数学分析论文范文

时间:2023-03-14 19:20:36

数学分析论文

数学分析论文范文第1篇

一、端正渗透思想更新教育观念

纵观数学教学的现状,应该看到,应试教育向素质教育转轨的过程中,确实有很多弄潮儿站到了波峰浪尖,但也仍有一些数学课基本上还是在应试教育的惯性下运行,对素质教育只是形式上的“摇旗呐喊”,而行动上却留恋应试教育“按兵不动”,缺乏战略眼光,因而至今仍被困惑在无边的题海之中。

究竟如何走出题海,摆脱那种劳民伤财的大运动量的机械训练呢?我们认为:坚持渗透数学思想和方法,更新教育观念是根本。要充分发掘教材中的知识点和典型例题中所蕴含的数学思想和方法,依靠数学思想指导数学思维,尽量暴露思维的全过程,展示数学方法的运用,大胆探索,会一题明一路,以少胜多,这才是走出题海误区,真正实现教育转轨的新途径。

二、明确数学思想和方法的丰富内涵

所谓数学思想就是对数学知识和方法的本质及规律的理性认识,它是数学思维的结晶和概括,是解决数学问题的灵魂和根本策略。而数学方法则是数学思想的具体表现形式,是实现数学思想的手段和重要工具。数学思想和数学方法之间历来就没有严格的界限,只是在操作和运用过程中根据其特征和倾向性,分为数学思想和数学方法。一般说来,数学思想带有理论特征,如符号化思想,集合对应思想,转化思想等。而数学方法则具有实践倾向,如消元法、换元法、配方法、待定系数法等。因此数学思想具有抽象性,数学方法具有操作性。数学思想和数学方法合在一起,称为数学思想方法。

不同的数学思想和方法并不是彼此孤立,互不联系的,较低层次的数学思想和方法经过抽象、概括便可以上升为较高层次的数学思想和方法,而较高层次的数学思想和方法则对较低层次的数学思想和方法有着指导意义,其往往是通过较低层次的思想方法来实现自身的运用价值。低层次是高层次的基础,高层次是低层次的升级。

三、强化渗透意识

在教学过程中,数学的思想和方法应该占有中心的地位,“占有把数学大纲中所有的、为数很多的概念,所有的题目和章节联结成一个统一的学科的核心地位。”这就是要突出数学思想和方法的渗透,强化渗透意识。这既是数学教学改革的需要,也是新时期素质教育对每一位数学教师提出的新要求。素质教育要求:“不仅要使学生掌握一定的知识技能,而且还要达到领悟数学思想,掌握数学方法,提高数学素养的目的。”而数学思想和方法又常常蕴含于教材之中,这就要求教师在吃透教材的基础上去领悟隐含于教材的字里行间的数学思想和方法。一方面要明确数学思想和方法是数学素养的重要组成部分,另一方面又需要有一个全新而强烈地渗透数学思想方法的意识。

四、制定渗透目标

依据现行教材内容和教学大纲的要求,制订不同层次的渗透目标,是保证数学思想和方法渗透的前提。现行教材中数学思想和方法,寓于知识的发生,发展和运用过程之中,而且不是每一种数学思想和方法都能象消元法、换元法、配方法那样,达到在某一阶段就能掌握运用的程度。有的数学思想方法贯穿初等数学的始终,必须分级分层制定目标。以在方程(组)的教学中渗透化归思想和方法为例,在初一年级时,可让学生知道在一定条件下把未知转化为已知,把新知识转化为已掌握的旧知识来解决的思想和方法;到了初二年级,可根据化归思想的导向功能,鼓励学生按一定的模式去探索运用;初三年级,已基本掌握了化归的思想和方法,并有了一定的运用基础和经验,可鼓励学生大胆开拓,创造运用。实际教学中也确实有一些学生能够把多种数学思想和方法综合运用于解决数学问题之中,这种水平正是我们走出题海所迫切需要的,它既是素质教育的要求,也本文的最终目的。

五、遵循渗透原则

我们所讲的渗透是把教材中的本身数学思想和方法与数学对象有机地联系起来,在新旧知识的学习运用中渗透,而不是有意去添加思想方法的内容,更不是片面强调数学思想和方法的概念,其目的是让学生在潜移默化中去领悟。运用并逐步内化为思维品质。因而渗透中勿必遵循由感性到理性、由抽象到具体、由特殊到一般的渗透原则,使认识过程返朴归真。让学生以探索者的姿态出现,在自觉的状态下,参与知识的形成和规律的揭示过程。那么学生所获取的就不仅仅是知识,更重要的是在思维探索的过程中领悟、运用、内化了数学的思想和方法。

六、探索并掌握渗透的途径

数学的思想和方法是数学中最本质、最惊彩、最具有数学价值的东西,在教材中除一些基本的思想和方法外,其它的数学思想和方法都呈隐蔽式,需要教师在数学教学中,乃至数学课外活动中探索选择适当的途径进行渗透。

1.在知识的形成过程中渗透

对数学而言,知识的形成过程实际上也是数学思想和方法的发生过程。大纲明确提出:“数学教学,不仅需要教给学生数学知识,而且还要揭示获取知识的思维过程。”这一思维过程就是思想方法。传授学生以数学思想,教给学生以数学方法,既是大纲的要求,也是走出题海的需要。因此必须把握教学过程中进行数学思想和方法渗透的契机。如概念的形成过程,结论的推导过程等,都是向学生渗透数学思想和方法,训练思维,培养能力的极好机会。

2.在问题的解决过程中渗透

数学的思想和方法存在于问题的解决过程中,数学问题的步步转化无不遵循着数学思想方法的指导。数学的思想和方法在解决数学问题的过程中占有举足轻重的地位。教学大纲明确指出:“要加强对解题的正确指导,要引导学生从解题的思想和方法上作必要的概括”,这就是新教材的新思想。其实数学问题的解决过程就是用“不变”的数学思想和方法去解决不断“变换”的数学命题,这既是渗透的目的,也是实现走出题海的重要环节。渗透数学思想和方法,不仅可以加快和优化问题解决的过程,而且还可以达到,会一题而明一路,通一类的效果,打破那种一把钥匙开一把锁的呆板模式,摆脱了应试教育下题海战的束缚。通过渗透,尽量让学生达到对数学思想和方法内化的境界,提高独立获取知识的能力和独立解决问题的能力,此时的思维无疑具有创造性的品质。如化归的数学思想是解决问题的一种基本思路,在整个初等方程及其它知识点的教学中,可以反复渗透和运用。

3.在复习小结中渗透

小结和复习是数学教学的重要环节,而应试教育下的数学小结和复习课常常是陷入无边的题海,使得师生在枯燥的题海中进行着过量而机械的习题训练,其结果是精疲力尽,茫然四顾,收获甚少。如何提高小结、复习课的效果呢?我们的做法是:遵循数学大纲的要求。紧扣教材的知识结构,及时渗透相关的数学思想和数学方法。在数学思想的科学指导下,灵活运用数学方法,突破题海战的模式,优化小结、复习课的教学。在章节小结、复习的数学教学中,我们注意从纵横两个方面,总结复习数学思想与方法,使师生都能体验到领悟数学思想,运用数学方法,提高训练效果,减轻师生负担,走出题海误区的轻松愉悦之感。

