生物信息学论文范文

时间:2023-03-21 08:58:34

生物信息学论文

生物信息学论文范文第1篇

[论文摘要]生物信息学是80年代以来新兴的一门边缘学科,信息在其中具有广阔的前景。伴随着人类基因组计划的胜利完成与生物信息学的发展有着密不可分的联系,生物信息学的发展为生命科学的发展为生命科学的研究带来了诸多的便利,对此作了简单的分析。

一、生物信息学的产生

21世纪是生命科学的世纪,伴随着人类基因组计划的胜利完成,与此同时,诸如大肠杆菌、结核杆菌、啤酒酵母、线虫、果蝇、小鼠、拟南芥、水稻、玉米等等其它一些模式生物的基因组计划也都相继完成或正在顺利进行。人类基因组以及其它模式生物基因组计划的全面实施,使分子生物数据以爆炸性速度增长。在计算机科学领域,按照摩尔定律飞速前进的计算机硬件,以及逐步受到各国政府重视的信息高速公路计划的实施,为生物信息资源的研究和应用带来了福音。及时、充分、有效地利用网络上不断增长的生物信息数据库资源,已经成为生命科学和生物技术研究开发的必要手段,从而诞生了生物信息学。

二、生物信息学研究内容

(一)序列比对

比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包BALST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。有时两个序列总体并不很相似,但某些局部片断相似性很高。Smith-Waterman算法是解决局部比对的好算法,缺点是速度较慢。两个以上序列的多重序列比对目前还缺乏快速而又十分有效的算法。

(二)结构比对

比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。

(三)蛋白质结构预测

从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。

(四)计算机辅助基因识别

给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。

(五)非编码区分析和DNA语言研究

在人类基因组中,编码部分进展总序列的3-5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。

三、生物信息学的新技术

(一)Lipshutz(Affymetrix,Santaclara,CA,USA)

描述了一种利用DNA探针阵列进行基因组研究的方法,其原理是通过更有效有作图、表达检测和多态性筛选方法,可以实现对人类基因组的测序。光介导的化学合成法被应用于制造小型化的高密度寡核苷酸探针的阵列,这种通过软件包件设计的寡核苷酸探针阵列可用于多态性筛查、基因分型和表达检测。然后这些阵列就可以直接用于并行DNA杂交分析,以获得序列、表达和基因分型信息。Milosavljevic(CuraGen,Branford,CT,USA)介绍了一种新的基于专用定量表达分析方法的基因表达检测系统,以及一种发现基因的系统GeneScape。为了有效地抽样表达,特意制作片段模式以了解特定基因的子序列的发生和冗余程度。他在酵母差异基因表达的大规模研究中对该技术的性能进行了验证,并论述了技术在基因的表达、生物学功能以及疾病的基础研究中的应用。(二)基因的功能分析

Overton(UniversityofPennsylvaniaSchoolofMedicine,Philadelphia,PA,USA)论述了人类基因组计划的下一阶段的任务基因组水平的基因功能分析。这一阶段产生的数据的分析、管理和可视性将毫无疑问地比第一阶段更为复杂。他介绍了一种用于脊椎动物造血系统红系发生的功能分析的原型系统E-poDB,它包括了用于集成数据资源的Kleisli系统和建立internet或intranet上视觉化工具的bioWidget图形用户界面。EpoDB有可能指导实验人员发现不可能用传统实验方法得到的红系发育的新的药物靶,制药业所感兴趣的是全新的药物靶,EpoDB提供了这样一个机会,这可能是它最令人激动的地方。

