细胞生物学的研究领域范文

时间:2023-12-04 17:29:25

细胞生物学的研究领域

细胞生物学的研究领域篇1

据悉,此次合作旨在更好地了解及发现不同种族的人类干细胞系的基本遗传变异,进一步推进干细胞检测方法在药物发现和毒性测试中的应用。GE医疗生命科学部细胞技术总经理Amr Abid博士、华大基因副院长方林、华大基因助理院长尹烨、华大基因助理院长杜玉涛等领导出席签约仪式,并宣布双方正式展开合作。

据了解,总部设在英国的GE医疗集团是通用电气公司下属的业务集团之一。GE医疗集团通过提供革新性的医疗技术和服务,开创医疗护理的新时代。其在医学成像、信息技术、医疗诊断、患者监护系统、药物研发、生物制药技术、卓越运营和整体运营解决方案等领域拥有广泛的专业技术,能够帮助客户以更低的成本为全世界更多的人提供更优质的服务。此外,该集团还联手医疗行业,正努力通过全球政策,打造成功的、可持续的医疗体系。GE医疗集团秉承“健康创想”愿景,不断通过创新,在世界范围内推动降低医疗成本,以期增加医疗机会、提高医疗质量。GE医疗集团的员工分布于全球100多个国家和地区,致力于为医疗专业人士和患者服务。

其合作的另一单位华大基因自1999年成立以来,坚持“以任务带学科、带产业、带人才”的理念,先后完成了国际人类基因组计划中的“中国部分”(1%,承担其中绝大部分工作)、国际人类单体型图计划(10%)、水稻基因组计划、家蚕基因组计划、家鸡基因组计划、抗SARS研究、“炎黄一号”(100%)、大熊猫等多项具有国际先进水平的基因组科研工作,在Nature和Science等国际一流的学术杂志上发表多篇论文,奠定了中国基因组科学在国际上的领先地位。同时,华大基因还建立了大规模测序、生物信息、克隆、健康、农业基因组等技术平台,其测序能力及生物信息分析能力世界领先。目前,华大基因已形成科学、技术、产业相互促进的发展模式,建成一支具有世界一流水平的产学研队伍,开展了一系列的重要动植物、人类健康、生物能源等基因组的研究,致力于人类健康服务事业和科技应用领域的发展。

据介绍,在未来发展中,华大基因将依托先进的测序和检测技术、高效的信息分析能力、丰富的生物资源,以多学科结合的新型生物科研体系为基础,致力搭建核酸研究平台、蛋白研究平台、生物信息平台,并作为核心单位参与国家基因库的建立,为全球的科研工作者提供创新型生物研究的科技服务,推动基因组学研究、分子育种、医疗健康、环境能源等领域的科研发展。同时,为广大普通民众提供前沿生物科技在医疗、农业、环境及能源等领域的应用服务,真正做到科技惠民,为我国生物经济产业的战略发展奠定基础。

另据介绍,在两个机构合作初期,双方将主要开展两个具有突破性意义的项目。第一,华大基因主要对由GE医疗集团提供的心肌细胞和肝细胞进行基因测序和表观遗传分析。双方希望通过本研究可以构建出不同种群的干细胞系之间的遗传变异图谱,并通过检测出具体细胞类型变异过程中的变化,提高对用于药物发现研究的细胞模型的了解。第二,GE医疗集团将为华大基因提供IN Cell Analyzer 2000细胞分析仪,为一系列已测试过的细胞类型进行细胞功能方面的高内涵细胞成像分析。同时,他们还将为华大基因的科研人员提供IN Cell Analyzer培训,使其能够通过cDNA表达和siRNA敲除来研究基因功能。

GE医疗生命科学部细胞技术总经理Amr Abid博士说:“由于制药业希望降低药物开发成本,为市场上提供更加安全有效的药物,拥有密切生物相关和可预测的细胞模型将变得更加重要。我们的长期使命是通过开发广泛的Cytiva干细胞来源细胞株,实现以上目标,包括各种遗传背景的细胞类型。这是一个很大的挑战。华大基因拥有重要资源以及世界级基因组学和表观遗传学研究的能力,我们很高兴能与之携手合作,共同提高对不同干细胞系的了解,从而在未来推动全球范围内进行新的、更安全和有效的药物的开发。”

细胞生物学的研究领域篇2

庄河市中心医院,辽宁大连 116400

[摘要] 观察流式细胞术在临床检验中的应用研究,随着我国医疗卫生事业的进步,在临床的检验中可以依托于科学方法进行病症的治疗。通常情况下,采用流式细胞术进行病症的治疗,不仅能够对细胞的表面抗原与受体予以详细的分析,还可以对细胞中的抗原体和分子进行科学地检测。由于科技的不断进步,促使细胞微球实验技术得到医学临床的广泛应用和推广。就现阶段的发展而言,流式细胞术在临床检验中的应用主要是对淋巴瘤、白血病、中性粒细胞与红细胞的分析、肺泡灌洗液中的T细胞的亚群检测与分析等病症的临床分析和检测。

[

关键词 ] 流式细胞术;临床检验;应用研究

[中图分类号] R197 [文献标识码] A [文章编号] 1672-5654(2014)10(a)-0162-02

随着我国医疗卫生事业的不断发展与完善,促使医疗监测方法也开始趋于成熟,流式细胞术在临床检验中的应用频率开始增加,并且具有良好的发展前景。可以依托于流式细胞术对需要检测的细胞进行细胞内部的抗原和分子检验,能够得到科学的结果,为医疗卫生事业的发展予以很好地推动。目前,我国对于细胞微球实验技术的应用上,主要应用在对患者血清和血浆的检测与分析中,并能够对可溶性的蛋白与细胞因子加以科学与详实的研究分析。笔者根据自身对流式细胞术在临床检验中的应用研究,并进行了临床效果观察,现将临床观察与研究的结果进行如下报道。

1流式细胞术

在医学研究领域中,流式细胞术(FCM)主要是近代生物学和分子生物学、流体力学、分子免疫学、激光技术等进行高度结合的产物[1],能够对单细胞或者是其他细胞粒子以及抗原体进行科学与速度的检测,并能够借助于科学技术的选用对检测结果进行科学的分析。

就现阶段的发展而言,流式细胞术技术同现代单克隆抗体技术进行有机的结合,能够对单个细胞中的多个参量进行定量、定性的分析的同时,还能够将技术本身所具备的高速、精准的特性融入其中,并得以展现出来。在医学研究领域中,流式细胞术技术已经得到医学临床实验的广泛性应用,并且主要用于对大量样品的检测,这种技术能够在肿瘤学、血液学、免疫学等多个学科间进行科学的分析与应用,借助于多学科的理论常识进行细胞粒子、单细胞的研究。

1.1流式细胞术对细胞表型的分析

分析细胞表型,是目前最为常用的一种临床应用技术。在单克隆抗体同流式细胞术的结合应用中,首先要进行的步骤就是对细胞表型的研究和分析,比如:分析细胞表面CD8和CD4等的表达[2]。由于分化抗原的深入发展,对细胞表型分析得到临床的广泛应用,比如:对白血病和淋巴瘤病症的诊断方面,对中性粒细胞、红细胞的检测方面等。

1.2流式细胞术对细胞中抗原或分子进行的检测

受到乙醇、皂角素、甲醛等细胞膜渗透剂发展的影响,促使细胞中的抗原或者分子的检测技术得到一定程度的发展。在研究的初期,对细胞内检测技术的应用主要是对细胞的倍体和周期进行分析,并借助于冷乙醇对细胞膜加以通透性的提升,再依托于碘化丙啶对细胞中的DNA进行染色,方便研究的观察。

1.3细胞微球试验

细胞微球试验是一种新型的医疗检测技术,可以对细胞分泌释放出的细胞因子、可溶性蛋白等进行科学地检测[3]。通常情况下,每个细胞微球试验中的微球都有其特定的荧光强度,并且具有大小一致的特性。细胞微球试验具有检测灵敏度高、检测效率准确、重复性好的优势。

2流式细胞术在临床检验中的应用

2.1流式细胞术在免疫学中的应用

随着流式细胞术在临床检验中得到广泛的应用和推广,可以为试验室的研究提供具有诊断性的研究指标。关于对白血病和淋巴瘤病症的免疫表型分析中,能够借助于免疫学的原理,利用抗原抗体的特异性反应,对不同的单克隆抗体进行不同荧光染料的标记[4],当细胞受到激光的照射后,细胞膜的抗原体能够发出不同的激光荧光,并同相应抗原进行结合,促使细胞表面抗原量的生成。通常情况下,细胞免疫反应有两种,分别是细胞的直接免疫反应和细胞的间接免疫反应。细胞的直接免疫反应是细胞表面的抗原能够同带荧光探针的单克隆抗体进行结合的一种免疫反应[5];而间接免疫反应则是指细胞表面的抗原能够同单克隆抗体进行有机的结合,并促使第二抗体可以同抗体进行结合,与此同时,导致抗原抗体复合物也带有荧光探针[6],产生了机体的免疫功能。通过对人体细胞免疫功能的检测,能够对患有淋巴瘤和白血病的患者进行淋巴细胞亚群的检测,并为患者进行科学的治疗。