4.在数学讲座等教学活动中渗透

数学讲座是一种课外教学活动形式。在素质教育的导向下,数学讲座等教学活动日益活跃,究其原因,是数学讲座不仅为广大中学生所喜爱,而且是数学教师普遍选用的数学活动方式。特别是在数学讲座等活动中适当渗透数学思想和方法。给数学教学带来了生机,使过去那死水般的应试题海教学一改容颜,焕发了青春,充满了活力。

数学分析论文范文第2篇

创设良好的情境能让孩子全神贯注到数学学习活动中来,却“忘了”自己在学习,更不会觉得数学枯燥、对数学产生厌恶、惧怕感。比如,为了让孩子进一步认识人民币,以及进行一些简单的有关人民币的计算,我精心设计了孩子购物的游戏活动。我先用课桌拼成货架,然后摆上一些学习和生活用品(更多时候只摆包装盒子),并在商品上标上价格,还有一些小额的人民币。这些基本的东西准备好以后让部分同学扮演营业员,更多的同学

扮演顾客,让他们模仿超市购物,在此过程中他们很自然地对人民币进行了简单的加减计算;同时,教师只扮演一名普通的顾客,参与购物(其实主要观察幼儿的购物情况,并进行适当的指导)。孩子们不但很好地学习了数学知识,而且还培养了学生按需购物,注意节俭等精神品质。

二、在操作游戏中学习数学

幼儿园的教室里一般都有各种各样的积木和其它学习用品,这也为幼儿的操作活动提供了有利的条件。苏联著名教育学家霍姆林斯基曾经说过:“智慧之花开在手指尖上。”可见操作活动对促进幼儿掌握初步数学知识的作用是很明显的。幼儿只有通过自己的操作活动,才能借助于作的物体获得数学感性经验,整理数学表象,主动领会和构建起抽象的初步数概念。在操作性游戏中,我首先为幼儿的操作活动创造合适的环境,提供必要的条件。如在认数的教学活动中,我为每个幼儿提供人手一份的操作材料:冰棒棍、瓶盖,然后让幼儿在足够的场地里充分思考、探索、操作,在点数的同时学习记录,从而感知5以内的数量,同时让幼儿互相交流、讨论。这样,通过对具体的实物操作来发展幼儿初步的数概念,学习了初步的数学知识。这是一种让幼儿通过操作实物材料获得数学知识的一种游戏。为了让幼儿对立体图形产生空间感,初步体会到立体图形和平面图形的区别,我为他们准备了各种各样的立体模型,让他们充分发挥自己的

想象力搭建城堡,让他们在看、摸、拼的过程中对各种立体图形产生深刻的表象,达到寓教于无言之中。

三、在体育游戏中学习数学

我有意识地将数学内容渗透到体育活动中,使幼儿在玩玩乐乐中不知不觉,自然而然地获取数学知识。如在教学小班的幼儿时我设计了这样的游戏:我做老鹰,选10个同学做小鸡,再选一个同学做老母鸡。我先和他们玩了一会儿,然后故意抓住1个,就问他们,有几只小鸡被抓住了?还有几只小鸡?抓住3个,我又问类似的问题。我又让2只小鸡逃回母鸡的翅膀下,再问他们有几只小鸡被抓住了?逃走了几只小鸡?还有几只小鸡?又如,在小班的数学活动“认识1和许多”中,我们设计了“小鸡捉虫”的游戏,教师、幼儿分别扮演“1鸡妈妈”和“多小鸡”。“鸡妈妈”以游戏口吻要求小鸡:“今天天气真好,妈妈带你们到草地上去捉虫,每只小鸡捉1条虫子,然后来交给妈妈。”在这一系列情节中渗透“1”和“许多”的数学概念。这样既让幼儿熟练的掌握了数学初步知识,同时又促进了幼儿观察力、想象力和思维能力的发展。

四、在玩橡皮泥游戏中学习数学

总是为幼儿提供现成的学习游戏工具,久而久之必然对游戏活动失去兴趣。于是我把数学知识融入到了玩橡皮泥活动中。一节“筑城墙”的活动使幼儿们乐此不疲。我们放弃了平时所用的工具,直接用一双双小手拍、压、夹、垒起一座座各种形状的“城墙”:有长方形的、圆形的、椭圆形的、正方形的、三角形的等等。在这一过程中,不但巩固了幼儿对长短、大小、几何形体等数学知识的认识,而且提高了幼儿玩橡皮泥的兴趣。

总之,把数学教育溶入游戏活动中,不但能让幼儿在轻松自然的氛围中喜欢数学,而且能使幼儿在自主探索和有趣、新奇的游戏体验中获得数、形的经验和知识。

【摘要】把数学教育溶入游戏活动中,不但能让幼儿在轻松自然的氛围中喜欢数学,而且能使幼儿在自主探索和有趣、新奇的游戏体验中获得数、形的经验和知识。本文结合从教经验,总结出了通过情境游戏、操作游戏、体育游戏以及玩橡皮泥游戏引导幼儿学习数学的方法。

数学分析论文范文第3篇

心理学研究表明,恰当的问题情境能唤起学生的学习热情,而在我们的生活中每时每刻都存在着数学问题。因此,我们应该充分利用生活素材来教学,利用环境来教学,把生活中的生动事例和数学课堂教学与活动课程紧密地融合在一起,合理地组织教学,使学生自觉地进入问题情境,自觉地思考问题,主动地分析和解决问题。

例如有一位教师在教学直角坐标系时这样引入新课,老师直接问生学生谁能介绍一下自己家的具置,学生纷纷举手回答,都认为这题很容易。有一生说我家在营字村,老师又问营字村在哪?你家在营字村的具体方位说的清楚一点。学生不知所云。老师说这就是我们这节课所要解决的问题。一下子就把学生的注意力都吸引住了。学生急切的想要知道这是怎么回事,一个初中生怎么会连自己的家的地理位置都说不清了呢。老师顺利进入研究新知结段,新知内容结束后,老师又回到课前的问题,问学生这回你知道怎样来介绍你家的具置了吗?这样,通过再现生活场景,使学生真正理解了直角坐标系的生活意义。

二、生活数学提高应用能力

同志说过:人类认识事物的第二次飞跃比第一次飞跃更为重要,学习知识的目的在于应用。让学生在现实问题中看到数学问题,得到数学知识后再应用于新的现实,从而使数学成为一种“本领”这是我们进行数学教学要实现的一个重要目标。因此教师在平时的教学中,要重视根据学生已有的经验和知识设计活动内容和学习素材,注重培养学生的实践应用能力。

又如学生在学习“统计”一课后,就能试着举例说出生活中哪些地方要用到统计知识,如统计跳绳比赛成绩、订做校服统计、身高统计等。在这一基础上,我试着让学生为班级开展智力竞赛购买奖品制订采购方案,奖品要符合价钱均等、迎合大多数同学的需要等条件。同学们通过了解情况,收集数据,再加以整理和统计等一系列活动,获得了一个可行方案。由此可以看出学生经过一段时间的学习后,我告诉学生在生产、生活实际中很多地方都用到统计知识,且给学生布置了这样的实践作业,到马路上去统计一下你家所在地一小时内的车流量。告诉学生一定要注意安全。学生回来告诉我的不仅仅是车流量的事,还有汽车尾气等环保问题习后,已经开始把数学与现实生活联系在一起了,并能学以致用。这对学生今后的生活具有指导意义。

