用知识解决问题的能力

数学建模是一个将错综复杂的实际问题简化、抽象为合理的数学结构的过程。在建模过程中,就是要针对生产或生活中的实际问题,通过观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,结合数学及其他专业知识的理论和方法去分析、建立起反映实际问题的数量关系。这个过程就是运用所学的数学知识和其他专业知识的过程。数学建模竞赛题涉及的数据量往往大且复杂,求解、运算过程十分繁琐,手工计算很难甚至无法得到结果,需要使用计算机来辅助解决问题,例如,常使用MATLAB等数学软件进行模型初建、模型合理性分析、模型改进等;使用SPSS等数理统计类软件,完成数据处理、图形变换和问题求解等工作,这是个运用计算机知识的过程。可见,数学建模能培养学生运用数学及其他专业知识、计算机知识等解决实际问题的能力,有利于拓宽学生的就业技能。

3提升学生分析问题和创造性解决问题的能力

培养创新能力数学建模赛题来自于实际问题之中,有极强的实际应用背景,而对竞赛选手完成的答卷(论文)的评价一般没有标准答案,评价时主要是看对问题所做假设的合理性、建模的创造性、结论的正确性和文字表述的清晰程度,评审者更青睐有独特创意的论文。这就要求参赛学生充分发挥想像力、创造力,在通过分析、讨论,迅速洞察问题的实质和特征之后,做出合理的假设,并综合运用数学知识和其他相关知识,创造性地确定或建立数学模型。可见,数学建模过程是个提升学生的分析问题能力,创造性解决问题的能力的过程,具有培养学生创新能力的作用。

4提升学生的团结协作能力

数学建模竞赛不同于一般竞赛,单独一个队员是无法完成竞赛的,必须通过团队三队员共同的努力,才能在72个小时内完成论文,交上答卷。这要求在竞赛的过程中,需要根据队员的特点,进行分工合作,发挥各自的长处,发挥团队的整体综合实力。在团队中,由有较强组织协调能力的队员来负责协调三人的关系,安排工作流程和工作任务;由有较强写作能力的队员来保证写出较流畅的论文;由有较强计算机应用能力的队员来使用数学软件,负责建立、检验数学模型;竞赛过程中,队员间必须精诚团结、相互配合、集体攻关,才能在竞赛中取胜。因此,数学建模竞赛过程是个提升学生团结协作能力、培养学生的团队精神的过程,这对培养学生适应社会的能力起到积极的作用。

三高职数学建模课程教学改革的思考毋庸置疑

数学建模活动对高职院校的学生的学习能力、运用知识分析和解决实际问题的能力、创新能力、沟通协调能力等就业能力的培养,起着由其他活动所不可替代的重要的作用,对高职教育人才培养目标的实现起着积极的作用。正因如此,全国大学生数学建模竞赛自设立大专组以来,数学建模活动受到越来越多的高职院校的重视,高职院校的数学建模教学与研究不断深入。但笔者了解到,数学建模课的教学在许多高职院校并未得到广泛开展,数学建模教学大都还仅限在对参加数学建模竞赛的这部分学生中进行,只在赛前集中培训,还停留在为竞赛而进行教学培训的层面,忽略了大多数的学生,大多数学生的潜能没有得到挖掘。笔者认为,高职院校应力争改变这一囧态,重视数学建模竞赛活动及数学建模课的教学,扩大数学建模的受益面。高职院校应以数学建模竞赛为契机,以提高全体学生的数学素质与能力作为出发点,以实现人才培养目标为目的,推进数学建模活动与教学改革,将数学建模与数学实验课程以选修或必修课的方式纳入人才培养方案,建设健全的课程计划与教学体系,在尽可能大的范围开展数学建模课的教学和数学建模活动,让尽可能多的学生受益,使广大学生的综合素质、基本就业能力得到全面提升。

数学建模论文范文第6篇

数学建模优秀论文心得体会:

阅读1篇论文对我主要有以下4个方面的启发与指导:

(1)大致了解数学建模论文写作时应包含哪些内容

(2)每部分内容都应写些什么

(3)汲取他写作与处理问题的成功之处,以便将这些优点运用于我以后的论文写作中

(4)总结这篇论文写作与处理问题过程中的败笔,提醒我注意在写作论文时不要犯类似错误

所以,在下面的学习心得中将主要涉及以上4个方面的内容。

摘要:简明扼要地指出了处理问题的方法途径并给出作答,起到了较好的总结全文,理清条理的作用。让读者对以下论述有1个总体印象,而且对于本题的答案用图表形式给出,清晰明了

