生物冶金技术范文

时间:2023-12-08 17:35:07

生物冶金技术

生物冶金技术范文第1篇

关键词:湿法冶金 生物技术 研究 生物冶金

中图分类号:TF1 文献标识码:A 文章编号:1674-098X(2015)04(a)-0097-02

在过去的一段时间内,大多数冶金技术主要被用于开发品位较高的矿产资源,从而使得一部分品位较低的矿产资源遭到了浪费。但是,随着矿产资源的减少,人们逐渐意识到了低品位矿产资源开发的重要性。因此,湿法冶金技术以其回收效率高的特点引起了人们的广泛关注,尤其是基于生物技术的湿法冶金技术,更是得到了广泛的应用。所以,生物技术在湿法冶金中的应用情况以及基于生物技术的湿法冶金的应用现状及发展,就成为了本文研究的重点内容。

1 生物技术在湿法冶金中的应用

1.1 湿法冶金工艺概述

湿法冶金其实是利用化学方法进行金属提炼的工艺。具体来说,就是使矿石浸泡在水溶液里,然后利用分离、提纯和富集技术,来进行稀有金属及金、银、铜等金属的提炼。在冶金行业中,湿法冶金是黄金及有色贵金属的主要冶炼工艺之一。就现阶段而言,湿法冶金主要使用的技术有两种,一种是加压湿法冶金,而另一种是生物冶金。相比较而言,生物冶金在金属矿的加工和回收方面的效果更好,所以得到了广泛的应用。

1.2 生物冶金

生物冶金是将微生物作用与湿法冶金技术相结合的新型冶金工艺。早于1983年,生物冶金这个名称就在细菌浸出国际会议上被提出。根据生物冶金技术在金属回收过程中的作用,可将该技术分为3类,分别是生物吸附、生物累积和生物浸出。1947年,人们首次发现了氧化亚铁硫杆菌能将铁离子氧化。而直到1958年,美国的肯尼柯铜矿公司才在该方面取得实质性的进展,进而将生物技术引进到冶金行业中。到了今天,生物冶金技术被广泛的应用于各种金属矿物质的冶炼当中,并得到了人们的广泛关注。一方面,这是由于使用该技术有利于进行低品位的矿产资源的开发和回收。另一方面,使用该技术进行金属矿物质的提炼,对环境的危害较小,且具有投资成本低和能耗低等多种优点。而在我国,早于1996年就建设了全国最大的微生物氧化提金连续半工业试验基地。到了现今,微生物湿法冶金技术也在我国的多个地区的冶金企业被投入使用。所以,生物冶金技术的应用,已经在国内外取得了一定的进展[1]。

2 基于生物技术的湿法冶金的应用现状

基于生物技术的湿法冶金技术中,微生物湿法冶金技术是关注度最高和应用范围最广的技术。早于20世纪50年代,该技术就在铜、铀贫矿的预处理方面取得了一定的应用效果。就现阶段而言,该技术包含了微生物浸出技术和微生物浮选技术。而相比较而言,微生物浸出技术已经得到了广泛的应用,而微生物浮选技术尚处于实验阶段。具体来说,微生物浸出技术通过将矿石浸泡在适合微生物生长代谢的酸性溶液中,从而将矿石中的有价金属溶解出来,进而加以回收和利用。所以,该技术在低品位矿石的冶炼中得到了广泛的应用,是一种多学科交叉型的新技术。

2.1 在硫化矿冶炼中的应用

我国被开采的铜矿中,有一大部分属于硫化矿。但是受到选矿技术和成本的限制,开采出来的矿石主要是低品矿石。而微生物湿法冶金技术的应用,可以有效的提高这些矿石的利用率,从而使企业获得更大的开采利润。在进行硫化矿石冶炼时,该技术使用的微生物为以硫化矿为能源基质的微生物。这些微生物主要由氧化铁硫杆菌组成,可以将重金属从矿石溶液中有效的溶解出来。在进行铜的提取时,微生物湿法冶金工艺主要采用生物堆浸技术来进行铜的生物氧化,从而获得阴极铜。而在铜的冶炼方面,采用微生物湿法冶金技术获取的铜的纯度可以达到99.9%以上。就目前而言,我国采用该技术进行铜的湿法冶金已经颇具规模,并已成功的运用在冶金工业生产中[2]。

2.2 在金矿石冶炼中的应用

金元素相对来说较为稳定,所以存在于硫化物和各种硅酸盐中的金颗粒难以被提炼,而这些矿石也被称之为难处理的金矿石。在金矿石的冶炼过程中,微生物湿法冶金技术的应用特点显著。早于1964年,法国人就利用微生物浸取了红土矿的金。而70年代,苏联人则利用了黑曲霉菌进行了金的提取。而如今,世界上已经有许多企业利用微生物技术进行了金矿石的预处理,从而获得了较高的利润。相较于铜来说,微生物湿法冶金技术主要用于难处理的金矿石的冶炼,并且在浸出率方面也没有铜的效果好。实际上,利用细菌氧化提炼金的微生物浸出技术的浸出率只有92%左右[3]。

2.3 在其他矿石冶炼中的应用

微生物湿法冶炼技术的应用范围广泛,可用于多种矿石的冶炼。在进行铀矿石的冶炼时,该技术主要利用细菌将与铀矿物共生的黄铁矿氧化,从而进行铀的回收。而且使用生物冶炼技术进行铀矿石的冶炼也有悠久的历史,并在该领域取得了迅速的发展。而在进行磷矿石的冶炼时,该技术主要用于将无效态的矿物磷转化为速效磷和有效磷。并且在进行天然磷矿粉的处理时,利用溶磷微生物可以取得较好的效果。而我国的磷矿资源十分丰富,所以使该技术在磷矿冶炼领域得到广泛应用,具有重要的现实意义。再者,在铁矿石处理方面,利用该技术进行铁矿的脱磷,也可以取得较好的应用效果。相比物理脱磷法和化学脱磷法,采用该技术不但具有成本低的优势,还能减少矿石在脱磷过程中的损耗。另外,微生物湿法冶炼技术还能用于其他多种矿石的冶炼,并且可以取得较好金属提取的效果[4]。

3 基于生物技术的湿法冶金的发展

随着全球经济的发展,人们对于矿产资源的需求只会越来越大。但是,随着矿产资源的大量开发,高品位的矿产资源只会越来越少。在这种情况下,低品位矿产资源已经不允许被浪费。所以,谁掌握了开发和利用低品位矿产资源的方法,就能取得可持续的发展空间。而基于生物技术的湿法冶金工艺在这方面有着显著的优势,首先,该技术的能耗低,且劳动需求和成本均不高。其次,该技术的设备简单,资金占有量小。再者,该技术的使用范围广,可用于多种类的金属物质提取。另外,该技术对环境产生的危害小,有利于进行环境的保护。所以,由于这些优势的存在,该技术在未来会取得一定的发展。但是与此同时,该技术也具有生产周期长和微生物环境适应性差等缺点。所以,想要使该技术取得进一步的发展,就需要不断进行该技术的研究和创新,从根本上解决该技术存在的问题。总之,为了使基于生物技术的湿法冶金工艺得到进一步的推广,冶金行业的相关人员还应该进一步进行该技术的研究[5]。

4 结语

总而言之,冶金工业是我国国民经济的重要产业之一,在国内外都拥有一定的工业地位。所以,促进冶金工业的发展,可以进一步推动我国经济的发展。而微生物湿法冶金技术在矿产资源开发上的应用效果,使冶金行业的工作效率得到一个阶段的上升。所以,加大生物湿法冶金工艺的改革,使该项技术得到进一步的推广和应用,成为了冶金行业需要关注的重点问题。因此,本文对基于生物技术的湿法冶金工艺进行的研究,对于促进冶金行业的发展有着重要的意义。

参考文献

[1] 田君.微生物湿法冶金研究与实践[J].现代矿业,2009,11(1):29-33.

[2] 胡纯,龚文琪,黄腾,等.微生物湿法冶金技术的研究与发展[J].湖北农业科学,2010,3(49):737-744.

[3] 谌书,杨远坤,廖广丹,等.基于生物湿法冶金的废旧印刷线路板金属资源化研究进展[J].地球与环境,2013,4(41):364-370.

[4] 唐维维.生物湿法冶金前景展望[J].湿法冶金,2011,1(30):85.