三、生活数学培养综合素质

理想的数学教学,应该是从学生的生活经验和已有的知识背景出发,创设生活情境,给他们提供充分的从事数学活动和交流的机会,不仅要帮助他们在自主探索的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验,而且要使学生的非智力因素获得极大提高,培养他们的实践能力、创造能力、解决问题的能力,团结协作的能力……使他们的综合素质获得提高。

如我们学校在去年给操场铺砖地时,我给学生设计了这样一题,让学生到实地测量一下,我们的学校要买多少砖。(场地中有小路、花坛等)。学生经过实践发现,首先要对场地进行测量,包括小路、花坛的相关数据,再对测得的数据进行估算大约需要多少砖,最后要动脑筋思考,如何把砖进行分割,来铺设不规则的地方,并且要做到不浪费。

在经历了发现、讨论、实践、交流的活动过程后,一方面使学生亲身体会到,在生活中有些问题的解决方法和结果往往具有多样性,但其中必有一种是较符合生活常理的,我们在解决问题、安排和筹划工作、生产和生活时,应该从不同的角度去分析、比较,寻求最佳的解决方案,由此才能获得最理想的效果。这样,在培养学生思维灵活性的同时,亦使他们的生活经验获得丰富和提高。另一方面,有利于提高学生的人际交往能力,有利于培养学生互相帮助、团结协作的意识和一定的审美情趣,这不仅是新时代人才素质的要求之一,更为学生学会生存、学会发展打下了坚实的基础。

论文关键词:生活数学联系

数学分析论文范文第4篇

日本广告学家川滕久先生说:“抓住大众的眼睛和耳朵,是广告的第一步。如果做不到这一点,广告就完全失去了意义。”的确,人们对新产品通常比较陌生,这时广告的作用便能引起公众对其的注意和认识。同时,人们能够理解广告所传达的信息,才会对其中的某些有益的信息感兴趣,并被说服接受广告中所言传的事物,最终采取行动。而简洁、一目了然的数字在赢得读者注意力方面就可产生意想不到的效果。

1.2001年可口可乐公司世界性广告宣传的主题是"Coca-colaEnjoy",北美地区有一则广告中的广告词是"FirstExperience",配的画面是一个男孩回味着可口可乐的口感就如他第一次kiss女孩的经历。广告词中没有华丽的辞藻,一个简单的firstexperience,暗示“第一次”的感受是使人终身难忘的。这样使读者把日常生活中的美好感受与Coca-cola联系在一起,就能唤起读者的兴趣,激发购买的欲望。

2.Atelevisionworthyofitsname,"THEONE".(Panasonic电视机广告)

"THEONE"是松下“画王”电视。用数字"ONE"来命名,精练生动,毫不夸张,但寓意深刻。以"THEONE"命名,造成了强烈的视觉冲击,赫然醒目。

二、增强说服力和真实性

在当今的信息社会,读者每天面对无数具有独创性和新奇性的广告,每个广告都想吸引读者,都想竭力说服读者。俗话说:“事实胜于雄辩”,数字作为理性语言,可以对事物进行精确的数量描述,因此,数字在广告中可起到真实可信、具体实证的效果。

1.FeeltheDietCenterDifference

SuzanneMorganthoughtthebodyshewantedwasoutofreach.ThenshecalledDietCenterandtookoff18poundsand24inchesinjust8weeks,Andshe''''skeptitalloffforoverayear!

DIETCENTER

这是一则节食减肥中心的广告。广告中列举了SuzanneMorgan这个人的减肥经历,用几个强有力的数字:takeoff18pounds(减掉18磅),24inches(24英寸),injust8weeks(在8个星期内)。用这样几个减肥者非常关注的数据,非常直观地揭示了此广告中所推销的商品给读者带来的直接利益。实证性数字显然具有无可辩驳的力量,增强了说明力,可促成消费行为的产生。

2.The60-secondbreakfastfromDole.

这是一则宣传早餐食品的广告。标题60-second(60秒)这个数字是广告立意的基点,从而使产品“方便快捷”的特点得以数量化、具体化。

三、强烈的对比促进读者对所宣传产品产生良好印象

对比就是将所宣传的产品与人们熟知的事物放在一起比较其异同、优劣,读者可通过权衡比较,选择心动的产品。

1.Instant"Genisoy"MilkPowderforinfants:Mother''''sMilkfirst,Genisoysecond.

这则速食婴儿奶粉广告真够绝妙的。广告词中的强烈对比:first,second中,被宣传的产品却放在第二位,仔细一看才知,除母乳外被宣传的产品还是第一位的。广告虽没有花哨的形式,但通过两个数字的直观对比,设身处地地替消费者着想,有效地消除了人们对所推销产品的戒备、防范心理,使读者能平和地阅读广告,同时又巧妙地突出了自己产品的优点,不露痕迹,让人不知不觉地接受所传递的商品信息。

mitOneCrimewithaGunHereAndYou''''reShot5YearsofYourLife.

数学分析论文范文第5篇

一、初中学生数学学习状况分析

(一)学生数学学习的心理分析

1.学生的数学学习无目的、无计划、无标准要求。对学了什么,应掌握什么,有什么作用是茫然的,有的学生竟说“成绩好有什么用,给我多少奖金”,学习具有盲目性。

2.学生对数学学习不主动、自觉性差,对学习内容的理解和学习任务的完成是被动消极的,学习本是自己的事,却常推委、拖拉或希望同学帮忙,所以同学间常出现抄作业现象,学习具有依赖性。

3.学生有上进的心理,但缺乏勤奋刻苦的学习精神,学习兴趣不浓也不愿培养,不作意志努力,学习中思想常常走神或学习时间内干其他事情,具有学习意志不坚定性。

4.学生学习有了一知半解就感到满足,但遇到困难又垂头伤气,遇难而退或绕道而行,得过且过,致使部分学生学习成绩难以提高,甚至下滑,学习缺乏思想性。

5.学生学习不注重方法,不讲求逻辑联系,分析问题思路杂乱,表达东拼西凑,思维不严谨。明知这方面过不了关,但也不思改进,学习具有随意性。

(二)学生课堂学习的状况分析

1.好动,爱讲话,课堂注意力难持久,自控能力差。

2.数学思维简单;形象思维难建立,抽象思维无基础,针对问题常常冲口而出,答非所问。

3.学习的交流、讨论往往人云亦云,难树己见,思维的闪光点往往在不坚持中一错而过。思维也就在一次次放弃中养成惰性。

4.观察分析无耐性,不细心,往往被问题的表面现象或假象所迷惑,难以拨云见日,难以感受尝试成功的刺激。

5.会的嫌简单,稍难又嫌烦,总不想动手。对于较繁的式子,较困难的图形就不于理睬,放置一旁,再遇类似问题,似曾相识,动手就困难。

(三)学生数学学习的思维特征分析

1.孤立少联系.学生学习中常常割裂所学知识,分化所学内容,孤立地认识理解问题,如;多项式计算脱离有理数的计算基础,导致运算错误常在符号上。根式化简不以分式化简为前提,在方法上不能有效迁移。同时对问题的认识和知识的理解往往绝限于某一范围或某个方面,难以拓宽范围,扩大认识面。如;把—a和—2等同看待,把式子√a+1看成永远有意义……

