纤维混凝土范文

时间:2023-10-18 00:29:01

纤维混凝土

纤维混凝土篇1

[关键词]混凝土 纤维 强化 结构

中图分类号:TU278.39 文献标识码:A 文章编号:1009-914X(2014)21-0214-01

一、纤维混凝土的作用和增强机理

1、纤维混凝土的作用

取决于纤维自身的性质以及它在混凝土基体中散布混合的状态。纤维加入水泥基体中主要有以下作用:阻裂:阻止水泥基体中原有缺陷(微裂缝)的扩展并有效延缓新裂缝的出现。纤维的作用可大大减少甚至彻底消除宏观裂缝产生。防渗:因减少了水泥基体中的连通裂缝,故可有效阻止外界水分侵入。耐久:改善水泥基体抗冻、抗疲劳等性能,提高耐久性。增韧与抗冲击:提高水泥基体耐受变形的能力,从而改善其韧性和抗冲击性。

2、纤维混凝土增强机理

水泥混凝土具有成本低、硬化前塑性好、硬化后抗压强度高、耐久性好等优点,广泛应用在各种土木工程中,但也存在脆性大、易开裂、抗拉强度低等缺点。为了克服这些缺点,长期以来,人们提出了很多增强办法,其中在水泥混凝土中加入适量的短纤维是一种有效的增强办法。目前在混凝土工程中掺加的纤维主要有:钢纤维、玻璃纤维、聚丙烯纤维、尼龙纤维、石棉、芳纶纤维、聚酯纤维、碳纤维等。

二、纤维混凝土性能实验研究

在混凝土中添加不连续的延性纤维可以显著改善混凝土的脆性。近年来的工程实践表明:低掺量纤维的高性能混凝土,不仅具有经济价值,而且对于促进高性能混凝土的发展具有推动作用。随着高性能混凝土的发展,纤维增强混凝土的应用正日益普遍。目前在混凝土中添加各种纤维改善混凝土性能的研究发展迅速。研究发现添加聚丙烯纤维对混凝土材性的影响,通过对混凝土微观结构的分析可知,这一措施可以显著改善混凝土的抗渗性能和抗火性能。研究发现添加碳纤维对于混凝土性能的改善。添加混杂纤维亦可改善混凝土性能,。对于添加纤维的混凝土力学性能研究的重点主要是材料的抗裂性能、抗收缩、徐变的能力以及抗冲击性能;而对于材料的抗压、抗拉强度以及弹性模量的研究却非常少,材料的这些力学性能对于结构或构件承载力和变形的计算却是最基本的参数。

三、纤维混凝土的应用与拓展

在查阅大量资料后,结合资料和自己的理解得知:目前,纤维混凝土被广泛地应用于混凝土路面、桥涵结构物、高层建筑、造船、海岸防护、隧道、水利水电等众多领域。

由于聚丙烯纤维混凝土在抗裂、防水、抗疲劳等方面的优良特性,因此其可应用在:

(1)公路的路面,使路面的使用寿命延长5~10年;

(2)隧道、矿井等墙面和顶部的喷射混凝土,其回弹脱落不超过4%~5%;

(3)水坝、运河、蓄水池、水渠、游泳池、港口、船坞、码头减少龟裂,降低渗透性;

(4)混凝土预制体、灰浆板可增强混凝土的粘合性,降低损耗;

(5)楼房建筑中的复合楼板、屋顶板、顶尖覆盖层、建筑装饰物,可增强建筑的多种指标,且可取代金属丝网。

桥路面中的应用

许多国外的抗磨试验表明,加入聚丙烯纤维后的混凝土可增加粗糙度,使混凝土在同样外露表面磨损试验条件下,抗磨损能力增加1倍。挪威高速公路试验室进行抗磨试验时,是在挪威有钉帽的轮胎测试混凝土磨损试验机上进行的,其结果表明,C75有纤维的混凝土试样与无纤维的试样对比,其抗磨损能力增加52%,而其试件磨损损失量减少34.4%。C50纤维混凝土试样水泥用量虽少,但与C75试样对比,其抗磨损能力增加20%,而其材料磨损损失量减少17.2%。用聚丙烯纤维混凝土作桥梁工程桥面铺装层可纤维混凝土代替钢纤维混凝土,节省了投资。有效地抑制和减少裂缝,增强桥面的防水性和抗破能力,减缓钢筋锈蚀和延长结构的寿命。

板式混凝土结构

聚丙烯纤维混凝土目前得到最广泛应用的场合主要是面支承平板结构,水电站的消力池、护坦 、船闸底板等都属于面支承平板结构一类的底板混凝土。厚度大多较小,常和基岩直接接触,混凝土浇筑后因基岩约束,容易发生裂缝。聚丙烯纤维混凝土因其干缩量小初凝时的塑性收缩微裂纹得到抑制,因此可以减轻这类底板混凝土开裂问题。在常规设计中,为了防止表面收缩裂缝,往往设置了表层分布钢筋网。由于钢筋网中间距一般为15~20 cm,因各种原因,有时实际起不到防止混凝土表面裂缝的目的。采用一定掺量的聚丙烯纤维混凝土来替代钢筋网可能是一个经济有效的措施,也大大简化了施工,加快了进度很值得进行试验研究。

喷射混凝土工程的应用

聚丙烯混凝土有较高的粘稠性,很适宜用于喷射混凝土。喷射聚丙烯纤维混凝土与喷射普通混凝土比较,能显著减少回弹损失,增加一次喷射厚度,提高生产能力,降低总成本,并能防止产生裂纹。可用于隧道支护、护坡工程 、建筑物穹顶和拱桥底部修补喷浆、水池及筒仓结构的预应力绕丝喷浆护面等。喷射聚丙烯纤维混凝土施工时宜用湿喷法,可以较准确的控制水灰比,提高喷射混凝土质量和减少回弹损失,并使聚丙烯纤维在混凝土中得到充分分散 。湿喷机械过去完全要靠进口,主要是有日本、美国研制的挤压泵型 、英国的compernass 型和德国的BsM-903型湿喷机,价格十分昂贵。近年来我国铁道科学研究院西南分院已研究出TK-961型湿喷混凝土喷射机,比进口产品便宜甚多,每小时可喷射混凝土5m3, 最大水平和垂直输运距离分别达到 40m和20m,但自动化程度低操作人员需精心控制喷射参数。

高速水流作用的部位

水利水电工程的溢流面、泄洪洞、消力池、溢洪道泄流槽、闸门门槽以及排沙孔道都有高速水流冲刷、磨损和气蚀问题,特别当水流中掺有泥沙时,问题更为突出。为提高这些部位的混凝土抗冲蚀磨损能力,以往的工程措施是采用高强度混凝土、硅粉混凝土和钢纤维混凝土等。不但工程造价高,而且高强度混凝土、钢纤维混凝土和硅粉混凝土施工都较困难。利用聚丙烯纤维混凝土良好的抗冲磨性能用于上述工程部位是合理的选择,还可以不必提高混凝土标号。

结束语:

聚丙烯纤维在防止砂浆、混凝土早期收缩裂缝方面的显著作用已得到许多工程实例和试验研究的证实。利用聚丙烯纤维混凝土良好的抗冲磨性能将其应用于水利水电的各水下工程部位是合理的选择,而且还可以不必提高混凝土标号。具有良好的经济效益和实用效益。聚丙烯混凝土有较高的粘稠性,很适宜用于喷射混凝土。喷射聚丙烯纤维混凝土与喷射普通混凝土比较,能显著减少回弹损失,增加一次喷射厚度,提高生产能力,降低总成本,并能防止产生裂纹。

钢纤维混凝土具有良好的耐磨性和韧性,在道路工程中应用可减薄铺设厚度,可显著延长路面寿命,其公路路面、桥面铺装、隧道衬砌等方面将得到越来越广泛的应用。室外内试验研究表明,与普通混凝土相比,在相对较低的水泥用量情况下,钢纤维混凝土具有较高的抗折强度和耐磨性能、良好的抗冲击性能和抗裂性能,非常适合在重载交通路面丁程中应用。