2.2流式细胞术在血液中的应用

在医学临床研究领域中,通常都是依托于对患者进行血液或者是骨髓的采集,并将其作为临床诊断的标本进行详实的分析研究。由于血液样本能够呈现出悬浮的状态[7],便于流式细胞术对其进行分析和选择,促使在医学临床领域中,流失细胞术可以得到重要的应用和推广。流式细胞术能够对外周血细胞进行检测分析,并对白血病与淋巴瘤等疾病进行血液的诊断和分析,同时还可以对其进行预后的判断与治疗做出重要的贡献。流式细胞术可以依托于抗血细胞表面分化抗体的程度不同,进行细胞参数的设定,从而可以对细胞的属性予以合理化的判定。通过对DNA倍体与细胞周期的测定,可以指导医护人员对患者进行的白血病化疗的治疗,并能够对细胞增殖情况进行实时地观察,对相应药物的治疗效果予以提高。流式细胞术在血液中的应用分析,可以对细胞中所含药物的浓度进行适度的降低,并能够在一定程度上将耐药程度予以很好地反应出来。

2.3流式细胞术在临床微生物检测中的应用

由于流式细胞术具有灵敏、快速与高效的特性,促使其可以同时进行多项参数的分析,尤其是在临床微生物的检测实验当中,更有利于其作用的施展。流式细胞术既能够用于对受感染的细胞进行内部病毒的抗原检测,还能够对受感染的细胞表面进行病毒抗原的检测[8]。借助于特异性识别的特征对细胞表面进行抗原单克隆抗体的检测,并能够进行定量、定性的受感染细胞的检测。流式细胞术体外抗生素的药敏试验中,主要是依托于流式细胞术对染料和病原体结合后产生的不同荧光强度进行检测[9],并能够间接地将病原体的活性与功能进行反应。随着科学技术同医疗卫生事业的稳健发展,流式细胞术技术在细菌的药敏试验中得到有效的研究与应用,并能够依托于临床微生物学的作用发生原理进行科学地检测与指标的分析,帮助医学临床研究领域对流式细胞术的应用研究成果的分析。

2.4流式细胞术在肿瘤学中的应用

流式细胞术在肿瘤学中的应用,是对医学临床研究成果的一大突破。在肿瘤学中的应用主要是对DNA的含量进行科学地测定,并可以依据检测出来的结果帮助医护人员对患者进行化疗治疗和药物控制含量的指导。通过流式细胞术对肿瘤的研究与分析,可以对恶性肿瘤的早期诊断,进行临床治疗方案的提出,并能够将高分辨率与精确度的特性应用到临床分析中,辅助肿瘤的治疗和预后护理治疗。流式细胞术技术的应用不仅能够对患者的恶性肿瘤中的DNA进行含量的分析,还能够依托化疗中肿瘤分布直方图的变化进行患者治疗效果的分析,提升对患者的治疗效率。流式细胞术能够同肿瘤学进行有机的结合,可以推动医学研究领域在肿瘤治疗方面的治疗效果。

3流式细胞术在临床细菌学检验中的潜在应用分析

医疗卫生事业的不断发展,促使流式细胞术应用的范畴不断扩大,并能够同其他具有现代化的医疗技术结合使用,能够在细菌学的检验中得到巨大发展前景的保障,比如:可以直接检测出细菌与真菌、病毒、寄生虫等病原体感染的程度,帮助医学研究领域对各种疾病的诊治与检测。随着科学技术的快速更新,流式细胞术的药敏试验成为医疗卫生事业中发展速度较快的一种医疗检测技术。而流式细胞术的药敏试验主要是借助于不同荧光染料进行病原微生物的染色,可以根据荧光强度的不同对病原微生物的抗生素处理结果和状态进行分析与判定。流式细胞术还被医学研究领域应用到抗生素的检测中,这样一来就能够将其本身所具备的高效、快速、灵敏的特性充分发挥出来。流式细胞术同其他技术的结合应用,能够在很大程度上帮助医疗卫生事业的发展,并对病症的治疗提供精准的治疗方案。

4结语

在医学研究领域中,流式细胞术技术的应用能够对细胞进行细化的分析和研究,比如:白血病、淋巴瘤等病症的治疗、药敏试验、细菌异质性等方面。流式细胞术在临床检验中的应用,能够对医疗研究领域的成果做出巨大贡献,并具有一定的临床实验意义,可以得以新的推广与应用。

[

参考文献]

[1]付海龙,赵亚萍.流式细胞术在临床检验中的应用[J].西南国防医药,2012,7(2):2-3.

[2]周萍,唐吉斌. 流式细胞免疫分型在临床的应用研究[J].国际检验医学杂志,2011,9(16):1-4.

[3]Patel A M,Pancoska C,Mulgaonkar S,et al.Renal transplantation inpatients with pre-transplant donor-specific antibodies and negativeflow cytometry crossmatches[J].American Journal of Transplantation,2013,2(6):1-2.

[4]张哲,黄志刚. 流式细胞术快速检测念珠菌药物敏感性的探讨[J]. 浙江检验医学,2011,6(1):3-5.

[5]马筱玲,李庆,翟志敏.流式细胞术检测抗生素最低抑菌浓度[J].中华微生物学和免疫学杂志,2014,1(1):4-6.

[6]WG Nieto,J Almeida,A Romero.Increased frequency (12%) of circulating chronic lymphocytic leukemia-like B-cell clones in healthy subjects using a highly sensitive multicolor flow cytometry approach[J].Blood,2011,2(8):10-12.

[7]吴晓娜,蒋红兵. 流式细胞术的工作原理及其临床应用[J]. 中国医疗设备,2011,9(3):1-3.

[8]Olaru D,Campos L,Flandrin P,et al.Multiparametricanalysis of normal and postchemotherapy bone marrow: Implication for the detection ofleukemia-associated immunophenotypes[J].Cytometry Part B: Clinical Cytometry,2011,3(1):7-9.

[9]郑晓莉,黄震英,刘蕊.流式细胞术检测HLA-B27抗原对强直性脊柱炎诊断的临床价值[J].河北医药,2012,5(19):2-6.

细胞生物学的研究领域篇3

【关键词】细胞生物学 拓展 实验操作

【中图分类号】G642 【文献标识码】A 【文章编号】1006-9682(2011)07-0057-01

【Abstract】Cell biology is a basic subject of life science, which is very important in the teaching of postgraduate. This paper enhences the higher level in the teaching cell biology for postgraduste by the definite reform measures of teaching with combining the requirement teaching program, and adopt the development and progress of science and technology.

【Key words】Cell biology Expand The exprement operation

目前,随着科学和技术的快速发展,细胞生物学作为生命科学和生物技术领域的一门专业基础课,在当前该方向的研究生教学中十分重要。那么,如何使研究生的细胞生物学教学跟上时代的步伐,如何培养和提高研究生的实践创新能力,是从事研究生细胞生物学教学的教师必须认真思考的问题。根据近年来研究生细胞生物学教学的教学体会,作者认为应从以下几个方面着手进行教学改革,旨在为研究生的细胞生物学教学提供参考:

一、教学改革实践的措施

1.建立一支高水平的教师队伍

细胞生物学是一门实践性比较强的学科,要建立细胞生物学教学与实验相结合的机制,就必须选择具有扎实基本功和教学经验丰富的教师作为该课程的主讲教师。[1]必须配备一定的实验技能教师进行研究生教学实践的实验教学,培养学生的动手和创新能力,同时要求课题组形成以教师讲解与实验教学相结合的教学机制,辅以博士研究生和硕士研究生亲自动手参与实验和教学的新的教学方式。同时要注意课题组的教师经常进行教学经验和教学技能的教改研究,熟悉学科的前沿发展趋向和研究动态。[2]教师能够把最前沿的知识传授给学生,扩展视野,激发研究生进行科学实验的兴趣十分重要。同时,也为高水平的教师队伍的建设提出了更新、更高的要求。

2.结合教学大纲和教学实际,调整教学内容。

(1)力求按照教学大纲要求进行教学,培养创新能力。细胞生物学教学大纲是开展教学的基本框架和内容,为了适应未来社会的需求,教师必须让学生掌握细胞生物学的基本理论和基本内容,为将来的实际应用打下良好的基础。因此,选取教材十分重要,作者认为研究生作为高校培养的高级人才,在本科阶段已经学过细胞生物学,但是对分子细胞生物学的了解较少,应该选取分子细胞生物学教材,同时在课程安排上考虑实际情况,针对薄弱环节结合教学大纲的要求进行知识结构的调整,从一定的层次要求他们学好这门课程。例如,在教学细胞生物学的基本概念和原理时,应该给出一些事实(例)和问题,让学生积极思考回答这些问题,在理解的基础上掌握概念和原理,而不是进行单纯的讲解,同时也允许学生能够结合自己在做科研中发现的问题,进行课堂讨论,及时总结,激发学生兴趣,充分发挥学生的积极性和创造性。[3]