问题重述:

问题背景:

交待问题背景,说明处理此问题的意义和必要性。

优点:叙述详尽,条理清楚,论证充分

缺点:前两段过于冗长,可作适当删节

问题分析:

进1步阐述解决此问题的意义所在,分析了问题,简述要解决此问题需要哪些条件和大体的解决途径

优点:条理比较清晰,论述符合逻辑,表达清楚

缺点:似乎不够详细,尤其是第3段有些过于概括。

模型的假设与约定:

共有8条比较合理的假设

优点:假设有依据,合情合理。比如第3条对上座率的假设,参考了上届奥运会的情况并充分考虑了我国国情,客观真实。第8条假设用了分块规划和割补的方法,估计面积形状比较合理,而且达到了充分花剑问题的作用。

缺点:有些假设阐述不太清楚也存在不合理之处,第4条假设中面积在50-100之间,下面的假设应该是介于50-100之间的数,假设为最小的50平方米,有失1般性。第6条假设中,假设MS最大营业额为20万,没有说明是多长时间内的,而且此处没有对下文提到的LMS作以说明。

符号说明及名词定义

优点:比较详细清楚,考虑周全,而且较合理地将定性指标数量化。

缺点:有些地方没有标注量纲,比如A和B的量纲不明确。

模型建立与求解

6.1问题1:

对所给数据惊醒处理和统计,得出规律,找到联系。

优点:统计方法合理,所统计数据对解决问题确实必不可少,而且用图表和条形图的方式反映不同量的变化趋势,图文并茂,叙述清楚而且简明扼要,除了对数据统计情况进行报告以外,还就他们之间相关量之间的关系进行了详细阐述,使数据统计更具实效性。

6.2问题2:

6.2.1最短路的确定

为确定最短路径又提出了1系列假设并阐述了理由,在这些假设下规定了最短路径

优点:假设有根据,理由合情合理

缺点:第4条中假设观众消费是单向的,虽然简化了问题但有失1般性,事实上观众往返经过商业区消费的概率是相差比较大的,我认为应改为假设观众在往返过程中消费且仅消费1次。

6.2.2计算人流量的追踪模型

给出计算人流量的方法,并计算了各区人流量,并对计算结果进行了分析。

优点:分情况讨论,并且取了两个典型的具有代表性的例子进行了具体阐述,没有全部罗列所有数据的计算过程,使文章清晰简明,不至于繁冗拖沓,这在以后我们写论文是极其值得借鉴。对结果的分析有针对性,合情合理而且用条形图直观地反映了人流量的数值和各地区间的差异。

缺点:分析还不够详细,考虑因素还不够周到。

6.3问题3

进1步对问题作以简化,将问题的解决最终归结为1个焦点,并对解决这个问题所需确定的因素进行了讨论,最后得出结论。

6.3.1商区消费额的确定

阐述了为什么要计算这个量,计算这个量对解决问题有什么至关重要的作用并且采用了Huff模型并且结合本问题的具体情况来求解数据。

优点:论证充分合理且模型和经济学知识应用恰当,所得数据有效可信,考虑周到而不繁杂,抓住了事物的主要矛盾,而且对Huff模型的解释较为充分。

缺点:对于各商业区的总消费额我们更看重数量而文中用条形图的方式却着重体现了各地区之间的数量差异,有喧宾夺主之嫌,改称图表形式可以更好地反映数据量的值

6.3.2各个商区MS数量的概略确定

确定了确定MS个数的方案,在不失1般性的前提下对问题进行进1步简化,缩小解决问题的范围并对问题进行了求解

优点:简洁明了,论述合理。

6.3.3

引入了1个重要的确定数量的参数,且对解决问题方法的合理性及此数据对问题的解的影响及行了数值分析和理论论证,提出了改进方案,得出结果,并对结果进行分析。

优点:条理清晰,逻辑严谨,论证充分,详尽而不冗长,使本篇论文的精华部分。分析合理且充分考虑到了实际情况使结果更具可信性。

6.3.4LMS和MS的分配情况讨论

对2者关系提出了几条假设。

优点:论述充分,假设合理而且用图表反映结果,简单明了,情况考虑全面周到。

6.4问题4

分析了方法的科学性和结果的贴近实际性

优点:条理清晰,分析有依据,措辞严谨,逻辑严密而且对前面所述方法进行了分别阐述。这使得对方法科学性的论述更加充分可信。对贴近事实性的论述,理论和事实相结合,叙述数据来源,并采用举例论证法论证结果的贴近实际性。