Babbitt(UniversityofCalifornia,SanFrancisco,CA,USA)讨论了通过数据库搜索来识别远缘蛋白质的方法。对蛋白质超家族的结构和功能的相互依赖性的理解,要求了解自然所塑造的一个特定结构模板的隐含限制。蛋白质结构之间的最有趣的关系经常在分歧的序列中得以表现,因而区分得分低(low-scoring)但生物学关系显著的序列与得分高而生物学关系较不显著的序列是重要的。Babbit证明了通过使用BLAST检索,可以在数据库搜索所得的低得分区识别远缘关系(distantrelationship)。Levitt(Stanforduniveersity,PaloAlto,CA,USA)讨论了蛋白质结构预测和一种仅从序列数据对功能自动模建的方法。基因功能取决于基因编码的蛋白质的三级结构,但数据库中蛋白质序列的数目每18个月翻一番。为了确定这些序列的功能,结构必须确定。同源模建和从头折叠(abinitiofolding)方法是两种现有的互为补充的蛋白质结构预测方法;同源模建是通过片段匹配(segmentmatching)来完成的,计算机程弃SegMod就是基于同源模建方法的。

(三)新的数据工具

Letovsky(JohnshopkinsUniversity,Baltimore,MD,USA)介绍了GDB数据库,它由每条人类染色体的许多不同图谱组成,包括细胞遗传学、遗传学、放射杂交和序列标签位点(STS)的内容,以及由不同研究者用同种方法得到的图谱。就位置查询而言,如果不论其类型(type)和来源(source),或者是否它们正好包含用以批定感兴趣的区域的标志(markers),能够搜索所有图谱是有用的。为此目的,该数据库使用了一种公用坐标系统(commoncoordinatesystem)来排列这些图谱。数据库还提供了一张高分辨率的和与其他图谱共享许多标志的图谱作为标准。共享标志的标之间的对应性容许同等于所有其它图谱的标准图谱的分配。

Candlin(PEappliedBiosystems,FosterCity,CA,USA)介绍了一种新的存储直接来自ABⅠPrismdNA测序仪的数据的关系数据库系统BioLIMS。该系统可以与其它测序仪的数据集成,并可方便地与其它软件包自动调用,为测序仪与序列数据的集成提供了一种开放的、可扩展的生物信息学平台。

参考文献:

[1]LimHA,BatttR.TIBTECH,1998;16(3)):104.

生物信息学论文范文第2篇

生物信息学包括开发生物信息学工具的计算生物信息学和利用生物信息学工具解决问题的应用生物信息学。医学背景的生物技术专业的学生应该立足于应用生物信息学的学习,特别擅长计算机和数学并且对生物信息学感兴趣的同学也可以涉猎部分计算生物信息学的知识,本人在读博士期间遇到过一个本科生就利用自己计算机方面的特长,进行雄激素受体和雄激素受体调节剂构效关系的研究,在指导教师的帮助下发表了一篇生物信息学领域的SCI文章,在感叹难能可贵的同时,必须承认指导教师敏锐的洞察到学生的特长,并发挥其特长会起到意想不到的效果。此外,国内有关生物信息学方面的教材因编者学科背景相差很远,各教材的特色和侧重点有所不同,相对来讲,偏理论轻实践。医学院校生物技术专业应校根据本学科特点选择实验性较强的教材,制定具有生物技术专业特色的教学计划及教学大纲,有条件有时间的教师可以尝试自己编写适合本院校学习的教材,那样针对性更强,学习效果会更佳。针对生物技术专业的特点,因此我们将引物设计、基因查找、基因序列分析、同源基因和不同物种基因查找、判断起始密码子和终止密码子位置、启动子预测以及简单的蛋白功能分析和常用数据库的应用作为本专业生物信息学知识学习的主体框架。另外,生物信息学的软件本人倾向于选取在线工具,如引物设计软件可选取NCBI网站上的primerblast,酶切位点分析也可在NEB公司的网站上在线分析,应该说生物信息学的发展,欧美国家一些公立网站,如NCBI,或者某些相关实验室的网站都提供多种现在分析的工具,极大地方便了使用者。一来及其方便解决了问题,避免了盗版问题;二来可以通过网站学习生物信息学相关知识,对某些软件的历史渊源有所了解。

