轨道交通信号系统范文

时间:2023-02-28 06:36:06

轨道交通信号系统

轨道交通信号系统范文第1篇

关键词:城市轨道;交通信号;系统调试;

中图分类号:C913文献标识码: A

1引言

随着我国城市轨道交通建设的飞速发展,出现了多种投资建设方式。某城市轨道交通是我公司投资承建的BT项目,作为系统的集成商,我们承担着项目从融资、设计到施工调试整个过程的各个系统的管理和施工任务。信号系统是列车行车指挥和控制的核心系统,而对系统的调试又是实现其控制功能的关键步骤。

2系统介绍

2.1信号系统组成

该城际轨道交通一期工程全长45.2km,全线设17座车站,其中6座地下站,11座高架站,设车辆段一座,一座控制中心。信号系统采用卡斯柯信号有限公司提供的基于移动闭塞的CBTC系统,车地通信采用自由无线通信方式,主要由5个子系统组成:ATS列车自动监督子系统,ATC列车自动控制子系统,CBI计算机联锁系统,DCS子系统,MSS子系统。

2.2调试基本原则和方法

该信号系统调试主要分为三个阶段,第一阶段是FIVP试验室测试,第二阶段是现场测试,第三阶段是试运行测试;这里主要介绍施工过程现场测试(第二阶段),现场测试又分为3级,1是部分验收测试(PAT)或称静态测试,2是系统集成测试(SIT)或称动态测试 ,3是系统验收测试(SAT)或称信号系统联调。

系统调试流程如图1所示:

图1:系统调试流程图

3调试内容及步骤

3.1部分验收测试PAT

部分验收测试是现场调试活动的第一步,在子系统级进行。这些测试主要是系统设备的装配和内部接口的确认。测试按设备逐一进行。在信号系统设备安装后,部分验收测试用于证明每个组成部分的基本功能和完整性。PAT测试只是静态测试,测试中不需列车移动,但需采用所有常用的安全措施。部分测试逻辑如下图2:

图2:系统部分测试逻辑图

(1)电源屏/不间断电源测试

电源屏测试、不间断电源测试,为信号设备提供可用和稳定的电源。

(2)轨旁设备静态测试

检验每个轨旁设备都能单独工作,且验证轨旁设备至分线盘的连接。调整列车检测的计轴设备,配置室内外计轴设备和进行调整测试。手操和电操道岔调整转辙机,确保转辙机动作和位置监控正常。调整所有信号电压和检查点灯装置。使紧急停车按钮、ATB按钮等站台设备正常工作。

(3)CBI静态测试

在信号机房,给CBI机柜上电检查内部电压和机柜内部配线。检查继电器类型满足设计需求并验证配置,电源测试并启动设备。根据“采集码位核对表”和“驱动码位核对表”检查输入和输出码位,确认CBI机柜和继电器架/电缆架(另一头与轨旁设备连接)间的I/O接口,测试设备能正确的启动。

(4)轨旁ATC静态测试

对运行区域控制器ZC、线路控制器LC、数据存储单元DSU等轨旁ATC设备上电启动、检测正确的软硬件配置,确认初始化、内部电源检测、多样化、引导等模式下的行为。测试中对ID 插头和存储软件/数据的USB棒进行编程,记录软硬件配置。给DSU计算机上电和安装DSU应用软件。

(5)DCS静态测试

初步配置每个骨干网设备如以太网交换机、SDH节点、IP路由、NMS-SDH、NMS-IP。使用NMS准备网络,做冗余验证、故障模拟、连接中断模拟等设备交叉检查,配置和验证保护机制和SDH时钟同步;配置通信通道。验证NTP同步,配置以太网部分和测试端到端通信。

无线DCS采用自由无线方式建立轨旁和车载之间的通信连接,确认无线系统接入点设备配置,检查TRE及天线的安装和配置,测试TRE的RF电缆及天线。

(6)ATS静态测试

测试、确认服务器、工作站、通信前置机等不同ATS设备间的上电和连接,安装不同的软件和参数组件,验证人机接口,验证两个服务器间的冗余,验证与其他子系统的连接,测试中也验证ATS子系统的某些基本功能。

(7)MSS静态测试

测试、验证MSS设备的上电及不同MSS设备的连接,安装软件和参数组件。

(8)轨道勘测测试

由2组不同的测试人员两次测量轨道上不同设备(ATC奇点)的位置,建立安装在轨道上的信号设备准确kp位置数据库。

(9)信标编程及LEU静态测试

把信标数据烧录到安装在轨道上的信标(无源RB, 有源RB)内。对LEU数据进行烧录并检查数据烧录完成后,LEU能够正常工作。

3.2系统集成测试SIT

在每个子系统部分验收测试后,通过逐一验证内外接口功能和系统参数与各子系统匹配来测试系统的基本功能是否完全实现。系统集成测试是整个测试的第二步。

图3:系统集成测试逻辑图

(1)CBI/轨旁设备一致性测试

验证道岔、信号机能被CBI控制,且HMI和CBI输入板上的状态与轨旁设备状态一致。验证HMI和CBI输入板上的状态与计轴系统的计轴区段状态一致,同时验证计轴复位功能。测试IBP盘上、站台上的紧急停车按钮、PSD、自动折返按钮等与CBI接口的设备。

(2)CC/PSD测试

测试每个车站的PSD是否能正确开关门,同时验证车门与PSD的同步。

(3)CBI/LEU一致性测试

验证继电器架到LEU一致性,同时验证LEU至室外有源信标配线的正确性。

(4)CC静、动态测试

此测试在车辆段每列列车上的重复进行,检查CC 内核、 I/O模块、编码里程计、信标天线、数据记录仪等CC设备的配置,检查这些设备的内部接口,测试与列车线的接口,点对点检查CC内核与外设间的内部配线。使用工具(OMAP)用于强制CC的每个输出并检查信号等级,每个CC输入由列车端激活,在CC处验证,同时测试车载DCS设备,确保车载DCS设备能正常工作。

在已完成并通过轨旁动态测试的试车线或设有信号设备的轨道上进行动态测试。激励动态模式下的每个CC设备,并监督ATC的所有动作来验证每列车的CC设备在真实运行环境下正确运行。

(5)轨道数据校核测试

以RM模式或者车辆模式驾驶列车在全线低速(速度低于25kph)运行,使用装载OVLI软件列车读取线路上的信标数据,把测试记录的数据与SGD数据进行比较,验证SGD文件的奇点位置是否与轨道上所有信号设备的真实位置一致。当检测到异常情况时,产生SGD文件的新版本,并定义重新测试的范围。

(6)轨旁低速动态测试

在轨道数据检查后, 进行LEU轨旁低速动态(后备模式)和ZC轨旁低速动态(CBTC模式) 测试,以验证在后备模式下通过有源信标传输的变量状态以及在CBTC模式下通过波导管传输的变量状态。如信号状态、PSD区域状态、CBTC模式进路测试等。

(7)ATO精调测试

该测试是根据车辆(主要是牵引和制动子系统)动态行为来调整ATO参数。在自动模式下通过工具给ATO软件发送预定义的数据,通过采样测试获得车辆特性,ATO测试人员可根据输出结果调整ATO参数。

(8)MSS与各子系统一致性测试

该测试用于验证MSS子系统可以从信号其他子系统获得MIB信息。方法是如果信号系统的某个子系统关闭,验证MSS能产生报警。应优先测试不能在工厂产生的报警。

(9)信号与外部接口测试

CBI与车辆段/停车场或其他线联锁的接口,ATS与其他外部系统(时钟,无线,综合监控,大屏系统,应急指挥中心)以及延伸线的接口。

(10)DCS无线覆盖和端到端测试

DCS无线覆盖测试是检查全线的无线覆盖,主要包括无线场强测试、无线覆盖调整和最终无线覆盖确认。DCS端到端测试检查无线网络的吞吐量,延迟,丢包率,交接时间等性能。测试使用正常频率的无线接入点和无线覆盖记录进行。

3.3系统验收测试SAT

系统验收测试用于验证系统的功能、性能及运行,包括降级模式。它是试运行前的最后一个环节。该测试描述了现场要执行的验证和确认过程的第三阶段。这些测试通过后,业主将进行系统验收测试来验证系统满足合同规定的功能需求。

图4:系统验收测试逻辑图

(1)ATC子系统功能验收测试

这些测试用于在真实环境中验证ATC的主要功能,主要包括:

定位功能和速度控制功能;

不同的驾驶模式及模式间的转换;

记录在自动模式下无调整(最大速度)的站间旅行时间;

测试自动模式运行(确认ATO/列车接口);

检查TSR正确应用;

检查ATB模式;

追踪测试;

测试系统的降级模式;