(2)根据课题组的实际情况,进行教学内容的调整。随着科学技术的进一步发展,细胞生物学领域的进展十分迅速,原来的细胞生物学教科书所涵盖的内容可能正在发生着新的进展,同时研究生作为学科发展的生力军,在本学科的教研中起着非常重要的作用,例如针对植物课题组的研究生教学就应该把重点放在植物细胞生物学的研究上,同时也要照顾到动物学和微生物学课题组修该课的研究生,不同的学生要求掌握的重点不一样,进行教学讲解,要做到有的放失。同时,在现行的教学研究中应该根据大纲要求的每个章节所涵盖的内容结合课题组的实际情况作以适当的调整,补充新的研究进展,开展专题讲座,做到既要顾及全局,又要点面结合,[4]做到切合实际的讲解,便于研究生更深入的了解和学习各个章节的内容。

(3)补充新的教学前沿动态研究。传统的细胞生物学研究只是研究细胞的形态、结构和功能等方面,目前细胞生物学的发展逐渐深入到分子领域,且处于快速发展的领域,例如细胞功能方面的研究已深入到分子领域,作者认为研究生细胞生物学的教学应该结合此领域新的研究进展进行讲解,使学生能够了解最新的发展动态,使其受到启发和教育,为今后的科研工作奠定一定的理念和指明方向。[5]应该在紧扣教学大纲的基础上结合分子生物学的发展进行拓展讲解,使学生能够了解该章节所涉及的发展前沿,跟上科技进步的步伐,才能在以后的科研中奠定好的基础,不致于落伍。

(4)结合教学实验课进行教学实践总结。细胞生物学是一门实践性非常强的学科,应该在进行教学的同时给学生一个实践的机会,因此应该结合教学计划给予一些阶段性的实验操作,因为实验是教学的重要组成部分,二者相结合更有助于培养研究生的动手能力和创新能力,这样对教学的效果也起到一定的补充和检验过程。[6]

二、教学改革效果的检查和验收

现行的研究生教学必须进行改革,但是对于教学改革的效果如何?应该分阶段针对所进行的教学改革的具体实践措施进行有针对性的检查和验收,促进研究生细胞生物学教学的大胆改革和尝试,同时也为高校培养细胞生物学方面的高级人才队伍打下基础。

参考文献

1 郭培俊、龚洪胜.研讨式教学法探微[J].浙江工贸职业技术学院学报,2005(1)

2 王 昕.教学改革的时间与思考[J].中国科技信息,2008

3 孙剑华、张红锋等.多层次系统性细胞生物学实验教学体系的建设[J].实验室研究与探索,2009(1):121~124

4 高宗华、付彩霞、胡 威.深化实验教学改革 培养学生创新能力[J].实验室研究与探索,2007(10):95~97

5 印莉萍、李 鹏、于 荣、祁晓廷、盛仙永.科研向教学转化与“模块式”、“探究式”教学的研究[J].实验技术与管理,2010(3):9~11

细胞生物学的研究领域篇4

初见马炯,并没有想象中那么严肃。他坦诚、开朗、爱笑,直言不讳,又分寸有佳。他聊星座,说自己能在两个领域里吃香大概是“托了这个双子座的福”;还笑言自己是追星族,并拿出与诺奖得主的照片和记者一同分享。而谈及他的科研工作,马炯并没有太多地说起科研工作的辛苦,而是更多地分享他的步步历程。

一半是技术,一半是生物

马炯1999年进入复旦大学物理系,2008年取得物理系光学专业博士学位。博士阶段开始,马炯就致力于发展光学技术与生物课题相结合的研究工作。期间他曾作为访问学者前往南非罗德斯大学化学系和挪威奥斯陆大学生理系进行学术交流。

在南非期间,他确认水溶性CdTe量子点的光催灭机理,首次测定其单态氧产量,并开创出一种应用于其实现光动力治疗癌症的方法。2008年赴美从事博士后工作后,他一直致力于发展新型的单分子超分辨荧光显微镜,用于细胞核孔复合物的研究工作。在美国,马炯与Yang教授共同开发了SPEED显微技术,并在10nm空间精度和400μs时间精度下,研究了各类分子穿越细胞核孔的选择机制。他首次观测到细胞核孔内非折叠蛋白的三维结构,并首次获得生物小分子穿越细胞核孔三维路径,确定了其间的选择性机制,并于2010年及2012年在Proceedings of the National Academy of Sciences上发表了两篇高质量论文。

马炯还与Walter教授合作,开发应用于超分辨显微镜的mRNA荧光标记系统,结合单分子显微追踪技术,完成了mRNA穿越核孔的选择机制的初步研究,确认了mRNA核孔输出三维路径,纠正了一维路径数据所造成的认知误解,并发表在Nature Communication上。

而谈到技术和生物研究,马炯说他从来没有纠结两者之间的取舍,而是始终游走在两者的平衡之中。曾经在南非和挪威做访问学者的时候,他感到技术上偏重太多时,就在前去美国的时候有意识地加重了生物研究的选择。技术是他的“技”,而生物就是他的“巧”。有技方成巧,通过超分辨率光学显微镜的技术不断提高,他在细胞核孔复合物领域的研究也不断加深;以巧推动技,通过细胞核孔复合物实验研究的需求,他又不断革新超分辨光学显微镜的技术。双子的多面性,他展现在了科研领域中,并且大获成功。

2015年6月,马炯归国。他坦言,归国的一部分原因是因为故乡的父母,另一部分则是国家现在对于青年学者的重视,能够让他在最有精力的时刻投入到科研中去。“能够为国家做一点事情,国家也重视我做的事情,这当然是再好不过了。”马炯笑言。

超分辨光学显微镜下看世界

显微镜的发展满足了人们对观察微观世界的需求,让人们可以看得越来越“小”。但由于衍射极限的存在,几十年来光学显微镜的分辨率停滞在了200nm左右。2014年诺贝尔化学奖颁发给了美国及德国三位科学家Eric Betzig、Stefan W. Hell和William E. Moerner,获奖理由是“研制出超分辨率荧光显微镜”。几位获奖者巧妙设计了避开衍射极限的方法,其研究突破性地将光学显微镜带入了纳米维度。在纳米显微镜下,科学家实现了活体细胞中单个分子通路的可视化,能够观察到分子是如何在大脑神经细胞之间生成神经突触;可以追踪帕金森病、阿尔兹海默症和亨廷顿症患者体内相关蛋白的累积情况;还能跟踪受精卵在分裂形成胚胎时蛋白质的变化过程。现在已经进入了“光学显微镜2.0”的时代,超分辨荧光显微镜推动着新一轮生物医学的飞速发展。

现今,已具有多种不同超分辨成像技术实际应用于生物系统的范例,也已出现了商业化的超分辨显微镜系统,但仍然没有达到完美状态。在许多生物研究中,各类超分辨系统有着各自的局限性,如对于特殊荧光标记的发光特性依赖,或是高空间精度测量制约了探测时间进一步缩短。因此,研究和发展合适新的原理和方法,研制出适合专项生物课题研究的显微镜将是今后发展的一大方向。

谈起二维到三维的超分辨退卷积计算开发的时候,马炯说起了一个有意思的故事:他做出这个开发之后,花了整整一个星期的时间说服他的老师来相信他的成果,因为他的老师根本无法想象有人可以做出从二维分布中获取系统的三维分布的开发。而当他的老师认可了他的成果,他和他的老师又开始一起说服领域里的其他研究者一起应用这项成果的相关研究人员。“这告诉我们,固化思维的可怕。科技要进步,科研人员要创新研究,首先就要从打破自己的固有传统认知开始。”马炯严肃地说。

归国后的马炯将开始着手建立显微镜第二平台荧光返还探测技术,实现兼具超高的时间和空间分辨率的三维分子荧光追踪系统。他将把研究中所获得的信息将与跟踪RNA输出细胞核孔的研究互相印证,通过分析RNA在细胞核孔各位置的高时空精度动态过程,进一步研究细胞核孔蛋白调控基因的机理。此外,研究中所发展的原理和方法还将能够被广泛用于毫秒量级甚至更快的纤毛内分子运输、细胞间分子交换及跨膜通道开关等生物问题的研究。

在研究中,马炯将采用创新技术,促使实验系统同时具有很高的时间和三维空间分辨率,在不影响平面二维光学分辨精度的前提下,不通过拟合点扩散函数,而在亚毫秒级时间分辨量级和10nm三维空间分辨量级,实现对三维单分子荧光信息的实时探测和分析,满足高速动态生物学研究的特点和条件。在新型光学系统中,他还将利用凹面镜返还光程无色差的光学原理,创新设计凹面镜荧光返还光路系统,能够将z方向信息转换成x-y水平方向的信息,从而获取单分子z方向的位置信息。