2、生物信息学授课时间安排的合理性

生物信息学是一门实践课程,实验课应该占40%以上比例,理论课也应该利用多媒体教室讲授,在实验课之前应该提前让把本次课内容通过多种即时通讯工具如QQ等发送给学生,在将核心知识在实验课演练结束后,进一步布置相关作业强化记忆,在实践中掌握相关知识,如引物设计中,常用的是ncbi网站中在线引物设计工具primerblast和电脑安装软件prim-er5,在引物设计完成后,可以让学生思考融合蛋白表达时移码问题,即融合蛋白引物设计需要注意哪些问题,如涉及到移码问题时如何设计引物?生物信息学是有力的应用工具,但是还不能完全依赖生物信息学,我们应该成为生物信息学的高级应用者。

3、生物信息学授课教师的选择

生物信息学是一门交叉学科,但是笔者认为长期应用生物信息学的医学背景的教师更适合作为医学院校生物技术专业的授课教师。作为一门新兴学科的一名教师保质保量的完成全部授课任务还是有一定难度的,可以尝试每位老师根据自己特长讲授自己熟悉的章节,这样一来减少压力,二来可以较为圆满地完成教学任务,不同教师还可以给学生带来不同风格的教学模式,提高学生的新鲜感和教师授课热情。此外,任课教师应该积极学习相关领域知识,目前很多国内外著名高校通过网络开始有生物信息学相关的开放课程或慕课,无论是学生还是任课教师都应该积极参加其中,提高自己的理论知识和实践技能,学习优秀教师的授课技巧,领略该领域大家风采,笔者就经常参加北京大学等学校的开放课程,获益匪浅。同时,在有条件情况下参加国内外相关讲座和学习班,和同领域的兄弟院校保持联络,对生物信息学的教学和科研水平的促进帮助大有裨益。

4、扎实的理论是学好生物信息学的保障

除了具有学习生物信息学的热情,学习生物信息学的医学生还应该掌握与生物信息学紧密相关的知识,如分子生物学、分子诊断学、计算机相关知识和统计学知识。有条件的学生应该主动参与科研课题,不论是本院校老师申请的,还是大学生课题,都会对学习生物信息学有所帮助。本人读博士期间,就遇到很多在读本科生参与博士生导师的课题,在基因序列分析和蛋白功能研究方面都获益匪浅。本人目前也作为指导教师指导本科生独立申请的大学生课题,在给学生讲授生物信息学时,明显感觉参与过科研项目的学生对生物信息学知识的掌握,明显强于没有参与过的本科生。总之,我们生物信息学课程教学中做出了一定的探索,也取得了一定的经验和效果,但是这只是万里长征的第一步,需要生物信息学课程的教师更加努力探索,为培养出更多适应社会发展需要的高素质应用型人才贡献自己的微薄之力。

生物信息学论文范文第3篇

关键词:医学检验;生物信息学;课程教学

近年来,生物信息学在各医药院校越来越受到重视,多所院校相继在研究生教学中开设了生物信息学课程[1]。而对于医学本科层次是否需要开设生物信息学课程这一问题,虽然目前各方面的观点不一,但是已经有一些院校开始进行尝试。目前医学检验专业(五年制,毕业时授予医学学士学位)已调整为医学检验技术专业(四年制,毕业时授予理学学士学位),而生物信息学作为一门新课程,在医学检验(技术)专业学生培养中的作用正日益受到关注,逐步被某些院校选择作为必修课或者选修课。

一、开设课程的必要性

空前繁荣的生物医学大数据的产出,及其蕴含的重大生命奥秘的揭示,将决定现代生命科技和医药产业研发的高度,决定人们对疾病的认识和掌控能力,也将对主导生物医学大数据存储、管理、注释、分析全过程,解决生命密码的关键手段———现代生物信息学技术的发展带来前所未有的机遇和挑战[2]。对于医学专业学生而言,通过学习生物信息学,从而掌握利用各种网络信息资源来检索和获取生物信息数据,并选择和使用各种生物信息学软件来分析数据。在当今大数据时代,这方面的知识和技能的培养对于医学生今后从事医学科研工作是非常重要的。因此,在医学专业学生中开设生物信息学课程非常必要。我校从2010年开始将生物信息学设置为研究生教学的必修课;从2013年开始在医学检验专业中开设生物信息学选修课,自2015年开始转为医学检验技术专业。在医学检验技术专业中开设生物信息学课程,能够为该专业学生的临床和科研方面的素质积累提供必要的支持,更重要的是增强了在医学和信息科学交叉领域解决问题的技能,其意义几乎等同于在研究生教学中的设课意义。