纤维混凝土篇2

关键词:混杂纤维;高性能混凝土;高温性能;抗折强度;抗压强度;

中图分类号: TU37 文献标识码: A 文章编号:

0.引言

火灾事故中民众的人身安全是民用建筑、公共建筑及工业建筑设计所必须考虑的问题。与木材和塑料相比,混凝土是不燃物,即使在高温条件下也不会释放有毒烟雾;与钢材相比, 混凝土即使在700~800 e 高温下,仍然能在一定时间内保持足够的强度,从而降低了结构倒塌的风险,使人们可以赢得安全撤离的时间。然而,混凝土结构在高温下极有可能发生毁坏性爆裂,表现为突然、猛烈的脆性破坏。对于脆性和密度更大、渗透性更低的高强混凝土,产生爆裂的危险性更大,并且受热温度越高,混凝土强度等级越大,发生爆裂的几率和剧烈程度也越大。因此,深入研究混凝土高温爆裂的成因机理,设法改善混凝土的内部缺陷, 对提高混凝土的抗火性能有着深远的意义。

1.试验原材料与试验方法

1.1 试验原材料

进行试验的原材料主要包括以下几种:水泥,采用的是42.5级普通硅酸盐水泥;粉煤灰,采用的是汇能II型复合粉煤灰;粗骨料,采用玄武岩碎石,粗骨料为5—20mm连续级配碎石;细骨料,采用的是江砂,中砂,细度模数为2.7;减水剂,采用的是Grace S20高效减水剂,减水率大于20%;钢纤维,采用的是Harex钢丝钢纤维,l=30mm,d=0.60mm,l/d=50;聚丙烯纤维,在本次试验中,采用的是长坚聚丙烯纤维。材料选择好之后,按照相关的规定和标准做好配合比。

1.2 试验方法

在试验的时候,主要是试验混凝土的抗压强度、抗折强度、破裂抗拉强度,所采用的是试件尺寸是150mm×150mm×150mm。当试件成型之后,在室温下经过24h养护之后,然后脱模,放在标准养护室当中养护至60d,再在常温下放置1d之后,进行高温试验。在高温试验的时候,采用的是电炉,其温度一直不断的升高,当达到一定的值之后温度保持相对稳定。本电炉的最高温度能够达到1000℃,采用正常方式升温,达到指定的温度之后,恒温两个小时。冷却方式采用炉内自然冷却。掺混杂纤维混凝土抗爆裂性能影响试验温度为800℃和1000℃。

2.试验结果分析

(1)混杂纤维对高温下混凝土抗折强度的影响。通过对比分析,在200℃以前,200℃-400℃之间,800℃时候,掺入与未掺入混杂纤维的抗折强度呈现出不同变化。但最终二者的抗折强度变化逐渐趋同。值得注意的是,纤维挥发会在混凝土当中引入一定数量的孔道,影响了混凝土的抗折强度。而在200℃-400℃范围之内,基准混凝土抗折强度急剧下降,当温度升高到一定的时候,纤维发挥殆尽,引起抗折强度随着温度的变化而逐渐趋同。

(2)混杂纤维对高温下混凝土抗压强度的影响。常温下掺加与不掺加混杂纤维的混凝土抗压强度相差不大。随着温度的升高,它们的抗压强度变化趋势相同,并且降低的速度相差也比较小。

(3)混杂纤维对高温下混凝土劈裂抗拉强度的影响。常温下,掺入和没有掺入混杂纤维的混凝土的劈裂抗拉强度差别不大,而掺入混杂纤维之后,由于钢纤维的存在,提高了抗拉强度剩余率,由此我们可以得知,掺加钢纤维能够能够提高混凝土高温后的抗拉性能。

3.混杂纤维改善混凝土高温性能的机理

(1)混凝土爆裂现象的产生。一般来说,人们普遍认为混凝土受热爆裂的过程,就是混凝土的水分从内部逸出的过程。当温度不断升高,混凝土强度损失的速率也相应的增加,温度达到600℃的时候,强度会损失50%,当温度达到800℃的时候,强度会损失80%左右。就高强度混凝土来说,它的密实度往往比较高,空隙率比较低,蒸发通道不畅,这就使得水分不容易逸出,往往达到过高蒸汽分压,大大超过了混凝土的抗张强度,使得混凝土不能抵御这种过大的内部压力,从而引起爆裂现象的发生。

(2)混杂纤维改善混凝土高温性能。当掺入混杂纤维之后,这种情况就得到了相应的变化。当温度为180℃的时候,混凝土处在自蒸阶段,内部的压力变化比较小。而聚丙烯纤维的熔点很低,到了该温度的时候早已经熔化,熔化之后其液体体积十分小,占用很小的空间,往往形成很多的小空隙,聚丙烯纤维分布均匀,纤维数量极多,比较细小,引起混凝土内部孔结构发生相应的变化,这就加强了孔隙的连通性,为混凝土内部水分的蒸发提供了通道。同时还缓解了水分膨胀所形成的分压,大大降低了混凝土内部的压力,防止了混凝土爆裂的产生。

4.试验结论

通过对以上试验结果分析,可以得出以下几个结论:

(1)高温情况下,混在纤维可以发挥良好的作用,能够有效的阻止混凝土发生爆裂现象,还不会对混凝土造成破坏,能够保证混凝土的完整性。在高温之后,混凝土还能够承受较高的荷载。当达到800℃高温的时候,抗折强度剩余率约为10%,劈裂抗拉强度剩余率约为20%。

(2)在高温条件下,聚丙烯纤维熔化之后,往往会留下若干的孔洞。这些孔洞形成高压蒸汽的排出通道,这样就阻止了爆裂的产生。但与此同时,也使得混凝土的强度得以减弱。并且,还形成了外部介质入侵的连通性通道,使得混凝土的耐久性大大降低。

(3)当温度如果继续升高,超过一定的限度之后,基准混凝土与混杂纤维混凝土的抗折性能变化趋势一致。

5.结语

(1)具有高强或高耐久性的高性能混凝土正逐渐替代普通混凝土并已广泛应用于混凝土结构中,但由于高性能混凝土本身的内部缺陷,使其在遭遇火灾时容易发生爆裂,这无疑会对人们的生命财产安全造成极大隐患。混杂纤维的掺入不仅能降低混凝土在高温下产生爆裂的可能性、较好地保持混凝土的完整性,而且能改进高强混凝土的脆性问题、明显改善混凝土高温后的力学性能。

(2)合理的纤维掺量能使高性能混凝土的耐火性达到最佳状态,但目前对混杂纤维混凝土高温性能的研究还比较离散,需要继续深入研究混杂纤维混凝土抗爆裂性能并寻求纤维的合理掺量,以期既能提高混凝土的耐火性,又能降低纤维混凝土的成本,使纤维混凝土在实际工程中得到更广泛的应用。

参考文献

[1]刘沐宇.不同混杂纤维掺量混凝土高温后的力学性能[J].华中科技大学学报,2012(4)

[2]鞠丽艳.混杂纤维对高性能混凝土高温性能的影响[J].同济大学学报,2011(1)

[3]潘慧敏.混杂纤维混凝土耐高温性能试验研究[J].铁道建筑,2012(10)

[4]芳,施养杭.混杂纤维混凝土高温性能研究[J].安全与环境工程,2010,02:119-122.