细胞核孔复合物探寻

在细胞核孔复合物的研究中,马炯将利用SPEED显微镜技术,完成各类FG屏障与各类主要的传输分子间反应区域的三维分布测量。细胞核孔复合物是真核细胞中连接细胞质和细胞核之间的选择性双向通道,控制着绝大部分细胞核所需的蛋白输入,以及核内基因物质的输出。可以说,核孔是细胞内基因调控中非常重要的一个环节。核孔的缺陷会导致核孔相关的白血病及阿尔兹海默症等疾病。其本身更是各类病毒侵入细胞的重要关口之一,各类病毒会通过不同的方式通过核孔,最终侵入细胞的基因表达系统导致疾病发生。核孔的结构与功能的研究将为各类基因调控机制的研究提供一环重要的依据,对核孔蛋白缺失相关的白血病、阿尔兹海默症的致病机制,以及各种类病毒的侵入机制等核孔相关病理机制或基因治疗提供关键信息。

一个NPC是由30种多不同的核孔蛋白构成,长约200nm、直径为120nm、中心内径为50nm的大分子复合物。其中有三分之一的核孔蛋白富含苯丙氨酸-甘氨酸(FG)氨基酸片段,且在自然状态下呈现出非固定形态,我们称之为FG-Nups。这些FG-Nups组成了具有选择性机制的FG屏障。FG屏障选择性地调控基因相关物质按照被动运输或者主动介入运输的方式进出细胞核:只有小于60kDa的分子才能通过被动运输的方式,自由扩散通过NPC;另一种方式是主动运输,如含有入核信号或者核孔输出信号的蛋白或复合物分子,在核孔运输蛋白帮助下,形成复合物,通过TRs与FG片段相互作用,从而通过FG屏障。TRs与需要传输的蛋白形成的复合物的结合与解离,通过细胞核内外的RanGDP和RanGTP的浓度梯度来调节。通过电子显微镜可以观察到细胞核孔结构蛋白,但却无法获得这些高度自由的非折叠蛋白的结构,所以至今在生理状态下FG屏障及其相关的核孔物质传输的机理仍不清楚。

马炯将利用SPEED显微镜技术,完成各类FG屏障与各类主要的传输分子间反应区域的三维分布测量。他将确认活细胞内FG-Nup相互反应的存在及相应的水凝胶分布。综合各反应分布,完成接近完善的FG屏障的完整分布。他还将利用基因敲除,获取缺失核孔蛋白的分布,理解其对白血病的致病机理及对腺相关病毒(AAV)基因疗法的调控机制。从传输蛋白间的竞争情况,了解细胞核孔在大通量物质运输下对应的优先选择机制。

达成这项研究的基础,是SPEED显微技术能在超短的时间内获得高精度的空间位置信息,调控光学设置的稳定和准确,以及对各不同分子不同扩散速率下,在确保单分子荧光定位精度的同时,优化实验条件获取最多的数据量,是实验成功的关键。拥有丰富的超分辨光学经验,这让马炯能够满足数据的准确性及稳定地产出量。据此,他将创新领先技术,努力实现分子竞争通过核孔的实验设计创新。

未来故事

回国后的马炯选择了他的母校复旦大学作为科研工作的新起点。这里熟悉的环境让他很快就进入到了工作当中并规划新的征程。

首先,马炯将继续提升SPEED显微技术的性能及推广其应用范围。所有的对称体系研究中,马炯的SPEED显微技术都可以推广应用。而在快速跟踪领域中,这项技术也具有明显优势。其次,他将继续完善超快速的实时单分子三维追踪。再次,马炯将提高静态单分子荧光定位下的超分辨图像精度。现在的主流超分辨显微镜是用了一种光开关蛋白来实现,这将会造成单位时间内的信号光的损失。马炯换了其他方式,利用分子运动进特定区域时将这个分子可能发出的所有荧光进行收集,从而提高静态单分子荧光定位下的超分辨图像精度。

此外,马炯还将利用单分子荧光图像获取除未知外的其他信息。他认为这部分是相当有意思的内容。利用这些单分子图像可以看到,随着探测时间的加长,随着分子运动速度越来越快,这个分子的单分子影像所占区域会越来越大,马炯可以通过这些分子的大小探测到运动速率的快慢,确定这个区域的黏滞性有多大,从而找到这个分子所在纳米位置的环境信息。

最后扩展到生物学的研究领域,比如基因治疗方面。现在病毒如何进入到细胞、感染到细胞并最终复制出来的完整机制还有很多未知之处。如果彻底研究清楚,就能标记这个病毒,知道它什么时候进入到什么位置,如何从细胞吞噬体逃出,并且穿过细胞核孔到达细胞核,把基因嵌入其中。马炯将通过光学手段解析所有步骤,为治疗绝症提供重要依据。

细胞生物学的研究领域篇5

一、基因工程在医学美容领域的应用

目前,基因工程在医学美容领域主要应用在两个方面:细胞因子的应用和核酸的应用。

其中细胞生长因子主要包括酸性成纤维生长因子AFGF、碱性成纤维生长因子BFGF、表皮生长因子EGF、重组转化生长因子RTGF等。这些生长因子的应用范围各有不同,都可以较好地应用于医学美容领域。

根据基因工程的研究结果,AFGF是作用最广泛的生长因子,是一类来源于中胚层和神经外胚层的具有广泛生物学活性的细胞生长因子,对组织创伤、神经系统疾病有突出的治疗效果。该因子可促进组织创伤愈合、血管生成、骨骼修复、溃疡愈合、眼晶状体再生、神经组织修复、神经突起的生长以及胚胎的发育与分化。应用在美容上,AFGF还具有美白作用。不仅如此,它还可以调控人体同源基因,指导性吸收核苷酸和核酸,达到外用内调的作用。

二、组织工程在医学美容领域的应用

组织工程是一门新兴的交叉学科,所涉及到的研究领域包括细胞生物学、免疫学、材料科学等。组织工程研究主要包括四个方面:种子细胞、生物材料、构建组织和器官的方法与技术以及组织工程的临床应用。

目前,临床上常用的组织修复途径大致有s?种,即:自体组织移植、异体组织移植和应用人工代用品。第一个组织工程产品人工皮肤已于1997年3月经美国FDA批准上市,这种产品是器官基因公司培养出来的,被称为“适移植”的活性皮肤,它由新生儿的包皮细胞培植而成,呈层状结构,与正常人的皮肤极为相似,能分泌人体皮肤胶原、生长因子和结构性蛋白,可与病人自身的皮肤很好地融合,不存在排异作用,就连病人自身的血管和色素也会逐渐转移到“适移植”活性皮肤中去,愈合不留瘢痕。人工皮肤的问世使整形美容的发展方向起了划时代的变化,从此,人体的皮肤缺陷不再需要从自身的皮肤移植。

我国在组织工程方面的贡献也是颇为显著的,1996年世界上第一个在裸鼠背上复制“人耳”形成人耳廓形态软骨的试验由我国科学家完成,引起国际医学界的轰动。目前,国内关于组织工程的研究对象主要是骨和软骨,其次为皮肤。

三、基因工程和组织工程交叉学科在医学美容领域的应用

基因工程和组织工程交叉学科在医学美容领域的应用集中表现在生物缓释材料在美容整形上的应用。

简单而言,生物缓释材料就是胶细胞生长因子放在由胶元蛋白构成的支架上,该材料被人体慢慢吸收,起到长时间的修复作用。最有代表性的例子是,人的鼻子进行人工软骨替换手术或者鼻窦炎鼻腔手术时,将这种缓释材料垫在伤口处一起缝合,不但起到了快速修复的作用,而且可以使愈合质量显著提高,避免大面积疤痕和失血过多等不良反应。

细胞生物学的研究领域篇6

1MYOC基因

MYOC基因是OLFM中研究最多的基因,研究已经证明该基因在人眼小梁网和巩膜组织中高表达,可能与原发性开角型青光眼的发生发展有关。该基因C末端嗅素样结构域与OLFM3蛋白之间相互作用有关[1],N末端同源结构域与二聚体的形成有关,并且大部分突变定位在基因编码蛋白C末端嗅素样结构域的第三外显子上。体外实验表明,培养的小梁细胞在糖皮质激素的诱导下,其黏附特性丧失及小梁细胞更易于调亡,可能与MYOC的过度表达有关[3-4]。随着MYOC基因的新突变点逐渐被发现,已证实MYOC基因的突变可以导致小梁网细胞的死亡,最终导致开角型青光眼[5]。随着研究的深入,MYOC还可能通过其他途径对青光眼的发生产生影响。另外,Karali等[6]和Swiderski等[7]通过研究证实MYOC对视神经的功能亦有影响。

2OLFM1基因

研究表明,OLFM1基因在小鼠视网膜神经节细胞中有表达,在小鼠青光眼模型中表达量下降。其在不同的种属中称谓不同,非洲爪蟾属中被称为Ne-olin,其过表达可以扩大神经板和神经管的面积;小鼠中被称为Pancortin,在小鼠胚胎发育中与神经嵴的迁移呈正相关。Wan等[8]通过体外实验证实OLFM1与细胞增殖有关,可增加S期细胞比率。Zhang等[9]的研究表明OLFM1基因突变可导致整个家族蛋白的活动异常,从而导致视网膜疾病。还有研究表明用寡核苷酸类药物抑制斑鱼OLFM1基因的表达可以使眼球的体积变小,抑制视神经的发育,增加视网膜神经胶质细胞和内核层细胞的凋亡[10]。因此该基因与眼球的发育和眼病密切相关。