二、教学内容的安排

医学检验技术专业的教学任务非常紧张,几乎将原来医学检验专业前八个学期(最后两个学期为实习阶段)课程压缩到六个学期来完成,学生学习压力可想而知。我校为了减轻学生负担,各课程的课时数都比医学检验专业有所减少。但生物信息学并未改变,仍然为16学时。为了在较短的学时内实现教学效果的最大化,我们结合该专业学生的特点和需求,将授课内容分为理论课和实践课两部分,实践课不占学时。理论课主要介绍基本的生物信息学理论、资源和数据的获取、分析方法和工具的使用;实践课则通过布置作业,课后上机操作来解决问题。理论课主要内容包括:生物信息学导论、DNA测序技术、序列的获取、双序列比对、多序列比对、蛋白质结构分析和预测共计六个专题。实践课主要内容包括:cDNA及基因组参考序列的获取;常见序列格式的释义与转换;双序列比对(局部比对);多序列比对(全局比对);蛋白质综合信息查询;蛋白质基本性质、疏水区、亚细胞定位、信号肽、跨膜区、模体及结构域分析与二级结构预测;蛋白质三级结构预测。在理论课实施过程中,注重将与生物信息学相关的生命科学和医学前沿的一些最新进展和最新成果引入理论知识讲授中,让学生在有限学时内能够进一步认识生物信息学的内涵和课程的价值,追踪前沿学科的动态,开拓视野。

三、教学方法的设计

生物信息学涉及多个学科领域,交叉性强,在较短的学时内学好这门课程的难度很大。学生的学习兴趣与教学内容和手段关系密切,除了精心选择教学内容外,教学方法上也有很多需要革新乃至创新的地方。在教学过程中,我们形成了颇具特色的教学经验,由授课教师独创的授课———实践———演示(Teaching-Practicing-Showing,TPS)教学模式已应用于教学。TPS教学模式着力于以实际问题为引线,将理论授课与上机实践有机地融为一体,逐步介绍生物数据分析的各项技能,并指导学生将其融会贯通以真正掌握相关的基本方法与常用工具。首先,在教学内容上引入具体实例来进行教学,比如讲解生物信息数据库(Gene、Nucleotide、UniProt、PDB等)时,通过给出检索某个人类疾病基因数据的例子来学习数据库的使用方法。课堂上教学实例的设计需要任课教师在备课时投入大量精力来完成,还需要教师具备多学科交叉的知识。教学实践表明,与医学相关的生物信息学分析实例可以让学生更好地认识该课程的作用,大幅度提高学生的学习兴趣和学习的主动性。此外,课堂教学手段也应该丰富多彩,多媒体教学中可以充分使用图片、动画等元素。其次,举例分析时可以进行一定的现场演示,比如讲解检索Unigene数据库时可以一边上网演示一边解释说明。

四、考核方式的变革

生物信息学作为选修课,既要遵循学校相关的考试制度,也要通过对考试方式的变革来提高考试效果。我们将理论考核与学生的实践能力考核联系起来,结合学生课外实践任务的完成情况和开卷考试成绩进行综合评定。在课程中安排一次课外实践任务,要求每位学生独立完成相关分析并提交书面分析报告,该部分占考核成绩的20%。具体内容为自行选择一个人类细胞外功能蛋白:1.利用ClustalX对各物种参考蛋白序列进行多序列比对(输出PS格式结果);2.分析分子量、等电点、分子式、稳定性、亲疏水性及亚细胞定位;3.预测二级结构并模拟三维结构。课程结束后进行开卷考试,内容包括基础知识和综合分析,尽量采取灵活的出题方式,并控制题量,该部分占考核成绩的80%。近年来的教学实践表明,这种综合评定的方式能够反映学生对该课程的掌握程度,体现学生利用生物信息学知识解决问题的能力。