纤维混凝土篇3

关键词 钢纤维混凝土冻胀 推广应用

中图分类号:TU37文献标识码: A

钢纤维混凝土是一种新型的优质水泥基复合材料,是当今世界各国普遍采用的混凝土增强材料。它具有抗裂、抗冲击性能强、耐磨强度高、与水泥亲合性好,可增加构件强度,延长使用寿命等优点。由于优异的力学性能、化学稳定性、轻质高强、施工方便快捷、省力节时、施工工序简单、施工质量易于保证,而且进度快、工期短、补强后不改变结构外形,不显露补强痕迹,以及工程造价低等优点而被广泛应用。

⑴ 钢纤维混凝土的特性

① 力学强度

根据各国钢纤维混凝土资料分析,钢纤维对提高混凝土的抗压强度不显著,统计资料表明,钢纤维混凝土抗压强度仅提高了10%左右,但其受压韧性却大幅度提高。这是由于钢纤维的存在,增大了混凝土的压缩变形,提高了破坏时的韧性;试验表明,钢纤维混凝土的劈拉强度、抗剪强度、抗弯强度等均比普通混凝土有大幅度的提高。

② 钢纤维混凝土的韧性及抗裂性能

韧性是在材料受力破坏前吸收能量的性质。抗裂性是指钢纤维在脆性混凝土基体中减少裂缝和阻止裂缝开展的性质。混凝土中掺入钢纤维后,可减少收缩和变型,并且荷载作用时,随着荷载继续增加,超过混凝土所能承受的压力时,应力通过混凝土与钢纤维的粘结力传递给钢纤维,混凝土受到钢纤维的约束作用,限制了新裂缝的发生,推迟了裂缝的扩展,因此钢纤维混凝土具有较好的韧性和抗裂性。

③ 钢纤维混凝土的耐磨性和耐久性

混凝土中掺入钢纤维后,其耐磨性能得到了很大提高。国内采用了标号为C35 和CF35的普通混凝土和钢纤维混凝土5cm×5cm×5cm的试件在国产耐磨机上做等条件磨损试验。结果表明,钢纤维混凝土比普通混凝土的磨损损失降低了30%;钢纤维混凝土的耐腐蚀性、抗冻融性等均较普通混凝土好。

⑵ 钢纤维混凝土的施工技术

① 钢纤维混凝土拌和

为防止钢纤维混凝土在搅拌时纤维结团,在施工时每拌一次为搅拌量的80%。采用滚动式搅拌机拌和,在搅拌混凝土过程中必须保证钢纤维均匀分布。为保证混凝土混合料的搅拌质量,采用先干后湿的拌和工艺。投料顺序及搅拌时间为:粗集料钢纤维(干拌1min) 细集料水泥(干拌1min) ,其中钢纤维在拌和

时分三次加入拌合机中,边拌和边加入钢纤维,再倒入黄砂、水泥,待全部料投入后重拌2min~3min ,最后加足水湿拌1min。总搅拌时间不超过6min ,超搅拌会引起湿纤维结团。按此程序拌出的混合料均匀。若在拌和中,先加入水泥和粗、细集料,后加钢纤维则容易结团,而且纤维团越滚越紧,难以分开,一旦发现有纤维结团,就必须剔除掉,以防影响混凝土的质量。

② 钢纤维混凝土的浇捣

钢纤维混凝土浇捣与普通混凝土一样,浇捣是施工中的重要环节,直接影响钢纤维混凝土的整体性和致密性。不同之处就是其流动性较差,在边角处容易产生蜂窝。因此,边角部分可先用捣棒捣实。边角采用插入式振动器振捣,然后用夯梁板来回整平。

⑶ 钢纤维混凝土在灌区使用前景

河套灌区建筑物主要为小型的农田水利枢纽,包括水闸、桥梁、渡槽、涵洞及泵站等。由于河套灌区属于北方地区,冰冻时间较长,冻深较大,而产生的冻胀破坏,是影响灌区建筑物使用寿命的因素之一。钢纤维混凝土具有良好的韧性、抗裂性等良好的力学性能,可以减轻冻胀破坏对灌区建筑物寿命的影响。

目前,钢纤维混凝土在《黄河内蒙古河套灌区续建配套与节水改造》中的公庙子分干沟扬水站、南二分干沟扬水站中使用,工程项目运行2年,效率良好,混凝土表面并无除险裂缝、剥蚀等破坏现象。

钢纤维混凝土在河套灌区算是新的材料、新工艺,受传统观念的影响,新事物的产生到推广应用需要经历一定的时间。随着工程的进展,相信钢纤维混凝土会得到广泛推广应用的。

参考文献:

[1] 李世恩 申永坚 纤维混凝土在水工建筑物工程中的应用 人江 2002(2);

[2] 朱胜才 层布式钢纤维混凝土复合路面的应用 山西建筑 2007.22(5);

[3] 程秀菊.钢纤维混凝土的增强机理及断裂韧性的研究. 河海大学硕士学位论文.2005.3;

[4] 高丹盈,黄承过.钢纤维混凝土的抗压强度.河南科学,1991.9(2):83;

[5] 何华兴.浅谈钢纤维混凝土及其施工应用.科技信息,2008(19):137;

[6] 柯名强.论钢纤维混凝土的性能、施工与应用前景.科技资讯,2008(8):70;

[7] 中国建筑科学研究院.普通混凝土配合比设计规程((JGJ55一 2000) 「M.北京:中国建筑工业出版社,2002;

纤维混凝土篇4

Abstract: Along with the development of market economy, China's urbanization process accelerates. Chinese infrastructure construction is gradually increasing, road and bridge projects construction increases, and the demand for building materials to road and bridge projects bwcomes higher and higher. Steel fiber reinforced concrete as a new type of composite material, can effectively enhance the construction of concrete tensile, flexural and impact performance. This paper briefly outlines the basic concepts and performance of steel fiber reinforced concrete, deeply discusses the specific applications of steel fiber reinforced concrete in road and bridge engineering, and briefly introduces construction technology of steel fiber reinforced concrete for reference.

关键词:钢纤维混凝土;施工工艺

Key words: steel fiber reinforced concrete;construction technology

中图分类号:TU37 文献标识码:A文章编号:1006-4311(2010)23-0063-01

1钢纤维混凝土概述

随着我国城市化建设的迅速发展,我国居民对建筑工程质量要求越来越高,为了增强混凝土的强度,在工程施工中一般在普通的混凝土中加入一定量的钢纤维混合成钢纤维混凝土,以此来改善混凝土的拉伸强度,增加其承载能力,钢纤维混凝土在我国的基础建设工程中已经得到了广泛应用。

钢纤维混凝土是在普通混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效地阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地改善了混凝土的抗拉、抗弯、抗冲击及抗疲劳性能,具有较好的延性。

钢纤维混凝土(简称SFRC)是指把占混凝土体积的1%~2%的,直径为0.3~0.6mm、长度为20mm,40mm的短钢纤维均匀地混合到混凝土中,可以是特定方向也可以是随机的方向。新形成的混凝土便是钢纤维混凝土,根据掺入的钢纤维的加工工艺的不同,钢纤维混凝土主要可以分为四种,其中冷拔型钢纤维抗拉强度最高,性能最好。根据纤维增强机理的各种理论,诸如纤维间距理论、复合材料理论和微观断裂理论,以及大量的试验数据的分析,可以确定纤维的增强效果主要取决于基体强度(fm),纤维的长径比(钢纤维长度l与直径d的比值,即l/d),纤维的体积率(钢纤维混凝土中钢纤维所占体积百分数),纤维与基体间的粘结强度(τ),以及纤维在基体中的分布和取向(η)的影响。当钢纤维混凝土破坏时,大都是纤维被拔出而不是被拉断,因此改善纤维与基体间的粘结强度是改善纤维增强效果的主要控制因素之一。

钢纤维混凝土主要是通过取代建筑工程中的钢筋,减小构件的截面尺寸或减小路面的厚度,调整伸缩的缝间距等来提高路桥工程的质量,有效地缩短工期,降低路桥工程的造价,保证其较长的使用寿命。

