创新不止 在生物科学的海洋中遨游

时间:2022-03-13 02:54:18

创新不止 在生物科学的海洋中遨游

作为一位科研工作者,他沉着冷静,为国家的粮食安全贡献着力量;作为一位教育工作者,他博学多识,将自身所学毫不保留的传授给学生;作为一个中国人,他创新不止,不断向世界展示着中国人的智慧。

他,就是合肥工业大学生物与食品工程学院生物科学系主任曹树青教授。

寻根溯源,生物治理土壤重金属污染

众所周知,土壤重金属污染是全球面临的重要环境问题之一。土壤污染的重金属可通过农作物吸收而进入食物链严重影响食品安全并危及人类健康。而作为农业大国的中国,更是有近20%的耕地存在镉、砷、汞、铅、镍、铜等重金属超标现象,严重影响食品安全并危及民众健康。据了解,造成土壤重金属污染的原因复杂,包括工业排放、化肥农药使用及地矿开采等,通过物理和化学手段治理非常困难,也容易造成二次污染。

曹树青认为,植物修复基因工程是解决土壤重金属污染的重要途径之一。然而,寻找和发掘耐受重金属毒害且调控重金属超量积累(或降低重金属吸收)的关键基因并阐明其作用机理,则是植物修复基因工程获得成功并从源头上控制农产品食品安全的关键。

为此,曹树青带领科研团队展开了植物响应重金属信号传导的长期研究,并得到了转基因重大专项、国家自然科学基金等项目资助,希望能够通过正向或反向遗传学途径,筛选和克隆涉及植物重金属超量积累(或降低重金属吸收)的关键基因,并阐明其作用机理。这不仅有助于揭示植物耐受重金属毒害的分子机理,而且可为利用植物修复技术治理土壤中重金属污染提供新的基因资源,并为从源头上控制农产品食品安全提供新的技术途径。

于是,科研团队利用正向遗传学途径筛选和鉴定了一个拟南芥耐镉突变体xcd1-D,并克隆了其相应的基因MAN3,该基因编码一个1,4-糖苷水解酶。过量表达MAN3基因导致镉的耐受和积累,而MAN3基因功能缺失则该突变体表现出对镉敏感。镉胁迫诱导MAN3基因表达、增加甘露聚糖水解酶活性及甘露糖水平,从而激活谷胱甘肽依赖的植物螯合素合成途径上的相关基因协调表达,进而增加植物对镉积累和耐受。

如今,研究已经初见成效,发现了MAN3及其介导的甘露糖的新功能,首次揭示了植物响应重金属镉胁迫的分子调控机制,为土壤重金属污染植物修复基因工程提供了新的技术途径和基因资源。“利用此机制,我们可以通过基因技术定向增加植物对镉的积累和耐受,使其在受到重金属镉污染的土壤中仍可以茂盛生长,并将镉吸收后储存至液泡中。”曹树青介绍,“之后我们再对吸收了镉的植物进行处理,即可有效降低土壤中的重金属含量。”

2014年10月,该原创性成果在线发表在国际植物学知名学术期刊New Phytologist,引发广泛关注。不仅获得第十三届全国农业生物化学与分子生物学学术研讨会优秀论文奖,国内的一系列主流媒体也都进行了报道和转载。

但这些荣誉并未羁绊住曹教授前进的步伐,目前,他正带领科研团队进一步研究针对砷、铅等其他重金属的植物修复机制,并致力于产业化探索,致力让更多的国人吃上放心粮食。

解决粮食安全,实际意义深远

民以食为天,华夏儿女自古以来就对粮食有着独特的情感,而到了现代,粮食也始终是关系到国计民生和国家安危的重要问题,粮食安全是国家安全的物资基础。如何增强作物品种的抗逆性是目前我国农业生产上亟待解决的关键问题之一。

为此,曹树青教授认为利用转基因育种提高作物的耐寒和抗旱能力对粮食安全问题无疑具有重要的理论与经济意义。于是,他带领课题组开展了“植物抗逆分子生物学”研究,即利用转基因育种等技术增强作物品种的抗逆性,提升植物对抗不良环境的能力,如抗旱、抗涝、抗冻、抗病虫害等。这项工作的关键在于对植物抗逆分子机理的认识及关键基因的发掘。他们以模式植物拟南芥为材料,通过正向和反向遗传学途径,利用现代分子生物学技术和基因工程手段,筛选和克隆抗逆关键基因,阐明其功能,并用于作物抗逆分子遗传改良。

目前,该研究已经可获得具有自主知识产权的新基因。曹树青教授说:“这些研究不仅对于揭示植物抗逆分子机理具有重要的理论意义,而且可为作物抗逆遗传改良提供新的基因资源。”

曹树青教授还先后主持部级和省级科研课题20余项,指导国家大学生创新性实验计划项目2项和校级大学生创新项目7项,主持校级精品课程及研究生教改项目各1项,参与省部级教改项目3项。在国内外权威和核心刊物上发表学术论文80余篇,获授权(或申请)国家发明专利14项,参与撰写973专著1部。

如今,曹教授还在带领科研团队继续夯实着自己的科研成果,希望能够将技术做到更加成熟,更希望有更多的仁人志士参与到这些科研成果的推广中,为祖国的粮食安全和食品安全问题尽一份力,为美丽“中国梦”的实现添一把柴。

上一篇:笔墨酣畅 传承展现国画之美 下一篇:高职美术教育学生实践能力培养措施分析