2.静止少变化.学生学习数学在思维上难以形成多变的观点,常以静止的方式去认识问题,如初一学生看到—a就认为是负数,初二学生能对式子而完成不了的因式分解,初三学生对含绝对值符号式子的化简普遍感到困难,对几何图形的换位研究、变形研究更是一筹莫展。他们在长期的1就是1,2就是2的静止认识中,在空间环境不变的错误意识里,思维形成定势,对事物的变化认识自然潜在抵触心理,对问题分析处理的变形转化难免有对抗情绪,怎样使学生的认识越过这一道坎,形成新的认识,产生新的观点,还得有赖于数学教学改革的探索分析。

3.问题理解停留于具体难以抽象.初中学生在以前的生活与学习中,认识理解几乎停留于形象具体,少有抽象的思维训练,所以学生在初中数学学习中对实际问题怎样联系数学研究方法,怎样构建数学模型较为困难,特别是与实际联系不大的纯数学研究就更困难。如;方程和不等式同解意义的理解,函数与不等式中变量取值变化时,对变式中待定系数取值范围的研究,圆一章有关数形结合的研究等都是教学的难点。

4.思维简单,盲目崇拜.学生对问题的认识一般停留于认可,重结论而忽视过程,更不重视知识产生的背景条件。书上写的、老师讲的就是真理,有时明明发现偶像的错误,还总怀疑自己的思路有问题.导致数学学习难树己见。我们倡导”要敢于否定自己的偶像,否定教材,不盲目崇拜,要学会学习,学有见地,勇于超越”。

5.不善于联想比较找规律,多向思维寻根据.学生数学学习过程中有联想比较,但他们通过简单的联想,草率的比较,就可能妄加猜测得到结论,而不通过联想比较,周密地分析推敲,寻找规律获取正确的认识。如;一次初一数学公开课<<有理数乘法>>的教学中;(—3)+(—3)+(-3)+(-3)=-12,由乘法的意义有(-3)×4=-12,从而引申出算一算;(-3)×3=____,(-3)×2=___,(-3)×1=____,(-3)×0=___,然后又猜一猜;(-3)×(-1)=___,(-3)×(-2)=___,(-3)×(-3)=___,(-3)×(-4)=___.很多学生都能够猜出后一组运算式子的结果,其猜测的方法是多样的,但是没有一个学生能够观察比较分析出“一个因数不变,另一个因数逐次减少1时,其积逐次增加3”这一规律。

初中学生的数学思维简单,稍难的问题往往无章可循,盲目拼凑,不能通过由果索因、由因索果或数形结合的方式进行有章有法地思考分析。数学的推理表达也东拼一句,西凑一句,不推敲条件对何而用,结论由何而来。如在三角形全等判定的第一个公理“边角边”公理的学习中,无论怎样启发、引导、训练,甚至强调:“边角边”的叙述顺序是体现以公理1为根据,书写表达的规范作用是体现对应”,但课后作业全班五十多人中,有20人表达的全等顺序是“边边角”或“角边边”或“对应元素不写在对应的位置”,经了解大多数学生反映“够条件就行”,他们不重视公理的根据作用和表述规范的对应意义,主要是疏于因果关系和思维不严谨。还有学生无论解答代数问题还是几何问题都把条件一一列出来,然后就得出一个个结论,到底哪一个条件能推出哪一个结论,他自己都不清楚。

针对初中学生数学学习的状况分析,怎样对学生数学学习进行有效指导,怎样引导学生养成良好的学习习惯,在数学教学改革中还得进一步探索。

根据教学中师生互动的理论思考,我们从三个方面来分析:

二、初中学生数学学习障碍的原因。

(一)从教师谈起

1.目前数学教学的最明显的特点是:教师是知识的拥有者,把学生当成知识的容器。不管学生有多差异,每天教师所灌输的知识学生必须全部掌握,所灌知识量的大小及灌输方式都必须接受。天长日久,学生接受不了的知识就成为他们学习数学的障碍,即产生认知障碍。

2.在数学教学中,有些教师缺乏对学生情感的投入。讲课传授知识和考试是传统教学的两个核心要素。教师对学生缺少信任,缺少爱的表示。我们走进课堂,总会看到学生由于回答不出教师所提出的问题而受到严厉批评的场面。很少有教师对回答不出问题的学生说"你试试看,你一定会答上来的",或"错也没关系"等鼓励的语句。慢慢地使学生由不喜欢数学教师发展到对数学学科淡漠,出现情绪障碍。

(二)从学生谈起

1.身心方面存在某种缺陷。由于缺乏信心,学习不肯努力;或由于多次在数学学习上的失败而厌恶数学学习。这些都使学生在数学学习中产生障碍。

2.态度及习惯方面的问题。有不少学生由于怕苦怕累、懒惰、不肯动脑动手,因此产生数学学习障碍。尽管从小学到初中,已学习了六、七年数学,但仍不知用什么方法才能学好数学,没有养成良好的学习习惯。

3.数学学习能力不足。相比小学数学而言,初中数学教材结构的逻辑性、系统性更强。首先表现在教材知识的衔接上,前面所学的知识往往是后边学习的基础;其次还表现在掌握数学知识的技能技巧上,新的技能技巧形成都必须借助于已有的技能技巧。因此,如果学生对前面所学的内容达不到规定的要求,不能及时掌握知识,形成技能,就造成了连续学习过程中的薄弱环节,跟不上集体学习的进程,导致学习分化。由于对基本概念和基本运算技能掌握得不好,而产生数学学习障碍。

4.社会和家庭方面的问题。由于家庭教育不当或不良社会环境的影响,学生也会产生数学学习障碍。

(三)从教学中的师生沟通谈起

1.教材是师生沟通的中介,由于教材过深过浅,或教学进度过快过慢,都会影响数学教学,使学生产生数学学习障碍。

2.师生缺少沟通,产生不了互动的正面效益。一方面,教师不了解学生的实际情况,根据主观想象制定学习目标,以致目标太高,学生无法达到。另一方面,学生不了解教师所要达到的目标,因此双方产生不了碰撞,引不起互动,在情感上更缺乏沟通。大多数数学教师对数学有兴趣,从小学一年级直到大专或大学毕业,连续学习数学达14年以上。他们很难体会在数学学习中有障碍的感受。尤其是初中数学教师,经过一两个小循环,就可把初中数学内容概括起来。由此得到初中数学课并不难的结论。而学生们,从小学一年级直到初中,越学越感觉到数学学科的难度。在这种情况下,师生之间在情感上是很难沟通的。由于师生双方缺少沟通,因此学生在数学学习中产生障碍。

三、初中数学教学的改革探索

让学生在数学学习中兴奋,活跃起来,让学习的主体作用和教学的主导作用得以体现,使数学教学既能孕育学生的良好心理,培养学生自觉认真的学习习惯,又能在学习上勤于思考,善于探索,注重方法。针对学生学习状况分析,本人正进行“参与性数学学习”和“课堂探索学习”的数学教学探索。