生物冶金技术范文第2篇

[关键词]湿法冶金;发展;应用

中图分类号:TM713.1 文献标识码:A 文章编号:1009-914X(2017)11-0376-01

1 前言

湿法冶金技术已经在有色金属中有着。在近十几年的时间内,日益进步的科技手段以及所有的工业机构针对有色金属产品的种类、品质与数目的要求逐渐增强,环境维护与资源的充分运用需求高涨;然而矿产资源的数量却日益减低,矿石有价组分贫化与繁琐化,在此背景下湿法冶金因其具备较强的优势而有着大量的发展。

2 湿法冶金概述

湿法冶金所指的是金属矿物材料在碱性介质又或是酸性介质的水溶液里面实施化学处理又或是机溶剂萃取、杂质分离、获取金属以及有关化合物的环节。湿法冶金是一种较为独立的技术手段在二战之后获得大量的发展,在获取铀等部分矿物质之时无法运用传统形式的火法冶金,仅仅可以运用化学溶剂将其完全分离出,此提取金属的方式便是湿法冶金。

3 湿法冶金技术发展与运用

3.1 生物技术在湿法冶金中的运用

生物冶金是将微生物和湿法冶金技术相互融合的冶金工艺。在1983年的时候,生物冶金便在细菌浸出国际会议中被人们所提及。按照生物冶金在金属回收环节所具备的功能,能够将此技术划分成以下3种:生物吸附、生物浸出以及生物累积。在1947年的时候,人们第一次发掘了氧化亚铁硫杆菌可以将铁离子氧化。然而直至1958年的时候,美国国内的肯尼柯铜矿才在此层面获得了较大的突破,从而将生物技术引入至冶金领域之中。截止当前,生物冶金已经被大量运用至各类金属矿的冶炼环节,同时获得了人们的高度重视。其一,因为运用此技术有助于对低品位的矿产实施开采与回收。其二,运用此技术针对金属矿实施提炼,对于环境所造成的影响相对较小,同时具备投资费用较低以及能源消耗低等优势。当前,微生物湿法冶金工艺同样在我们国家较多区域的冶金公司中获得运用。因此,生物冶金工艺的运用,已在国内外获得了较大的发展。

3.2 微波辅助技术在湿法冶金中的运用

在运用微波针对硫化铅锌矿与钒钛磁铁矿进行处理的时候,矿石所具备的可磨性在微波辐射作用下有所增强,其表明微波辐射转变了矿石所具备的可磨性,使得矿石便于粉碎。辐射的时间越久,温度便会更高,增强的幅度也就越大。然而针对硫化矿而言,温度偏高便会挥发出二氧化硫,转变矿物所具备的特性。微波在针对矿石进行处理的环节之中,不但能够增强磨矿产品里面细级别的生产效率,同时并不会导致破碎问题。换而言之,矿石的可选性与解离度均有所增强,为后期的湿法浸出奠定了较好的基础,同时节省了非常多的磨矿费用。

当前,国内与国外所具有的难处理金矿石的预处理方式大致有热压氧化、氧化焙烧、化学氧化以及生物氧化等等。微波氧化法依然处在试验时期。四川省某金矿石运用微波辅助技术进行处理,涵盖斜方砷铁矿、黄铁矿、毒砂、非晶质碳以及石墨等其它对金的浸出造成影响的矿物质。金有着微细的嵌布粒度,包裹金占据的比例为23%。针对矿石直接实施氰化浸出,金的浸出率接近于零。针对此矿样实施多个环境下的微波预处理试验,成效相对较好,氰化浸出率有所增强。直接微波预处理的方式由SO2与A s2O3毒气行程,将精矿和固化剂Ca(OH)2混匀之后实施微波预处理,不但可以节省能源,同时还能够固化硫、砷并且增强金的浸出率。

3.3 电位-PH图在湿法冶金中的运用

氧化还原电位与溶液pH值等是湿法冶金技术中两个最为重要的要素。在正常状况下,在具体的湿法冶金环节,化学反应的方向与限制均能够由pH、电位、反应物以及产物的活度所构成的热力学方程式来预测。然而如此的方程式便能够运用电位-pH图简单的展示出,因此电位-pH图对于湿法冶金具有极为重要的指导性作用。

3.4 真空技术在湿法冶金中的运用

(1)真空干燥与真空冷冻干燥

干燥是运用加热蒸发的形式消除水分,传统形式的干燥手段主要有煮、晒、烘干以及喷雾干燥等等,然而伴随真空干燥技术的逐渐发展,在真空背景下调控温度针对样品实施干燥备受人们的关注。与传统形式的干燥法对比而言,真空干燥具湟韵录父鲇诺悖耗芄辉擞糜谌让粜缘奈镏剩荒芄缓侠淼募跎俑稍锼需的时间;针对各类组成繁琐的机械元件通过清洁之后运用真空干燥的方式,不会留下任何的多余物质;免除了氧化物高温爆炸,运用更加的安全。所以,真空干燥能够处理各类湿法环节所得到的滤饼,还能够运用于干燥各类在传统干燥之时极易发生氧化的化工产品。

(2)真空过滤湿

湿法冶金所具备的特征便是有着较多的液固分离步骤,然而过滤工作品质的好坏对于冶金制造环节与产品品质有着非常大的影响,特别是对于持续性加工的平稳性产生较大的影响。其对干燥对比而言,过滤是经济性能比较好的脱水形式,能够减少运输成本、降低所产生的环境污染等,具备非常强的经济发展潜力。真空过滤所代表的是在压强差距的作用之下,全面运用物料所具有的重力与真空吸力,使得物料经过过滤介质的时候,颗粒被截停在介质外表产生滤饼,然而液体便会经过过滤介质外流,进而实现固液相互分离的目标。

(3)真空蒸发结晶

蒸发结晶主要是经过加温蒸发浓缩的形式使得溶液里面被结晶的物质趋于饱和而结晶析出的方式。真空蒸发结晶便会经过逐渐的抽出所蒸发出的蒸汽使得蒸发环节能够持续不断的实施同时使得溶液快速饱和。

4 结语

冶金领域归属原料工业,然而法冶金的主体大都是资源的充分运用,尤其是针对品位较低、繁琐难选矿的分离获取具备较强的优越性。融合我们国家矿产资源的特征,特别是在有色金属以及稀有金属层面所具备的优点,全面拓展湿法冶金技术的额研发和运用,将资源优势转变为行业优势,不但能够达到我们国家经济发展的需求,同时对于推动出口创汇的发展有着非常重要的作用。所以,增强我们国家湿法冶金全新技术、全新工艺的运用以及进行基础性的研究具备极为重要的意义。

参考文献

[1] 王成彦,邱定蕃,江培海.国内锑冶金技术现状及进展.有色金属(冶炼部分),2002(5):6~9.

[2] 杨显万,郭玉霞.生物湿法冶金的回顾与展望.云南冶金,2002,31(3):85~87.

[3] 杨显万,邱定蕃.湿法冶金.北京:冶金工业出版社,1998.

作者简介

生物冶金技术范文第3篇

关键词:粉末冶金技术;新能源材料;应用

前言

为了寻求长远的发展,需要重视能源问题。在全球经济以及热口增长的环境下,传统能源彰显匮乏性,无法满足社会发展的实际需求。同时,也无法进行再生。因此,面对严重的资源危机,要对新能源的开发与利用作为项目对待。粉末冶金对传统冶金技术进行了发扬过大,积极融合现代科技,推动信息化建设,实现现代工业的良性运转,也为新能源的开发提供更多的技术保障。

1 对粉末冶金技术特征的分析

粉末冶金技术具有长远的历史,其主要立足传统冶金技术,达到了对诸多学科知识的融会贯通,形成优势突出的新型冶金技术。粉末冶金主要对象是粉末状的矿石。在传统的冶金方法中,矿石的形式为整块,先进行提炼,而后进行冶炼。应用传统技术,块状矿石提炼技术受制于技术和矿石的大小,只能达到80%左右的利用率,产生大量材料的废置。但是,在粉末冶金技术的应用下,资源利用率得以大幅提升,有效降低资源浪费。另外,块状形式的矿石材料长期处于露天堆放,对环境产生不良影响,甚至破坏。由此可见,冶金技术的改善势在必行,要重视冶金技术水平的提升,使得材料各尽所用,发挥不同冶金材料的作用,切实提升使用效率,形成高性能的新材料,达到成本的降低。利用现代粉末冶金技术,能够对废矿石、旧金属材料进行再利用,有效节约资源,极大推动经济效益的获取,对可持续发展意义重大。因此,粉末冶金技术在原材料选择方面相对较为宽松,能够充分利用废旧金属、矿石等,形成不规则的粉末,满足原材料节约和回收的目标。另外,鉴于粉末冶金可塑性以及相关材料的添加,促进性能的增强和平衡。

2 对新能源技术的阐述

在科技的推动下,新能源技术逐渐被科学界重视。在传统能源开发与应用中,出现严重的资源匮乏现象,加之对环境的不良影响,使得新能源问题的出现备受关注。新能源材料需要在开发、存储以及转化方面具有突出优势。由此可见,新能源材料是发展新能源的关键因素。为了更好地实现转化和存储,其在配件、生产要素等方面都极具特色,与传统能源行业的材料截然不同。粉末冶金技术在整个新能源开发应用中占据举足轻重的地位。