五、展望

实践表明,生物信息学课程教学能够给学生提供所需要的生物信息学知识和技能,但是在教学内容安排、教学方法设计、教学手段使用和教学效果评价等诸多环节都需要进一步探讨。在这个过程中,我们既需要吸收传统教学模式中的优点和精髓,做到严谨和切合实际,又需要更新教学理念,突出医学特色,大胆尝试新的教学方法和手段,最终形成本课程别具一格的教学特色。

作者:伦永志 单位:大连大学

参考文献

[1]李曦,颜晗.浅谈医学研究生的生物信息学教学[J].亚太教育,2015,28(2):112+111.

生物信息学论文范文第4篇

摘要:师范教育改革下高师院校课程的重新建设已成为重中之重。如何在改革的新背景下建构合适的课程体系,成为高师院校要解决的问题。本文立足于师范教育改革背景下的需求,针对《生物信息学》课程的特点和教学中存在的问题进行初步探讨,就其在教学方法的更新、教学标准的编写、考核方法的改进等方面提出了一些思考,希望通过不断的完善从而提高《生物信息学》课程的教学质量。

关键词:师范教育改革;生物学信息学;课程建设

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)21-0102-02

随着教育的发展,教师体制也不断发生改变,顺应发展的趋势,教师资格证的改革开始不断推进与完善。2012年《国家中长期教育改革和发展规划纲要》精神和教育部部署启动全国中小学和幼儿园教师资格证改革试点工作,2013年《中小学教师资格考试暂行办法》出台并规定:试点启动后入学的师范专业学生申请中小学教师资格应参加教师资格考试。2015年我国正式实施教师资格证国考制度,并实行五年一个周期的注册制度。教师资格证制度的变革是对高师院校实施教学改革的促进同时也是对师范生的挑战。改革制度下更要求提高教师的综合素质和学生能力的培养,而《生物信息学》所具备的专业性与前沿性正是师范教育对学生着重培养的方向与目标。

《生物信息学》是一门交叉学科,包含了对生物信息的获取、加工、存储、分配、分析、解释等在内的所有方面,运用数学、计算机科学和生物学的各种工具阐明和理解大量数据所包含的生物学意义。随着大规模的基因组测序工作的开展,生物学数据获得了大量的积累,生物信息学悄然兴起并得以蓬勃发展。生物信息学使学生了解学科前沿和新技术进展,同时培养学生综合运用知识的能力。但目前多数院校只将其设为选修课程,重视程度很低,而且在教学内容、方法等方面存在一些问题。由于师范教育改革对师范生要求不断提高,课程的学法和内容也要与时俱进,怎样建构新的课程体系是高师院校需要解决的问题。

一、课程教学现状

1.师资力量薄弱。生物信息学不仅对教师专业知识要求高,同时也需要有计算机理论基础的教师来授课。但目前教授生物信息学课程的教师大多都为其他生物学课程的教师,这些教师往往缺乏专业的生物信息学分析软件操作训练和计算机基础,不能将各学科更好融合。

2.教学方法滞后。生物信息学是一门交叉学科,但教师在教学过程依旧采用传统教学方法,计算机辅助教学不常见,这种授课方式不仅效果欠佳也没有发挥此学科的优势。而且在教学过程中不注重培养学生对生物信息学的重要性的认识,所以学生认为该课程只是理论学科,认识不到其对实践操作能力的重要和生物数据分析的意义。

3.实践教学不足。受传统的教学观念影响,教师在教学过程中只注重理论教学忽视实践教学,导致学生所学的理论知识与实践脱节。因为生物信息学对于网络高度依赖,但由于受学时限制,课堂教学的内容有限,实践教学课时数较少,内容也比较简单,缺乏完善的实践教学过程,学生也缺乏实际动手操作的能力。