现场并不验证所有需求,因为大部分需求在系统确认阶段或不同子系统的FIVP确认阶段已经验证了。

(2)ATS子系统功能验收测试

本测试用于验证在真实环境中ATS的主要功能,测试范围根据FIVP上已进行的验证来确定。主要有LATS和CATS的切换,CATS进路取消等基本功能,列车追踪功能,自动进路触发功能,车次号折返功能等。

(3)MSS子系统功能验收测试

MSS系统功能验收测试主要包括验证MSS检测和产生系统各部件的高等级警告的能力,如检查检测设备关闭的能力,验证MSS建立的统计报告与操作员需求之间的一致性等。

(4)系统运行及验收测试

该测试为了验证系统的性能、可靠性及可用性,例如在不同特殊调整模式下的运行,运行间隔,ATO模式下车站精确停车,折返间隔等。

4结束语

我国城市轨道交通发展迅猛,信号系统大量引进了英国、德国、法国等国外系统,不同的城市应用的信号系统各异,有时甚至同一城市都应用几种信号系统,工程技术人员需要不断总结施工经验和系统调试经验,以更完美地实现其各项功能,同时也提高自身的技术水平。本文是在我公司实施某城际轨道交通工程后总结的点滴经验,望能为其他项目提供些借鉴或者帮助。

参考文献

[1] 徐恒亮,凌小雀. 宁天城际一期工程信号系统设计规格书[V1.3.0],2013.

[2] 刘海军,刘圣革. 宁天城际信号系统设计.2013.

[3] 林瑜筠. 城市轨道交通信号[M].第二版.北京:中国铁道出版社,2011.

轨道交通信号系统范文第2篇

关键词: 铁路信号系统; 城市轨道交通信号系统; 控制技术; 比较研究

中图分类号:U284 文献标识码:A 文章编号:

1 铁路信号系统与城市轨道交通信号系统的相同点

城市轨道交通和铁路交通同属于轨道交通的范畴,两者从运营形式、设备应用、控制方式等方面都有一定的联系,但也不尽相同。以下对两者在信号系统方面的异同进行对比分析。

1 铁路信号系统与城市轨道交通信号系统的相同点

1.1 城轨信号设备沿用的铁路信号的基本设备

城市轨道交通和铁路交通有基本相同的信号设备,比如: 信号机、轨道电路、转辙机、计轴器、应答器等,但布局方式及应用形式方面会有一些不同。

1.2 停车点防护

安全停车点是基于危险点定义的,危险点是列车超越后可能发生危险的点。停车点有时即是危险点,通常在停车点前方设置一段防护段,ATP 系统计算得出的紧急制动曲线即以该防护段为基础,保证列车不超越防护段。有时也可在防护段设置一列车滑行速度值,如 5 km/h. 根据需要,列车可在此基础上加速,或者停在危险点前方。

1.3 城轨沿用了铁路基本的联锁的含义

联锁的含义对于铁路交通及城轨交通基本上是一致的,依然是信号设备之间相互制约的关系,在铁路上联锁往往局限在车站内部,城轨联锁一般包括正线和车辆段。

1.4 两者都重视速度监督与超速防护( ATP)

ATP 的速度限制分为2种; 一种是固定速度限制,如区间最大允许速度( 取决于线路参数) ,列车最大允许速度; 另一种是临时性的速度限制,例如线路维修、施工时临时设置的速度限制。ATP 系统始终严密监视这类速度限制不被超越,一旦超过,先做告警,后启动紧急制动,并做记录。

1.5 测速与测距

目前高度铁路和城市轨道交通都有列车速度自动控制系统,其一个重要的功能就是测速与测距。ATP 系统利用装在轮轴上的测速传感器测量列车的即时速度,并在驾驶室内通过计算生成速度曲线。ATP 系统的列车定位是以轨道电路为基础的,而对轨道电路内的运行距离测量,则可依赖于所记录的车轮转数及预知的车轮直径加以转换。

2 铁路信号系统与城市轨道交通信号系统的区别

城市轨道交通信号系统和铁路信号系统在基本控制原理、信息传输方式等方面都有相同或相似的地方,但两者的终极控制理念还是有很大差异:城市轨道交通更注重行车密度,把握列车的追踪间隔是控制的核心,而铁路信号系统不仅要缩短列车追踪间隔( 这个间隔远比城轨的大) ,更关键的是提高运行速度,增大运营能力。所以两种信号系统的区别远远多于共同点。以下作简要分析。

2.1 铁路信号系统和城轨信号系统的发展渊源不同

铁路信号系统其起始技术大多来源于自主发展,基本设备均国产化有自己的知识产权,就是目前的高铁技术也已经通过引进—消化—改进—自主创新达到了很大程度的国产化,基本上达到了制式统一、体系完整,产品配套已经有自己独立的科研、教育、设计、生产制造、施工维护队伍,这就是具有中国特色的一整套完备的铁路信号系统。而城轨信号系统基本上都是全套引进国外先进技术,目前还没有一套具有自主产权的信号系统,也没有形成行业完备的技术规范和标准。

2.2 信号系统的构成方式不同

城市轨道信号系统主要是 ATC 系统和车辆段联锁系统组成,ATC( ATS \ATO \ATP 三个系统组成) 系统主要保证正线列车的运行控制,完成系统信息检测、运行防护和列车运行方式的控制,而城轨车辆段类似于铁路的区段站,其行车组织工作主要包括编解、接发及调车,因而,城轨交通车辆段的信号设备远多于其他车站,通常独立采用一套联锁装置。除车辆段外,其他车站的行车组织作业既单纯又简单,所以在联锁车站上的信号灯也仅有 3 种

颜色、4 种含义:

红灯: 停车;

绿灯: 前进,前方道岔再定位;

月白灯: 前进,前方道岔再反位;

红灯 + 月白灯闪光: 引导信号。

轨交通车辆段计算机联锁与铁路车站计算机联锁通用,但结合电路与铁路控制不同。

铁路信号系统包括车站联锁设备、区间闭塞设备及编组站驼峰控制系统及列车运行自动控制系统等组成,其设备的复杂性和控制的各自为政导致技术的更新达不到步调一致,使整个系统不容易整合。

2.3 信号设备的布局及应用的差异,导致联锁关系的难易程度不同

2.3.1 信号机的布局及显示

在城轨中信号机一般设置在线路右侧,大都采用 LED 信号机,列车信号基本上有红绿黄三色显示,城轨中大多数信号机均设置在车辆段。列车自动运行控制系统对于提高运输效率、保障高速铁路列车运行安全将具有非常重要的意义。

2.3.2 道岔控制

目前高速铁路在正线上采用大号码可动心轨道岔,需要多点多台转辙机牵引,并采用复合锁闭( 内锁闭和外锁闭) 技术。联锁中需设有特殊电路控制,并要求列车速度控制系统应具有防止列车超速通过道岔的功能,从这一点上说,高速铁路应较城市轨道交通复杂。

城市轨道交通因为对速度要求较低另外有地域范围限制,正线一般采用 9 号道岔,车辆段( 停车场) 一般采用 7 号道岔,如果正线上采用的是 9号 AT 道岔( 弹性可弯道岔) 时才需要两个牵引点,即一组道岔需要两台转辙机牵引。

2.3.3 联锁方式

铁路与城市轨道交通信号系统相比,有一个显著的不同,那就是城市轨道交通一般车站没有分支( 折返站除外) ,不设道岔,从而也不设地面信号机,仅在少数的有岔联锁站和车辆段才布局道岔和地面信号机,所以联锁设备的监控对象远远少于铁路车站的监控对象,城轨车站( 折返站除外) 全部的作业就是旅客的乘降,作业形式单调,联锁关系简单。

2.4 闭塞制式不同导致地面 /车上信息传输方式不同

城市轨道交通目前大都采用准移动闭塞或移动闭塞的制式进行区间控制。通过音频轨道电路的发送设备向车载设备发送数字编码( 报文式) 信息,ATP 车载设备结合车辆性能数据计算出适合本列车运行的速度 - 距离曲线,保证列车有序运行。采用“跳跃式”连续速度- 距离曲线的列控方式,列车追踪运行的最小安全间隔的最大值为安全保护距离加一个轨道区段长度,列车的最小正常追踪运行间隔为安全保护距离加一个轨道区段长度再加最高允许速度下使用常用制动直至停车的制动距离。列车追踪运行的最小安全间隔仅为一个安全保护距离,列车最小正常追踪运行间隔为在当前速度下使用常用制动直至停车的制动距离加安全保护距离,并由前后列车的动态关系确定。