缺点:结果的贴近实际性的论证中,应详细罗列1下数据的来源,也许更加可信。

模型的进1步讨论

为简化抽象现实1边建构模型而忽略掉的1些因素进行了考虑,对于1些可能影响讨论结果的因素给出了算法和解决方案

优点:考虑全面,善于抓住主要矛盾,表述简明客观。

模型检验

与某些近似且已妥善解决的问题进行了比较,用事实说明处理方案的正确性。

优点:采用了较好的参照对象,采用图像对比的方法,使问题清晰明了。

缺点:应该简述1下雅典奥运会采用的方案是成功的,否则比照就失去了意义,还有由于举办地点不同,地区上的差异使这种单纯与雅典奥运会进行得比较稍显单薄。

模型优缺点

总结模型建立并解决问题的过程中的优点和缺点

优点:简明扼要,客观实在

参考文献

数学建模论文范文第7篇

论文摘要:论述数学建模对培养学生的创造性、竞争意识和社会应变能力的作用,研究了数学建模对高职数学教学的重要作用,提出了数学教育不仅要使学生学会并掌握一些数学工具,更应着眼于提高学生的数学素质能力,而数学建模竞赛正是培养这种能力的有效载体.

高等职业教育作为教育类型得到了空前发展.高职教育在于培养适应生产、建设、管理、服务第一线需要的高素质技能型人才不仅成为人们的一种共识,而且逐步渗透到高职院校的办学实践中.数学课程作为一门公共基础课程如何服务于这个目标成为高职基础课程改革中的热点.将数学建模思想融入高职数学教学应是一个重要取向之一.

一、数学建模竞赛对大学生能力培养的重要性

大学生数学建模竞赛起源于美国,我国从1989年开始开展大学生数模竞赛,1994年这项竞赛被教育部列为全国大学生四大竞赛之一,每年都有几百所大学积极参加.数学建模竞赛与以往主要考察知识和技巧的数学竞赛不同,是一个完全开放式的竞赛.数学建模竞赛的主要目的在于“激励学生学习数学的积极性,提高学生建立数学模型和运用计算机技术解决实际问题的综合能力,鼓励学生踊跃参加课外科技等活动,开拓知识面,培养创造精神及合作意识,推动大学数学教学体系、教学内容和方法的改革”.数学建模竞赛的题目没有固定的范围和模式,往往是由实际问题稍加修改和简化而成,不要求参赛者预先掌握深入的专门知识.题目有较大的灵活性供参赛者发挥其创造性,参赛者从所给的两个题目中任选一个,可以翻阅一切可利用的资料,可以使用计算机及其各种软件.竞赛持续3天3夜,参赛者可以在此期间充分地发挥自己的各种能力.数学建模竞赛也是一个合作式的竞赛,学生以小组形式参加比赛,每组3人,共同讨论,分工协作,最后完成一份答卷论文.数学建模涉及的知识几乎涵盖了整个自然科学领域甚至涉及到社会科学领域.而且愈来愈多的人认识到学科交叉的结合点正是数学建模.数学建模竞赛是能够把数学和数学以外学科联系的方法.通过竞赛把学生学过的知识与周围的现实世界联系起来,培养了学生的下列能力:

(一)有利于大学生创新性思维的培养

高等教育的重要目的是培养国家建设需要的中高层次人才,而许多教育工作者认识到目前的高等学校教学中还存在着许多缺陷,其中一个重要的问题是培养的学生缺乏创造性的思维,缺乏一种原创性的想象力.这是我国高等教育的一个致命弱点,严重制约了我国科技竞争力.我国高等学校的教学还是以灌输知识为主,这种教育体制严重扼杀了学生的能动性和创造性.数学建模竞赛并不要求求解结果的唯一性和完美性,而是重点要求学生怎样根据实际问题建立数学关系,并给出合乎实际要求的结果和方案,重点考察的是学生的创造性思维能力.

(二)有利于学生动手实践能力的培养

目前的数学教学中,大多是教师给出题目,学生给出计算结果.问题的实际背景是什么?结果怎样应用?这些问题都不是现行的数学教学能够解决的.

数学模型是一个完整的求解过程,要求学生根据实际问题,抽象和提炼出数学模型,选择合适的求解算法,并通过计算机程序求出结果.在这个过程中,模型类型和算法选择都需要学生自己作决定,建立模型可能要花50%的精力,计算机的求解可能要花30%的精力.动手实践能力有助于学生毕业后快速完成角色的转变.