3 系统介绍粉末冶金技术的类型

3.1 传统粉末冶金材料

首先,是铁基粉末冶金。这种材料是最传统,也是最为关键的冶金材料,在制造业中应用较为广泛。随着现代科技的不断发展,其应用范围不断拓展。其次,铜基粉末冶金材料。这种材料类型较多,耐腐蚀性突出,在电器领域应用较多。再次,硬质合金材料。这种材料具有较高的熔点,硬度和强度都十分高,其应用的领域主要是高端技术领域,如核武器等。最后,粉末冶金电工材料和摩擦分类,主要应用在电子领域。随着通讯技术的不断发展,粉末冶金材料的需求量增大。另外,粉末冶金材料在真空技术领域也得到推广。摩擦材料耐摩擦性较强,促使物体运动减速,抑或是停止,在摩擦制动领域应用较多。

3.2 对现代先进粉末冶金材料的介绍

首先,信息范畴内的粉末冶金材料。立足信息领域,主要是指粉末冶金软磁材料。具体讲,是指金属类和铁氧体材料。随着对磁性记录材料的研究,在很大程度上推动了粉末冶金软材料的需求。其次,能源领域内的粉末冶金材料。能源材料的研发推动能源发展,其中,主要涉及储能和新能源材料。全球经济的发展使得能源需求量增大,传统能源彰显不足,因此,新能源开发势在必行,尤其是燃料电池和太阳能的开发。再次,生物领域的粉末冶金技术。生物材料技术的发展对整个社会具有不可替代的作用。要将生物技术列入国家发展计划。在生物材料中,主要包含医用和冶金材料两大类,在维护身心健康的同时,加快金属行业的进步。第四,军事领域的粉末冶金材料。在航天领域,材料的强度和硬度是重要指标,稳定性要突出,具有极强的耐高温性。在核军事范畴,粉末冶金技术也具有发展前景,更好地推动整个社会工业技术的进步。另外,新型核反应堆的建设需要具有较高的防辐射标准,而粉末冶金技术的支持下,切实增强核反应堆的安全性与可靠性,有效降低核辐射强度。

4 对粉末冶金技术在新能源材料中的应用的介绍

4.1 粉末冶金技术在风能材料中的应用

风能对我国而言,十分丰富,不存在污染,是新能源的主要类型。在风能发电材料中,粉末冶金技术主要实现对两种材料的制作,即即风电C组的制动片以及永磁钕铁硼材料。这两种材料的制作与整个风力发电关系密切,事关发电过程的安全性与可靠性,影响发电效率的高低。风能发电机制动片在摩擦系数和磨损率方面,要求较高,同时,力学性能必须突出。目前,主要应用的是铜基粉末冶金技术,完成对压制制动片的制作。制动片需要在导热方面十分突出,同时,制动盘具有较小的摩擦。在应对恶劣温度环境的时候,也能够进行有效的使用。对于永磁钕铁硼,系统永磁材料代替了传统的永磁材料,烧结钕铁硼就是加入了稀土粉,利用粉末冶金工艺制备而成。

4.2 粉末冶金技术在太阳能中的应用

太阳能突出的特点是清洁性,是新型能源的一种,被商界所看好,开发价值巨大。当前,在太阳能领域,主要的发展方向为光电太阳能与热电太阳能,形成发展趋势。立足光电太阳能领域。其主导作用的部件为光电池,也就是半导体二极管,依靠光伏效应,促使太阳能有效转化为电能。目前,太阳能光电转化效率较低,对航天事业的发展产生阻碍。在粉末冶金技术的使用下,能够有效进行薄膜太阳能电池的制作,光电转化率得以显著提升。同时,粉末冶金技术也研发了多晶硅薄膜,代替了传统的晶体硅,光电转化率大幅提升。另外,粉末冶金技术与太阳能热电技术也实现了融合。当太阳进行地表照射之后,为了达到对光热技术的有效收集,需要发挥吸收板的功能。而吸收板的制作与粉末冶金技术息息相关,主要应用了其成型技术,发挥粉体在色素和粘结剂方的作用,而后混合,形成涂料,涂于基板之上。这也充分体现了粉末冶金技术在成型技术方面优势更加突出。

5 结束语

综上,通过对粉末冶金技术优势的分析,可以发现,其在新能源材料的开发和应用中极具发展潜力。粉末冶金在创造性方面十分突出,塑造性较强,使得其在新能源材料的发展和应用中占据核心地位。粉末冶金技术的工艺原理使得其在新能源开发中更具经济性与高效性。因此,要大力推进粉末冶金技术在新能源开发应用中的拓展,为新能源的可持续发展提供保障。

参考文献

[1]陈晓华,贾成厂,刘向兵.粉末冶金技术在银基触点材料中的应用[J].粉末冶金工业,2009,04:41-47.

[2]邱智海,曾维平.粉末冶金技术在航空发动机中的应用[J].科技创新导报,2016,07:10-12.

[3]安鹏,彭明军,史方杰.粉末冶金技术的应用[J].化工设计通讯,2016,10:18.

生物冶金技术范文第4篇

作为我国第一位自主培养的矿物加工工程博士,他曾创下了不少全国甚至世界第一。他在低品位、复杂难处理金属矿产资源加工利用等诸多领域的研究蜚声海内外,特别在低品位硫化矿生物冶金方面的研究成就,更是当之无愧的学界头牌。然而,他的成就远比他的名声要丰富,他的生活远比他的研究要温暖。美国约翰·霍普金斯大学的迈克尔·J·本特鲍弗教授评价他是“做低品位资源,过高品质生活”。他,就是中国工程院院士邱冠周。

大宝山中结下的缘分

邱冠周是广东大埔人,与新中国同龄。年少时,聪颖好学、学业成绩优秀的他在文史方面似乎更有天赋与兴趣。高二时,他尝试参加了高考,报考了当时中山大学中文系,对于这段经历,邱冠周至今唏嘘不已。如果不出意外,他的人生轨迹会是另一番样子。

高三这一年,“”来了。高中毕业后,邱冠周当过农民、中学教师,其间还下功夫学过一年的中医。1970年,21岁的邱冠周到广东大宝山铜冶矿厂做了一名工人,因为“当矿工每个月有54斤米”。物质生活匮乏的年代里,能够吃饱饭的诱惑实在太大。然而,就是在这里,邱冠周与矿物工作结下了一辈子的缘分。

珍惜这个工作机会又能下苦功夫的邱冠周工作起来十分卖命,“我很珍惜那个工作的机会,25磅的铁锤,我一次能打100多下。”邱冠周的用心和勤奋受到了厂里的重视,1972年,他被选送到广东工学院选矿专业学习。学成后他又回到了工厂 。工厂的历练使他收获颇丰,实践经验成为他的优势。回忆起这段经历,邱冠周欣慰地表示:“这对我后来搞科研发明,尤其是搞技术转化,实现工程化,很有帮助,因为书上说可以做什么,但并没有说怎么做。”

1978年,邱冠周进入中南矿冶学院(中南大学前身之一)学习,师从我国矿物加工领域专家胡为柏、两院院士王淀佐。在中南矿冶学院,他接触到了系统、先进的矿物加工理论,极大拓宽了自己的眼界。他的博士论文《微细粒矿物浮选理论及工艺研究—粗粒对细粒浮选的载体、中介、助凝效应》“完成了细粒矿物回收的理论研究,并实施到了工业生产。”邱冠周被国务院学位委员会授予“做出突出贡献的博士学位”获得者。

1987年,邱冠周成为我国第一位自主培养的矿物加工工程博士。当时回广州工作的机会很多,待遇也要好得多,但是,邱冠周觉得“回去是搞经济不是搞矿了”,于是,他留了下来。那时的邱冠周信心满怀:“要为下个世纪矿物资源开发利用寻找新的理论准备。”

打开资源利用的“天堂之门”

邱冠周研究的矿物加工工程,最初叫洗矿、选矿,现在叫矿物加工,简单说来,便是运用各种物理或化学等方法,将有用矿物和脉石(无用)矿物进行分离,为进行下一步冶炼工作做准备。

最开始叫“洗矿”,因为当时技术水平低,只能找到很明显的矿产,只要把碎散矿石洗下表面细泥实现分离就可以了;“选矿”,就要根据矿物性质,将矿物进行分离、分选;到了“矿物加工”,技术含量就高了,我国矿产资源丰富,但很多矿石品位低,难以利用。在低品位的贫矿中,矿物加工显得尤为重要。我国现有有色金属资源的70%都是低品位、原生、多金属复杂矿,邱冠周所做的事,便是从这些低品位的资源中,最大程度地“淘”出宝来。“解放前,中国有色金属年产只有1万多吨,现在是2000多万吨,产量世界第一,这个领域的研究不变成一个学问怎么行?”这也是邱冠周执着于这一研究领域的原因。如何解决低品位矿产资源的综合利用问题,如何解决矿物的深加工问题,成为邱冠周30多年来科研生涯追求的目标。