(一)参与性数学学习;是学生利用课余时间进行与数学内容有关的学习活动,目前已有两种活动组织形式;“数学辅导学习”和“数学兴趣学习”。

1.数学辅导学习,将班上数学成绩较好的学生组织起来,编成几个学习辅导小组(每组三人),每个辅导小组的同学负责班级一个大组同学的数学学习辅导,(1)当辅导员对本组同学的数学问题不能及时解答时,三人小组共同商议,且将商议的过程分析(若得不出答案或意见有分歧,再与老师共同研究)报经老师审阅后,利用自习课辅导小组的学生在班级面对全班同学讲评。(2)是老师定期拟出与阶段性数学教学内容相关的数学问题(即班级学生学习中普遍存在的问题),分配给各辅导小组,让各小组同学共同研究,并将获得的正确认识通过老师确定后,小组同学利用自习课在班上开讲(每周一次),如此既培养锻炼了优生,又及时解答了差生的疑问。优生通过探索研究、协调配合、表达尝试的训练,数学学习的兴趣更浓,更具自信。差生通过优生的行动帮助,行为激励,也跃跃欲试.久而久之,学生学习就克服了前面数学学习心理分析中的学习无目的、情绪不稳定、学习意志不坚定、学习具有依赖性以及学生课堂学习状况分析中不善于思考,交流讨论无主见等缺点。

2.数学兴趣学习,全班同学三五人一组或六七人一组自由组合,利用课余或双休日进行与数学学习相关的社会活动,如;调查统计(生产与销售、经销与利润、产品分配、商品流量、计划生育等),丈量计算、设计制作、货运装载的设计计算、绿化与环保等。他们利用本组同学的条件优势,选择一项进行分工合作。作调查统计的有调查统计表、调查分析结果、调查分析报告。作丈量计算的有丈量对象和方法、计算数据与结果、过程分析报告。设计制作的有设计对象与方案、制作过程与作品展示、设计制作的分析报告。类似活动可以增强学生的配合意识,培养学生的协作精神,克服学生数学学习状况分析中的学习盲目性,观察分析无耐心不细心,不善于动脑动手,遇难而退等缺点。

(二)课堂探索学习,课堂探索学习本人也从两个方面加以实施:“课堂教学引导探索”和“章节知识分析归纳探索”。

1.课堂教学引导探索,根据数学课时内容特点:引例——概念——例题——练习,而进行数学课堂教学探索的三步曲:(1)引导探索,尝试领悟.(2)引申探索,联想转化.(3)发散探索,创新思维。

(1)引导探索,尝试领悟.引导学生通过教材引例,探索引出的规律,归纳规律,形成概念.,又通过对概念作用的理解,尝试解答例题,成功的尝试,又有新的领悟,随即进行相关练习。

(2)引申探索,联想转化.引申概念范围的相似或相近问题,利用已有知识联想比较,通过已有方法转化分析,探索问题的求解思路。引申探索中充分暴露教材思想,转化分析中充分展示概念作用,在潜移默化中培养学生的学习方法和提高学生的学习能力。

(3)发散探索,创新思维.通过已研究问题的条件发散或结论发散或相似问题的递进研究,启发引导学生去探索、发现,在知识联系上探索,在方法转化上探索。在探索中领悟,在探索中发现,在探索中创建新的思想,在探索中扩展认识概念的内涵与外延。

通过课堂的引导探索训练,克服学生数学学习状况分析中的思维缺陷;孤立少联系,静止少变化,,思维简单难抽象,不习惯探索规律等。

2.章节内容的分析归纳探索.本内容从学生写小结开始,通过引导学生怎样进行知识小结,让学生充分意识小结的目的与作用,明白小结里应包括那些内容。在一次次的培养训练中,学生基本上有了小结的模式与框架。然后进行章节知识的归纳总结的探索训练,让他们探索出具有自己风格和特点的知识总结。他们在写总结时要复习教材看知识联系,翻阅笔记进行方法选择,查阅数学资料对问题归类归纳,然后加工整理:由所学知识到所用方法到所解决的问题,按内容顺序、知识层次、问题难易、方法递进进行全面总结。每份总结既体现了章节知识的承启作用,网络联系和对问题的类比分析、方法优选,同时也体现了学生对材料的组织、加工、整理和表达等方面的能力。这也就克服了学生学习状况分析中注意力难持久,自控力差,不讲求逻辑,思维不严谨等缺点。

作为全面推进素质教育的数学课程应该以培养学生创新精神和数学实践能力为主线,这就更要重视学生的心理发展规律,关注学生的经验和兴趣,并立足于“学生的全面发展”。即数学教育应该培养人的更内在、更深刻的东西——数学素质,数学素质已成为公民文化素养的重要组成部分。分析研究学生学习,探索研究教学方法,是为了以教材为载体,改变学生的摄入式学习为探索研究性学习,让学生在教材载体的作用下,在有效的教学方法引导下,学习养成良好习惯:有数学思想、有探索精神、注重学习方法、重视解决实际问题、善于培养兴趣、能挖掘学习潜力和发挥个性特长,随时充满自信。基于此,数学课程应该更突出数学的文化价值,并且着眼于人的“终身学习”和“可持续发展”。

参考文献:

1.新世纪基础教育课程改革实践与探索•数学(7-9年级).北京:北京师范大学出版社,2003

数学分析论文范文第6篇

预习就使学生在老师讲课之前独立地自学新课的内容,做到初步理解并为上课做好知识准备和心理准备。学会预习是尽快适应高中学习的关键一步,是高一新生对新知识的理解和运用,提高学习效率。

﹙一﹚明确意义是学会预习的前提

学会预习是现代高一新生的基本素质,预习意义在于:

1、培养良好的学习习惯。学会自觉学习,掌握自学的方法,为以后的学习打下基础。

2、预习有助于了解新课的知识点、难点,为上课扫除部分只是障碍。

3、有助于提高听课效果。预习时不懂的或模糊的问题,上课老师讲解这部分知识的时候,容易将问题搞懂,真正达到预习的目的。

﹙二﹚“读、划、写、查”是预习的基本方法

1、“读”——先将教材精读一遍,以领会教材大意。然后根据学科特点,在反复细读,如:数学概念、规律、例题等逐条阅读。

2、“划”——即划大意、划重点。将一节内容的重点、规律、概念等划下来分别标上记号,以帮助上课听讲时记忆。

3、“写”——即将自己的看法或体会写在书边。

4、“查”——即自我检查预习的效果。合上书本思考刚才看的内容,哪些一看懂,哪些模糊不懂和做课后习题,检查预习的效果。

二、记好笔记是学好数学的环节

学好高一数学在学习方法上要有所转变和改进,而做好数学笔记无疑是非常有效的环节。善于做笔记,是一个学生善于学习的反映,为此数学笔记应该记一些:

1、记疑难问题。将课堂上未听懂的问题及时记下来,便于课后请同学或老师把问题弄懂,不会导致知识断层。

2、记思路方法。对老师在课堂上介绍的解题思路方法和分析思想及时记下来。课后加以消化,如有疑问课后及时问老师或同学。

3、记归纳总结。记下老师的课堂小结,这对于浓缩一堂课知识点的来龙去脉,使学生容易掌握本堂课各知识点的联系便于记忆。

4、记错误反思。学习过程中不可避免的犯这样或那样的错误,“聪明人不犯或少犯同样的错误”,记下自己所犯的错误,并用红笔加以标注,以警示自己避免再犯类似的错误,在反思中提高。