3OLFM2基因

OLFM2基因定位于19号染色体短臂13区2带,包含8个外显子,大小约83kbp。mRNA有两种变异剪切体,分别对应含有454个和478个氨基酸的糖基化分泌型蛋白,前者主要存在于神经组织,后者与视网膜母细胞瘤有关。Lee等[11]研究发现该基因在视网膜神经节细胞和内核层中有表达。Zhang等[9]研究表明OLFM2与高眼压有关,在小鼠眼的发育和视网膜神经节细胞层发育中发挥重要作用。该基因在不同的疾病中有不同的突变形式,例如在开角型青光眼中有R144Q位点突变[12],在结直肠癌中有T86M位点的突变[13]。OLFM2有高度的保守性,表明其在生物发展进化中发挥重要作用。

4OLFM3基因

OLFM3(Optimedin)与该家族其他成员有65%~68%的同源性,GenBank中能查到6种剪切形式NOE3-1~NOE3-6(序列号AF397392-AF397397)。小鼠中在不同的启动子参与转录下有两种主要的剪切体:OptimedinA和OptimedinB,分别对应人NOE3-3和NOE3-1剪切体。Nguyen等[3]指出Opti-medin在虹膜、睫状体、视网膜的神经节细胞和内核层中有表达,在眼的正常发育中发挥重要作用。

Ahmed等[14]也在小梁网中鉴定出该基因,并认为Optimedin在小鼠眼房角、视网膜和脑中高表达,而在人房角的表达量不如视网膜和脑。Meade等[15]也在兔角膜内皮细胞中鉴定出该基因,认为它是一种神经元表达蛋白,能刺激细胞紧密连接的形成和黏附,调节细胞骨架的形成和细胞迁移。Tomarev等[16]构建了共转染的PC12细胞能表达Optimedin,认为其可能通过升高钙依粘连蛋白、α-连环蛋白、β-连环蛋白的表达从而加速细胞生长速率和基质黏附,通过调节细胞骨架形成、细胞间黏附和迁移在脑和视网膜分化中起作用。Optimedin对青光眼、房角和视网膜组织功能的正常发育十分重要,体外实验证实在发育过程中Optimedin基因突变能引起相应蛋白的分泌减少,体内研究证实其突变会引起眼部的病理性改变[1,17]。还有研究表明该基因定位在恶性室管膜瘤的相关基因的移位断点附近,可能与恶性室管膜瘤有关[17]。但是对该基因的研究尚处于探索阶段,Tomarev等[18]分析了一个自发退行性色素性视网膜炎的家系,发现染色体1p22.1ABCA4基因附近有新位点,而在染色体1p13.3~1p21.2区没有发现Optimedin突变。Mukhopadhyay等[19]用生物信息学的方法筛选出该家族中的前3种基因(OLFM1~OLFM3),介绍了基因定位、长度和剪切体情况,指出3种基因都在脑中有表达,但是在眼中没有发现Optimedin的表达。鉴于对该基因研究结论的不一致性,其在眼科领域的作用还有待于进一步研究。

5OLFM4基因

目前关于OLFM4的研究也不少,但是大多数集中于消化系统和生殖系统,Yasui等[20]研究表明病变组织胞浆时OLFM4表达阳性的患者较表达阴性的患者有更高的生存率,认为它与结直肠癌患者的良性预后有关。Chen等[21]采用免疫组织化学和实时定量RT-PCR评估了OLFM4在宫颈上皮内肿瘤和浸润型鳞状细胞癌中的表达与分布情况,指出OLFM4与女性生殖道肿瘤形成有关。Frossard等[22]和Watanabe等[23]研究认为OLFM4与胰腺癌有关。眼科领域有研究表明OLFM4在视网膜Müller胶质细胞中表达[24],但它在眼科领域的具体功能还不清楚,有待于进一步研究。

6OLFM家族蛋白相互作用

嗅素结构域蛋白并不是孤立的,其发挥作用常依赖于蛋白之间的相互作用,如OLFM4蛋白可以与细胞表面的钙依粘连蛋白和外源凝集素类相互作用;MYOC通过与房角结构蛋白Flotilin相互作用调节房水流出。Mukhopadhyay等[19]通过体外研究表明Optimedin蛋白(编码蛋白在嗅素结构域与MYOC有高度的同源性)可能通过在哺乳动物(人和小鼠)眼表达量的差异和与MYOC的相互作用在眼病发病机制中起重要作用。Sultana等[25]研究认为OLFM2与OLFM1和Optimedin关系密切,其中任一个基因的突变都将影响其余两种的活性,最终导致视网膜疾病的发生。PAX基因家族是调控发育过程的基因,因其可调控细胞的生长和分化而有致癌的潜能,近年来研究发现PAX蛋白在特定干细胞或前体细胞中发挥作用,其多个成员具有致癌性,其中PAX6与中枢神经系统发育、嗅觉系统、视觉系统和内分泌胰腺发育有关。Li等[26]通过研究证实其与视网膜母细胞瘤有关。Grinchuk等[17]证明OptimedinA启动子附近-86/-70位点有PAX6蛋白的结合位点。他们通过体外凝胶电泳迁移率实验证实PAX6蛋白通过其PD结构域与Optimedin基因结合,并且体外转染使该位点突变能够消除Optimedin启动子的激活,体内染色质免疫共沉淀法也证实PAX6与该位点的结合。