1990年,邱冠周开始了改造直接还原铁传统生产工艺的探索。他下矿山、进工厂,吃了不少苦头。

经过12年艰苦努力,核心技术之一的“复合粘结剂”终于研制成功。紧接着,邱冠周又建立了热球入窑、优化风煤比、提高窑内压力等热工体系,大幅降低了还原粉化率,有效解决了回转窑容易结圈的难题。为使研究成果尽快用于工业生产,邱冠周在成功完成工业试验后,在1998年初将“铁精矿复合粘结剂球团直接还原法”用到了实际生产中。但由于设计改动了两套工艺,生产不顺利,引来诸多非议。邱冠周顶着巨大压力,经过5年试验,终于在北京密云矿山公司取得成功。生产实践表明,新工艺生产线运转良好。与传统工艺相比,该生产线投资减少30%,产量提高60%,节煤30%,节电约20%,降低成本21%,废气排放减少40%。设计能力为年产6.2万吨的回转窑,实际年产量已达9万吨以上。

2005年,由邱冠周主持发明的“铁精矿复合粘结剂球团直接还原法”新工艺,荣获国家技术发明二等奖。他和团队的研究也把我国的矿物加工理论与技术水平提升到了世界领先行列。

但邱冠周说:“以前的成果,我都不满意,那些只是开场锣鼓。现在的矿产资源越来越少了,要让有限的资源充分发挥效能,就要找到资源高效利用新途径。”于是,他又将眼光瞄准了微生物技术。“目前我们的选矿以化学为基础,不外乎两个过程,一个氧化过程、一个还原过程。传统冶金方法,是激烈的氧化、激烈的还原,高碳、污染。但是现在不是追求环保吗?所以我们就提倡温和的氧化、温和的还原。利用微生物来帮助氧化和还原,这样不但不产生碳,反而消耗碳。”

邱冠周领衔国家“973”重点项目“微生物冶金的基础研究”,带领研究团队从国内42个矿山分离获得1000多株浸矿微生物,构建了我国第一个浸矿微生物资源库,为生物冶金技术的开发与应用奠定菌种基础,创立了低品位硫化矿生物浸出新方法,这一新的方法应用于低品位硫化铜矿的处理,将浸出率从28%提高到75%。他的这项技术,应用到全国多家矿业企业,获得了少则几亿元多则十几亿元的效益。

30多年来,邱冠周就这样执着于我国低品位、复杂难处理金属矿产资源加工利用研究,被授予国家有突出贡献科技专家;获得过国家科技进步一等奖、国家科技进步二等奖、国家技术发明二等奖,其成果两次入选“中国高等学校十大科技进展”;2004年、2009年连续两次担任生物冶金领域国家“973”计划项目首席科学家,担任2011年第国际生物冶金大会主席,并被推选为国际生物冶金学会副会长。

正因为在细粒及硫化矿物浮选分离和铁矿直接还原等方面取得的显著成绩,特别在低品位硫化矿的生物冶金方面做出的突出贡献,2011年,邱冠周摘下中国科学研究领域的最高荣誉—当选为中国工程院院士。然而,在邱冠周的心里,科学探索是永无止境的。他说:“我国不少矿产资源品位不高、成分复杂,我们只有不断探索新工艺、新办法,才能提高矿产资源的利用率。”现在,邱院士和他的团队正围绕国家“973”项目,开展微生物冶金过程强化的基础理论攻关。这个课题将解决不同类型、更低品位矿选矿难题。邱冠周希望,能够用生物技术的钥匙,去打开资源利用的“天堂之门”。

积淀智慧的慢生活

有记者曾这样评价邱冠周:“为年轻人思考出路,致力于科技转化为生产力的现实主义者”,“喜欢喝咖啡同时又对传统文化有浓厚兴趣、能作古文的浪漫主义者”,“总是思绪飞扬、出口成章的理想主义者”,是“一个徜徉在理工海洋里的诗人,在文理间自由出入,似乎有些格格不入,却又悠然自在。”

在中南大学,生物楼的咖啡厅和邱冠周一样出名。他的导师王淀佐院士给这个很西派的地方起了个颇有中国特色的名字—“松韵厅”。

松韵厅的诞生则与邱冠周早年在牛津大学的游历有关。牛津大学校园里有个咖啡吧,据说咖啡吧里喝出了三个诺贝尔奖。这让邱冠周惊讶不已,也让他有了许多感悟。“牛津大学咖啡吧喝出了3个诺贝尔奖获得者!为什么?因为那里的科学家们喜欢交流,有什么课题、研究,大家在一起探讨。科学技术是需要交流与碰撞的,一个人的埋头苦想能有什么大成绩?可惜,我们的科学技术交流简直是一片荒漠!”

2003年,邱冠周的团队研究出了一种新的选矿技术,获得转让费1000多万元,按照政策规定,这笔钱的70%,完税后可以分发给有功人员。但是,这笔钱最后全部用在建设生物冶金大楼和实验室上,也包括松韵咖啡厅。“我就是要建立一种平等、和谐的氛围,好的idea(点子)是流出来的,不是挤出来的。”邱冠周的话里更多的是期望。

咖啡吧大厅里摆着钢琴,研究生们除了去咖啡吧小坐喝喝咖啡,几乎每天也会去弹琴。咖啡飘香里孕育着科研的灵感。邱冠周也喜欢请他的学生们到咖啡吧,边品咖啡边聊天,大家畅所欲言。邱冠周还喜欢在这个咖啡吧里进行日常的会议交流、学术探讨。2011年9月,第国际生物湿法冶金大会在中南大学召开,这也是这个国际性的会议首次在中国召开。当时,邱冠周就和来自美国、德国、英国、加拿大、日本等知名高校及科研机构的生物冶金领域的专家学者们,在这咖啡厅里畅谈科学前沿的生物湿法冶金技术。

邱冠周坦言,“技术创新必须用体制创新做保证,科技和体制创新必须有文化创新的滋润。”他希望建立一个机制,在这个机制里,从外部环境的层面来看,能为科研提供优美环境、便利的工作条件;在制度层面看,还能建立政策、行为规范和有效的评价体系;甚至从精神层面看,也能让科研人员拥有积极向上的价值观念和道德风气。

邱冠周是很多矿业企业的“财神爷”。从他那里过手的钱很多,但在他看来,学校不是赚钱的地方,老师最重要的还是人品、道德、文章。“有些钱放到自己腰包也可以,如果那样的话,我就没有现在的成绩。”

所以,他几十年住着一套80多平米的旧房子,家里装饰也很简单,除了电器外,极少添置新家具,还保留着很久之前的木桌子、木凳子、木沙发。但这个住着小房子的教授,把数千万元捐建了生物冶金大楼和实验室,把一个企业送给他的一辆奔驰S600,转赠给学校拍卖,所得的209万元全部用于救助贫困师生。

当上了院士的邱冠周,还是每天走路上班,也会上街买菜,和以前一模一样。他说:“当上院士也还是要吃饭,还是要干活。高兴三碗饭,不高兴也是三碗饭。”

现在的邱冠周,除了忙于科研,空闲时喜欢听着音乐喝咖啡或品茶,看看自己喜欢的书,享受一种不一样的“慢生活”。这种慢,在邱冠周看来,不是懒惰、磨蹭,是一种沉淀,一种心态。“现在的人都太功利,巴不得一口吃成个胖子。我看啊,走慢一点,走扎实一点,反而更容易出成绩。”邱冠周也很享受慢生活中“悟”的过程。他认为,一个人,“悟”与“不悟”是有很大差别的,对文学、历史、哲学、音乐的爱好可以使人心静,人文对科学是一种滋养。多年后,他依然对人文学科情深意浓。

生物冶金技术范文第5篇

关键词:焦化废水;臭氧催化氧化;发展趋势

1引言

近年来,随着环境形势的愈演愈烈以及能源消耗的增大,人们开始广泛关注低碳经济发展模式。在冶金工业中,钢铁工业废水的治理成了重中之重[1]。在中国,钢铁业的规模及发展势头不但已受到世界瞩目,作为高能耗、多排放的行业在全球低碳经济所倡导的节能减排工作中承担着重大的责任[2]。钢铁行业焦化废水的处理,一直是国内外废水处理的难题。由于其生产工艺和生产方式的不同,导致焦化废水不但成分复杂,还含有大量的酚、氰、苯、氨氮等有毒有害及难降解的物质,且污染物色度较高[3]。现阶段,焦化废水造成的污染越来越严重,是工业废水排放中一个突出的环境问题。本文针对冶金工业焦化废水的来源、特点以及处理方法等进行介绍。