三、做好作业是学好数学的反馈

做好数学作业是学生对书本知识的运用和巩固。在课堂、课外练习中培养良好的作业习惯也很有必要.在作业中不但做得整齐、清洁,培养一种美感,还要有条理,这是培养逻辑能力的一条有效途径,必须独立完成。同时可以培养一种独立思考和解题正确的责任感。在作业时要提倡效率,应该十分钟完成的作业,不拖到半小时完成,拖泥带水的作业习惯使思维松散、精力不集中,这对培养数学能力是有害而无益的。抓数学学习习惯必须从高一年级主动抓起,无论从年龄增长的心理特征上讲,还是从学习的不同阶段的要求上讲都应该进行学习习惯的培养。

四、给高一新生的建议

高一教材知识量明显增大,理论性明显增强,高中学习对理解要求很高,不动一番脑子,就难以掌握知识间的内在联系与区别;综合性明显加强,往往解决一个问题,还得应用其它学科的知识;系统性明显增强,高一教材的知识结构化升级;能力要求明显提高。

进了高中以后,要在学习上制定一个目标,使自己目标明确鼓舞斗志,有目标才有动力;学习上要循序渐进,做什么做多少、先做啥、后做啥、用什么办法采取什么措施都要认真想好。学习上一定要注意:

1、先预习后上课,先复习后作业;上课专心听讲课后认真复习;定期整理听课笔记,不断提高自己的自学能力。要科学安排好时间,选择最佳学习时间和方法,合理分配时间注意劳逸结合,交替用脑,做到科学性、计划性、合理性和严格性。

2、要养成专心致志的学习习惯,学习时集中了注意力,就能使神经细胞“全力以赴”,使学习的内容留下明显的痕迹,就能加深记忆。还要养成自我整理知识的习惯,对所学知识进行综合、提炼的过程,可以加深对知识的理解,巩固所学知识

3、要在预习、听课、记笔记、作业、复习,课外学习中通过各种途径提高自己的思维力、观察力、阅读力、记忆力、想象力和创造力等。特别是对每学一个知识后对自己的认知进行再认知,多问几个“为什么”,从而对所学知识了解更加深透。

生活中无处不存在数学,学好高一数学对以后的学习起着重要作用。高一数学是学习的一个艰苦的磨炼,经过了预习、听课、记笔记、作业、复习的过程,就会打开高一数学的学习思维。只有同学们养成良好的学习习惯,勤奋的学习态度,科学的学习方法,充分发挥自身的主体作用,不仅学会,而且会学,才能达到事半功倍之效,进一步学好高一数学。

参考文献:

[1]范永顺主编.《中学数学教学引论》.石油大学出版社,2000,324~328

[2]互联网.《高一新生如何做数学笔记》.中小学教育网,2006.8.21

[3]互联网.《怎样适应高中的学习》.中国高中生网,2006.6.24

[4]田万海主编:《数学教育学》,浙江教育出版社,1993.

摘要:在新课标的指引下,新的高中一年级学生刚刚从初中迈入高一能否适应高中数学的学习,是摆在高一新生面前一个亟待解决的问题。高一阶段是学习高中数学的转折点。除了学习环境,教学内容和教学方法等外部因素外,同学们应该转变观念,提高认识和改进学法,变被动学习为主动学习,培养学生的学习数学的兴趣及调动其积极性,笔者就此问题谈一些肤浅的看法及见解,以帮助同学们顺利度过转折期,学好高一数学。

数学分析论文范文第7篇

【关键词】数学分析;课程教学;工科院校;实践

《数学分析》是数学类本科专业的主干基础课程,教学时间至少持续三个学期,故其在数学类专业课程的教学中具有举足轻重的地位。 《数学分析》课程思想内容非常丰富,不仅为后继课程的学习提供必要的基础知识,而且它体现的分析思想、推理论证方法和处理问题的技巧可延伸到现代分析学当中,在后续的数学学习和研究中起着奠基作用,同时该课程也是数学类研究生入学的必考课程之一。作为地方工科院校的数学类本科主干基础课程,结合工科院校专业特色,加强对《数学分析》课程的教学改革和实践,具有重要的实际意义。

1 我校数学分析教学的现状

1.1 教材的使用情况

目前我校数学类专业使用的《数学分析》(第四版)[1]教材是华东师范大学数学系主编的“面向21世纪课程教材”,该套教材是“十一五”国家级规划教材,在国内影响很大,第一版在1987年获全国优秀教材奖,第二版荣获全国第一届高等学校优秀教材优秀奖。经过十几年的教学经历,该教材已经形成相对成熟和完整的体系,但是我校属于地方工科院校,扩招后生源质量与重点院校存在一定差距,数学分析的教学内容向重点院校看齐,凸显出很多问题(其实也是地方院校数学类专业存在的普遍问题[2,3]):所选教材内容多是纯理论叙述,强调定义、定理,注重逻辑思维、推理论证,而忽略概念和模型的实际意义和计算,实际应用性不强;只注重局部细节和经典范例,过于精雕细刻,而忽视数学思想方法训练和推陈出新,不能激发学生的兴趣;与校本专业特色没有结合,课程教学墨守成规;加之基础薄弱,使得学生感到数学分析高深莫测,很难尽快适应数学分析的教学。另外,缺乏结合我校学生实际水平的数学分析习题资料,导致选用配套的习题解答参考书的效果也不理想。

1.2 课时与教学进程的问题

我校从大一开始对数学类专业连续开设三个学期的数学分析课程,每学期80课时,总共240学时,其中第一学期讲授教材的第1-7章,第二学期讲授第8-16章,第三学期讲授17-22章。作为地方本科院校,要求培养出具有宽口径、厚基础、重应用的专业人才,从而削减了基础课的课时数,增加了选修课的门数。与其他院校相比,数学分析课时相对少,无专门的习题课课时安排,而教学内容和教学要求并未因此而减少和降低。

1.3 教学模式问题

《数学分析》是我校的精品建设课程,我们基本改变了那种单一的注入式教学,教学过程中初步实施了有效教学的模式、融入了数学实验和数学建模的思想以及开展研究性教学的探索与实践,课堂上采用传统粉笔板书和多媒体教学相结合。但由于课时紧张,讲得过快,只注重逻辑思维能力和分析能力的培养,轻视解决问题的思想方法和计算能力的培养,即使融入了数学实验和建模的问题,也是匆匆带过;实施有效教学的手段也不多,需要教师引导好学生开展自我探索、小组讨论,近一步提升数学分析的学习成效等。

1.4 与高中数学教材的接轨问题

我校数学类专业的学生来自不同的省份,各自的高中数学课程的教材有差异,所选修的内容也不一致,有些内容与现行的数学分析教材衔接不上(如三角函数的积化和差、极坐标变换和复数的三角形式等),而有些内容又重复地讲解(如极限的计算、一阶求导和定积分等)。这样需要教师对现行教材的第1-9章的部分内容进行整合,根据学生的实际情况补充一些内容,略讲部分内容。

1.5 考核评价方式

目前,数学分析课程是采用“平时成绩的30%+期末考试成绩的70%=期评成绩”的传统评价方式。考试的内容主要是各章节的基本理论和基本知识点,综合类型的不多,在实际操作中,平时考察作用不明显,往往还是一卷定是否挂科。这种成绩评价方式并不能客观公正地对学生做出合理的评价。