(三)有利于学生知识结构的完善

一个实际数学模型的构建涉及许多方面的问题,问题本身可能涉及工程问题、环境问题、生殖健康问题、生物竞争问题、军事问题、社会问题等等,就所用工具来讲,需要计算机信息处理、Internet网、计算机信息检索等.因此数学建模竞赛有利于促进学生知识交叉、文理结合,有利于促进复合型人才的培养.另外数学建模竞赛还要求学生具有很强的计算机应用能力和英文写作能力.

(四)有利于学生团队精神的培养

学生毕业后,无论从事创业工作还是研究工作,都需要合作精神和团队精神.数学建模竞赛要求学生以团队形式参加,3个人为一组,共同工作3天.在竞赛的过程中3位同学充分的分工与合作,最后完成问题的解决.集体工作,共同创新,荣誉共享,这些都有利于培养学生的团队精神,培养学生将来协同创业的意识.任何一个参加过数学建模竞赛的学生都对团队精神带来的成功和喜悦感到由衷的鼓舞.

二、将数学建模思想融入高职数学教学中

通过数学建模,给我们的教学模式提出了更多的思考,使我们不得不回过头重新审视一下我们的教学模式是否符合现代教学策略的构建?现代的教学策略追求的目标是提倡学生主动参与、乐于探究、勤于动手,培养学生搜集和处理信息的能力、获取新知识的能力、分析和解决问题的能力以及交流与合作的能力.只有遵循现代的教学策略才能培养出适应新世纪、新形势下的高素质复合型人才.知识的获取是一个特殊的认识过程,本质上是一个创造性过程.知识的学习不仅是目的,而且是手段,是认识科学本质、训练思维能力、掌握学习方法的手段,在教学中应该强调的是发现知识的过程,而不是简单地获得结果,强调的是创造性解决问题的方法和养成不断探索的精神.在学习、接受知识时要像前人创造知识那样去思考,去再发现问题,在解决问题的各种学习实践活动中尽量提出有新意的见解和方法,在积累知识的同时注意培养和发展创新能力.数学建模恰恰能满足这种获取知识的需求,是培养学生综合能力的一个极好的载体,更是建立现代教学模式的一种行之有效的方法.因此,在数学教学中应该融入数学建模思想.如何将数学建模思想融入数学课程中,我认为要合理嵌入,即以科学技术中数学应用为中心,精选典型案例,在数学教学中适时引入,难易适中.以为要抓好以下几个关键点:

(一)在教学中渗透数学建模思想

渗透数学建模思想的最大特点是联系实际.高职人才培养的是应用技术型人才,对其数学教学以应用为目的,体现“联系实际、深化概念、注重应用”的思想,不应过多强调灌输其逻辑的严密性,思维的严谨性.学数学主要是为了用来解决工作中出现的具体问题.

而高职教材中的问题都是现实中存在又必须解决的问题,正是数学建模案例的最佳选择.因此,作为数学选材并不难,只要我们深入钻研教材,挖掘教材所蕴涵应用数学的材料,从中加以推广,结合不同专业选编合适的实际问题,创设实际问题的情境,让学生能体会到数学在解决问题时的实际应用价值,激发学生的求知欲,同时在实际问题解决的过程中能很好的掌握知识,培养学生灵活运用和解决问题、分析问题的能力.数学教学中所涉及到的一些重要概念要重视它们的引入,要设计它们的引入,其中以合适的案例来引入概念、演示方法是将数学建模思想融入数学教学的重要形式.这样在传授数学知识的同时,使学生学会数学的思想方法,领会数学的精神实质,知道数学的来龙去脉,使学生了解到他们现在所学的那些看来枯燥无味但又似乎天经地义的概念、定理和公式,并不是无本之木、无源之水,也不是人们头脑中所固有的,而是有现实的来源与背景,有其物理原型和表现的.在教学实践中,我们依据现有成熟的专业教材,选出具有典型数学概念的应用案例,然后按照数学建模过程规律修改和加工之后作为课堂上的引例或者数学知识的实际应用例题.这样使学生既能亲切感受到数学应用的广泛,也能培养学生用数学解决问题的能力.总之,在高职数学教学中渗透数学建模思想,等于教给学生一种好的思想方法,更是给学生一把开启成功大门的钥匙,为学生架起了一座从数学知识到实际问题的桥梁,使学生能灵活地根据实际问题构建合理的数学模型,得心应手地解决问题.但这也对数学教师的要求就更高,教师要尽可能地了解高职专业课的内容,搜集现实问题与热点问题等等.