2焦化废水的产生及特点

2.1焦化废水的产生

焦化废水主要来源于炼焦、煤气在高温干馏、净化及副产品回收过程中,产生含有挥发酚、多环芳烃及氧、硫、氮等杂环化合物的工业废水,是一种难降解的有机废水[4]。焦化废水中通常含有高浓度的酚、氰化物、硫氰化物和氨氮,同时,还存在着不易生物降解的油类、吲哚、喹啉等杂环有机化合物[5]。其主要由以下几个方面构成:一是剩余氨水,是在煤干馏及煤气冷却中产生出来的废水;二是煤气净化过程中产生的废水,例如煤气终冷水和粗苯分离水等;三是焦油加工、粗苯等精制过程中产生的焦油分离等废水;四是焦炉烟气脱硫过程中所产生的脱硫废液以及其他场合产生的废水。其中,剩余氨水约占废水总量的二分之一,这也是氨氮的主要来源[6]。

2.2焦化废水水质特征及处理难点

核磁共振色谱图中显示:焦化废水中不仅含有有机物,还含有数十种无机物。无机化合物一般以铵盐的形式存在,例如(NH4)2CO3、NH4HCO3、NH4CN等。有机物以酚类化合物为主,占总有机物的85%左右,主要有苯酚、邻甲酚、对甲酚及其同系物[7]。在焦化废水有机物组成中,大部分酚类、苯类化合物在好氧条件下较易生物降解,而吡咯、呋喃、萘、噻吩在厌氧条件下可缓慢生物降解,联苯类、吲哚、喹啉类则难以生物降解[8]。这些难以生物降解的杂环化合物和多环芳香化合物,其性质不但不稳定,而且也难以生物降解,数据显示,其通常都具有致癌和致基因突变的作用,对人类和环境都有很大危害[8]。因此,焦化废水的处理一直是工业废水处理的难点,同时也对有效治理和保护环境有着非常重要的意义。

3焦化废水处理及利用的方法

3.1臭氧催化氧化技术

传统工艺下,焦化废水处理技术通常有物理化学法、化学方法和生化方法[9]。许多文献已经对此类技术进行了详细的介绍和论证,目前已应用或报道的方法都存在着运行成本高稳定性差、二次污染等问题。然而近年来,臭氧催化氧化技术与生化处理相结合在焦化废水深度处理中的应用得到了广泛的认同。本文针对臭氧技术的应用条件和范围进行论述。臭氧催化氧化技术主要是在中性条件下,对污水进行的深度处理。使用少量臭氧作为氧化剂,将难降解有机物选择性氧化分解,使处理后的废水COD、色度、苯并芘等指标达到国家外排标准,氧化剂利用率高达95%以上,效果甚好。然而此技术应用的范围是有限制的,想要达到好的效果,前序的生化处理工艺显得尤为重要[10]。

3.2天津天铁中试实验数据及说明

为了解决天铁炼焦化工有限公司焦化废水出水超标问题,于2015年进行实验,致力于研究臭氧催化氧化技术的应用,使焦化废水能达到国家排放标准。本实验分别取了生化进水、二沉池进水、改进后二沉池出水以及改进后混凝出水四个水样。

3.3生物强化处理的改进

通常污水处理采用A2O等工艺就行生物脱氮,但由于焦化废水水质的特殊性,我们应在传统工艺基础上加以改进。在前期加入水解酸化,将部分难降解的有机物水解为相对容易生物降解的有机物,同时利用相对容易降解有机物共代谢厌氧转化难降解有机物。在氧化阶段,也应当有所改进,可以通过将碳氧化和氨氧化分级并使用生物反应-分离一体式反应器,减少了异养菌和自养菌的竞争抑制作用,同时大幅度提高碳氧化菌和氨氧化菌在反应器中的含量,从表1中可看出,改进后的二沉池出水效果较好,达到了200mg/L以下的理想值,经过臭氧催化氧化COD基本可达到80mg/L以下。由此提高前期处理工艺,以保证后期工艺处理效果。4焦化废水发展展望随着工业的迅猛发展,冶金工业废水的种类和数量日益增加,对水体造成的污染也日趋严重和广泛,更是威胁了人类的生命安全和健康[11]。在环境治理方面,工业废水的治理比市政污水的处理更为重要。早在19世纪末,工业废水就已经受到国外的关注,并且在随后的半个世纪里,各国进行了大量的试验研究和生产实践[12]。可是由于冶金工业废水的复杂性,成分及性质的多变性,因此至今仍有一些世界性的难题没有完全得到解决[13]。中国由于起步晚,为了能跟上现阶段中国经济的发展需要,寻求新型高效且可靠的工业废水处理工艺更是迫在眉睫,认真钻研及攻克难关才是切实可行的道路[14]。

参考文献

[1]徐匡迪.钢铁工业的循环经济与自主创新[R].山东冶金,2006(28):1-3.

[2]钱小青,葛丽英,赵由才.冶金过程废水处理与利用[M].北京:冶金工业出版社,2008.

[3]赵玲,吴梅.混凝澄清在焦化废水处理中的应用[J].冶金动力,2003,Vol.29(3).

[4]刘小澜,王继徽,黄稳水,刘大鹏,蒋谦.化学沉淀法去除焦化废水中的氨氮[J].化工环保,2004,Vol.24(1).

[5]左晨燕,何苗等.Fenton氧化/混凝协同处理焦化废水生物出水的研究[J].环境科学,2006,Vol.27(11).

[6]刘红,刘潘.多相光催化氧化处理焦化废水的研究[J].环境科学与技术,2006,Vol.29(2).

[7]朱静,李天祥,曾祥钦等.纳米二氧化钛光催化氧化焦化废水的研究[J].煤炭转化,2005,Vol.28(2).

[8]王强,李捍东,田禹,等.电化学降解含酚焦化废水的研究[J].科技情报开发与经济,2005,Vol.15(3).

[9]马平.焦化废水处理技术[J].重庆大学化学与化工学院.2005(10):2-3.

[10]葛文准.焦化废水生物处理技术研究[J].上海环境科学,1992(4).

[11]戎照模.焦化厂的废水处理[J].化工给水排水设计,1986(3).

[12]张铭.含酚工业废水处理的探讨[J].环境保护科学,1999,Vol.2(25).

[13]春敏.焦化废水处理技术及其发展趋势[J].内蒙古石油化工.2006.

[14]蔡荣华,高春娟,张家凯,黄西平.冶金废水资源及其利用[J].盐业与化工,2013,Vol.42(6).

生物冶金技术范文第6篇

【关键词】激光焊接技术;原理;应用

一、激光焊接技术的基本原理

激光焊接就是以激光为热源进行的焊接。激光是一束平行的光,用抛物面镜或凸透镜聚光,可以得到高的功率密度。与电弧焊接的功率密度102~104kw/cm比较,聚集的激光束可以得到105~108kw左InZ的功率密度。用功率密度高的热源进行焊接,可以得到熔深较大的焊缝。激光焊接可以得到与电子束焊接同样熔深的焊缝。激光焊接可使表面温度迅速上升,激光照射完后迅速冷却,可以进行熔融或非熔融的表面处理。当功率密度大于103kw/c耐时,可进行熔深较大的焊接。这时,在大气中熔融金属容易被氧化。因此,要用Ar、He、CO,等气体密封焊接部位。尤其是提高功率密度时,瞬间从光束中熔融金属被排出,这时若辅以高压气体吹扫,可促进熔融金属排出,适宜进行开孔或切断。激光焊接最大的特点是选择适合的焊接材料和功率密度,可以得到稳定的焊接形态。激光焊接有两种基本方式:传导焊与深熔焊。这两种方式最根本的区别在于:前者熔池表面保持封闭,而后者熔池则被激光束穿透成孔。传导焊对系统的扰动较小,因为激光束的辐射没有穿透被焊材料,所以,在传导焊过程中焊缝不易被气体侵人;而深熔焊时,小孔的不断关闭能导致气孔的产生。传导焊和深熔焊方式也可以在同一焊接过程中相互转换,由传导方式向小孔方式的转变取决于施加于工件的峰值激光能量密度和激光脉冲持续时间。激光脉冲能量密度的时间依赖性能够使激光焊接在激光与材料相互作用期间由一种焊接方式向另一种方式转变,即在相互作用过程中焊缝可以先在传导方式下形成,然后再转变为小孔方式。可以调节激光焊接过程中各因素相互作用的程度,使得小孔建立以后能够在脉冲间歇阶段收缩,从而减小气体侵入的可能性,降低气孔产生的倾向。