而铁路信号系统大多采用固定闭塞方式,设置固定的闭塞分区,根据地面/车上信息传输方式的不同,可以将列车超速防护 ATP 系统分为点式和连续式两类。

2.5 车门控制

城市轨道交通的车门控制比高速铁路复杂得多,车门控制的关键是要对其安全条件进行严格的监督。城市轨道交通 ATP 系统的另一个重要功能就是要防止: ①列车在站外打开车门; ②列车在站内时打开非站台侧的车门; ③在车门打开时列车启动。铁路信号系统对车门的控制显然要简单的多(高铁除外)。

2.6 中断站

高速铁路由于站间距较长,无法满足信息传输的要求,往往需在区间增加设置区间信号无人值守中继站,一个中继站一般只可以管理区域内的256个环线。而城市轨道交通则不需设置。

2.7 行车间隔不同

城市轨道交通有别于远程铁路的另一个显著特点是列车间隔时间短,目前在大城市修造的地铁与轻轨,往往都提出 2 min(甚至90 s) 的列车间隔要求。因此对城市轨道交通列车速度监控提出了极高要求,要求其能提供更高的安全保证。

3 结束语

综上,铁路信号系统和城轨信号系统相比较,存在很多不同,但高速铁路与城市轨道交通信号系统相比,列车运行控制系统基本理念一致,目前,我国应将某些城轨控制技术移植向高速铁路,但高速铁路具有闭塞分区长,行车速度快、联锁及道岔控制复杂等特点,所以高速铁路应针对自己的特点在城市轨道交通列车运行控制系统的基础上进行改造和创新。

参考文献:

[1]林瑜筠. 城市轨道交通信号. 北京: 中国铁道出版社.

[2]林瑜筠. 计算机联锁. 北京: 中国铁道出版社,2010.

轨道交通信号系统范文第3篇

【关键词】轨道交通;信号系统;可靠性;安全性

在轨道交通系统的运行中采用相应的交通信号系统,不但能够在最大程度上保证列车的安全正常行驶,解决各个列车行驶时间上的冲突和矛盾,避免追尾事件发生,还能够极大的提高列车的运行效率,增大轨道交通建设的经济效益和社会效益。除此之外,轨道交通信号系统的使用还有利于实现列车运行自动化管理,对于提高城市交通管理现代化水平有着重要意义。而要使轨道交通信号系统发挥其应有的作用,就要确保其可靠性与安全性。以下本文笔者就结合自己对轨道交通信号系统的认识来探讨其可安全性与可靠性问题。

一、轨道交通信号系统概述

轨道交通信号系统主要是由连锁装置与列车自动控制系统(ATC)组成。ATC系统又包括列车自动监控系统(ATS)、列车自动防护系统(ATP)及列车自动运行系统(ATO)。其中,ATS的主要作用是对列车的实际运行情况进行监督与控制,这样可以使行车调度工作者对整个线路的列车进行全面、系统、完整的管理。ATP的作用主要是对行驶中的列车进行监控和安全防护,避免其出现连锁设备或自身系统中出现问题故障而影响列车运行安全。ATO则主要是通过分析地面情况来对列车进行控制,这样就可以避免列车在行驶中突然的加速或减速,提高列车运行的舒适性和节能性。这三个系统相互作用,相互影响,从列车、地面、控制中心三个方面对列车进行全方位的控制,确保列车的安全稳定运行。目前的轨道交通系统是各种先进科技的共同产物,其不但技术密集程度较高,而且成本低,效益高,是一种高速度、高效率、高安全性的可靠控制系统。

二、轨道交通信号系统的安全性分析

对于轨道交通信号系统而言,安全性主要是指行车的安全和乘客的人身安全。在列车的行驶过程中,无论是因为设备出现故障,还是因为电路、软件出现问题,都可能会影响到列车的正常行驶,而由此造成的误动或错误操作,极有可能造成严重的安全事故。为此,在轨道交通信号系统的设计与应用中,应该将以故障为导向的安全性能放在首要地位。在此过程中,需要解决的问题主要包括轨道数据处理、数据采集与驱动以及数据传输等三个方面的故障-安全问题。可以采用当前先进的计算机技术,如容错技术、故障检测和诊断技术以及多重化技术等,均能够为提高轨道交通信号系统的安全性提供技术支持。以下主要对列车自动控制系统的各个子系统的安全性进行分析。

1、ATS系统

(1)在控制中心设立两套ATS系统,互为热备份,即其中的一个系统在线时,另一个系统也在不断更新其数据信息,当出现故障需要切换时,热备份系统在很短时间内完成对轨旁信息的扫描,从而保证系统获取最新的数据。

(2)控制中心ATS主机与车站ATS设备间采用双通道(主、备)或环路方式构成系统(由通信专业提供),以保证某点或某段通信信道发生故障时,系统仍能正常工作。

(3)当系统中某些单元出现故障或运营过程中出现异常情况时,系统具备降级运行的功能,由调度员人工介入设置进路,对列车运行进行调整,如在车站可以完成自动进路调整或根据列车识别号进行自动信号控制。

(4)当列车运行偏离运行图时,系统自动生成调整计划或自动调整列车的停站时间、区间运行时间。当偏离误差较大时,可由调度员人工介入,指定列车的停站时间和区间运行时间,或对系统实施运行图进行调整。

(5)通过列车识别装置(PTI)能自动完成全线监控区域内的列车跟踪(服务号、目的地号、车体号、车次号)。随着列车的运行,跟踪显示从一个轨道区段向下一个轨道区段移位、显示。

2、ATP系统

由于ATP系统主要是对列车的设备和系统进行安全监控,因此其安全性设计应该将重点放在保证设备系统安全上。首先,ATP系统可以利用双层网络与全冗余的模式来进行设计,将系统中的所有设备都设置相应的冗余接口,并做好备份,以保证系统某个节点出现故障后系统也可以不受影响而正常运行。其次,编码软件也可以利用冗余技术,且编码中不可出现循环语句,这样是为了保证某个编码控制程序出现中断后可以继续对系统进行控制,且不会形成死循环的问题。第三,为了进一步的保证系统的安全性与可靠性,对于一些较为重要或者较为容易出现故障的设备,应该进行双重备份。同时,为了避免强信号对系统产生干扰,还要在电路中设计一定的防冲击电路和防干扰措施。这样才可以很好的保证系统的安全运行。

3、ATO系统

作为以地控车的控制系统,ATO系统应该能够在列车超速运行时给予一定的警告,并利用系统中的车载设备采取一定制动措施。正常情况下ATO系统是自动运行,但是如果其因故障无法自动运行,应该要能够尽快转入人工操作的程序中,以保证列车安全运行。同时,在系统的运行中需要大量的实时数据,因此数据传输应该首先循环传送。为了保证行驶中的列车和地面工作站点之间可以随时联系沟通,在列车出站之前,要对ATO系统进行检查,尤其是要对接口处进行仔细检查,以保证系统的安全工作。

三、轨道交通信号系统的可靠性分析

要充分发挥轨道交通信号系统的作用,不但要保证其安全性,还要保证其可靠性。因为只有确保系统的可靠,才能保证其高安全性。尤其是在实践中,可靠性是评价轨道交通信号系统安全性的重要指标。在国际上目前已经提出了定量可靠性性分析指标,并规定列车超速防护的车上设备的平均无故障时间(MTBF)不低于104h,地面设备的平均无故障时间不低于105h。

在城市轨道交通中由于ATP系统在正常驾驶模式下使用,是惟一能连续控制列车运行,并长期确保列车安全运行的驾驶模式。降级驾驶模式是ATP系统出现故障情况下,在限速条件以人工驾驶来降低列车运行风险所采用的一种驾驶模式。不过,该模式并不能避免所有风险,所以要求正常驾驶模式必须非常稳定可靠,以尽量减少采用降级驾驶模式。鉴于上述因素,在国外城市轨道交通工程中,提出ATP系统正常驾驶模式的可靠必须高于99.99%。

四、结语

总之,在现代城市轨道交通事业的发展中,加强列车运行的安全控制是非常重要的。这就需要合理的设计和运用轨道交通信号系统,从每个子系统的角度出发来确保其安全性与可靠性,为人们出行提供安全可靠的交通设施。

参考文献

[1]何泳斌.城市轨道交通信号控制方式研究[J].交通世界,2004(09).

[2]章扬,陈辉,田源.地铁综合监控系统的可靠性、可用性、可维修性、安全性设计[J].城市轨道交通研究,2009(04).