2钢纤维混凝土在路桥工程中的具体应用

2.1 在路面工程中的应用钢纤维混凝土在路面工程中应用时,主要是通过减少路面的铺设厚度,少设缝隙,提高路面的耐磨性等来提高路面的使用寿命,从具体的应用来看,主要包括两个方面的应用,一方面是钢纤维混凝土在新建路面工程中的应用,另一方面是钢纤维混凝土在罩面修补路面中的应用。在新建路面的工程中,采用钢纤维混凝土,减小路面的厚度,保证双车道路面不设纵缝,增加路面的使用寿命。在罩面修补路面中,可以采用结合式罩面面层与旧混凝土相互粘结为一整体,共同发挥结构的整体强度作用。也可以采用分离式罩面层,在中间设置一个隔离层,各层独立发挥作用。

2.2 在桥梁工程中的应用钢纤维混凝土一般在桥梁工程中应用于以下几个方面,在桥面铺装上,可以利用钢纤维混凝土达到上述道路工程的效果,有效改善桥梁的受力情况,在桥梁结构的局部加固方面,可以采用转子Ⅱ型喷射机喷射5~20cm钢纤维混凝土以满足结构的整体性和抗震性要求。

2.3 在隧道工程中的应用在隧道工程中采用钢纤维混凝土,一般是通过钢纤维混凝土对隧道进行支护加固,可以有效的加强隧道结构的整体性,增强其承载能力,同时在隧道工程中,可以采用钢纤维混凝土减少隧道的衬砌结构厚度,增强隧道的抗震能力,减少隧道的开挖数量,降低隧道工程的成本,增强隧道工程的经济效益。

3施工中应注意的问题

钢纤维混凝土因其低成本和有效提升混凝土强度的作用,在路桥工程上应用广泛。钢纤维的分布是否均匀对钢纤维混凝土的工程质量有很大的影响。为了保证钢纤维混凝土发挥出其应有的作用,在施工中,除了依据混凝土的施工规范进行施工外,还要关注以下几个方面:

3.1 施工流程中需要注意的将钢纤维放入搅拌机与混凝土搅拌在一起时,必须要先通过分散机,采用分级投料,按照砂、钢纤维、碎石的次序,先干后湿,进行搅拌,避免出现结团现象。同时在进行钢纤维混凝土浇注时必须连续保持连续进行,振捣时使用平板振动器振捣成型,并将振捣过的混凝土表面压平,避免钢纤维外露。

3.2 施工工具方面在钢纤维混凝土施工时要避免搅拌机的超负荷工作,一般在进行钢纤维混凝土施工中采用的工具是强制式搅拌机。在钢纤维混凝土工程即将完工时,可以采用摊铺机将其做成整幅式。

4结语

随着我国城市化建设的深入发展,路桥工程作为城市基础建设的重要组成部分,将会逐步增加,钢纤维混凝土作为新型的混凝土符合材料,可以提高混凝土的强度,降低路桥工程成本,可以预见,其将会在路桥工程中广泛使用,同时随着生产方法的成熟和生产技术的改进,钢纤维混凝土的成本将逐渐降低,因此其应用范围将进一步拓宽,在具体的施工过程中,一定要严格按照混凝土的施工规范进行指导操作,保证钢纤维混凝土最大效用的发挥。

参考文献:

[1]徐平.钢纤维聚合物混凝土机床基础件静动态力学性能及损伤机理研究[D]. 辽宁工程技术大学,2006 .

[2]范小春.层布式钢纤维混凝土基本性能与应用研究[D].武汉理工大学, 2008.

[3]郭艳华.钢纤维混凝土增韧性能研究及韧性特征在地下结构计算中的应用[D].西南交通大学,2008.

[4]胡铁明.简支变连续法加固混凝土梁桥疲劳试验研究[D].大连理工大学, 2009.

纤维混凝土篇5

关键词:路桥施工技术;钢纤维混凝土

中图分类号:u41 文献标识码:a

钢纤维混凝土是一种在普通的混凝土中掺入乱向分布的短钢纤维所形成的一种新型的多相复合材料。这些乱向分布的钢纤维能够有效的阻碍混凝土内部微裂缝的扩展及宏观裂缝的形成,显著地提高了混凝土的抗拉强度、抗弯强度、抗冲性、抗冻性、抗磨性、抗疲劳性,并且具有良好的延性。因为钢纤维混凝土的众多优越性,国内外更深入的研究,使得它成为一种使用越来越广泛的建筑材料。本文对从钢纤维混凝土的性能探讨了钢纤维混凝土在路桥中的施工技术。

1钢纤维和钢纤维混凝土的性能

1.1钢纤维及其性能

钢纤维是一种用钢质材料加工而成的短纤维。钢纤维的制成方法主要有以下4种:

a.钢丝切断法

钢纤维的抗拉强度可达1000~2000mpa。但它的表面较光滑,使其粘结强度较差。通常可以使用改变钢纤维外形,以增加其粘结强度,如波形法、压棱法、弯钩法。

b. 薄钢板剪切法

用冷轧薄钢板剪切而成。剪切前,用特制的纵剪机将冷轧薄钢板剪成带钢卷,然后将带钢卷用普通旋转道具或冲切床切成矩形截面的钢纤维。

c.铣削法

将厚板或钢锭用旋转的平刃铣刀进行铣削而成。铣削法产生的钢纤维与混凝土的粘结性能很好,因为铣削法会使钢纤维产生很大变形导致钢纤维截面形成月牙形。

d.熔钢抽丝法(熔抽法)

熔抽法制成的钢纤维成本低,制造工艺简单,生产效率高。但是由于荣熔抽法制成刚纤维过程中是完全暴露在空气中的,钢水容易氧化,形成一层氧化层,降低了钢纤维与混凝土的粘结强度。

钢纤维具有很高的抗拉强度。冷拔钢丝切断法制成的钢纤维抗拉强度可高达600~1000mpa,而其它方法的钢纤维抗拉强度一般在380~800mpa。钢纤维的弹性模量为200gp,极限伸长率为0.5%~3.5%。钢纤维混凝破坏的主要原因是因为钢纤维的拔出,所以为了增加混凝土和钢纤维的咬合力,可以将钢纤维的表面形状进行改变。

1.2钢纤维混凝土的基本性能

钢纤维混凝土是一种性能优良且应用广泛的新型复合材料,由于钢纤维阻滞基体混凝土裂缝的发生和开展,其抗弯、抗拉和抗剪强度等级都比普通混凝土有显著提高,同时钢纤维混凝土的抗冲击、抗疲劳、裂后韧性和耐久性也比普通混凝土较高。当纤维量掺量在1%~2%时,抗弯强度提高40%~50%,抗拉强度也提高了25%~50%,当使用直接双面剪试验时,所得到的试验结果为抗剪强度提高了50%~100%。而抗压强度提高较小。、

复合理论和纤维间距理论是钢纤维混凝土增强机理的两种理论。根据这两种理论钢纤维混凝土的强度ff为:

式中:fm为基体强度;lf/df为纤维的长径比;ρf为纤维的体积率;τ为纤维与基体间的粘结强度;η为以及纤维在基体中的分布和取向的影响。

钢纤维混凝土的变形性能力也有明显提高,在弹性阶段钢纤维混凝土的变形能力与普通混凝土没有显著差别。韧性是衡量塑性变形性能的重要指标,在塑性变形阶段不论抗弯还是抗压和冲击韧性都随着纤维增强效果而提高。钢纤维混凝土随着纤维掺量的增加而收缩值有所降低,其抗压和抗弯疲劳性能比混凝土却有很大提高。