4.考评方案简单。生物信息学的考核重点是学生对生物信息基本概念的理解,软件操作的掌握程度及生物数据分析解释的能力。但一些学校的考试形式还全部是理论知识,缺少实际操作能力的检验,这种考评办法的评价效能差,而且不能体现学科的特点。

二、课程体系建设优化

1.提高教师素质。教师是教学的核心资源,其知识水平和操作技能都会影响教学的效果。提高教师素质首先要对任课教师开展《生物信息学课程教学改革和实践》专题讲座,其次鼓励教师通过查阅相关文献,了解课程的特点及发展,组织大家进行讨论,再次,也要积极组织教师参加科研活动,提高科研新能力,在科研过程中进一步了解本学科的前沿内容。

2.编写教学标准。如今的教师专业化不只是强调教师要有扎实的理论知识,更要有实践能力。所以生物信息学的课程建设改革要组织新的教学内容,合理安排理论学时特别是实验学时。课程标准对生物信息学的研究内容、现状和发展前景做具体的介绍,主要对生物信息学的基本概念和基本方法进行讲解,重点是分析软件的操作方法和生物学数据库的使用方法的讲解。

3.改进教学方法。师范教育改革意味着对师范生各方面要求的逐渐提高,学生不能只被动接受知识,所以教师在教学中要利用多媒体辅助进行直观教学,演示生物学数据库的浏览与检索,软件的使用,基因序列的检索、基因阅读框架的找寻、序列比对、进化树的构建等操作。教师也可以提供课件和DNASTAR、DNAMAN、MEGA、BIOEDIT等软件安装程序及使用手册等扩大学生的自学空间,使学生的被动学习变为主动学习,也符合师范教育对学生创造能力、应用能力的培养。

4.教学科研结合。生物信息学教学强调能力的培养,且学科的交叉性也能使学生将所学知识与之结合。教师可以鼓励学生参与相关课题研究,学校也可以提供机会让学生参与到创新创业性研究的科研项目中,这样的学习方式可以激发学生对科研的兴趣,巩固课程中所学到的知识,使学生掌握生物信息学课程的实践技能,也更好的体现对师范生创新能力培养。

5.优化理论课结构。师范教育提倡以学生为主体的授课方式,所以课堂可以采取不同的学习方式如小组合作或学生讲述等以此丰富理论课的教学模式。教师可以提出问题由小组成员讨论研究学习,课堂也可以以自讲的方式进行学习,学生通过查阅资料了解学科在临床医学、药物产业等方面的应用以及在后基因组时代的主要研究内容等,不仅掌握了前沿知识同时也锻炼教师技能,对于师范教育培养有很好的促进作用。

6.加强实验课建设。师范教育在强调师范生理论知识的同时更注重实际的操作能力,所以实验教学起着越来越重要的作用,在学习中通过生物数据库的使用,可以提高学生处理生物信息的能力。生物学数据库均可以通过网络提供数据检索服务,学生可以根据理论知识进行相应的实际操作。学院可以进一步开放实验室,为学生创造动手操作的自学实验环境。

7.改革考核方法。考试是检测教学效果的方法,也是促进学生学习的有力手段。如何考核需要制定详细的评价指标体系。生物信息学的考核改革是在基础考核之上增加了小组答辩和论文成绩。小组答辩以生物信息学在疾病研究中的应用为拟设计命题,培养学生协作收集整理相关文献并展示其整合分析结果的能力。论文以蛋白质生物信息学分析在药物靶点挖掘和药物设计中的应用为题。最后根据论文结构完整性和内容独创性、条理逻辑性和学术水平进行评分。

三、课程体系构建的进一步设想

进一步利用网络学习平台慕课扩展生物信息学的理论深度与新技术发展,学生可以进一步接触并利用云计算等技术对大数据进行处理,或基于手机客户端让学生随时可以查询及学习,这样的构建既是生物信息学课程建设的发展,也是培养学生能力的体现。生物信息学课程建设改革对学生综合运用知识的能力起到了促进作用,也加强了理论联系实践的操作能力。生物信息学能够培养学生全面掌握生物学知识,对今后选择生物学科领域的工作有推动作用,也是师范生成为合格人民教师的理论基础。

参考文献:

[1]蓝秋燕.教师资格证“国考”下师范类教学法课程变革的探讨[J].高教论坛,2014,(3).