二、激光焊接技术的应用领域

(1)制造业领域。20世纪80年代后期,千瓦级激光器成功应用于工业生产,而今激光焊接生产线已大规模出现在汽车制造业,成为汽车制造业突出的成就之一。90年代美国通用、福特和克莱斯特公司竟相将激光焊接引入汽车制造,尽管起步较晚,但发展很快。日本的本田和丰田汽车公司在制造车身覆盖件中都使用了激光焊接和切割工艺,高强钢激光焊接装配件因其性能优良在汽车车身制造中使用的越来越多。(2)粉末冶金领域。随着科学技术的不断发展,许多技术对材料有特殊要求,应用冶铸方法制造的材料已不能满足需要。由于粉末冶金材料具有特殊的性能和制造优点,在某些领域如汽车、飞机、工具刃具制造业中正在取代传统的冶铸材料,随着粉末冶金材料的日益发展,它与其它零件的连接问题显得日益突出,使粉末冶金材料的应用受到限制。在20世纪80年代初期,激光焊以其独特的优点进入粉末冶金材料加工领域,为粉末冶金材料的应用开辟了新的前景,如采用粉末冶金材料连接中常用的钎焊方法焊接金刚石,由于结合强度低,热影响区宽特别是不能适应高温及强度要求高而引起钎料熔化脱落,采用激光焊接可以提高焊接强度以及耐高温性能。(3)电子工业领域。激光焊接在电子工业中,特别是微电子工业中得到了广泛的应用。由于激光焊接热影响区小,加热集中迅速、热应力低,因而正在集成电路和半导体器件壳体的封装中,显示了独特的优越性,在真空器件研制中,激光焊接也得到了应用,。传感器或温控器中的弹性薄壁波纹片其厚度在0.05~0.1mm,采用传统焊接方法难以解决,电弧焊容易焊穿,等离子焊稳定性差,影响因素多,而采用激光焊接效果很好。(4)生物医学领域。生物组织的激光焊接始于20世纪70年代,Klink等及Jain用激光焊接输卵管和血管的成功及显示出来的优越性,使更多研究者尝试焊接各种生物组织,并推广到其它组织的焊接。有关激光焊接神经方面,目前国内外的研究主要集中在激光波长、剂量及对功能恢复及激光焊料选择等方面,刘铜军在激光焊接小血管及皮肤等基础研究的基础上又对大白鼠胆总管进行了焊接研究。激光焊接方法与与传统的缝合方法比较,激光焊接具有吻合速度快,愈合过程中没有异物反应,保持焊接部位的机械性质,被修复组织按其原生物力学性状生长等优点,将在以后的生物医学中得到更广泛的应用。(5)其他领域。在其他行业中,激光焊接也逐渐增加,特别是在特种材料焊接方面,我国进行了许多研究,如对BT20钛合金、HE130合金、Li-ion电池等激光焊接。德国玻璃机械制造商Glamaco Coswig公司与IFW接合技术与材料实验研究院合作开发出了一种用于平板玻璃的激光焊接新技术。

参 考 文 献

[1]游德勇,高向东.激光焊接技术的研究现状与展望[J].焊接技术.2008(4)

[2]杨春燕.激光焊接技术的应用与发展[J].西安航空技术高等专科学校学报.2008(5)

[3]朱培元.激光焊接技术的应用与发展[J].现代零部件.2009(8)

生物冶金技术范文第7篇

关键词:新工科,综合素质,冶金工程,人才培养

冶金工程专业以物理化学、冶金原理、传输原理为基本理论基础知识为基础,现已拓展到钢铁冶金、有色金属冶金、生物冶金及冶金能源与二次资源回收等方向。

1国内外冶金工程专业分布

我国冶金高校分布见表1所示。可见,冶金工程专业的分布,紧紧围绕资源而建。那么本专业毕业生需掌握基本原理及实验技能、具有一定的创新能力和实践能力,能在相关领域从事生产、设计、科研和管理工作的专业技术及管理人才。因此,除基础核心课程外,还应重视特色课程,比如:双语教学课程、研究型课程、讨论型课程和资源特色课程。根据贵州省的资源特色,贵州大学冶金特色课程有锰冶金学、钛冶金。另外一方面,随着时代的发展,各种信息技术的进步,国内外冶金工程专业正在缓慢的转型,国外冶金表现尤为突出。表2是国外传统冶金高校的分布。比如:化工冶金、矿物冶金,冶金材料和生物冶金等,这是顺应社会与市场发展的需要。同时,在本科教学的基础上,着重对其进行引导创新及高层次方向研究。因此,非常规冶金发展非常迅速,真空冶金、微波冶金、超重力冶金、超声波冶金等,并独树一帜。比如昆明理工大学的真空冶金与微波冶金,北京科技大学的超重力冶金,其无论是基础理论,还是在冶金领域的运用,效果都优于常规冶金,可能是未来的一个大的方向。

2新兴产业相关工科专业分布

最近,教育部高等教育司印发了“关于开展新工科研究与实践的通知”,“新工科”已经成为教育领域关注的热点,随后各个高校举行了相关专题讨论研讨会[1]。新工科建设需要重点把握教与学、创新创业与实践;新工科是基于国家战略发展新需求、国际竞争新形势、立德树人新要求而提出[2]。因此,在这样基础氛围下,目前全国工科专业建设注重专业设置前瞻性,一些紧缺学科专业也加快建设和发展,2010年后相关新兴专业分布见表3所示。那么冶金工程专业的发展也应该顺应时代,强化自身专业素养,提高冶金工程工科专业的责任与使命感,回报社会。

3冶金专业人才培养面临的主要问题

基础课程建设培养方已问题不大,关键在于冶金工程专业实施专业英语及双语教学,因为其是培养高水平复合型人才的基本要求,是顺应我国冶金工程行业发展趋势的体现;也是为了服务国际化、全球化的中国钢铁行业,所以如何全面提高专业英语或双语教学已刻不容缓[4]。20世纪70年代,专业英语的教学理论和实践已在欧美、日本等很多国家得以普及。对于冶金工程专业的学生,简单地说专业英语不仅能帮助了解国际上本领域的研究现状,还能对日程英语的交流学习起到促进作用[5]。但通过某地区高校冶金专业英语教学调研可知:教材绝大多数是自编讲义,详见表4,而且授课语言基本上是“以汉语为主”[6]。由此可见,冶金专业英语教学过程问题较多,而且该领域专业的师资力量薄弱,远远达不到学生的需求,诸多问题严重影响了冶金专业英语教学质量和效果。

4结语

由于冶金工程专业的特殊性,课程涉及面广、实践性强,实习过程危险性大等,因此一些企业不愿意接待学生的认识实习与生产实习。但好在部分高校已经开始运行虚拟仿真实践教学平台系统。虚拟仿真包括高炉炼铁、转炉炼钢、板坯连铸、LF精炼及铝电解等各工艺过程的2D/3D动画、视频、教科书电子资源、论文电子资源等专业相关的素材库;这样让学生更直接行动形象地了解整个工艺过程,而且学生通过仿真系统可以在线学习,数值建模某个工艺流程,以获得较好的教学效果[7]。因此,仿真系统平台的建设是未来冶金工程教学教辅的必备平台。

参考文献

[1]张大良.因时而动返本开新建设发展新工科——在工科优势高校新工科建设研讨会上的讲话[J].中国大学教学,2017,(04):4-9.

[2]钟登华.新工科建设的内涵与行动[J].高等工程教育研究,2017,(03):1-6.

[3]吴爱华,侯永峰,杨秋波,等.加快发展和建设新工科主动适应和引领新经济[J].高等工程教育研究,2017,(01):1-9.

[4]李建立,余岳,朱航宇,等.冶金工程专业双语课程教学改革[J].中国冶金教育,2016,(02):49-51.

[5]王苗,李进,王碧侠.冶金工程专业英语教学改革[J].中国冶金教育,2013,(01):59-61.

[6]任朝迎.昆明地区高校冶金专业英语教学调研[J].中国冶金教育,2015,(01):43-46.

[7]王春霞,姜艳丽,李义兵,等.冶金工程的虚拟仿真实践教学平台系统的研究与实践[J].广东化工,2016,(04):147-148.

生物冶金技术范文第8篇

柳州市是广西以传统产业为主的工业重镇。长期以来,三次产业比重工业一直保持60%以上,且呈逐年上升的态势。柳州市的经济工作始终围绕着工业经济发展。柳州工业基本形成“354”产业格局,即汽车、冶金、机械三大传统支柱产业;化工、制糖、造纸、建材、日化五大传统优势产业;机电仪一体化与电子信息、新材料、新能源及环保、生物及制药四个新兴产业。

(一)传统产业占居主要地位

2011年,规模以上三大支柱行业完成工业总产值突破2000亿元,完成2165.9亿元,增长17.5%,占规模以上工业总产值的75%,对规模以上工业总产值增长的贡献率为65.1%。尤其是机械产业,规模以上工业总产值较上年同比增长25.4%。

汽车产业。近年来,随着国内四大汽车集团上汽、东风、一汽、重汽及跨国集团公司通用汽车公司入驻柳州建立生产基地,柳州市汽车工业实现了跨越式发展,工业经济中的地位进一步提高。2009年,柳州市成为国内第三个汽车产量年产突破100万辆的城市,也是中国第一个市区人均生产一辆汽车的城市。这是柳州工业发展进程的一座里程碑,标志着柳州开始向着中国汽车城迈进。同时,汽车配套产业蓬勃发展,到2011年,全市已有汽车整车及零部件生产企业超过400家,汽车制造业总产值达1159.5亿元,增长15.3%,占全市规模以上工业总产值的40.2%,对规模以上工业总产值增长的贡献率为31.1%。柳州汽车产业已经成为柳州市第一大支柱产业。