7结语

细胞生物学的研究领域篇7

摘要本文根据近期的文献资料,分析研究了目前国际海洋生物技术研究发展特点。重点领域及最新研究进展,展望对世纪海洋生物技术研究的发展趋势,并就我国海洋生物技术发展提出相应的建说。关键词海洋生物技术发展展望近10年来,由于海洋在沿海国家可持续发展中的战略地位日益突出,以及人类对海洋环境特殊性和海洋生物多样性特征的认识不断深入,海洋生物资源多层面的开发利用极大地促进了海洋生物技术研究与应用的迅速发展。1989年首届国际海洋生物技术大会(以下简称MPS大会)在日本召开时仅有几十人参加,而1997年第四届IMBC大会在意大利召开时参加入数达1000多人。现在IMBC会议已成为全球海洋生物技术发展的重要标志,出现了火红的局面。《IMBC2000》在澳大利亚刚刚开过,《IMBC2003》的筹备工作在日本已经开始,以色列为了举办们《IMBC2006》早早作了宣传,并争到了举办权。每3年一届的IMBC不仅吸引了众多高水平的专家学者前往展示与交流研究成果,探讨新的研究发展方向,同时也极大地推动了区域海洋生物技术研究的发展进程。在各大洲,先后成立了区域性学术交流组织,如亚太海洋生物技术学会、欧洲海洋生物技术学会和泛美海洋生物技术协会等。各国还组建了一批研究中心,其中比较著名的为美国马里兰大学海洋生物技术中心、加州大学圣地亚哥分校海洋生物技术和环境中心,康州大学海洋生物技术中心,挪威贝尔根大学海洋分子生物学国际研究中心和日本海洋生物技术研究所等。这些学术组织或研究中心不断举办各种专题研讨会或工作组会议研究讨论富有区域特色的海洋生物技术问题。1998年在欧洲海洋生物技术学会、日本海洋生物技术学会和泛美海洋生物技术协会的支持下,原《海洋生物技术杂志》与《分子海洋生物学和生物技术》合刊为《海洋生物技术》学报(以下简称MBT),现在它已成为一份具有权威性的国际刊物。海洋生物技术作为一个新的学科领域已明确被定义为“海洋生命的分子生物学如细胞生物学及其它的技术应用”。为了适应这种快速发展的形势,美国、日本、澳大利亚等发达国家先后制定了国家发展计划,把海洋生物技术研究确定为21世纪优先发展领域。1996年,中国也不失时机地将海洋生物技术纳入国家高技术研究发展计划(863计划),为今后的发展打下了基础。不言而喻,迄今海洋生物技术不仅成为海洋科学与生物技术交叉发展起来的全新研究领域,同时,也是21世纪世界各国科学技术发展的重要内容并将显示出强劲的发展势头和巨大应用潜力。1.发展特点表1和表2列出的资料大体反映了当前海洋生物技术研究发展的主要特点。1.1加强基础生物学研究是促进海洋生物技术研究发展的重要基石海洋生物技术涉及到海洋生物的分子生物学、细胞生物学、发育生物学、生殖生物学、遗传学、生物化学、微生物学,乃至生物多样性和海洋生态学等广泛内容,为了使其发展有一个坚实的基础,研究者非常重视相关的基础研究。在《IMBC2000》会议期间,当本文作者询问一位资深的与会者:本次会议的主要进步是什么?他毫不犹豫的回答:分子生物学水平的研究成果增多了。事实确实如此。近期的研究成果统计表明,海洋生物技术的基础研究更侧重于分子水平的研究,如基因表达、分子克隆、基因组学、分子标记、海洋生物分子、物质活性及其化合物等。这些具有导向性的基础研究,对今后的发展将有重要影。1.2推动传统产业是海洋生物技术应用的主要方面目前,应用海洋生物技术推动海洋产业发展主要聚焦在水产养殖和海洋天然产物开发两个方面,这也是海洋生物技术研究发展势头强劲。充满活力的原因所在。在水产养殖方面,提高重要养殖种类的繁殖、发育、生长和健康状况,特别是在培育品种的优良性状、提高抗病能力方面已取得令人鼓舞的进步,如转生长激素基因鱼的培育、贝类多倍体育苗、鱼类和甲壳类性别控制、疾病检测与防治、DNA疫苗和营养增强等;在海洋天然产物开发方面,利用生物技术的最新原理和方法开发分离海洋生物的活性物质、测定分子组成和结构及生物合成方式、检验生物活性等,已明显地促进了海洋新药、酶、高分子材料、诊断试剂等新一代生物制品和化学品的产业化开发。MBC大会研讨的主要内容 表2近期IMBC大会和《MarineBiotechnology》学报论文统计表 1.3保证海洋环境可持续利用是海洋生物技术研究应用的另一个重要方面利用生物技术保护海洋环境、治理污染,使海洋生态系统生物生产过程更加有效是一个相对比较新的应用发展领域,因此,无论是从技术开发,还是产业发展的角度看,它都有巨大的潜力有待挖掘出来。目前已涉及到的研究主要包括生物修复(如生物降解和富集、固定有毒物质技术等)、防生物附着、生态毒理、环境适应和共生等。有关国家把“生物修复”作为海洋生态环境保护及其产业可持续发展的重要生物工程手段,美国和加拿大联合制定了海洋环境生物修复计划,推动该技术的应用与发展。1.4与海洋生物技术发展有关的海洋政策始终是公众关注的问题其中海洋生物技术的发展策略、海洋生物技术的专利保护、海洋生物技术对水产养殖发展的重要性、转基因种类的安全性及控制问题、海洋生物技术与生物多样性关系以及海洋环境保护等方面的政策、法规的制定与实施倍受关注。2.重点发展领域当前,国际海洋生物技术的重点研究发展领域主要包括如下几个方面:2.1发育与生殖生物学基础弄清海洋生物胚胎发育、变态、成熟及繁殖各个环节的生理过程及其分子调控机理,不仅对于阐明海洋生物生长、发育与生殖的分子调控规律具有重要科学意义,而且对于应用生物技术手段,促进某种生物的生长发育及调控其生殖活动,提高水产养殖的质量和产量具有重要应用价值。因此,这方面的研究是近年来海洋生物技术领域的研究重点之一。主要包括:生长激素、生长因子、甲状腺激素受体、促性腺激素、促性腺激素释放激素、生长一催乳激素、渗透压调节激素、生殖抑制因子、卵母细胞最后成熟诱导因子、性别决定因子和性别特异基因等激素和调节因子的基因鉴定、克隆及表达分析,以及鱼类胚胎于细胞培养及定向分化等。2.2基因组学与基因转移随着全球性基因组计划尤其是人类基因组计划的实施,各种生物的结构基因组和功能基因组研究成为生命科学的重点研究内容,海洋生物的基因组研究,特别是功能基因组学研究自然成为海洋生物学工作者研究的新热点。目前的研究重点是对有代表性的海洋生物(包括鱼、虾、贝及病原微生物和病毒)基因组进行全序列测定,同时进行特定功能基因,如药物基因、酶基因、激素多肽基因、抗病基因和耐盐基因等的克隆和功能分析。在此基础上,基因转移作为海洋生物遗传改良、培育快速生长和抗逆优良品种的有效技术手段,已成为该领域应用技术研究发展的重点。近几年研究重点集中在目标基因筛选,如抗病基因、胰岛素样生长因子基因及绿色荧光蛋白基因等作为目标基因;大批量、高效转基因方法也是基因转移研究的重点方面,除传统的显微注射法、基因枪法和携带法外,目前已发展了逆转录病毒介导法,电穿孔法,转座子介导法及胚胎细胞介导法等。2.3病原生物学与免疫随着海洋环境逐渐恶化和海水养殖的规模化发展,病害问题已成为制约世界海水养殖业发展的瓶颈因子之一。开展病原生物(如细菌、病毒等)致病机理、传播途径及其与宿主之间相互作用的研究,是研制有效防治技术的基础;同时,开展海水养殖生物分子免疫学和免疫遗传学的研究,弄清海水鱼、虾、贝类的免疫机制对于培育抗病养殖品种、有效防治养殖病害的发生具有重要意义。因此,病原生物学与免疫已成为当前海洋生物技术的重点研究领域之一,重点是病原微生物致病相关基因、海洋生物抗病相关基因的筛选、克隆,海洋无脊椎动物细胞系的建立、海洋生物免疫机制的探讨、DNA疫苗研制等。2.4生物活性及其产物海洋生物活性物质的分离与利用是当今海洋生物技术的又一研究热点。现人研究表明,各种海洋生物中都广泛存在独特的化合物,用来保护自己生存于海洋中。来自不同海洋生物的活性物质在生物医学及疾病防治上显示出巨大的应用潜力,如海绵是分离天然药物的重要资源。另外,有一些海洋微生物具有耐高温或低温、耐高压、耐高盐和财低营养的功能,研究开发利用这些具特殊功能的海洋极端生物可能获得陆地上无法得到的新的天然产物,因而,对极端生物研究也成为近年来海洋生物技术研究的重点方面。这一领域的研究重点包括抗肿瘤药物、工业酶及其它特殊用途酶类、极端微生物定功能基因的筛选、抗微生物活性物质、抗生殖药物、免疫增强物质、抗氧化剂及产业化生产等。2.5海洋环境生物技术该领域的研究重点是海洋生物修复技术的开发与应用。生物修复技术是比生物降解含义更为广泛,又以生物降解为重点的海洋环境生物技术。其方法包括利用活有机体、或其制作产品降解污染物,减少毒性或转化为无毒产品,富集和固定有毒物质(包括重金属等),大尺度的生物修复还包括生态系统中的生态调控等。应用领域包括水产规模化养殖和工厂化养殖、石油污染、重金属污染、城市排污以及海洋其他废物(水)处理等。目前,微生物对环境反应的动力学机制、降解过程的生化机理、生物传感器、海洋微生物之间以及与其它生物之间的共生关系和互利机制,抗附着物质的分离纯化等是该领域的重要研究内容。3.前沿领域的最新研究进展3.1发育与生殖调控应用GIH(性腺抑制激素)和GSH(性腺刺激激素)等激素调控甲壳类动物成熟和繁殖的技术「1,研究了甲状腺激素在金绍生长和发育中的调控作用,发现甲状腺激素受体mRNA水平在大脑中最高,在肌肉中最低,而在肝、肾和鳃中表达水平中等,表明甲状腺素受体在成体金银脑中起着重要作用「1,对海鞘的同源框(Homeobox)基因进行了鉴定,分离到30个同源框基因「1,建立了青鳉的同源框(Homeobox)基因「1,建立了青鳉胚胎干细胞系并通过细胞移植获得了嵌合体青鳉「1,建立了虹鳟原始生殖细胞培养物并分离出Vasa基因「2,进行斑节对虾生殖抑制激素的分离与鉴定「2,应用受体介导法筛选GnRH类似物,用于鱼类繁殖「2,建立了海绵细胞培养技术,用于进行药物筛选「2,建立了将海胆胚胎作为研究基因表达的模式系统「2,通过基因转移开展了海胆胚胎工程的研究「2,研究了人葡糖转移酶和大鼠已糖激酶cDNA在虹鳟胚胎中的表达[3],建立了通过细胞周期蛋白依赖的激酶活性测定海水鱼苗细胞增殖速率的方法「3,研究了几丁质酶基因在斑节对虾蜕皮过程中的表达[4],从海参分离出同源框基因,并进行了序列的测定「4。