轨道交通信号系统范文第4篇

关键词: 城市轨道交通 信号系统 功能

中图分类号:C913 文献标识码: A

城市轨道交通信号系统是其自动化系统中的关键组成部分,是保证列车和乘客安全,实现列车运行高效、指挥管理有序的自动控制系统。信号系统的核心是列车自动控制系统(ATC 系统),它由计算机联锁子系统(CBI)、列车自动防护(ATP)子系统、列车自动驾驶(ATO)子系统、列车自动监控(ATS)子系统构成。四个子系统通过信息交换网络构成闭环系统,各子系统之间相互渗透,实现地面控制与车上控制相结合、现地控制与中央控制相结合,构成一个以安全设备为基础,集行车指挥、运行调整以及列车驾驶自动化等功能为一体的自动控制系统。从而保证行车安全,提高运行效率,缩短行车间隔,促进管理现代化,提高运输能力和服务质量。

1 城市轨道交通信号系统的构成

城市轨道交通信号系统主要由列车自动控制(ATC)系统、联锁设备、轨道电路等组成。

作为城市轨道交通信号系统最重要的组成部分,列车自动控制(ATC)系统主要功能就是对行车指挥及列车运行自动化的一种最大限度地实现,同时起到确保列车安全运行及提高运输效率的作用,只有这样才能降低工作人员的工作量,对城市轨道交通的通行能力进行充分发挥。

ATC(automatic train control)系统主要有三部分构成,包括:列车自动防护(ATP}automatic train protection)、列车自动运行(ATO}automatic train operation)及列车自动监控(ATS}automatic train supervision)。

ATP系统分为轨旁ATP和车载ATP,负责对列车的运行进行保护,对列车进行超速防护、车门监督和速度监督,保证列车的安全间隔。

ATO系统分为轨旁ATO和车载ATO,其应用的主要目的就是对、地对车控制]的一种实现,就是实现地面信息对列车运行情况的一种良好控制,并送出车门和屏蔽门同步开关信号。

ATS系统主要有两部分中央ATS与车站ATS,其应用的主要目的就对列车运行监督及控制,包括:列车运行情况和设备的集中监视、自动排列进路、自动列车运行调整、自动生成时刻表、自动记录实际列车运行图、自动进行数据统计以及各种报表的自动生成,辅助调度人员对全线进行管理。

联锁设备有中央联锁系统和车站联锁计算机,主要对室外设备信号机和道岔进行控制,排列列车进路并传送进路信息给轨旁ATC设备。

轨道电路主要用于传送轨道电路信息和ATP报文信息。

2城市轨道交通信号系统方案

通常情况下在城市交通疏解任务中城市轨道交通线路承担着十分重要的任务,为确保人们出行的安全性,应采用完整的、先进的、高效的列车控制系统作为地铁信号系统。正线信号系统采用完整的列车自动控制(ATC)系统,由ATS、ATP、ATO、联锁设备组成。车辆段/停车场由联锁设备、微机监测设备、ATS分机等主要设备组成。目前城市轨道交通的信号系统主要有准移动闭塞和移动闭塞系统选择。

2.1 基于目标距离模式的准移动闭塞ATC系统

通常选用音频数字无绝缘轨道电路作为目标距离模式,这种模式的主要特点为信息传输量较大及抗干扰能力很强。列车车载设备依据由钢轨传输而接收到的联锁、轨道电路编码、线路参数、控制管理等报文信息,连续对列车追踪运行及折返作业进行速度监督,最大限度对其进行超速防护,控制列车运行间隔,以满足规定的通过能力。由于音频数字轨道电路具有极大的传输信息量,可以将目标速度、目标距离、线路状态等信息提供给车载设备,为计算出列车相适应的运行模式速度曲线,将ATP车载设备与固定的车辆性能数据进行充分地结合。

2.2基于通信的移动闭塞系统(CBTC)

基于通信的移动闭塞列车控制系统具有极为先进的发展技术,是列车控制技术的发展趋势,是国际ATC先进水平的代表。是独立于轨道电路的高精度列车定位。

CBTC系统为实现车与地、地与车间之间的双向数据通信,可以选用自由空间无线天线、交叉感应电缆环线、漏泄电缆以及裂缝波导管等方式进行有效通信。依据列车的位置信息及进路情况轨旁ATP设备可以有效对每一列车的移动权限进行准确计算,同时根据列车位置速度的变化不断更新数据,利用连续车地通信设备向列车进行信息的发送。依据接收到的移动授权及本身的运行状态车载设备可以对列车运行速度曲线及防护曲线进行有效计算,在ATP子系统的保护防御过程中,在该速度曲线下ATO子系统或人工驾驶控制列车可以正常运行。可以最大限度地实现后续列与前行列车尾部的紧密性,并始终处于安全距离范围内。在确保安全的基础上,CBTC系统可以实现区间通过能力的有效提高,同时不受轨道电路区段分割的限制。

虽然CBTC系统在调试时因对现场环境要求高、调试周期较长等一些不尽如人意的地方,但是CBTC系统在具有自身优越性的同时已经成为城市轨道交通信号系统的首选方案。其相对于准移动闭塞系统的优越性是不可取代的。

3 城市轨道交通信号系统通信设备的传送方式

3.1通过轨道电路进行传送

轨道电路不仅可以检测列车占用情况,也可以传递报文信息给车载设备。在轨道电路不忙的情况下,将轨道电路信息传送给联锁系统,当列车对轨道进行占用时,利用装置切换,并将发送轨道电路信息的作业进行停止,开始采用轨旁设备将ATP报文信息连续向钢轨进行发送,将接收和发送设备装置在列车底部,可将接收到的信息向车载设备进行传递,同时也可以向地面发送列车信息。

3.2通过轨间电缆传送

单独沿着钢轨铺设一条线路,专门用于传送ATP报文信息,此方法安全可靠,但费用较高。

3.3 通过点式应答器传送

在轨道电路的部分地方进行应答器的设置,应答器的设置主要有两种形式:固定数据应答器与可变数据应答器。用于存储固定数据的应答器为固定数据应答器,可变应答器通过对中心进行控制来取得数据,将接收和发送天线安装在列车底部,当列车运行在应答器位置经过时可以感应到应答器的信息,然后进行双向数据交换,因为这种信息的传送不具有连续性,只能在一定位置才能进行接收,因此这些位置被叫做点式ATC。

3.4通过无线方式进行传送无线车地通信主要采用无线方式,由控制中心来实现车载ATP/ATO的功能,利用无线交换器和轨旁无线单元AP与车载无线通信设备进行时时数据的交换。

一般情况下一个控制中心可以实现对一条线路上所有车站的控制,当控制中心设备发生故障时,为了确保整条线路不出现瘫痪现象,可以将车站现地工作站和车站ATS远程控制单元设置在车站。这样当控制中心出现故障之后,车站工作人员可通过车站现地工作站进行操作来实现联锁计算机的功能,ATS远程控制单元可代替中央ATS系统向联锁系统和轨旁设备发送相关信息,此时ATS远程控制单元所具有的信息不全面,但能够保证列车在本站的正常运行。

4结 语

轨道交通信号系统范文第5篇

关键词:城市轨道交通;信号系统;CBTC

Abstract: Urban Transit system is an extensive use of public transport, and its security is directly related to the personal safety of commuters. The signaling system is to ensure the safety of the train, comfortable, run by high-density technology and equipment, its reliability and security continue to improve and perfect, so as to effectively guarantee the safe operation of the rail transportation. In this paper, the design of Urban Transit signal system and CBTC is analyzed。

Keywords: Urban Transit; signal system; CBTC

中图分类号:U239.5 文献标识码:A

1轨道交通系统信号系统

城市轨道交通信号系统是保证列车安全运行,实现行车指挥和列车现代化运行,提高高效运输的关键系统设备。城市轨道交通信号系统一般由列车自动控制系统(Automatic Train Control,ATC)组成。ATC系统由列车自动监控系统(Automatic Train Supervision,ATS)、列车自动防护子系统(Automatic Train Protection,ATP)和列车自动运行系统(Automatic Train Operation, ATO)三个子系统组成。

由列车自动防护系统来完全保证行车安全。列车自动运行系统可以完成列车站间自动运行、定位停车、接收控制中心运行指令从而实现列车运行速度的自动调整,使整套信号系统能够满足列车高速和高密度运行的需求。

2 CBTC信号系统

基于通信的列车自动控制系统CBTC(communication based train control system)是一种连续的列车自动控制系统,采用高精度的列车定位,独立于轨道电路,连续、大容量、双向车-地数据通信,车载及轨旁处理器能够实施安全功能的信号控制系统。ATS子系统包括中央至车站的数据传输子系统,通常分布在运营控制中心OCC (operation control center)及车站。ATP/ATO子系统包括车-地传输子系统,ATP子系统设备由联锁和列控设备组成。ATP/ATO子系统设备分布在车站、轨旁及列车上。

2.1 CBTC系统的列控原理

基于系统确定的列车移动授权、列车运行的速度、列车运行的线路等数据,CBTC系统实现对列车的控制。CBTC系统对列车的控制是由地面设备和车载设备共同完成,其基本原理如下:

(1)地面设备(轨旁设备)周期性地接收本控制范围内所有列车传来的列车识别号、列车位置、列车运行方向和速度信息,通过计算确定各列车的移动授权,并向本控制范围内的每列列车周期性地发送移动授权(安全防护点)的信息。由前行列车的位置及运行速度来确定移动授权,随着前行列车的移动,移动授权将逐渐前移。

(2)车载设备接收到由地面设备发送的列车移动授权信息以及列车运行的最大限制速度命令、线路技术参数、紧急制动的建立和反应时间等数据,根据这些数据计算出列车的紧急制动触发曲线和紧急制动曲线,从而控制列车在紧急制动曲线下运行,以确保列车的运行安全。

2.2 CBTC系统的闭塞原理

在CBTC系统中,基于对最大运行速度、制动曲线和线路上相邻列车的动态位置计算出列车间的安全间隔距离。因为列车频繁的向地面设备发送其位置,地面设备频繁的向列车传送更新的移动授权信息,系统对列车的定位分辨率可以达到10m以下的精度。随着前行列车的移动,后续列车运行的移动授权的范围总是实时变化。基于相关区段的最大允许速度、在安全制动距离范同内安全地靠近前一列车尾部最后一次确定的位置,车载设备制定列车的运行曲线,从而尽可能缩短追踪列车的运行间隔。将随前行列车的运行位置和运行状态而变化追踪运行列车间的安全间隔距离的闭塞方式称为移动闭塞。

信号系统通过在车载和地面设备之间连续和高速的数据通讯来实现移动闭塞。在CBTC系统中,随前行列车的移动,列车从地面设备获得的移动授权的目标点总是变化,其后续列车运行的安全保护停车点总是在前行列车占用的闭塞分区轨道电路入口的前方。从而移动闭塞信号系统可大大缩短运行间隔,提高列车的运输效率。

2.4 CBTC系统的分类

随着数据通信技术的快速发展和应用,以及城市轨道交通对信号系统设备标准化的要求,通用数据通信系统快速应用于CBTC系统中,CBTC系统的车-地信息主要有交叉感应电缆环线、漏泄电缆、漏泄波导管和无线电台等传输媒介。

采用交叉感应电缆环线作为车-地数据通信媒介,车-地间直接通过电磁感应方式交换信息。采用漏泄电缆、漏泄波导管、无线电台作为传输媒介的车地数据通信系统,一般采用通用的无线扩频通信技术,因此CBTC系统按车-地数据通信媒介可分为:

(1)基于交叉感应电缆环线的CBTC系统,即CBTC-IL(inductive loop);

(2)基于无线扩频通信技术的CBTC系统,即CBTC-RF(radio frequency)。

基于交叉感应电缆环线传输车-地信息的CBTC-IL系统有传输特性好,抗干扰能力强等优点。基于交叉感应电缆环线传输方式的缺点:需要在道床上安装感应电缆环线,受土建安装条件限制;数据传输速率比较低;数据传输需采用专用通信协议。

基于漏泄电缆、漏泄波导管、无线电台传输车地信息的CBTC-RF系统,其车-地间的无线扩频传输采用通用的IEEE 802.11系列标准,无线扩频传输是将要传输的数据信号转换为无线信号,当接收方接收到无线信号后将其还原为数据信号,数据信号和无线信号间的转换由无线网卡来实现。

3 CBTC应用现状及存在的问题

CBTC系统中采用当前先进的计算机技术和数据通信技术。与基于轨道电路的传统信号系统相比,CBTC信号系统有自动化程度高、轨旁设备少、运营能力大、高安全性和高可靠性等特点。其优点还有不与牵引供电争轨道,有利于牵引供电设备的合理布置;不需要在轨道上安装设备,易于形成疏散通道。正是由于CBTC系统的诸多优势,其开发和应用正在朝着互联互通和兼容性的方向发展,代表着城市轨道交通信号系统的发展方向。目前国内城市轨道交通信号系统选型采用CBTC信号系统作为主流制式,在轨道交通建设和改造过程中得到了广泛应用。

目前国外厂商都在结合工程实践不断完善CBTC系统,开通投入商业运营的线路并不多。开通和运营过程中主要存在以下技术问题,需要在今后的研制和工程实施中加以解决。

(1)由于CBTC系统中的列车定位和移动授权依赖于无线信息传输。如果某列车或地面某点发生无线通信中断或故障,就会失去对列车的定位,将对运营造成较大的影响,而且故障处理将比原来的轨道电路系统复杂。因此一旦发生通信故障时,如何保障行车安全和减小对运营的影响是一个技术瓶颈。为此绝大多数采用CBTC系统的工程都配置了后备信号系统,以解决上述问题。

(2)目前CBTC系统采用的IEEE 802.11系列的WLAN标准使用的是一个开放的无线频段。该频段不限制其他用户使用,因此用户较多时容易造成相互干扰。特别是在高架开放区段,抗外部干扰问题也是一个技术难题。

(3)从地面的一个AP切换到另一个AP时,列车信息传输会有中断,导致了一定程度的丢包现象,如何提高信息传输的可靠性也有待继续研究。

3 结束语

随着我国城镇化过程的不断深入,城市交通拥堵和环境问题与城市现代化发展的矛盾日益尖锐。城市轨道交通作为一种大容量、环保的交通方式,逐步成为解决此类问题的关键。CBTC系统为保障城市轨道交通运营的安全和高效至关重要。随着各大城市轨道交通基础设施的建设,CBTC系统将得到更大的完善和更广泛的应用。

参考文献

[1] 杜平.城市轨道交通信号系统的发展[J].铁道通信信号,2010,46(5).

[2] 周富彬,范永华.探析城市轨道交通信号控制系统[J] . 民营科技,2010(10).

[3] 章贤方.城市轨道交通列车自动控制系统最优化探讨[J].世界轨道交通,2012(6)

轨道交通信号系统范文第6篇

关键词:轨道交通 综合联调

中图分类号: U45 文献标识码: A

1、引言 我国社会经济的快速发展,城市化进程不断加快,城乡一体化建设稳步推进,由此带来的城市交通问题日益突出。城市轨道交通项目涉及专业和设备很多,运载乘客安全要求高的一个系统工程,因此,在每个开通运营的城市轨道交通线路之前,必须进行设备系统联调工作。设备系统联调这一新的综合工作,将越来越显示出其重要性。从系统的角度,检测设备并实施严格的质量控制体系,近年来国内外一些城市在城市轨道交通建设过程中将设备总联调作为一个独立环节,如深圳地铁1号线和南京地铁l号线都对机电系统联调进行了独立的招标。系统总联调可确保全系统的最佳匹配,为大系统的顺利运转奠定坚实的基础。

2、 城市轨道交通信号系统综合联调的目的和意义

铁路运输综合调整是在一定的时间内,在有限空间的综合利用时间、空间、人力、屋物力资源,加强协调管理,完成联合调试的各专业,铁路运输线之间的铁路运输线系统,满足运行可靠性、可用性的要求,所有列车运行奠定了基础。通过综合联调主要解决各系统各专业是否满足车辆运行和设计要求及各系统间的接口是否一致、联动是否同步、功能是否满足要求。

系统综合调试是指调试设备和系统的综合调试,它是基于所有子系统的调试,启动系统,使其运行在相似的操作条件下的负载,以测试是否各个子系统之间的接口关系是否正确,性能是否满足设计要求,协调能力,及设计满足各种可能的保留和操作要求,和测试的城市轨道运输系统操作的可用性,稳定性,整体安全。

系统调试的关键环节是城市轨道交通工程建设期和运营期,它的成败直接决定了项目的及时完成和总目标的顺利运行,是城市轨道交通工程建设的重要组成部分。

2.1.总联调可以实现系统的安全分析

城市轨道交通作为一种大容量车辆运输旅客,使系统的可靠性和安全性要求很高的。首先通过全面调整歧视可能出现的故障和范围,二是是否指导安全检测系统故障,并修复可以恢复规定功能的能力,也就是说,以确定该系统具有较高的可靠性、可用性、可维护性和安全性。

2.2实现城市轨道的系统性目标

城市轨道交通的每个子系统,由经验多少、专业高低及其他因素的影响,往往局限于各自的子系统目标的实现,甚至在主观预测,它可以满足系统的要求,但未能达成,调整通过大系统分成多个反馈和调整系统,方的完整性和功能结构子系统的合理性。也就是说,只只有经过对各子系统接口关系的动态联调,才能从整体上完成城市轨道设备大系统的有机集成。

2.3为运营提供技术系统

综合联调测试将是系统验证和测试过程的一个重要的组成部分。电动汽车是一系列的调试和测试,包括电动客车,地面通信,监控和数据采集系统和信号调整将在实验基地的现场。这些测试将进行系统调试测试验收过程完成的时间和提供了可靠的保证。