2 路桥施工中钢纤维混凝的应用

2.1 钢纤维混凝土在路面工程中的应用

在路面中的应用主要包括:(1)罩面路面中钢纤维混凝土的应用。(2)钢纤维混凝土在路面建设施工中的应用。

由于钢纤维混凝土在动荷载下具有良好的抗冲击、抗拉、抗弯、耐磨性能,钢纤维混凝土可以有效的抑制因温度引起裂缝的产生与扩展,并且具有良好的抗冻性能。而这些优点性质与路面的要求比较符合,不仅可以有效减小钢纤维混凝土路面的厚度,延长路桥面使用寿命,改变路面性能,同时可以实现设计要求。

当旧的混凝土路面损坏时,可以采用钢纤维混凝土结合式罩面修补路面,使旧的混凝土与罩面层相互粘结在一起,成为一个整体,共同发挥结构

整体强度作用。

2.2钢纤维混凝土在桥梁工程中的应用

钢纤维混凝土在桥梁中应用不仅可以达到利用钢纤维混凝土铺设的路面的工程效果,并且钢纤维混凝土可以增加桥梁刚度和桥梁抗折强度,增强桥梁面的耐久性、抗裂性和提高舒适性。桥梁结构自重也得到降低,使桥梁的受力情况也得到相应改善。同时也可采用转子ⅱ型喷射机喷射5~20cm钢纤维混凝土以满足桥梁局部结构的整体性和抗震性的加固要求。

3 钢纤维混凝土施工技术

3.1施工中的问题

在钢纤维混凝土施工中,由于钢纤维的存在,不仅仅是混凝土的配合比和钢纤维的性能决定了钢纤维混凝土的路桥面的质量优劣,钢纤维在混凝土中的分布是否均匀也同样影响着工程质量。

钢纤维混凝土路面在施工过程中,应当注意使钢纤维混凝土在混凝土中的分布均匀,禁止结团现象的产生;应避免钢纤维混凝土表面出现纤维露出现象;要严格控制路面厚度。

钢纤维混凝土施工的技术难题是因为钢纤维的存在导致的,而施工机械的选择及使用对钢纤维混凝土路桥工程质量产生较为严重的影响。施工成为了钢纤维混凝土质量优劣的重要影响因素。

3.2 材料的基本要求

钢纤维混凝土的特性与基本混凝土相关。同时钢纤维品种、长径比、方向性及掺率同样影响钢纤维混凝土的特性。抗拉强度不可低于550mpa。纤维直径为0.4mm~0.7mm,长度为钢纤维直径的50~70倍。

粗集粒最大粒径对钢纤维混凝土中纤维的咬合力有很大影响,粒径过大对抗拉弯强度有较显著影响,规定最大粒径应低于纤维长度的1/2,但不应大于20mm。其它材料要求与普通混凝土相同。

3.3 设置钢纤维分散装置

将钢纤维与混凝土放入搅拌机搅拌时,必须要先通过功率为和1分散率为0.75~1.0kw,20~60kg/min的分散机分散然后再加入搅拌机。以避免结团现象的产生。

3.4投料顺序和搅拌

搅拌机可采用强制式搅拌机和自由落体式搅拌机,搅拌时应该采用先干后湿分级投料工艺。即按照先投砂,然后钢纤维,最后碎石的顺序进行投方材料,并且需要采取先与混凝土在搅拌机先干搅1min,再进行加水和添加剂的2min湿搅。并且为防止因搅拌时间过长而引起的纤维团结,总的搅拌时间应尽量控制在6min内,并且搅拌量在搅拌机容量的1/3为宜。

3.5 摊铺和振捣

钢纤维混凝土浇注时浇注接头不应过于明显。钢纤维混凝土必须连续浇注,并且每次倒料时应相压15~20min,以保证浇注的连续性。浇注一段后就应该及时的采用平板振动器振捣密实,切忌采用插入式振动器,平板振动器可以使钢纤维成二维分布,而插入式振动器促使钢纤维的分布方向朝向振动棒。振捣好后,可将露出的钢纤维压回混凝土,以确表面保平整。

3.6 表面拉毛、成型

砂率大、粗骨料细、纤维乱向分布是钢纤维混凝土所具有的特点,所以当钢纤维混凝土路桥面铺设完毕后,应对路桥面进行拉毛、收桨毛处理和机械拉平,防止钢纤维外露,以保证路桥面平整密实。同时采用滚式压纹机压纹1~2mm,方向为沿路线横断方向。

3.7 接缝设置

钢纤维混凝土具有良好的收缩性、抗裂性。一般可不设置伸缩缝。当钢纤维混凝土的养生强度达到设计强度的50%时,采用切割机割缝设置伸缩缝。应该保证伸缩缝与施工缝位置吻合。

3.8 养护

早期钢纤维混凝土的强度较高,所以应该加强湿润养护。可采用自来水养护,并使用塑料薄膜覆盖湿养以防止水分蒸发过快,确保钢纤维混凝土与沥青结合面清洁。待养生时间7~12d后,当混凝土测试达到规范规定的强度后,方可进行交通开放。

结语

由于钢纤维混凝土具有的种种优异性,所以被广泛用于基础设施建设中,取得了重大的经济和社会效益。钢纤维混凝土技术不仅提高了混凝土的强度,也降低了路桥的成本。但是,钢纤维混凝土施工较为复杂,如施工中操作不当,混凝土中钢纤维很容易导致结团现象,反而会降低了路面的质量。所以,钢纤维混凝土路桥在施工中,要严格施工规范进行操作,确保钢纤维混凝土的性能得到最好的发挥。

参考文献

[1]赵国藩,彭少民,黄承民.钢纤维混凝土结构[m].中国建筑工业出版社.1999.

[2]高丹盈.钢纤维混凝土设计与应用[m].中国建筑工业出版社.2002.

[3]黄承逵,赵国

.纤维混凝土研究和工程应用的发展[a].第十二届全国混凝土及预应力混凝土学术交流会论文集[c],2003.

纤维混凝土篇6

关键词:聚丙烯纤维;混凝土;抗裂性;经济性

中图分类号:TB3文献标识码:A

混凝土中掺加聚丙烯纤维,可大大提高其抗腐蚀性、抗裂性、抗渗性、抗冲击性,掺加了聚丙烯纤维的混凝土,可用于一般工业与民用建筑刚性自防水、大体积混凝土的防裂,也可用于路面、桥面等易开裂的薄板混凝土结构。混凝土中掺加聚丙烯纤维,掺加量小、成本低、操作简便但效果明显,因而在工程建设领域得到了广泛应用。

一、概述

聚丙烯纤维是一种新型的混凝土纤维,被建筑工程界称为混凝土的“次要增强筋”,它是一种经特殊工艺进行纺丝、切断、亲水处理后生产的高强度束状单丝纤维,加入混凝土或砂浆中后,可起到有效控制混凝土因固塑性收缩、干缩、温度变化等引起的微裂缝,防止或抑止裂缝形成及发展,大大改善混凝土防裂、抗渗、抗冲击能力等作用。

二、聚丙烯纤维的作用机理

聚丙烯纤维化学性质稳定,它主要通过改变混凝土的物理力学性能来达到改变混凝土内部结构的效果。聚丙烯纤维本身与混凝土骨料、水泥、外加剂不会发生任何冲突,与混凝土有良好的亲和性,可以迅速而轻易地与混凝土材料混合,而且它在混凝土中的分布极其均匀,在电子显微镜下观察,每立方厘米混凝土内的纤维丝可达到20多条。由于聚丙烯纤维同水泥基体有紧密的结合力,能在混凝土中形成一种均匀的乱向支持体系,所以它掺入混凝土能产生有效的三维加强效果,就像在混凝土中加入了大量的微小细筋,同时它的效果又远远比加强钢筋的效果明显。聚丙烯纤维在混凝土中的乱向分布有助于减弱混凝土的塑性收缩,它使收缩能量被分散到混凝土中具有高强度低弹性模量的纤维上,使纤维吸收部分能量,从而极大地提高了混凝土的韧性,抑制了微细裂缝的产生和发展。同时,由无数根纤维在混凝土内部形成的支撑体系,可以有效地防止混凝土骨料的离析,保证混凝土早期泌水性的均匀,从而防止了沉降裂纹的形成。工程实践也表明,加入聚丙烯纤维,是控制混凝土塑性收缩、干