(二)在课程教学及考核中适度引入数学建模问题

实践表明,真正学会数学的方法是用数学,为此不仅要让学生知道数学有用,还要鼓励他们自己用数学去解决实际问题.同时越来越多的人认识到,数学建模是培养创新能力的一个极好载体,而且能充分考验学生的洞察能力、创造能力、数学语言翻译能力、文字表达能力、综合应用分析能力、联想能力、使用当代科技最新成果的能力;学生们同舟共济的团队精神和协调组织能力,以及诚信意识和自律精神.在教学实践中,在数学课程的考核中增加数学建模问题,并施以“额外加分”的鼓励办法,在平常的作业中除了留一些巩固课堂数学知识的题目外,还要增加需要用数学解决的实际应用题.这些应用题可以独立或自由组合成小组去完成,完成的好则在原有平时成绩的基础上获得“额外加分”.这种作法,鼓励了学生应用数学,提高了逻辑思维能力,培养了认真细致、一丝不苟、精益求精的风格,提高了运用数学知识处理现实世界中各种复杂问题的意识、信念和能力,调动了学生的探索精神和创造力,团结协作精神,从而获得除数学知识本身以外的素质与能力.

(三)、适时开设《数学建模和实验》课

数学建模竞赛之所以在世界范围内广泛发展,是与计算机的发展密不可分的,许多数学模型中有大量的计算问题,没有计算机的情况下这些问题的实时求解是不可能的。随着计算机技术的不断发展,数学的思想和方法与计算机的结合使数学从某种意义上说已经成为了一门技术.为使学生熟悉这门技术,应当增设《数学建模和实验》课,主要以专题讲座的形式向同学们介绍一些成功的数学建模实例以及如何使用数学软件来求解数学问题等等.与数学建模有密切关系的数学模拟,主要是运用数字式计算机的计算机模拟.它根据实际系统或过程的特性,按照一定的数学规律,用计算机程序语言模拟实际运行状况,并根据大量模拟结果对系统和过程进行定量分析.在应用数学建模的方法解决实际问题时,往往需要较大的计算量,这就要用到计算机来处理.计算机模拟以其成本低、时间短、重复性高、灵活性强等特点,被人们称为是建立数学模型的重要手段之一,由此也可以看出数学建模对提高学生计算机的应用能力的作用是不言而喻的.

当今世界经济的竞争是高科技的竞争,是人才综合素质与能力的竞争.数学建模竞赛对培养学生的创造性、竞争意识和适应社会应变能力,具有不可低估的作用.所以说进行数学建模的教学与实践,既适应了知识经济时代对高等学校人才培养的要求,同时也为创新人才的培养开辟了一条新的途径.

参考文献

[1]姜启源.数学模型[M].北京:高等教育出版社,1986.

[2]叶其孝.数学建模教学活动与大学生教育改革[J].数学的实践与认识,1997,(27).

数学建模论文范文第8篇

在过去常规的数学分析教学课程只要以公式推导、定理证明为主要教学内容,却对数学分析的应用思想以及融合贯通少有讲授。这就导致学生们虽熟练掌握这门课程的理论知识,但是学生们将掌握的知识应用于实际问题的解决过程中却存在效果不满意,或无法学以致用。因此学生会形成数学的掌握仅仅是为了考试而学习,无现实意义等错误思想。若在数学分析的教学过程中融合数学建模方式进行教学,利用数学建模思想来熏陶学生,通过通过将数学的意义思想完整的进行介绍,将数学概念与公式的实际源头与应用情况进行宣教,使学生充分了解数学与实际生活之间存在的密切关系。首先,通过利用数学建模思想融入数学分析的教学课程中可有效促进学生数学的行使效果。适当配合数学模型方式糅合数学分析的理论知识与实际方法,可帮助学生迅速理解数学分析的内容概念,全面掌握理论知识与实践能力。其次,利用数学建模思想促进学生的数学学习兴趣,以改善在教学过程中因理论性复杂、定义生涩难懂导致学生学习积极性不高以及枯燥乏味等数学教学问题。因此,在数学分析的教学中融合数学建模教学方式具有巨大的应用价值。