2.4保证国产化地铁顺利开通

地铁设备国产化是一个重大的战略决策,根本出路是中国蓬勃发展的地铁建设。目前的系统或子系统的设备中,有大量的国内和国外的产品组合。为实现较高的国产化率,一些技术成熟的关键设备采用国产化产品.但相对于系统而言它又是首次应用,存在着系统集成是否成功的风险。为此,必须进行系统联调和运营演练,以保证国产化设备的顺利开通。

2.5为城市交通轨道运营提供优质服务

(1) 接近实际工况的试验设备,早期检测设备或事故,测试设备的功能的稳定性。(2) 对各设备系统间的技术参数进行配合调整与修改,使其满足运营的实际需要。(3) 检验调度、司机、车站员工在非正常情况下的组织、协调、应急应变能力,检验非正常情况对运营的影响。(4) 进一步完善车站灭火疏散方案,提高车站员工在火灾初期的灭火疏散自防、自救能力。检验OCC各调度员的组织能力和司机对火灾事故的处理能力。(5) 检验消防设备设施的协调功能和操作人员的应急处理能力。(6) 检验地铁总部各相关职能部门之间的协调配合能力。(7) 检验地铁公司及政府公安及消防部门在紧急情况发生时的协调及协作效率。

城市轨道交通信号系统综合联调的流程

3.1联调需要的基础资料:

信号系统技术规格书;(2)信号系统施工设计资料;(3)单信号系统调试资料;(4)信号系统联调文件编制;(5)信号系统调试进度;(6)信号系统安全保证资料。

3.2联调计划:

根据系统功能要求,对以下但不限于系统制定联调计划:(l)车辆系统联调; (2)供电系统联调;(3)信号系统联调;(4)通信系统联调;(5)自动售检票 (AFC)系统联调;(6)站台屏蔽门系统联调;(7)自动扶梯和电梯系统联调;(8)EMCS+FAS+SCADA系统(综合监控系统)联调;(9)环控系统联调;(10)给排水及气体消防系统联调。

3.3综合联调文件概述:

文件详细描述联调目的、联调内容、联调程序概述、联调具体要求和联调项目的具体安排。联调内容概述联调测试的范围;联调程序概述描述联调测试的整体步骤和阶段;联调具体要求是联调前的先决条件;联调项目列出全部测试项目。

至于联调步骤、联调时间安排、联调中安全及应急处理程序、联调组织与人员要求、联调所需要的测试设备和仪器仪表、联调过程所需要的各种表格会在联调细则详细描述。而联调顺序图就会包含在联调计划。本联调大纲为编制各联调测试细则的基础。有关设备系统测试、调试、联调、,总联调及试运营的关系。

3.4联调内容

调试程序连接的功能验证系统和系统之间,系统的子系统之间的功能测试是系统调试的项目。由于, 乘客资讯、门禁、大屏幕投影显示是同一总承包商,这六个系统之间的调试是由总承包商负责,而这六个系统与其它系统的功能测试则包括在联调项目之中。由于总承包商已开始EMCS和FAS与相关机电设备的就地级测试,所以这两系统的联调测试就从EMCS车站级和FAS分级开始。由于车辆与信号系统之间的联调都是以信号系统为主导,车辆承包商配合,所以车辆与信号系统的联调项目的测试细则,将由信号系统承包商提供。各系统之间的工程界面都不是联调项目的范围。

工程界面包括供电系统对各系统设备的供电和接地、系统与土建的工程接口等,都是属于该系统的安装调试及检收时应有的项目。而本合同包括的系统和合同以外的系统之间的测试,例如公务电话与公用电话网连接,亦不会包括在联调项目之中。

3.5综合联调程序概述:

综合联调测试可分为三级测试和三步骤测试。三级测试就是就地级测试、车站级测试和中央级测试。三步骤测试就是物理接口测试,接口功能测试和设备系统功能测试:

4、结束语

近年来,城市轨道交通是呈现出快速发展的趋势,对铁路运输的合理组织施工,加强系统的综合调试,确保铁路运输建设期安全有序,并及时解决不符合安全要求的问题,使得城市轨道运输成为公众出行安全快速的方法。本论文主要是在研究和分析现有轨道交通机电系统联合调试的基础上,归纳整理城市轨道交通机电系统联合调试的概念和流程,对城轨交通机电系统联合调试的步骤进行了整理,再把它运用到实际的工程中去对在综合联合调试中的,并存在的问题及不足进行了分析和探讨。

参考文献:

[1]陶林芳.国内向外城市快速轨道交通的现状与发展趋势.上海建设科技.2005.5.

[2]马燕.轨道交通系统在我国发展的研究.华东师范大学MPA学位论文.2005.9.

[3]李晓松.对城市轨道交通可持续发展的思考.城市交通.第4卷,第2期.2006.3.

[4]王东民.轨道交通在城市交通中的重要作用.城市单轨交通国际高级论坛.重庆.2005.9.

轨道交通信号系统范文第7篇

关键词:无线传输 CBTC 网络 波导管 漏缆 电台

中图分类号:U231+.7 文献标识码:A 文章编号:1674-098X(2016)02(b)-0010-02

各大系统供应商都希望通过无线电传输系统减少轨旁信号线缆的铺设以及线缆的日常维护工作从而进一步降低成本。这种期望得到了业界内广泛的认可。但是,随之而来的问题就是使用何种无线传输技术实现CBTC功能。

CBTC系统需要高度依赖列车、轨旁以及控制中心之间的高速双向通信传输,因此,必须拥有一套可靠性、稳定性高的车地无线传输系统。组建一个无线通信系统必须充分考虑无线电波的传播问题。下面将针对车地无线传输系统的实现方式展开探讨。

1 漏缆

由于城市轨道交通的特点使得它必须是线性无线覆盖,并且要在列车行驶的线路上均匀覆盖。对于使用漏缆或漏泄波导管作为传输介质的网络有先天性的优势,因为它们的特性使它们非常容易在复杂的传输环境中与钢轨形成一个平行的无线覆盖网络。

漏缆一般由内导体、绝缘介质和开有周期性槽孔的外导体三部分组成。电磁波从发射端通过同轴电缆传至另一端。电磁波在漏缆中传输的同时通过槽孔向外界辐射电磁波;而外界的电磁场则通过漏缆上的槽孔感应到漏缆内部并传送到接收端。漏缆的频段覆盖在450 MHz~2 GHz以上,能够适应现有的各种无线通信体制。与传统的天线系统相比,漏缆天线系统具有以下优点。

(1)适用频率宽,场强覆盖均匀稳定。

(2)漏缆衰减等传输参数更加均匀稳定,对安装环境适应能力强。

2 漏泄波导管

目前,北京地铁2号线就是利用此种方式来实现CBTC功能。波导管是一种用于传导高频电磁波的元件,是一种空心、内壁十分光洁的金属导管或内敷金属的管子,在其表面每隔一段距离刻有一条细微的裂缝,使无线电波从此裂缝中向外传送超高频电磁波。波导管物理特性和衰减性能很好,最大传输距离可达1 600 M,能够呈现良好的方向性分布,可在隧道及弯曲通道中传输。通过它脉冲信号可以以极小的损耗被传送到目的地。波导管具有以下优点。

(1)无线场强覆盖均匀,抗干扰能力较强,衰耗小。

(2)传输速率大、传输距离长,可以减少列车在各AP之间进行漫游和切换。

3 无线电台

目前,西安地铁1、2号线、北京地铁10号线均使用此种方式来实现CBTC功能。国内大多数地铁都采用此类信号系统,工程投资少,列车运行间隔短,轨道交通运输能力高,满足了大客流和运能的需求。它是根据IEEE802.11无线局域网的标准建立起的一套宽带通信系统。由轨旁、车载、骨干三部分网络组成。无线传播是目前使用最广泛的一种传播方式。它以无线信道作传输媒介的计算机局域网络,是计算机网络与无线通信技术相结合的产物,以无线多址信道作为传输媒介,提供传统有线局域网的功能,能够使用户真正实现随时、随地、随意的宽带网络接入。它利用电磁波在空气中从车载天线到轨旁天线双向传递行车数据。这种空间自由传播的方式能够节省大量的轨旁设备,在轨道交通狭窄的隧道安装上具有特殊的优势。相对于有线网络,具有安装简单、灵活性强、终端设备可移动和可扩展等优点,已成为几乎所有行业网络便携式、固定式终端设备的接入标杆性应用。无线电台具有以下优点。