冶金产业。冶金工业多年来一直是柳州市的支柱产业,拥有柳钢(集团)公司及柳锌集团公司等龙头企业。柳钢(集团)公司2011年钢产量突破千万吨,工业总产值突破554亿元,占全市工业总产值的19%。冶金行业企业积极应对市场新趋势,建立原料供应保障体系,大力调整产品结构,拓宽品种规格,提高产品挡次,增加产品附加值,加大产业转换力度,推进冶金产品深加工,延长产业链,提升企业核心竞争力,做强做大冶金产业。

机械产业。柳州市机械产业以工程机械、预应力锚具、空压机、电工电气等系列产品在国内外很具影响力,以广西柳工集团公司、柳州欧维姆机械公司等为代表。广西柳工集团公司是全国知名的工程机械制造商,多年来轮式装载机系列产品销量保持国内第一,世界第二,柳工连续多年进入世界工程机械50强。预应力锚具系列产品性能达国际先进水平,并具有价格优势,国内市场占有率40%以上。2011年工程机械产量4.87万台,机械产业规模以上企业工业总产值达383.51万元,比2009年翻了两番。2011年机械产业实现工业总产值383亿元,占全市13.3%。

(二)新兴产业初具规模

机电一体化、新能源环保、生物制药等新兴产业处于成长阶段。据初步统计,全市三大新兴产业的规模以上重点企业50多家,主要集中在制药、汽车电子、电工仪表、通信、生物质发电等行业。

2011年柳州市重点培育发展一批掌握新兴产业的核心技术和产品、实施技术水平国内外先进的创新成果产业化项目、拥有自主知识产权、具有国内国际竞争力的龙头企业,共有38户企业列入四大新兴产业成长计划,其中机电一体化产业20户、生物及制药产业10户、新能源环保产业8户。计划到“十二五”期末,机电一体化产业力争实现产值200亿元,新能源环保产业实现产值150亿元,生物及制药产业实现产值50亿元。

目前,全市已有100多家企业被认定为国家高新技术企业,占广西的三分之一;广西柳工集团公司、欧维姆、两面针成为国家创新型试点企业;全市已拥有国家认定企业技术中心3个、自治区认定企业技术中心48个、8个博士后工作站。

二、柳州市产业结构存在问题

(一)三次产业结构不合理

柳州市第二产业一直占居主要地位,2005年,第二产业占地区生产总值比重就达到了51.97%,到2010年,第二产业占地区生产总值比重更是达到了63%。而柳州市的工业集中度又很高,汽车、冶金、机械三大支柱产业规模以上企业占全市工业总产值的74.09%,三大支柱产业在柳州的经济发展中起着决定性的作用。尽管柳州市委、政府近年来一直强调优化产业结构,经济结构调整也取得了一定成效,但是柳州市的三次产业结构仍然不够合理。从柳州近年来三次产业结构比例变化情况来看,服务业地区生产总值虽也逐年增长,但第三产业比重却出现下滑。第二产业中传统产业比例过重、附加值不高,地方财政、职工收入偏低、消费水平低,制约着第三产业的发展。

(二)工业产业结构发展受国家政策影响大

汽车、冶金、机械三大支柱产业受国家政策影响很大,尤其是汽车和冶金产业。2011年上半年,受汽车下乡、购置税减征等利好政策退出及燃油持续高涨等因素影响,国内汽车市场景气指数明显下滑,柳州市汽车产销增长受制约。同时,由于铁矿石价格波动、钢价下跌,致使毛利率下降,费用的增加加剧了钢铁上市公司的净利润下滑,使得产量增长放缓。2012年5月,国家发展改革委核准了广西防城港钢铁基地项目,将会对柳州冶金行业的发展带来不小的影响。因此,支柱产业的高度集中,造成柳州市工业经济发展乃至整个地区的经济发展对国家政策的高度依赖。

(三)高新技术发展仍比较薄弱

近年来,柳州市致力于发展战略性新兴产业,并且新兴产业也初具规模,但比起其他先进城市仍有比较大的差距。

表1、表2列出了柳州市2011年新兴产业发展情况以及与相似城市对比新兴产业工业总产值及其所占比重,柳州与桂林、德阳、襄阳几个城市比较,不论其总产值或比重,仍处于劣势,尤其被常州远远超越。

三、优化产业结构发展战略性新型产业

(一)发展战略性新型产业的优势

1、区位环境优势

生物冶金技术范文第9篇

关键词:生物技术;无机非金属材料;应用前景

在本世纪70年代, 逐步发展形成的现代生物技术( 亦称生物工程技术), 从广义上说, 它包括人类对动物、植物以及微生物有目的利用、控制和改造。随后80年代, 美国和口本便分别召开了 “用生物方法合成材料”和“使用生物技术创制新材料”等专题学术研公寸会。由此可见, 现代生物技术在材料学与上程中的应用前景颇为看好。例如现代生物技术在金属材料行业中的系统应用已经成功地形成生物冶金分支学科。所谓生物冶金或称细菌冶金, 即细菌萃取金属或生物浸出金属, 是一种利用细菌的氧化作用把不溶性金属化合物转变成可溶性化合物, 再用湿法冶金从溶液中回收金属的方法。又如开发研究生物降解高分子材料, 及时防止和解决当今世界上极为严重的“白色污染”的决定性措施, 亦是现代生物技术在有机高分子材料行业中的应用热点。至于现代生物技术在尤机非金属材料行业的应用前景, 是又可望又可即的。

1 生物提纯硅酸盐矿物原料

生物提纯是指现代生物技术利用生物浸出法在非金属矿选矿过程中的应用。这种技术的应用原理主要就是利用微生物能够让金属矿物进行液化的功能, 使得生物技术在矿物融滤过程中得到广泛的应用。由于这些铁杂质一般都以黄铁矿的形态存在于硅酸矿物质中, 人们可以利用氧化铁硫杆菌和其他菌类对黄铁矿变成可溶性化合物, 在形成这一反应时。根据调查显示, 这种真菌可以对高岭土壤中铁的含量至少降低4 %左右, 并且让高岭土的白亮度有很大的提高, 这成为陶瓷和造纸行业产品的质量关键的因素。根据上述分析, 现代生物技术将会为硅酸盐矿物原料。

2生物矿化过程

生物矿化过程是在一定的细菌分泌和特殊机质的作用下的成矿过程, 也是在特定的机质下长成晶体结构。以珍珠贝的珍珠层为例, 珍珠层的结构是由霞石的碳酸钙晶体组成, 并在这种情况下形成了大小不一的螺旋形, 由于这种基质的网络结构中存在不规则的钙物质, 能够使碳酸钙在一定的距离成核并且按照自身的生长规律形成霞石螺旋。碳酸钙的生物矿化过程既是一个化学过程, 也是一个生物过程,这是两者共同作用过程的结果。日本研究人员还培育出一种海藻和一种单胞藻, 它们都可以联系生产处石灰石颗粒, 每天这些形状的石灰石最佳生产率为15毫克每升和90 毫克每升, 并可以对回收后的细胞进行再生产。根据上述材料表明, 人类可以在人工手段下实现细胞固定化技术, 并利用生物的成矿能录生产石灰石质纳木材料和生物装饰材料, 也可能利用生物的成矿功能进行复合材料的生产。

3 用稻壳制备高纯度高性能碳化硅

从仿生学的角度来看, 人们可以利用稻壳制造出高浓度、高性能的碳化硅。主要的步骤为: 首先, 将稻壳进行碳化, 使稻壳中的纤维素进行分解, 形成不定性碳化物; 其次, 在还原性和惰性的条件下, 对稻壳进行高文炼烧下形成碳化硅。在稻壳中所存在的二氧化硅凝胶会与多糖基质进行紧密的结合, 多糖的谈话会在二氧化硅的表层发生, 并且二氧化硅一直处于高化学活性的多孔和微粒状态下, 因此, 在对它进行炼烧时,可以最快速度与二氧化硅产生反应。德国的一位建筑师利用自己设计的一种水下装置放到海中, 在经过两到三个月的时间用过海藻作用可以产生2 5尺长、五尺宽、2寸厚的生物大理石材料板。近期, 日本的工业技术研究所成功利用稻壳制备出碳化硅的新工艺, 这种技术与原来的硅石和煤气还原法相比, 同时达到了降低成本和实现了对稻壳的最大利用。在稻壳中存在碳、二氧化硅等有效化学成分, 这就具备了形成碳化硅的先决条件, 但是一旦在发生反应时磷成分过多时, 就无法形成碳化硅, 那么就必须研究减少磷产生的方法。这种工艺的原理是以弱酸性缓冲剂进行爆破性处理, 在多种酶的作用下可以溶出碳, 然后再对其进行氧化处理, 在无氧加热条件下形成高浓度、高性能的碳化硅。