1.6 学生的思想问题

地方工科院校的数学类学生大多是通过专业调剂而录取的,学生专业认同不高,自感“先天不足”,就业前景不佳。加之地方工科院校的学生自学能力不强,对数学分析缺乏全面认识,数学应用能力和意识不强。同时数学分析课程与中学数学相比更注重逻辑思维、推理论证,教材的习题有一定的难度等,导致部分学生的学习处于被动状态,对该课程的学习兴趣不高,甚至惧怕数学分析课程。

2 数学分析课程教学改革与实践

2.1 优化有效教学模式,提高课堂教学质量

针对我校数学分析教学中所存在的问题,教研室组织课程老师深入学习相关的“有效教学”理论和教学设计理论,并采取“课堂全息实录”的方式对若干节课进行全程实录,然后应用“有效教学”理论、教学设计技术和课堂诊断分析技术进行分析,明晰数学分析有效教学的独特征象,优化相应的有效教学模式,并结合实际提出几个基本要求:①以生为本,即在教学中要求教师尽量少讲一点,学生尽量多自我学习一点。②把握核心,精讲多练。③数形结合,类比猜想。④画知识树,理清结构。⑤突出思维,加强数学实验和建模。同时,在教学中也要求主讲教师根据不同的教学内容采用相适应的有效教学手段,并积极引导学生在“学、问、做、结”中自主学习,在“改、答疑、命题、制作”中参与教师的“教”,充分发挥学生的积极主动性,激发学生的学习兴趣,培养学生独立分析问题和解决问题的能力,促进学生的有效学习。

2.2 优化、调整教学内容,推行研究性学习方式

根据《数学分析》(第四版)教材与现行高中数学教学内容的实际情况,我们对教材的内容和教学章节结构进行探索性的调整。(1)根据课时减少的情况,对教材中的一些内容在实际教学中少讲或略讲,而对主要的概念、定理、法则、公式的本质理解和数学知识的实际应用进行重点讲解。学生掌握的程度上分为“基本要求,较高要求和高要求”层次。如实数的完备性理论内容略讲,只对基础好的同学提出要求。(2)从方法论的角度来调整教学内容,将一些方法相同、相似或前后关联度较大的内容串在一起讲解。如尝试将一元和多元部分的函数与极限、导数与微分,中值定理与导数的应用、函数泰勒公式的余项类型、定积分与重积分等串在一起讲授。从而有助于学生对知识的深入理解,方法的统筹把握,即节省了课时,又能提高课堂的效率。(3)在数学分析的学习过程中,积极推行研究性学习方式,尤其对那些基础较好,学有余力的学生。一是根据教材内容,把一些数学知识形成过程的典型材料设计为研究性学习课题;二是结合日常生活情景提出数学问题,提炼成研究性学习的材料;三是根据大学生数学建模的模拟题及竞赛试题简化出研究性项目。每个学期的期中布置研究性题目,学生组队进行资料的查阅、问题的解答和期末小组答辩,所得评价结果记入平时成绩。由此激发学生对数学分析学习的积极性,提高学生的数学知识实际应用能力。

2.3 创建数学实践教学平台,提升学生数学应用能力

我们开发了《数学分析中的数学实验》课件,分三个学期讲授,每学期讲授4课时,其它内容以学生自我学习为主。实践(下转第51页)(上接第39页)表明,增加的数学实验教学有助于学生更好的理解数学分析中的几何图形、数学模型的求解和数值计算等内容。为了全方位地锻炼学生的数学创新实践能力和社会性能力,增强大学生的职业适应性与竞争力,我们依托数学分析精品课程网,结合《数学分析》等课程教学构建了大学数学实践教学平台。通过实践教学平台,将课程教学大纲、教学计划、课程简介、优选试题、研究性题目、小论文写作、大学生数学竞赛和数学建模竞赛的相关试题和备赛资料等挂在网站上,供学生查阅,自我学习,自主提升数学应用能力。同时,数学实践教学平台也有利于本专业的学生摆脱繁重的、乏味的数学演算和数值计算,并促进数学同其他学科之间的结合,使学生有时间去做更多的创新性工作。目前,近几届学生在学科竞赛中,获全国大学生数学竞赛(数学类)决赛二等奖1项,湖南省大学生数学竞赛(数学类)一等奖1项、二等奖3项,全国大学生数学建模竞赛湖南赛区本科组一等奖1项、三等奖1项,主持大学生创新科研项目4项并发表学术论文3篇。

2.4 改革考核方式,激发学生学习兴趣

目前,我校数学分析课程是采用“平时成绩的30%+期末考试成绩的70%=期评成绩”的传统评价方式。这种评价方式的缺点在当下的人才培养要求下越发不适应。单纯的从学生的作业和出勤来了解学生平时的学习具有较大的片面性,同时因各种原因,学生作业抄袭情况较严重。而期末考试,偶然性大,试卷内容只是书本各章节的基本理论、基本知识点和老师重点讲解的内容,综合类型的不多,特别缺乏对学生的独立思维能力、数学思想方法和实际应用数学解决问题的考查,更不能反映学生对数学分析重点内容的掌握程度,区分度不大。因此这种考核方式已不能适应教学和人才培养的新要求。我们尝试一种新的成绩评价方式,即“平时成绩(作业+出勤+研究性小论文写作)的30%+期末资格考试(试题来自书本和作业等,以杜绝平时作业抄袭的现象)的40%+期末综合考试(试题为综合性)的30%=最终成绩”。其中研究性小论文写作内容包括:对微积分科学、方法思想的探讨;对无理数和的研究;对特殊函数的构造;对一致收敛性和重积分变量代换公式证明等的讨论;数学建模论文和数学实验设计等。该考核评价形式可从多角度激发学生的学习兴趣和动力,从而既有利于高层次人才的培养,也有利于学困生的成长。

3 结束语

虽然《数学分析》已是我校的校级精品课程建设课程,在数学分析的教学中有着自己一些独到的教法[4],也取得了一些成绩,但仍需要结合我校实际教学中出现的新问题和地方经济发展对人才的需求,继续加强对《数学分析》课程教学进行改革探索,让数学分析常讲常新。

【参考文献】

[1]华东师范大学数学系.数学分析[M].4版.北京:高等教育出版社,2010.

[2]纪跃芝,刘庆怀,陈嘉,等.地方工科院校《数学分析》课程的改革与实践[J].教育教学论坛,2012,6:23-24.

[3]杜超雄.在数学分析教学中打造开放性与实践性教学课堂[J].湖南邵阳学院学报:自然科学版,2011,8(1):23-25.