2数学建模思想在概念教学中的渗透

按照大范围来讲,数学分析的内容中包含了函数、导数、积分等数学概念,这类概念均属于实际事物数量表现或空间形式概括而来的数学模型。在数学教学过程我们可以根据概念的具体事物原型或平时生活中易见到的事物进行引用,让学生了解到理论上的概念性知识不仅仅存在与课本中,更与日常生活中具有紧密的关系。对此,老师在教学相关概念知识时,最好联系实际,创造合适的学习环境,为学生在学习过程中通过适当的观察、想象、研究、验证等方式来主导学生的教学活动。例如微积分教学中,刚开始感觉其较为抽象笼统,不过仔细观察其形成过程会发现其实具有较多的基础原型,通过旋转体体积、曲边梯形面积等具体问题紧密联系,应用微元法求解即可得出积分这个较为抽象的概念。通过适当的取材,建立概念模型,引导学生对教学的积极兴趣,可比简单的利用数学符号来描述抽象概念要具体生动得多。

3数学建模思想在定理证明中的渗透

在数学分析课程中存在较多的定理,而怎样在教学过程中让学生熟练掌握带来并应用则成为目前数学分析教学中较为困难的。其实在书本中大部分定理是有着具体的意义,不过在通过笼统的刻印组书本中后导致定理创造者实际想法无法清晰表现在其中,致使学生在接受定理教学中感到茫然。对此,在定理教学过程老师应结合该定理知识的源指出处以及历史渊源,从而促进学生的求知欲取进一步了解该定理的意义与作用。同时应用建模思想将定理作为模型的一类,利用前期设计的特定问题引导学生逐步发现定理定论,通过这种方式让学生在吸收定理知识的过程中体验到研究探索发现的重要性,为学生树立的创新观念。

4数学建模思想在课题中的渗透

数学分析教学中需要讲解大量课题,通过对具有代表性的课题进行讲解以达到促进应用知识解题的能力并巩固。但是在过去传统的课题讲解中,与应用相关的问题教学较少,仅有的少部分也是条件满足解答肯定的情况,这不利于学生创新性思维培养。因此,在课题讲解中尽量选取以具体应用的问题作为例题,设置相应的问题来引导学生发现其中存在的错误,并结合自身知识来解决其错误,通过建立模型的方式来进一步巩固自身知识。

5数学建模思想在考试命题中的渗透

目前数学分析的教学考试中试题的设置普遍以书本课题为主,又或者直接将某些例题设置成选择或填空的答题方式,却缺少开放型的试题或全面考察学生是否掌握数学知识应用解决实际问题的试题。可能目前这种考试设题方式对老师的阅卷提供了便利,但是往往也造成部分学生在课本考试中分数较高,但在解决实际具体问题往往存在不足,对学生思维中形成了为考试而学习,忽略了对数学概念的理解,导致具体问题解决能力不足。对此,可利用数学建模思维去设置一部分开放型试题,利于学生在解题过程中将所学的数学建模方式应用与具体中,以此来观察学生的数学素质以及知识水平并适当修改教学方案。又或者通过命题论文的方式来了解学生综合水平,学生通过将自身所学知识进行适当的总结,探讨自身学习体会,来加强学生对相关知识的进一步理解,深化了数学建模思想的渗透。

6结语

在数学分析教学的各方面融入数学建模思想,可更好的培养学生学习积极性,全面掌握数学分析的相关知识,树立数学应用的创新观念与能力,在教学过程中确保知识的严谨性,注重数学分析的实用性,以保证教学质量的稳步发展。

数学建模论文范文第9篇

目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。

数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。

那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:

某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评判组。本次竞赛制定四条评分规则,内容如下:

(1)评委对本校选手不打分。

(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。

(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。

(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。

本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。

(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)

(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。

本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:

方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)

方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;

方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;

然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为,从而得出错误结论.不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。

通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!

那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。

(一)在教学中传授学生初步的数学建模知识。

中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。

例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,

每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?

[简化假设]

(1)每间客房最高定价为160元;

(2)设随着房价的下降,住房率呈线性增长;

(3)设旅馆每间客房定价相等。

[建立模型]

设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此

由可知

于是问题转化为:当时,y的最大值是多少?

[求解模型]

利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值13668.75(元),

[讨论与验证]

(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差18.75元。

(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。

(二)培养学生的数学应用意识,增强数学建模意识。

首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。

(三)在教学中注意联系相关学科加以运用

在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。

最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。

论文关键词:数学建模数学应用意识数学建模教学

论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。

参考文献:

1.《问题解决的数学模型方法》北京师范大学出版社,1999.8

2.普通高中数学课程标准(实验),人民教育出版社,2003.4

3.《数学建模基础》清华大学出版社,2004.6

上一篇:物理模拟论文范文 下一篇:数学教育论文范文

友情链接