裂等非结构性裂缝的有效手段。

三、混凝土中添加聚丙烯纤维的作用效果

(一)保证混凝土的均质性。混凝土在浇灌后,通常都会发生离析现象,即比重较大的骨料下沉与水泥砂浆有所分离,同时混凝土表面出现析水,并因此降低了混凝土的均质性,使混凝土上、下部位的性能出现差异,严重时还会使混凝土出现裂缝。而在混凝土中掺加适量聚丙烯纤维后,均匀分布于混凝土中的纤维,可以起到承托作用并阻止上述离析现象的发生,从而保证了混凝土的均质性。

(二)提高混凝土的抗裂性。塑性状态的混凝土强度极低,而刚浇灌后的混凝土,常会因气候干燥或刮风等原因导致混凝土表面失水较大,使混凝土发生塑性收缩而出现裂缝。硬化的混凝土由于存在干燥收缩、温度收缩及碳化收缩,内部会产生各种收缩应力(拉应力),当混凝土结构内产生的拉应力超过混凝土的抗拉强度时,混凝土就会产生大量裂缝。而聚丙烯纤维加入混凝土后,就有大量的单丝纤维均匀地分布于混凝土中,并在混凝土内部构成了均匀的乱向支撑体系,从而使收缩变形引起的微裂缝,在产生过程中遭遇到纤维的阻挡,能量被消耗后微裂缝就难以进一步发展。

(三)提高混凝土的抗渗性。掺入聚丙烯纤维可大幅度提高水泥基材的抗渗性,这也要归功于均匀分布在混凝土基材中的数以千万计的细纤维。掺加纤维的混凝土基材,在限制收缩的条件下,因失水干缩而引发裂缝,但由于纤维存在阻裂作用,从而显著减少了初始裂缝的数量,有效地抑制了裂缝的宽度和长度,从而大大降低了生成连通裂缝的可能性。测试表明:0.1体积掺量的纤维混凝土比普通混凝土抗渗能力提高100%以上。

(四)提高混凝土的抗冻融性。掺入少量短切聚丙烯纤维的混凝土,其抗冻融性会大大提高。按混凝土抗冻试验法,经25次反复冻融,混凝土不会发生分层与龟裂现象。其原因就在于:纤维在混凝土材料内部各方向上的随机均匀分布,对材料整体产生微加筋作用,缓解了温度变化引起的混凝土内部应力作用,阻止了温度裂缝的扩展;同时,聚丙烯纤维混凝土抗渗能力的提高,也有利于其抗冻能力的提高。

(五)提高混凝土的耐火性和遇火时的安全性。混凝土受热爆裂的过程,就是混凝土中的水分从混凝土内部逸出的过程。随着温度的不断升高,混凝土强度损失的速率随之增加,温度达到600℃时,混凝土的强度会损失50%,达到800℃时,强度损失80%左右。高强度混凝土,由于密实度高、孔隙率低,蒸发通道不畅,水分能尽快逸出,从而会产生几乎达到饱和蒸汽压的过高蒸汽分压,由于蒸汽分压远远超过了混凝土抗拉强度,最终必然导致混凝土不能抵御内部压力而爆裂。但高性能混凝土加入聚丙烯纤维后,情况会发生变化。当温度为180℃,混凝土还处于自蒸阶段时,结构的内部压力还不是很大,同时由于聚丙烯纤维的熔点极低(杜拉纤维的熔点为165℃),它在较低的温度下就会熔化,而且熔化后的液态体积远小于其为固态时所占的空间,于是聚丙烯纤维熔化后会形成众多小孔隙,而且由于聚丙烯纤维分散均匀性,纤维细小、量多,从而使得混凝土内部孔隙结构发生变化,孔隙的连通性加强,为混凝土内部水分的分解蒸发提供了方便通道,也就降低了由于水分蒸发所形成的气压,使混凝土结构内部压力大降低,从而防止了爆裂现象的产生。

(六)提高混凝土的抗冲击性。聚丙烯纤维虽然刚度较低,传递荷载的能力差,但它可以有效地减小裂缝尺度,增强材料介质连续性,减小冲击波被阻断引起的局部应力集中现象。而且纤维与水泥基料有极强的结合力,纤维能迅速地和混凝土均匀混合,形成三维不定向支撑体系,所以,当混凝土承受拉力和冲击时,均匀分布且数量众多的纤维会起到吸收能量和分担应力的加强筋作用。试验证明,由于聚丙烯纤维的掺入,当混凝土受冲击荷载作用时,纤维起到了阻止混凝土中裂缝扩散与发展的作用,从而改善了混凝土的整体性能,使混凝土的抗疲劳性有很大增强。

纤维混凝土篇7

关键词:路桥工程;纤维混凝土

中图分类号: TV431+.3 文献标识码:A 文章编号:

Abstract: the steel fiber concrete because its superior performance, the construction is simple, relatively inexpensive advantages in road, road and bridge structure, building and other engineering field widely used. In this paper, the steel fiber reinforced concrete bridge engineering in some of the application for a comprehensive introduction, also of steel fibre reinforced concrete bridge engineering design and construction in the relevant matters in detail.

Keywords: road &bridge engineering; Fiber reinforced concrete

1纤维和钢纤维混凝土的性能

1.1 钢纤维基本性能

钢纤维按其制造方式分为切断钢纤维、剪切钢纤维、切削钢纤维和熔抽钢纤维4种切断钢纤维抗拉强度高,但与水泥沙浆的界面粘结性较差,对钢纤维表面进行变形处理,制成表面有刻痕的、末端带钩的、波纹形的钢纤维,或者圆截面与扁平截面交替的呈规律性变化的钢纤维可以改善其力学性能,当用废钢丝绳切断而成时,必须进行除油污和除锈处理。

剪切钢纤维由剪切冷轧薄板制得,厚0.2~0.5mm,宽0.25~0.9mm,拉强度为450~800MPa,与水泥砂浆的粘结性比切断钢纤维好,切削钢纤维由旋转的铣刀切削软钢锭或厚钢板制得,强度比原材料有较大提高,截面呈三角形,与水泥混凝土的粘结较好,熔抽钢纤维由熔融的钢水甩制而成,纤维强度因熔钢成分与热处理条件而异,表面不规则且有一层强度很低的氧化层,氧化层的存在降低了钢纤维与混凝土的粘结强度,钢纤维的弹性模量与抗拉强度都比较高,大约为水泥基材的5倍以上。同时钢纤维也可以制成各种变截面形状,以增加与水泥基材之间的握裹力。

1.2钢纤维混凝土的基本性能

钢纤维混凝土是在普通混凝土中, 均匀地乱向分布一定量的钢纤维,经硬化而得,与普通混凝土相比,具有一系列优越的物理力学性质:

(1)强度与重量比值增大:

(2)较高的抗拉、抗压和抗弯的极限强度,在混凝土中掺入适量钢纤

维,其极限抗压强度可以提高,单轴抗拉极强度可提高40~50%,抗弯极限强度可提高50~150%;

⑶好的抗冲击性能,钢纤维混凝土在纤维掺量为0.8~2.0%时,其冲击韧性指标可提高50~100倍,甚至更高;

(4)变形性能明显改善,钢纤维对混凝土抗压弹性模量影响不显著,

但对抗拉弹性模量提高较多,钢纤维对混凝土长期收缩变形的影响也较明显,钢纤维可使混凝土的收缩率降低10~30%。

(5)抗裂和抗疲劳性能显著提高;

(6)优越的抗剪性能:

(7)良好的阻止和抑制因温度应力引起裂缝产生与扩展的能力;