4 生物混凝土

在很早以前, 我国就应经学会利用存在于粘土中的细菌对粘土进行发酵来增强它的可塑性。目前, 我国很多学者都预言几千年后老鼠建造洞穴的材料将用比混凝土还牢固的白蚁排泄物。这种材料是天然的高分子非金属材料的符合混凝土, 也是细菌作用下形成的生物混凝土。与此同时, 在日本也有相关报道曾预言提出这种单材质发酵技术的应用。新型生物混凝土具有多层结构:第一层是防水层,能够防止雨水渗入,避免对建筑结构造成破坏;第二层是生物层,能够收集雨水以供植物生长,例如它可以为微型藻类、菌类、地衣和苔藓等提供天然生物屏障;第三层是覆盖层,能够让雨水通过这一层渗入生物层,并可防止水分流失。与传统混凝土相比,这种新产品的最大优势是既能吸收二氧化碳,改善城市环境空气质量;又可美化墙体,改变城市色彩单一的外观面貌;还能提升建筑物的保温性,降低能源消耗。

5 生物铁氧体功能陶瓷材料

在常温条件下, 可以利用海洋水中想磁性细菌合成比较均匀的磁性微粒, 磁性微粒通常情况下也被称为生物铁氧体功能陶瓷材料, 它与人工制成的磁微粒材料相比, 它的表面积比较大, 而且表面部位被坚硬的有机薄膜覆盖, 在这种情况下很难将铁浸。

6 结语

将现代生物技术应用到非金属材料领域中比较重要的工程, 这也将大大推动生物非金属材料工业的发展和进步。我们必须积极探索现代生物技术的作用, 抓住现代生物技术的特点, 现代生物技术作为一种低能耗、高效益的新兴技术, 必将在非金属材料领域大面积的应用, 以推动我国经济和科技的发展。

参考文献:

[1]朱跃钊,卢定强,万红贵,韦萍,周华,欧阳平凯. 工业生物技术的研究现状与发展趋势[J]. 化工学报,2004(12).

[2]王大博,孙艳艳.浅谈我国无机非金属材料的应用与发展[J]. 黑龙江科技信息,2011(13).

[3]姚义俊,万韬瑜,刘斌,张乐彬,李军. 烧成制度对AlN陶瓷性能及显微结构的影响[J]. 耐火材料, 2014(06).

生物冶金技术范文第10篇

关键词:有效元素;有色金属;回收

目前,世界上已探明的金属有86种之多,其中铁、铬、锰称之为黑色金属,其他金属都可统称为有色金属。冶炼工业中最常见的有色金属包括铜、镍、铅、锌、锡、铝、钨、钦等。这些有色金属在冶炼过程中由于冶炼工艺等原因除希望冶炼的元素外还会产生大量的其他元素,当前大多数有色冶金企业把这些有效元素当作了冶炼伴生的废渣进行了丢弃。丢弃的结果可想而之,既是对有效元素的浪费,又加重了当地的环境污染。因此,对“废渣”中的有效元素进行回收,二次利用,变费为宝,将会产生社会效益和经济效益的双赢。

1 有效元素回收方式

在有色金属的冶炼过程中产生的废渣元素种类很多,其中可回收,再次利用的有效元素也不少,可分为有效金属元素和有效的非金属元素,根据冶金的要求和用途,废渣中有效元素的回收方式也不相同。对于金属元素的回收,一般采用选冶、火法冶炼和湿法冶炼等技术,而非金属元素(如余热)的回收采用梯级利用法。有效元素回收的原则是减量化、资源化、无害化。

1.1选冶法

在冶金有效元素处理的初期,尾矿的选择上,需针对矿山物理表面的不同化学成分、性质,采用适合尾矿再选的选冶流程(螺旋溜槽-BL1500螺旋溜槽、浮选+尾矿氰化选冶联合流程、浮一重一磁联合流程、先铅后铜的优选浮选等),或通过新型药剂(如浸锌渣还原、浓缩脱液等),从粗精矿中直接选择出精矿。通过尾矿选治增加经济效益,避免因尾矿回收率低,引起的矿山企业开发、利用率积极性不高等原因引起的矿山的恶性开发,增强有色金属的综合利用,使矿山开发、有色冶金、回收利用良性循环、可持续发展。

1.2湿法冶金

湿法冶金是目前回收冶金过程中废渣有效元素最有效的方法和常用方式之一。它是通过酸、碱、微生物水溶液浸出方法提取所属金属元素,最后用电解水溶液的方法抽取金属。并且湿法冶金对冶金劳动条件要求不高,无高温和粉尘危害,况且排放的有毒气体极少,可以达到生产清洁的要求。所以,湿法冶金常作为复杂废渣冶金或尾矿再开发的新技术。

1.2.1湿法冶金步骤

在湿法冶金过程中分为三个步骤:(1)将矿石原料浸泡在水溶液中,这一过程简称原料浸出。(2)净化:再将浸取的溶液和残渣分离,进而通过溶剂萃取技术、离子交换技术、沉淀法、还原法将夹杂在冶金溶液与有用的金属离子洗涤回收。(3)金属抽取:采用电解法从净化液直接提取金、银、铜、锌、镍、钻等纯金属;而以含氧酸形式存于水溶液中的铝、钥、钨等金属,一般先进行析出氧化物,然后再还原得到有效金属。

1.2.2原料浸出

湿法冶金的浸出环节是冶金中的最重要的一步,由于废渣矿石中有效金属元素是呈硫化物、氧化物、硫酸盐、砷化物、碳酸盐、磷酸盐等形态存在,要想将有效金属从有害杂质中分离出来,需要谨慎的选择溶剂。浸出的方法也很多,要因材治宜,有酸浸出、碱浸出、盐浸出以及细菌浸出。可用HZSO4作为药物溶剂来处理含酸性的矿石浸出镍、锌、铜、钻等氧化物,回收率可高达99%以上,效果明显。用HCL处理含酸性的矿石浸出黄铜。用浓度巧%的HCL和浓度30%的HZSO4混合处理钨矿。用NH:处理含碱性的矿石浸出钻、镍、铜的硫化物;用Na多处理硫化锑、汞矿浸出HgS、53、SbZs3。NaCL处理含铅半产品的尾矿浸出PbSO4、PbCLZ。用NaCN处理金银矿、高铁盐作为氧剂使用浸出硫化铜、黄铜。用细菌、微生物作为水溶液浸出硫酸盐、氯化物等。

1.2.3 净化

经过原料的浸出后,会得到很高比例的有效金属,但仍然许多不需要的或有害的矿物质,它们随溶剂混合于想要抽取的有效金属中。净化的过程有两种,一是先从溶剂中析出待沉积的有效金属;另一种方法是先析出杂质,让有效金属保留在溶剂中。常用的净化方法有:溶剂萃取、离子沉淀、离子交换和还原法。

利用水溶液与有机溶剂分层液体相的原因而采用的溶剂萃取技术,再用稀释剂从有机相中分离金属离子离子。目前已有200余种萃取溶剂,其中有十几种是被广泛应用在工业冶金中的。对有机溶剂的选用上,还有非常大的进步空间,可利用现有的溶剂萃取液合成更加高效的、廉价的新型萃取液,并且,有机溶剂萃取的工艺上也有较的改善空间。

由于离子交换树脂合成简宜,并且不溶于其他酸碱盐溶液以及有机溶剂,所以在离子交换工艺中离子交换树脂是重要的转换物质。与溶剂萃取相比,离子交换技术具有操作方便、选择性好、性能稳定、容量大的特点。沉淀法也是一种最常用的净化提纯技术,可用于获得盐类、氧化物或金属产品。沉淀方法有硫化物沉淀法、水解沉淀法以及共沉淀法等。

1.3火法冶金

火法冶金是回收冶金过程中有效元素的最古老的方法,在昔日发挥了重要的作用,但由于其高耗能,对环境的污染大,在环保节能的今天,火法冶金逐渐要退出历史舞台。单纯使用高温进行火法冶金提取有效金属的方式基本上不再使用,但与湿法冶金相结合回收有效金属的混合技术仍有广泛的市场价值。24余热回收要充分合理地利用有色炉窑的烟气余热,就要根据烟气余热资源的数量、品质(温度)和用户要求,遵循能级匹配的原则,实现对其进行按质回收,温度对口的梯级利用。一般情况下具体的梯级利用原则如下。

优先考虑将烟气的余热回收利用于生产工艺过程本身。这样,将烟气中的余热直接带回生产工艺过程中,直接降低了生产工艺过程的能耗,比通过转换装置来回收烟温的余热更为经济和有效。其次,冶金过程产生的高温余热可应用于动力回收,使用水蒸汽进行循环发电,高温余热的热能转换成电能。最后,这部分的烟气余热最好直接应用于生产工艺本身,如加热物料、预热助燃空气等。如得不到以上利用时再考虑应用其冬季采暖,夏季制冷等其他利用方式。

2 回收后其余废渣的有效利用途径

上一篇:阅读教育培训范文 下一篇:足球运球技术范文