(1)设备安装位置限制较少,受其他因素影响小。

(2)AP数据传播速率较高,可实现网络冗余覆盖。

(3)安装、维护容易,成本较低。

4 交叉感应环线

由交叉感应环线构成的双向通信系统主要用于车地设备之间的无线双向通信。系统内包括环形电缆、车载设备及轨旁设备。环形电缆需要沿着钢轨的中心对称进行敷设,每隔一段进行一次交叉。车地间传输的数据通过直接数字频率合成技术转换为信号,在经过功率放大器的放大后输送至环线上,与车载设备进行车地无线通信。交叉感应环线具有以下优点。

(1)使用经验成熟,施工工艺成熟,环线使用寿命较长。

(2)环线设备及施工投资较少。

5 结语

众所周知,电波在隧道中的传播特性和自由空间不同。当隧道直线距离短、弯道多时,直射波传播将受到环境因素的影响。另外,由于隧道内有吸收衰减和多径效应,使传播衰减大大增加。因此,空间自由传播的方式在工程实施时必须提前进行勘察,设备布置的不确定性较大。在开放空间的区段(如高架桥,车辆段区域),因存在其他的民用WLAN,传输更加容易受到污染。该文仅从现有车地无线传输方式中进行比对,列举了目前各信号系统供应商及投入使用的信号系统无线传输系统各自的优点,下面将这几种方式的缺点统一列出。

(1)漏缆缺点:在地面和高架段施工安装时工艺复杂、美观效果差、漏缆采购价格较高。

(2)波导管缺点:工程施工难度较高,需全线安装,安装精度要求较高。设备造价较高,后期养护投入较大。

(3)无线电台缺点:电波传输受弯道和坡度影响大,隧道内反射严重,容易受到无线环境影响。频繁漫游切换,降低了无线传输连续性和可靠性。

(4)交叉感应环线的缺点:环线安装在钢轨的中间,安装困难且不方便日后对钢轨的维保工作。车地通信的速率低,环线交叉点距离比较小,在长线路铺设时施工较为繁琐。

CBTC列车控制系统能够根据前行列车和前方线路情况,在确保安全的前提下紧追踪前行列车运行,能有效缩短列车追踪间隔,运输效率也得到极大提高,因此在国内外能够得到迅速推广。目前各种无线传输系统均有着自身的优势和不足,如何利用优点,并克服缺点,合理化的应用城市轨道交通,是需要探讨并解决的问题。

参考文献

[1]付兵,廖理明.城市轨道交通CBTC信号系统[M].西南交通大学出版社,2016.

[2]魏S,鲁怀伟,何朝晖.基于802.11协议的CBTC系统数据通信子系统的探讨[J].铁道学报,2013,35(4):51-56.

轨道交通信号系统范文第8篇

摘要:本文从系统保证的角度开始,对有关的文献进行了大量的深入阅读。也参考了国外与国内的一些项目,对其实施状况进行了分析和比较,在此基础上对轨道交通信号系统的安全性、可用性、可维护性以及可靠性进行了总结和论述,最后对怎样实施全面的方法以及技术进行应用性研究。

关键词:轨道系统 信号系统 系统保证 故障安全

轨道交通信号设备的系统保证工程技术在城市轨道交通中发挥着重要的作用,该技术使用了系统保证领域中的一些方法以及手段,因此可以让信号设备达到有关的要求,符合系统保证的指标。这样,城市轨道信号设备就会处于一种可用性、安全性、稳定性以及可维护性的环境中运行。在对城市轨道系统进行设计、开发、生产以及运作、测试、运营时,都需要参考一定的准则和指标,即:系统保证要求以及一些具体的指标,这样行车才会安全。

1、系统保证文件的介绍

一般来说,信号系统在每一个工程阶段时,和系统保证有关系的任务、交付的文件以及相关的要求都会在合同中出现,并给与一定的明确和界定。我们可以在表1中看到在工程信号阶段时,信号系统需要使用的不同种类的通用性的系统保证文件。通过对表中的内容分析,不难发现文件所处的阶段不同,要求也就不同,因此系统保证的进度管理以及质量管理就会形成,这二者共同组成了系统保证文件的内容。

2、信号系统的安全性分析

2.1安全完整性水平

在对信号每一个子系统的硬件和软件进行制定和设计时,必须参考EN 50126、EN 50128以及EN 50129标准中的一些要求,比如:有关安全完整性方面的SRL要求和规定以及所要达到的SRL等级。我们可以在表2中看到关于信号系统中的每一个子系统的等级要求。需要注意的是,每一个信号系统接口的SRL等级一定要和其子系统的等级要一样,保持一致,不能有偏差。

2.2信号系统开发的周期以及过程

EN 50129对信号系统开发的周期进行了有关的界定,内容包括:开发需要的安全管理以及系统保证要使用的一些措施和方法。针对信号系统的安全保证,我们一定要按照有关规定的步骤进行操作,开展开发以及设计。

2.3危害性分析

所谓的危害性的分析指的是当系统存在潜在的危险时,需要有关的工作人员进行分析和研究。而危害性分析可以作为一项评估技术,在工程项目的对应阶段被用来当做信号系统的安全保证,其重要性可见一斑。在实际的实施过程中,我们需要提前对全部的危害进行等级的评估,此外还要制定风险矩阵。

风险等级的概念。(1)R1:如果没有特殊的状况,一般要对该类的风险进行消除。(2)R2:一定要把风险降到最低,一直到最低的实际可行的水平。(3)R3:是可以承受的风险,尽管这样还要从成本的效益出发,将风险降到最低。(4)R4:可以接受的风险。

关于信号系统每个风险等级的不同的处理要求。(1)当风险的等级处于R1或者是R2这个等级时,一定要对这些危害事件进行处理方法的设计,将风险的等级有效的降低,争取降到R3或者是R4这个范围中。(2)对于剩余风险等级为R1时,不要接受。

2.4量化风险的评估

当剩余风险等级为R1或者是R2时,这些事件就会产生严重的后果,会导致员工或者是乘客死亡。量化风险的评估的方法有两种,分别是:故障树分析和事件树分析。

故障树分析。使用该方法可以对复合故障、多种原因的影响、多余的设计以及人员的伤亡进行综合的分析和评估,也可以对组合事件发生的概率进行分析。此外,一些人为的因素以及环境因素都会在其中被包括。

事件树分析。使用该方法可以对全部的潜在后果进行分析和评估。同样,一些人为的因素以及环境因素都会在其中被包括。

3、可靠性、可用性和可维护性的分析

3.1 RAM分析

RAM分析一般在设计的阶段会使用到,这样信号的供货商就会对系统的RAM表现进行预测,设计就会满足设备的可靠性的要求。需要对以下这些情况进行列明:维修时怎样降低干扰和造成的不良影响、故障的模式等。此外,还包括人为因素。在分析之后,系统的薄弱环节就会得到确认,因此可以对改进的子系统进行清晰的显示。在这个过程中,需要参考有关设备的故障记录,从实际的运营过程中所出现的故障数据出发,做到对数据来源的详细的记录。我们要根据实际的情况来决定使用哪一种分析方法。

3.2 RAM证明计划

可靠性、可用性和可维护性(RAM)的证明计划需要信号供货商进行提供,一般是在保质期的前3个月。

结束语

信号系统在城市的轨道交通中发挥着重要的作用,因此需要使用一些成熟、先进的可靠设备,这样才会降低运营的成本,实现经济效益和社会效益的双赢。

参考文献:

[1]陈登科.城市轨道交通信号系统网络安全分析[J].铁路通信信号工程技术.2012(5).

[2]张文都.城市轨道交通信号系统的设计方案探讨[J].科技创新与应用.2012(23).

[3]程新胜.浅谈城市轨道交通信号系统的安全措施[J].中国科技博览.2012(36).

[4]姜华.浅谈城市轨道交通信号系统的设计[J].中国科技博览.2012(36).

[5]甘勇.城市轨道交通信号系统冗余技术分析[J].城市轨道交通研究.2012(5).

[6]邓志翔,李巧.城市轨道交通信号电源系统配置方案研究[J].城市轨道交通研究[J].2012(6).