3.2功能基因克隆建立了牙鲆肝脏和脾脏mRNA的表达序列标志,从深海一种耐压细菌中分离到压力调节的操纵子,从大西洋鲑分离到雌激素受体和甲状腺素受体基因,从挪威对虾中分离到性腺抑制激素基因「1;将DNA微阵列技术在海绵细胞培养上进行了应用,构建了班节对虾遗传连锁图谱,建立了海洋红藻EST,从海星卵母细胞中分离出成熟蛋白酶体的催化亚基,初步表明硬骨头鱼类IGF-I原E一肽具有抗肿瘤作用「2;构建了海洋酵母De—baryomyceshansenii的质粒载体,从鲤鱼血清中分离纯化出蛋白酶抑制剂,从兰蟹血细胞中分离到一种抗菌肽样物质,从红鲍分离到一种肌动蛋白启动子,发现依赖于细胞周期的激酶活性可用作海洋鱼类苗种细胞增殖的标记,克隆和定序了鳗鱼细胞色素P4501AcD-NA,通过基因转移方法分析了鳗细胞色素P450IAI基因的启动子区域,分离和克隆了鳗细胞色素P450IAI基因,建立了适宜于沟绍遗传作图的多态性EST标记,构建了黄盖鲽EST数据库并鉴定出了一些新基因,建立了班节对虾一些组织特异的EST标志,从经HirameRhabdovirus病毒感染的牙鲆淋巴细胞EST中分离出596个cDNA克隆「3;用PCR方法克隆出一种自体受精雌雄同体鱼类的ß一肌动蛋白基因,从金鲷cDNA文库中分离出多肽延伸因子EF-2CDNA克隆,在湖鳟基因组中发现了TC1样转座子元件「4;鉴定和克隆出的基因包括:南美白对虾抗菌肽基因、牡蛎变应原(allergen)基因、大西洋鳗和大西洋鲑抗体基因、虹鳟Vasa基因、青鳉P53基因组基因、双鞭毛藻类真核启始因子5A基因、条纹鲈GtH(促性腺激素)受体cDNA、鲍肌动蛋白基因、蓝细菌丙酮酸激酶基因、鲤鱼视紫红质基因调节系列以及牙鲆溶菌酶基因等[1—4]。3.3基因转移分离克隆了大马哈鱼IGF基因及其启动子,并构建了大马哈鱼IGF(胰岛素样生长因子)基因表达载体「1。通过核定位信号因子提高了外源基因转移到斑马鱼卵的整合率「1,建立了快速生长的转基因罗非鱼品系并进行了安全性评价;对转基因罗非鱼进行了三倍体诱导,发现三倍体转基因罗非鱼尽管生长不如转基因二倍体快,但优于未转基因的二倍体鱼,同时,转基因三倍体雌鱼是完全不育的,因而具有推广价值「2;研究了超声处理促进外源DNA与金鲷结合的技术方法,将GFP作为细胞和生物中转基因表达的指示剂;表明转基因沟鲶比对照组生长快33%,且转基因鱼逃避敌害的能力较差,因而可以释放到自然界中,而不会对生态环境造成大的危害「3;应用GFP作为遗传标记研究了斑马鱼转基因的条件优化和表达效率「3;在抗病基因工程育种方面,构建了海洋生物抗菌肽及溶菌酶基因表达载体并进行了基因转移实验「2;在转基因研究的种类上,目前已从经济养殖鱼类逐步扩展到养殖虾、贝类及某些观赏鱼类「2.3。通过基因枪法将外源基因转到虹鳟肌肉中获得了稳定表达「4。3.4分子标记技术与遗传多样性研究了将鱼类基因内含子作为遗传多样性评价指标的可行性,应用SSCP和定序的方法研究了大西洋和地中海几种海洋生物的遗传多样性「1。研究了南美白对虾消化酶基因的多态性「1;利用寄生性原生动物和有毒甲藻基因组DNA的间隔区序列作标记检测环境水体中这些病原生物的污染程度,应用18S和5.8S核糖体RNA基因之间的第一个内部间隔区(ITC—1)序列作标记进行甲壳类生物种间和种内遗传多样性研究「2;研究了斑节对虾三个种群的线粒体DNA多态性,用PCR技术鉴定了夏威夷Gobioid苗的种类特异性。通过测定内含子序列揭示了南美白对虾的种内遗传多样性,采用同功酶、微卫星DNA及RAPD标记对褐鳟不同种群的遗传变异进行了评价,在平鱼鉴定并分离出12种微卫星DNA,在美国加州鱿鱼上发现了高度可变的微卫星DNA「3;弄清了一种深水鱼类(Gonostomagracile)线粒体基因组的结构,并发现了硬骨鱼类tRNA基因重组的首个实例,测定了具有重要商业价值的海水轮虫的卫星DNA序列,用RAPD技术在大鲮鲆和鳎鱼筛选到微卫星重复片段,从多毛环节动物上分离出高度多态性的微卫星DNA,用RAPD技术研究了泰国东部泥蟹的遗传多样性「3;用AFLP方法分析了母性遗传物质在雌核发育条纹鲈基因组中的贡献「4。3.5DNA疫苗及疾病防治构建了抗鱼类坏死病毒的DNA疫苗「1;开展了虹鳟IHNVDNA疫苗构建及防病的研究,表明用编码IHNV糖蛋白基因的DNA疫苗免疫虹鳟,诱导了非特异性免疫保护反应,证明DNA免疫途径在鱼类上的可行性,从虹鳟细胞系中鉴定出经干扰素可诱导的蛋白激酶「2;建立了养殖对虾病毒病原检测的ELISA试剂盒,用PCR等分子生物学技术鉴定了虾类的病毒性病原,将鱼类的非特异性免疫指标用于海洋环境监控,研究了抗病基因转移提高鲷科鱼类抗病力的可行性,研究了蛤类唾液酸凝集素的抗菌防御反映「2;研究了一种海洋生物多糖及其衍生物的抗病毒活性「3;建立了测定牡蛎病原的PCR—ELISA方法「3;研究了LatrunculinB毒素在红海绵体内的免疫定位「4。3.6生物活性物质从海藻中分离出新的抗氧化剂「1,建立了大量生产生物活性化合物的海藻细胞和组织培养技术,建立了通过海绵细胞体外培养制备抗肿瘤化合物的方法「1;从不同生物(如对虾和细菌)中鉴定分离出抗微生物肽及其基因,从鱼类水解产物中分离出可用作微生物生长底物的活性物质,海洋生物中存在的抗附着活性物质,用血管生成抑制剂作为抗受孕剂,从蟹和虾体内提取免疫激活剂,从海洋藻类和蓝细菌中纯化光细菌致死化合物,海星抽提物在小鼠上表现出批精细胞形成的作用,从海洋植物Zosteramarina分离出一种无毒的抗附着活性化合物,从海绵和海鞘抽提物分离出抗肿瘤化合物,开发了珊瑚变态天然诱导剂,从海胆中分离出一种抗氧化的新药,在海洋双鞭毛藻类植物中鉴定出长碳链高度不饱和脂肪酸(C28),表明海洋真菌是分离抗微生物肽等生物活性化合物的理想来源「2;发现海洋假单胞杆菌的硫酸多糖及其衍生物具有抗病毒活性,从硬壳蛤分离出谷光甘肽一S一转移酶,从鲤血清中分离出丝氨酸蛋白酶抑制剂,从海绵中分离出氨激脯氨酸二肽酶,从一种珊瑚分离出具DNA酶样活性的物质,建立了开放式海绵养殖系统,为生物活性物质的大量制备提供了充足的海绵原料「3;从虾肌水解产物中分离到抗氧化肽物质「4;从一种海洋细菌中分离纯化出N一乙酸葡糖胺一6一磷酸脱乙酸酶「4。3.7生物修复、极端微生物及防附着研究了转重金属硫蛋白基因藻类对海水环境中重金属的吸附能力,表明明显大于野生藻类「1,研究了石油降解微生物在修复被石油污染的海水环境上的可疗性及应用潜力「1;研究了海洋磁细菌在去除和回收海水环境中重金属上的应用潜力「1;用Bacillus清除养鱼场污水中的氮,用分子技术筛选作为海水养殖饵料的微藻,开发了六价铬在生物修复上的应用潜力,分离出耐冷的癸烷降解细菌,研究了海洋环境中多芳香化烃的微生物降解技术「2;从噬盐细菌分离出渗透压调节基因,并生产了重组Ectoine(渗透压调节因子),从2650米的深海分离到一种耐高温的细菌,这种细菌可用来分离耐高温和热稳定的酶,在耐高温的archaea发现了D型氨基酸和无氧氨酸消旋酶,测定了3种海洋火球菌的基因组DNA序列,借助于CROSS/BLAST分析进行了特定功能基因的筛选,从海底沉积物、海水和北冰洋收集了1000多种噬冷细菌,并从这些细菌中分离到多种冷适应的酶「2;建立了一种测定藤壶附着诱导物质的简单方法,研究了Chlorophyta和共生细菌之间附着所必需的形态上相互作用,研究了珊瑚抗附着物质(dterpene)类似物的抗附着和麻醉作用「3;分析了海岸环境中污着的起始过程,并对沉积物和附着物的影响进行了检测「4。4.展望与建议上述研究分析表明,海洋生物技术作为一个全新的学科,已成为21世纪海洋研究开发的重要领域,并沿着三个应用方向迅速发展。一是水产养殖,其目标十分清楚就是要提升传统产业,促使水产养殖业在优良品种培育、病害防治、规模化生产等诸多方面出现跨越式的发展;二是海洋天然产物开发,其目标是探索开发高附加值的海洋新资源,促进海洋新药、高分子材料和功能特殊的海洋生物活性物质产业化开发;三是海洋环境保护,其目标是保证海洋环境的可持续利用和产业的可持续发展。令人可喜的是这个应用发展趋势与我国海洋产业的发展需求,特别是与我国海洋生物资源可持续开发利用的高技术需求相一致「5。事实上,在过去5年中我国海洋生物技术的研究应用已经取得了长足的进步,取得了一批具世界先进水平的研究成果,在推动海洋产业发展中发挥了重要作用。进入21世纪,加大海洋863的支持力度,进一步促进我国海洋生物技术快速发展的势头,不仅有现实的意义,也是具有战略价值的举措。另外,面对科技全球化的挑战,多渠道地加强国际合作与交流,促进我国海洋生物技术创新和产业化向更高层面上发展也是十分重要的。从技术应用的角度看,海洋生物技术主要是利用海洋环境特殊性和生物多样性特征,从分子和细胞水平上,即从高技术水平上多层面地开发利用海洋生物群体资源。遗传资源和天然产物资源,那么与此相关的基础研究就显得十分重要了。事实上,这也是一种国际研究发展趋势。为了弥补这方面的不足,在我国海洋生物技术发展过程中需要有多方面支持和配合,不仅要与《国家重点基础研究发展规划》、《国家自然科学基金》等相关计划沟通、衔接,还需要加强基础性建设。既需要加强中试基地和产业化基地建设,也需要加强基础设施建设,如加强开放实验室、研究基地、生物多样性资源库、种子库、信息数据库的建设。这些措施对我国海洋生物技术向更高水平发展具有深远意义.