(8)良好的抗冻性与耐磨性能。

1.3影响钢纤维混凝土性能的主要因素

钢纤维混凝土性能受钢纤维类型、钢纤维掺量、钢纤维长径比、砂率、粗骨料最大粒径、减水剂、掺和料等因素的影响。其中钢纤维类型、钢纤维掺量和钢纤维长径比是影响钢纤维混凝土性能的主要因素。当钢纤维混凝土用于路面材料时,由于面层板较薄,因而受地下排水状况的影响较大。

1.3.1钢纤维类型

钢纤维类型对钢纤维混凝土强度的影响如表1,从表l可以看出:剪切钢纤维的增强效果最好,标准养护28d可使抗弯强度提高44%,剪切强度提高60%,劈拉强度提高3l%,抗压强度也有提高;熔抽钢纤维增强效果较差;平直圆纤维与基材结力小,增强效果不能充分发挥。

表1钢纤维类型对混凝土强度的影响

注:分子为力学强度。分母为与混凝土的强度比

1.3.2钢纤维长径比

钢纤维长径比对钢纤维混凝土强度的影响如表2,从表2可以看出:

当钢纤维掺量相同时,力学强度随钢纤维长径比增大而增大,长径比增大到63,其力学性能明显增加。

表2 长径比对钢纤维混凝土性能的影响

1.3.3 钢纤维掺量

钢纤维掺量的大小直接影响钢纤维混凝土的力学强度,随着钢纤维掺量的增加,拌和物的坍落度显著减小,当纤维掺量低于0.5%时,增强效果不明显,当钢纤维直径为0.8mm、长度为30mm,钢纤维掺量为3%时,施工和易性仍很好。

2 钢纤维混凝土在路桥工程中的应用

2.1钢纤维混凝土在道路工程中的应用

由于钢纤维混凝土路面具有减薄铺装厚度、纵缝不设或少设、横向缩缝少、良好的耐磨性及冻融性等优点,延长路面使用寿命,从而在路面工程中获得广泛应用。

2.1.1新建全截面钢纤维混凝土路面

全截面采用钢纤维混凝土的路面厚度为普通混凝土路面厚度的50~60%,钢纤维掺量为0.8~1.2%,双车道路面一般不设纵逢,横缝间距20~30m,最长可取50m。

2.1.2 碾压钢纤维混凝土路面

将钢纤维置于碾压混凝土中,从而使路面的强度和韧性增强,改善碾压混凝土的力学性能。

2.2 钢纤维混凝土在桥梁工程中的应用

2.2.1 桥面铺装

采用钢纤维混凝土桥面铺装层不仅可以增强桥面的抗裂性、耐久性和提高舒适性能,还可以增强桥梁抗折强度,增加桥梁本身刚度,减少铺装厚度,降低结构白重,改善桥梁受力状况。此外,采用钢纤维混凝土和橡胶沥青混凝土复合的双层桥面也是一种有效措施。

2.2.2 桥梁上部承受荷载部位

采用钢纤维混凝土作为主拱圈(主梁)或在应力集中区局部加强,改善结构受力性能,有效控制结构变形,减轻自重,推动桥梁结构向大跨度、轻型化方向发展。结构性能良好,造型美观,而且可减少上部材料用量,使下部墩台数量也相应减少,从而降低造价,提高经济效益,通过修建钢纤维混凝土桥梁降低梁高,满足使用上的特殊要求。

2.2.3桥梁墩台等结构局部加固

对动载长期作用下造成的桥梁墩台及桥面板裂缝或表层剥落病害,采用转子Ⅱ型喷射机喷射5~20cm钢纤维混凝土以满足结构的整体性和抗震性要求,一般钢纤维类型采用剪切钢纤维,掺量为1.0%;采用硫铝酸盐快硬水泥和TS型速凝剂提高早期抗裂性能;对旧混凝土表面喷砂或凿毛,增加新旧混凝土的整体性。

2.2.4 钢筋混凝土桩加强

采用钢纤维混凝土对桩项或桩尖局部增强,桩的穿透力有较大提

高,锤击次数减少,大大提高打击速度,一般在桩顶和桩尖部位采用钢纤维混凝土,增强桩顶的抗冲击韧性,避免桩顶在打入设计深度以前出现破裂,并增加桩尖入土能力,提高打击速度,桩身部分仍用预应力或非预应力钢筋混凝土,当然也可以全断面整体浇筑钢纤维混凝土,但其经济效益会有所下降,所以,应经过技术经济比较决定。

3 钢纤维混凝土施工

钢纤维混凝土的施工,按其施工方法来分有浇注钢纤维混凝土、喷射钢纤维混凝土和灌浆钢纤维混凝土,钢纤维混凝土道桥工程质量的优劣,在很大程度上取决于施工质量。因此,在钢纤维混凝土施工时,除了满足普通混凝土的施工要求外,还应特别重视钢纤维给施工带来的技术问题,确保钢纤维均匀分布在基体中。

3.1设置钢纤维分散装置

由于钢纤维一次性直接投入搅拌机易出现结团现象,为使钢纤维充分分散,宜将钢纤维通过分散机再进入搅拌机,分散机功率宜为0.75~1.0kW,分散力宜为20~60kg/min,钢纤维应事先与细骨料定量拌合均匀或选择直径较粗、材质较好的纤维,并在料斗入口处设置振动筛。

3.2搅拌投料顺序和搅拌时间

为防止钢纤维结团,需采取分级投料,先干后湿工艺,即按砂纤维碎石水泥,混和料先在搅拌机内干拌1min,然后加水和外加剂湿拌2min。

3. 3采用强制式搅拌机

钢纤维混凝土搅拌机,一般最好使用强制式搅拌机和双锥反转出料搅拌机,当纤维掺量较高和坍落度较小时,为不使搅拌机超负荷工作,搅拌机的利用率相应有所降低。

3.4 浇注和振捣

钢纤维混凝土在浇注时,不得有明显的浇注接头,每次倒料必须相压15~20cm,使钢纤维混凝土保持整体续性。同时,钢纤维混凝土的浇注必须连续进行,因使用插入式振动棒插入钢纤维混凝土进行振捣,会使钢纤维朝振动着的振动棒聚集,产生集束效应,为确保钢纤维的二维分布,宜使用平板振动器振捣成型,当采用振捣棒时,为保证边角混凝土密实,应使钢纤维纵向条状集束排列有利于抵抗板体收缩应力、温度应力及荷载的传递,振捣好的混凝土表面应抹平,将外露的钢纤维压入混凝土中,以防止露出表面的纤维锈蚀或刺入。

3.5 成型

钢纤维混凝土具有粗骨料细、砂率大、纤维乱向分布的特点,因此钢纤维混凝土路面宜采用真空吸水工艺,机械抹平以防止钢纤维外露,采用压纹机压纹工艺以避免拉毛产生纤维外露现象,拆模后对纤维外露或漏振时,应及时处理。

4 结束语

钢纤维混凝土是一种新型的优质水泥基复合材料。钢纤维混凝土自发展以来,因其具有较高的抗弯、抗拉、抗压强度,优越的抗冲击性能、抗剪性能、抗裂性能和抗疲劳性能,能使道路路面、桥梁结构等处于良好的工作状态,以及操作简单、价格低廉、经济效益良好,因而,在道路路面、桥面等建设工程中被广泛地应用。

参考文献:

[1]高丹盈,程红强,冯虎.钢纤维混凝土与老混凝土粘结面渗透性能[J].水力发电学报,2010

[2]程庆国,高路彬,等.钢纤维混凝土理论及应用[M].北京:中国铁道出版社,2011

纤维混凝土篇8

关键词:混凝土;聚丙烯长纤维;性能

中图分类号: TV331 文献标识码: A

引言:建筑行业的发展,也加大了对建筑材料的研究。这是因为建筑材料是建筑结构的物质基础。混凝土材料因其原料丰富、价格低廉等性能已经被建筑行业广泛应用到建筑工程当中。伴随着建筑业的发展,对混凝土材料也逐渐进行了改良。通过在混凝土中添加聚丙烯长纤维发现复合混凝土材料表现出优良的性能。推广其应用到建筑行业中具有很大的意义。