轨道交通信号系统范文第9篇

【关键词】国内轨道交通;信号系统;现状;发展趋势

中图分类号:P135 文献标识码:A

1、概述

伴随着国内经济快速发展以及城市化进程的加速,公共交通系统以轨道交通信号系统为重点,逐步发展成国内许多特大城市的首选,城市轨道交通信号系统是一种先进装备用来保障行车安全,从而大大提升了交通运输能力。城市轨道交通信号系统之所以能够稳定发展是基于微电子、计算机以及通信技术的快速发展。在城市轨道交通信号系统中,有三种安全传输方式,关于地面与车载设备,包括模拟轨道电路、无线通信、数字轨道电路。

目前,国内主要采用的无线通信的传输方式有以下几种:第一种是无线AP传输,其优点是安装简单,施工方便,成本较低,其缺点是无线场强分布不均匀,采用沿着轨道方向的无线定向天线,传输距离可以达到200——400m。第二种是漏线电缆传输,其优点是场强覆盖均匀,适应性强,并且电磁污染小,但是去成本较高。第三种是感应环线方式,其优点是实现列车定位,车-地双向传输,其缺点是给线路的日常养护带来不便。

2、国内城市轨道交通信号系统的现状

因为我国的城市轨道交通还处于雏形阶段,轨道交通系统设备不足,用于实现城市轨道运营宗旨、体现运输特点、确保行车安全、实现大运量高密度运输的信号系统国内还不能自主生产。由于条件所限,某些规章制度难以落实,非定型产品又多,给日后的运营和维修带来了困难和麻烦。我国首次把“发展城市轨道交通”列入国民经济第十个五年计划发展纲要,并作为拉动国民经济、特别是大城市经济持续发展的重大战略。目前城市轨道交通信号系统技术已经发展到以先进的列车自动控制系统为代表的信号系统。ATP子系统主要功能包括:自动检测列车的位置;确定列车运行的最大安全速度;连续速度监督,实现超速防护及车门控制;控制列车运行间隔,满足规定的通过能力;保证车站设备的正确联锁。

ATP/ATO 除了少数采用国产设备外,绝对大多数采用引进设备。我国的城市轨道交通信号大体有以下应用模式:除部分基础设备外,整套引进国外信号系统 ;采用国产的 ATS 和计算机联锁,和国外的 ATP/ATO 配套 ;国内企业提供完整的信号系统。

我国早期建设的运营线路(旧线)一般采用轨道电路方式的ATC系统,因此在信号系统改造时,推荐采用基于通信的列车控制系统(CBTC)方案。目前运营的CBTC系统都是国外设备,从实际运营的情况看,存在着维护费用高的问题,因此发展国产化的CBTC设备成为当前紧迫的任务。

3、国内城市轨道交通信号系统的发展趋势

首先,参与技术服务,国内硬件加工,逐步吸收熟悉国外技术,其次,通过技术引进,掌握系统功能单元间接口协议和技术标准,最后要积极跟踪并参与CBTC的研究。

城市轨道交通信号系统的国产化,不仅能降低建设成本(国产的CBTC比引进国外的系统造价低20%),而且能降低运营成本,更加重要的是促进我国城市轨道交通技术水平的大幅提升,有利于人才培养,并且参与国际竞争。

城市轨道交通的信号系统,已从早期的固定闭塞发展到了准移动闭塞,正在向移动闭塞方向发展。传统的信号系统即以地面信号显示为依据,司机按行车规则操纵列车运行。现代信号系统有六个基本目标:以安全的方式控制列车有条件地前进;使本列车与前行车或股道尽头保持安全距离;防止出现列车冲突进路;使列车能够按要求的时间间隔运行;使列车能够按时刻表速度运行,以便最大程度地避免危及安全的各种干扰;保证关键点闭锁在正确位置。

ATP的主要作用是根据故障-安全原则,执行列车间安全间距的监控、列车的超速防护、安全开关门的监督和进路的安全监控等功能,确保列车和乘客的安全;ATO主要执行站间自动运行、列车在车站的定点停车、在终点的自动折返等功能;ATS的主要作用是监督列车状态、产生列车时刻表、自动调整列车运行时刻和保证列车按时刻表正点运行、生成运行报告和统计报告、向旅客向导系统提供信息等。

由于通信技术的发展,ATC系统中ATS子系统的功能也越来越强,已不仅仅是传统意义上的“列车自动监督”,ATS子系统正在向集成化方向发展;维修管理更加重要为了提高系统的可靠性、减少维护费用,信号系统的监控管理以及维修管理信息系统都非常重要。

4、结束语

城市轨道交通信号系统是一种高科技含量、行车过程全自动化和安全性能极高的设备。并且对其可使用标准的设计理念和管理模式,有它自主的研发团队,生产供货一体化,加速了城市轨道交通的发展,最重要的是有效改善了信号系统制式的冗杂,以最新的角度和立意在城市发展中取得了轨道交通信号标准体系的成功发展,在人才培养方面,做到了全面栽培、重点选拔,使得我国的城市轨道交通信号系统得以完善。我国在此方面的技术还有待于提高,争取在未来的日子里拜托依赖国外先进技术的局面,创造一个中国品牌而屹立在世界之巅,这样的跨时代的发展具有非常深远的战略意义。

参考文献:

[1]杜平.城市轨道交通信号系统的发展[J].铁道通信信号.2010.(5)

[2]肖宝弟,贾学祥.对我国城市轨道交通信号系统发展战略的思考 [J]. 现代城市轨道交通,2004.(2)

[3]张铁增,林瑜筠.对于城市轨道交通信号系统发展的思考[J].铁路通信信号工程技术,2013.(2)

轨道交通信号系统范文第10篇

【关键词】现场总线城市轨道信号系统

一、引言

随着计算机和通信技术大量应用于信号系统中,传统的集中控制模式的信号系统逐渐被淘汰,采用现场总线技术的分散控制模式的信号系统逐步应用于城市轨道交通中。

二、现场总线技术的分类

目前城市轨道交通信号系统中使用的现场总线主要有以下几种:PROFIBUS、CAN、LONWORKS等。其主要技术特点如下:(1)PROFIBUS现场总线。PROFIBUS是一种国际性的、开放式的、不依赖于生产商的现场总线标准。它诞生于1987年,由德国SIEMENS公司等组织开发,先后成为德国和欧洲的现场总线标准(EN50170),并于2000年成为IEC61158中的现场总线国际标准之一。(2)CAN现场总线。CAN是控制器局域网(Control Area Network)的简称,最早由德国BOSCH公司推出,用于汽车内部测量与执行部件之间的数据通信,其总线规范被ISO国际标准组织制定为国际标准。CAN总线在国内应用非常广泛,在目前的轨道交通有大量应用实例。

三、现场总线技术在城市轨道交通信号系统中的应用

城市轨道交通信号系统主要由计算机联锁子系统、列车自动防护子系统、列车自动驾驶子系统和列车自动监控子系统组成。本文讨论西门子计算机联锁子系统中现场总线的应用。

SICAS ECC基本配置:(1)操作与显示控制系统:包括计算机单元操作控制台、中央操作与显示功能、服务与诊断(S&D)设备。(2)IC(联锁计算机)系统:包括用于联锁的信号和安全逻辑,多样化的微机、冗余设计和到EIM-ECC的总线连接。(3)SICAS ECC(元件控制计算机):带有3取2计算机系统的故障-安全EIM-ECC,用于室外设备和轨道空闲检测的接口连接)。

从SICAS系统硬件图中可以看到整个SICAS系统用到了ATS总线和PROFIBUS总线。其中SICAS ECC与相邻的SICAS ECC之间采用PROFIBUS总线进行通信、SICAS ECC与下一个SICAS之间采用PROFIBUS总线进行通信,SICAS IC与SICAS ECC采用PROFIBUS总线进行通信,而SICAS IC与相邻的SICAS IC采用ATS总线通信,SICAS IC和控制中心也采用ATS总线进行通信。

SICAS系统进行了冗余设计,SICAS的冗余设计分为设备冗余和通道冗余。通道冗余指的是每一台设备提供两个通道,例如PROFIBUS A通道和PROFIBUSB通道,两个通道信息同步,设备可以任意选择一条传输通道进行信息的传递。

由于采用了PROFIBUS现场总线,计算机联锁系统的系统结构具有高度分散性,网络采用冗余结构,而且从PROFIBU协议模型看,显而易见不仅简化了系统结构和设备,还提高了可靠性。重要的工作站,如SICAS ECC都享有信息通道冗余,可实时地选用PROFIBUS A、B网络中任一通道完成数据传输,保证了信息的安全性和可靠性。

四、结论

城市轨道交通的快速发展,对信号系统提出了更高的要求,为了改进传统信号系统的一些缺点,比如设备复杂,故障查找困难等,越来越多的城市轨道交通信号系统使用现场总线技术来简化系统结构、提高系统可靠性、降低成本。现场总线技术的应用也使得城市轨道交通信号系统向着数字化、网络化、智能化的方向发展。随着我国城市轨道交通快速发展,会有越来越多的现场总线进入城市轨道交通领域。

参考文献

[1]刘阳学,现场总线技术在城市轨道交通综合监控中的应用,现代城市轨道交通,2006年5月,pp.11-13

[2]房瑛,西安地铁CBTC方案实现的探讨,铁道通信信号工程技术,2010年2月,pp.59-61

上一篇:轨道焊接范文 下一篇:公路法范文