数学分析论文范文第8篇

魏尔斯特拉斯(Karl Weierstrass)1815年出生于德国威斯特伐里亚地区的一个海关官员家庭,中学毕业时数学成绩优秀。但他的父亲却将他送到波恩大学去学习法律和商业,对法律和商业都毫无兴趣的他把大部分时间花在自学数学上,攻读了包括拉普拉斯的《天体力学》在内的一些数学名著。这样在波恩大学度过四年之后,魏尔斯特拉斯回到家里,没有得到他父亲所希望的法律博士学位,连硕士学位也没有得到。这使他的父亲勃然大怒,呵斥他是一个“从躯壳到灵魂都患病的人”。

魏尔斯特拉斯被送到明斯特去准备教师资格考试。1841年,他正式通过了教师资格考试。在这期间,他的数学老师居德曼认识到他的才能。居德曼在给魏尔斯特拉斯为通过教师资格考试而提交的论文《椭圆函数的幂级数展开式》的评语中写道:“论文显示了一位难得的数学人才,只要不被埋没荒废,一定会对数学科学的进步作出贡献。”

居德曼的评语并没有引起任何重视,魏尔斯特拉斯开始了漫长的中学教师生活。他在中学不光教数学,还教物理、德文、地理、体育与书法课,而获得的薪金连进行基本的科学通信的邮资都付不起。但魏尔斯特拉斯以惊人的毅力,过着一种双重的生活:他白天教书,晚上攻读研究阿贝尔等人的著作,并写了许多论文。其中有少数发表在当时德国中学发行的一种不定期刊物“教学简介”上,但正如魏尔斯特拉斯的学生瑞典数学家米塔・列夫勒所说的那样:“没有人会到中学的教学简介中去寻找有划时代意义的数学论文。”

直到1853年,魏尔斯特拉斯将一篇关于阿贝尔函数的论文寄给了德国数学家克雷尔创办的《纯粹与应用数学杂志》,这才使他时来运转。《纯粹与应用数学杂志》接受了他的论文,并在第二年就发表出来,随即引起了轰动。哥尼斯堡大学的一位数学教授亲自来到他任教的布伦斯堡中学向他颁发了哥尼斯堡大学博士学位证书。普鲁士教育部宣布晋升魏尔斯特拉斯,并给了他一年的带薪假期从事研究。1856年,也就是他当了15年中学教师之后,被任命为柏林工业大学数学教授,同时被选入柏林科学院。

魏尔斯特拉斯关于分析严格化的贡献使他获得了“现代数学分析之父”的称号。这种严格化的突出表现是创造一套精密的?摇?着-?啄?摇语言,用这种方式重新定义了极限、连续、导数等数学分析基本概念,特别是通过引进以往被忽视的一致收敛性而消除了微积分中不断出现的各种异议和混乱。可以说,数学分析达到今天所具有的严密形式,本质上归功于魏尔斯特拉斯的工作。

数学分析论文范文第9篇

论文摘要:计算机教学资源是 现代 化 教育 的主要物质基础,我们也要积极、主动地运用多媒体教学资源,提高利用多媒体教学资源的应用质量和效能。文章就计算机辅助数学分析教学的有关问题进行探讨。

数学分析作为数学与应用数学、信息与计算 科学 专业的基础课,课程已逐步显示出在培养计算机人才目标中起到的重要作用,其学习内容和学习方法改革势在必行。应通过课程内容、学习方法和学习手段的改革,培养学生的个性 发展 和合作精神。因此,如何对《数学分析》这门课程的学习方法进行适当改革必将引起各位同学深切关注。强调“以应用为目的,以必需够用为度”的原则,体现“联系实际,深化概念,注重应用,重视创新,提高素质”的特色。数学分析是信息与计算科学专业的一门重要的基础课程,由于它的抽象性,学生接受都有一定的难度。因此,如何对《数学分析》这门课程的学习方法进行适当改革必将引起各位同学深切关注。

1 数学分析教学中传统教学方法的利与弊

传统的教学方法往往是以教师课堂讲授为主的灌输式教学方式,通过做笔记,然后做题,来汲取知识。因此,学习方法的改革应在尊重传统教学方法的基础上,体现以计算机为指导,学习为中心的自我改善学习方法理念,充分激发学生自身的学习兴趣,培养学生的创新意识和创新能力。数学分析课程的内容本身具有应用的广泛性,可以运用于解决社会生产、生活以及其他学科中的大量实际问题。因此,应该精选现代社会生产、生活以及其他学科中典型的应用数学知识来解决实际问题的例子,把“数学模型”作为数学分析课程的主要教学内容之一。而通过建立数学模型并求解数学模型以寻找实际问题的答案的最有效的手段之一就是利用计算机来处理,即通过编制程序由计算机完成复杂的计算解答任务。

2 数学分析教学中运用计算机辅助教学的重要性

在数学分析教学中,适时恰当地运用多媒体课件进行辅助学习,利用其图形、文字、声音、图像并茂的特点,创设可视形象的情境,可以充分调动学生的学习兴趣,可以使抽象的学习内容具体化、清晰化,可以开拓学生的思路、增强思维灵活性,还可以有效地发挥学生学习的主动性,并且联网的计算机,可以利用实事和数学联系起来,讲猜不透,弄不明白的数学题,简单化,形象化。

2.1多媒体技术将抽象问题具体化、形象化

多媒体课件图文并茂,突破了笔记本不能空间画图的局限性,把多媒体引人到学习数学分析的日常生活之中,能充分凋动学生的学习欲望。以校园网为平台,建立的 网络 教学课件,以及和老师在线答疑,和同学们一起在线交流,突破时间和空间的界限,实现最大程度的资源共享,结合数学分析的理论知识,运用.. maple、matlab、mathematica等软件来求解实际问题,为培养学生应用数学的思想方法和计算机科学技术解决实际问题打好基础。例如借助于ma tlb软件模拟现实中较难细致观察的几何图形,在学习中用动画来模拟复杂函数的图形、曲线曲面的形成、空间图形的位置变化。例如绘制三维函数的图形,只需在讲授二重积分部分求曲顶柱体的体积时,可以借助于课件或数学软件将对曲顶柱体从“分割到求和 ”的过程一步步地细腻、直观、形象地展现出来,使学生得以更好地理解“微元法”的思想,从而收到良好的教学效果。..

2.2突出学习内容的重点、难点

课堂上,借助多媒体技术,教师可以将教学内容中的重点与难点以突出的方式展现做成ppt等课件格式。这样同学们可以借助电脑随时掌握学习的重点点以及难点。如将定理、重点的概念或关键词、学生初学时难以理解的内容、易出现错误的地方等,或配以不同字型、或配以醒目的颜色来突出显现,由此可达到突出重点、吸引学生注意力、强化学生记忆、增进同学们学习的目的。

2.3有利于开展实验,培养实践能力

开展数学实验是一种推动数学教学进步的重要方式,它可以给学生提供更多的动手机会,让学生以研究者的身份去“做数学”。因此,改革数学课程设置、开设数学实验课是非常必要的。而多媒体技术恰好可以为学生提供这种做数学实验的机会。通过多媒体,学生上机自主学习,变单纯由教师讲授演示为在教师指导下,学生利用各种软件亲手输入数据或图形,对探究性问题进行主动试验、猜想、推断,探索和发现新知识,推广和 发展 相应结论。在这种做数学实验的过程中,既能增强学生数学活动的经验与体验,使其达到对数学知识的深刻理解,又能培养他们的实践能力和创新意识,促进其数学思维能力的发展。

3  计算 机的特点对学生学习的帮助

3.1首先计算机最 现代 化最先进的高科技产品;

这是一个知识 经济 的时代,信息正在以前所未有的速度膨胀和爆炸,未来的世界是网

络的世界,要让我国在这个信息世界中跟上时代的步伐,作为21世纪主力军的我们,必然要能更快地适应这个高科技的社会,要具有从外界迅速、及时获取有效 科学 信息的能力,具有传播科学

信息的能力,这就是科学素质。而因特网恰恰适应了这个要求

3.2如果将计算机连在 网络 上,它还是一种新的全球网络文化氛围;

上一篇:数学毕业论文范文 下一篇:初中数学论文范文

友情链接