1聚丙烯长纤维混凝土的特点及研究现状

聚丙烯纤维多为长度在19到50毫米之间的单丝或网形状的纤维。聚丙烯纤维无毒不溶于水,具有很好的弹性模量和抗拉强度。因此,经过简单的改性处理其可以应用到很多领域当中。聚丙烯纤维的化学性质比较稳定,在混凝土当中,不与混凝土当中的其他材料发生化学反应,只需要通过改变混凝土的物理性能来改变混凝土的性能。同时,聚丙烯纤维对于混凝土的搅拌设备也没有特殊的要求。在施工过程当中,只需要提高一下搅拌时间,就能使混凝土的粘聚性能增强。聚丙烯长纤维能够抑制混凝土的塑性收缩引起的裂缝提高混凝土的抗裂能力。聚丙烯长纤维优良的不溶于水的性能,能在一定程度上提高混凝土的抗水能力。混凝土当中,加入一定量的聚丙烯纤维,同时能在一定程度上提高混凝土的抗冻能力和抗摩擦能力。自1985年开始 美国的军事工程当中就开始使用了聚丙烯长纤维混凝土来保障混凝土的强度。经过不断的研发改进,美国聚丙烯长纤维混凝土已经开始运用到了民用工程及地下防水工作当中。在我国,纤维混凝土是从玻璃纤维上演变而来。直到20世纪90年代初,我国才从外国进口有机聚丙烯长纤维运用于制备聚丙烯长纤维混凝土,才开始得到推广运用到工程建筑中。

2聚丙烯长纤维混凝土的工作机理

2.1纤维间距理论

在1963年外国学者最初提出了纤维间距理论,这一理论是建立在弹性断裂力学的基础之上的。当材料结构不均性时,在受到外力作用的情况下,会出现裂缝,随着压力的增大,裂缝会逐渐变大,直到裂缝使材料的物理表面结构破坏。如果在材料当中加入了聚丙烯长纤维之后,纤维的存在会改变材料的结构,约束材料在外界压力的条件下裂缝的形成。材料受到拉力之时,聚丙烯长纤维会产生反向应力场,降低裂缝处所受到的拉力,使材料的强度和韧性增强。同时纤维产生的反向应力场与纤维之间的距离和纤维的数量有一定的关系。聚丙烯长纤维之间的距离越短和聚丙烯长纤维的数量越多,这种作用力越大。

2.2复合材料理论

复合材料理论最初也是由外国专家先提出来的。这一理论主要是表明复合材料的混合率能够把复合材料的性能视为各个部分之间性能之和。聚丙烯长纤维混凝土多为纤维及混凝土二种相结构,复合材料的性能就是把这些相结构的性能进行叠加。纤维的不同又可以把复合材料理论分为定向连续纤维复合材料混合定律和乱向非连续纤维复合材料混合定律。定向连续纤维复合材料是纤维在混凝土中均匀排列,并且与混凝土的荷载方向是一致的。乱向短纤维复合材料对其进行分析研究时,要考虑到纤维的乱向分布对反向应力场的影响与混凝土当中其他材料之间的影响。

2.3聚丙烯纤维的作用机理

首先要对混凝土早期微裂缝的形成机理进行简单的叙述。混凝土在早期形成裂缝多是在其硬化期间和承载期间产生的。混凝土在硬化期间产生的裂缝是比较复杂的,在这时期的裂缝也是后期能够用肉眼看到巨大裂缝的开始。加入高弹性模量的聚丙烯长纤维能够提高混凝土的弹性模量,依靠纤维与混凝土材料之间的作用力,能大大增大材料抗拉强度,降低材料表面的裂缝的形成。纤维加到混凝土当中,在混凝土硬化之间就能够制止住微裂缝的形成。聚丙烯长纤维的低密度性,能使其加入到混凝土当中,减小混凝土当中孔隙的大小,增强混凝土的密实度,提高混凝土的耐久性。聚丙烯纤维经过特殊处理之后,能与混凝土当中其他的材料之间形成强的粘结力,能有效的抑制裂缝的产生。另外,聚丙烯长纤维均匀分布在混凝土中起到“承托”骨料的作用。总之,聚丙烯纤维通过其自身及与混凝土其他材料之间形成优良的作用保障了聚丙烯长纤维混凝土优异性能。

3聚丙烯长纤维混凝土性能研究

3.1聚丙烯长纤维混凝土拌合物性能研究

高性能混凝土中需要保障混凝土具有高的流动性、稳定性及易密性性能。这样就能保障混凝土在搅拌下能与施工方法相适应。流动性是混凝土的一个主要指标。国内外主要是通过坍落度试验对其性能进行研究。通过研究发现,随着聚丙烯长纤维的添加量的增大,混凝土坍落度降低。当纤维添加量大于1.5kg/m3时,纤维对坍落度影响最大。因此,可以通过控制纤维的添加量来调控混凝土满足工作性能的需要。混凝土的保水性主要是指在施工过程中保证混凝土有一定的保水能力,不致产生严重泌水现象。可以通过对混凝土测试其泌水率来测定其保水性。随着聚丙烯长纤维量的增大,混凝土的泌水率有所降低,同时也能够保障了混凝土的流动性。

3.2聚丙烯长纤维混凝土力学性能研究

混凝土的重要性能是力学性能,在实际应用中也是主要考察的性能。混凝土的抗压指标是结构设计中主要考虑的指标。因此,聚丙烯长纤维混凝土考察的性能指标也是抗压强度。可以通过研究聚丙烯纤维的增加量来研究混凝土的抗压强度变化。改善混凝土抗拉、弯曲韧性、抗冲击性能。因此,高性能聚丙烯纤维混凝土的抗拉强度、弯曲韧性和抗冲击性能成为体现其优越性的主要性能。研究发现,在混凝土当中添加适量比例的聚丙烯纤维,能保障混凝土的这些优异性能。

3.3聚丙烯长纤维混凝土耐久性能研究

混凝土的耐久性是指混凝土在实际使用条件下抵抗各种破坏因素的作用,长期保持强度和外观完整性的能力。其影响因素包含着物理因素和化学因素。混凝土的耐久性实质上就是抵抗这种劣化作用的能力,产生劣化作用的内部潜在因素是混凝土中的化学成份,外部条件是环境中侵蚀介质和水的存在,必要条件是外部侵蚀性介质和水能逐渐浸入混凝土的内部。混凝土中掺入聚丙烯纤维, 减少混凝土的收缩裂缝,降低了混凝土的孔隙率,大大提高了混凝土的抗渗性能。聚丙烯纤维的添加阻碍了混凝土搅拌和成型过程中的内部空气的溢出,使混凝土的含气量增加, 有益于混凝土低温环境下的强度增长和抗冻融耐久性的提高。

结论:

聚丙烯长纤维混凝土就是在原有混凝土成分的基础上添加了聚丙烯纤维以使混凝土材料具有优越的性能。聚丙烯长纤维混凝土对改善建筑工程质量、提高建筑工程中混凝土的耐久性具有很高的成效。本文介绍了聚丙烯纤维增添对混凝土性能的影响,为高性能聚丙烯纤维混凝土在工程中的应用提供了有效价值。

参考文献:

[1]刘旭晨,覃维祖等.环形约束试验方法研究较凝材料体系对早期收缩开裂的影响[J].高强

高性能混凝土及其应用专题研讨会论文集.福州.2002

[2]马丽媛等.国内外混凝土的收缩性能及抗裂性能试验研究方法评述[J].中国建材科技.2001 年第 1 期

上一篇:裂缝控制范文 下一篇:防水混凝土范文