细胞生物学的研究领域篇8

【关键词】纳米;医药;应用

1.引言

纳米材料(又称为超微颗粒材料)由纳米粒子组成。粒子尺寸范围在1~100 nm之间。由于纳米材料具有量子尺寸效应、小尺寸效应、表面和宏观量子隧道效应等[1],因而在性能上与相同组成的传统概念上的微米材料有非常显著的差异,表现出许多优异的性能和全新的功能,已在许多领域展示出广阔的应用前景,引起了世界各国科技界和产业界的广泛关注。

随着人们研究的深入,纳米材料已广泛应用于医药领域,为现代疾病的诊断与治疗、现代药物的开发与创新提供了崭新的技术手段和工具。例如:Drezek等专门研究用于体内组织病理的光学成像技术,正在开发一种仅在遇到特定分子时发光的成像试剂。通过可降解的多肽交联剂与金纳米粒连接在一起,得到了一种分子成像试剂,在与特定分解酶结合时才改变颜色[2]。此外,纳米雄黄、纳米磁石以及纳米胰岛素口腔喷剂等已相继研制成功,并且显示出良好的药理药效作用,其发展前景十分乐观。如林本兰等人制备磁性纳米粒阿霉素白蛋白微球靶向抗癌药物[3,4]。

2.纳米材料在医学领域中的应用

在医学领域中,纳米材料应用于疾病的诊断和治疗,如肿、瘤、心血管病、传染病等重大疾病的诊治方面显示其重大的意义。

2.1 疾病诊断方面的应用[5]

2.1.1 影像学诊

通过将纳米大小的成像试剂靶向到肿瘤或身体其他特定部位,可为疾病诊断提供一种更快捷、对人体损伤更小、更精确的手段。

2.1.2 实验室诊断

一种具有超高灵敏性激光单原子分子探测术问世了,它可通过人的唾液、血液、粪便以及呼出的气体,及时发现人体中哪怕只有亿万分之一的各种致病或带病游离分子。

2.1.3 植入传感器诊断

利用纳米级微小探针技术,可向人体内植入传感器,根据不同的诊断和监测目的,可定位于体内的不同部位,也可随血液在体内运行,随时将体内的各种生物信息反馈于体外记录装置。此项技术有可能成为21世纪医学界常用的手段。

2.1.4 细胞分离诊断

目前生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传器)。美国等科学家利用纳米磁性粒子成功地分离出人体骨髓中癌细胞,从而达到检查细胞,实现癌症的早期诊断和治疗。病理诊断方面,目前肿瘤诊断最可靠的手段是建立在组织细胞水平上的病理学方法,但利用原子力显微镜可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常纳米结构改变,以解决现有的良恶性肿瘤及细胞来源判断不准确的难题。

2.1.5 遗传病诊断方面

为判断胎儿是否具有遗传缺陷,以前常采用价格昂贵并对人体有损害的羊水诊断技术。如今应用纳米技术,可简便安全地达到目的。妇女怀孕8周左右,在血液中开始出现非常少量的胎儿细胞,用纳米微粒很容易将这些胎儿细胞分离出来进行诊断。纳米颗粒对关节疾病的诊断[6],利用准弹性激光散射技术所测量的关节液纳米颗粒的平均粒度数据,可较易分析和判断所检查关节经历的病理生理变化。

2.2 疾病治疗方面的应用

2.2.1 基因方面[7]

如今纳米材料问世,在纳米尺度上建造的设备已使科学突飞猛进。纳米技术为当前基因疗法中的难题提供一些解决办法,并为癌症和糖尿病等顽症的疗法带来显著的疗效。器官移植方面,纳米科技所要做的是寻找生物兼容物质。纳米无机材料Fe3O4是一种天然无机磁性材料,对细胞毒性小,且容易被代谢。对磁性Fe3O4晶粒表面加以修饰[8],使其包覆一层或多层生物高分子,如多聚糖,蛋白质等而形成核壳式结构,可增加材料的生物相容性;将使Fe3O4颗粒作为理想的基因载体成为可能。纳米磁粒靶向基因治疗动脉闭塞性疾病实验研究。张铁民等人[9]采用共沉淀法合成了纳米级磁粒,以逆转录聚合酶链式反应法(RT2PCR)克隆人血管内皮生长因子基因并构建高拷贝的真核表达质粒,应用乳化复合技术合成磁粒基因复合微球。使用纳米磁粒靶向VEGF基因治疗实验性血管闭塞性病变疗效显著,安全可靠,创立了一种新的基因治疗闭塞性血管病的方法。

2.2.2 肿瘤研究方面

现在研究成的极其细小的氧化铁纳米颗粒[10],可注入病人的癌瘤中,然后将患者置于可变的磁场中,使病人癌瘤中的氧化铁纳米颗粒升温46 ℃左右,烧毁癌瘤细胞,而其周围的健康组织不会受到伤害。另一种纳米壳,将其金质涂层贴在特定的束缚肿瘤细胞的抗体上,过充分加热纳米壳也能杀死癌细胞。也可把药物与这种氧化铁纳米颗粒结合注入患者体内,在外磁场作用下,使其向病变部位集中,从而达到定向治疗和提高疗效的目的。

我国研发的纳米药物载体治疗恶性肿瘤技术已取得显著成果,最近将转入临床试验阶段。张阳德教授介绍,这种新疗法是把原有的治癌药物稀释分解后的产物吸附在纳米颗粒上,然后再把带药的纳米颗粒利用靶向技术,直接作用于患病细胞,并在患病细胞上缓慢释放和分解药物,可望征服部分恶性肿瘤。

3.纳米科技在医药领域的发展前景

未来20年纳米与医药学的联系更为紧密,其趋势为:纳米材料将使诊断、检测技术向微观、微量、微型、微创或无创、快速、实时、动态、功能性和智能化的方向发展;应用于分子间的相互作用、分子复合物和分子组装的研究,将在病毒结构、细胞器结构细节和自身装配机理上取得进展;将使药物的作用实现器官和细胞内结构靶向化,这样不但减少了药物在其他健康细胞上的毒副作用,也提高了药物的稳定性、生物利用度和疗效,还可降低制药成本。随着世界上大量人力物力财力的投入,随着人们研究的深入,在科技高速发展的环境下,二十一世纪纳米技术将推动信息、医学、自动化及能源科学的迅速发展,给人类带来新的变化,引导21世纪又一次科技产业革命。

参考文献:

[1]王天赤,路嫔,车丕智,等.纳米材料的特性及其在催化领域的应用[J].哈尔滨商业大学学报(自然科学版),2003,8:501~502.

[2]纳米医药传递系统[英]/shafer c∥Dr.Discov Today.2005,l0(23/24):1581.

[3]张晓琨,于滨.纳米技术在中药研究中的进展[J].中华中医药杂志(原中国医药学报),2007,22(7):465~467.

[4]林本兰,沈晓冬,崔升,等.磁性纳米粒阿霉素微球制备的初探[J].中国医院药学杂志,2005,25(5):424~426.

[5]陈伙德,贾振斌,邱敏,等.纳米材料在医药领域中的应用与展望[J].广东化工,2008,10(35):93~95.

[6]吴昊,屠美,姚平,等.关节液中纳米颗粒的测量对关节疾病诊断的意义[J].中国病理生理杂志,2007,23(1):173~177.

[7]陈伙德,贾振斌,邱敏,等.纳米材料在医药领域中的应用与展望[J].广东化工,2008,10(35):93~95.

[8]何喜生,徐雪青,沈辉,等.纳米靶向材料在基因治疗中的应用[J].工新型材料,2005,33(8):18~20.

上一篇:卫星遥感技术应用范文 下一篇:森林资源的保护和利用范文