[2]林玉生,汪磊,久梅.谈教师资格证国考框架下的高师心理学教学改革[J].辽宁师专学报(社会科学版),2016,(3).

[3]赵屹,谷瑞升,杜生明.生物信息学研究现状及发展优势[J].医学信息学杂志,2012,33(5).

[4]于啸,孙红敏.计算机专业设置生物信息学课程的建设与实践[J].计算机教育,2010,(14).

[5]汤丽华.浅谈大学本科生物信息学课程建设与教学[J].高校讲坛,2010,(17).

[6]陶嫦立.关于提高生物类专业《生物信息学》教学的一些建议[J].教育教学论坛,2016,(32).

[7]石春海,肖建富,吴建国.构建优质教学体系 促进《遗传学》精品教育[J].遗传学教学,2013,35(1).

[8]王彬,韩赞平,张泽民,等.《遗传学》课程建设的实践与思考[J].洛阳师范学院学报,2008,(5).

[9]吴建盛,李政辉,张悦.强化创新型开放性实验 促进生物信息学课程建设[J].信息通信,2013,(6).

收稿日期:2016-11-21

基金项目:本文系吉林师范大学高等教育教学研究课题:“生物信息学课程教学改革和实践”

生物信息学论文范文第5篇

关键词:生物信息学;教学改革;师范院校

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)36-0134-02

生物信息学(Bioinformatics)的发展与上世纪90年代人类基因组计划的启动密切相关,它综合运用生物学、计算机科学和数学等多方面知识与方法来阐明和理解大量生物数据所包含的生物学意义。生物信息学已成为当今生命科学的重大前沿领域之一,是生命科学研究中重要的、不可或缺的研究工具。

我校生物信息学课程开设较晚,所以课程教学仍处于探索阶段,尚未形成成熟的课程体系。本文针对本校学生的需求、课堂教学反馈等情况对教学内容、教学方法等多方面开展了改革与实践,以期提高教学的质量和效果,培养全面发展的人才。

一、生物信息学课程教学现状

(一)教材较多,因此难以选择一本适合的教材

生物信息学教材很多,有些教材侧重于生物信息学理论和算法,如许忠能主编的《生物信息学》对生物信息学的理论和算法讲解详细,但是对于师范院校生物科学专业的本科生而言较为深奥,不易理解;有些教材侧重于生物信息学软件使用,学生对于软件分析所需要的背景知识掌握不够,即使能够运用软件,却不能正确分析和理解所得到的分析结果;由于生物信息学发展较快,教材更新速度相对较慢,一些新的生物信息学知识未能及时纳入到已出版的教材中,而且有些书中所讲的数据库资源早已停用,有些软件及其应用也早已更新版本。

(二)学生理论基础薄弱,学习主动性不够

虽然这门课程在我校是专业选修课程,考核方式以考查为主,但是选修这门课程的学生都对生物信息学有浓厚的兴趣。这门课程开设在大三下学期,很多同学尚未开展或即将毕业课题设计,希望通过本课程的学习对毕业论文或将来考研深造有所帮助。然而在学习过程中,由于对分子生物学、生物化学、遗传学等理论知识掌握不扎实,并且对学科前沿进展关注不够,很少阅读实验性论文,在学习生物信息学相关理论知识时理解困难,而且对于如何将生物信息学应用于实际的课题研究也感到困惑。

(三)学生英语基础不同,学习过程中容易产生消极情绪

要学好生物信息学,离不开大量专业文献的阅读,尤其是外文文献,追踪学科前沿研究进展,这就需要具备一定的专业英语基础。此外,很多生物信息学数据库以及应用软件都是全英文的,涉及专业英语词汇较多。由于学生的英语基础不同,在学习过程中有些学生感觉专业英语阅读和理解方面较吃力,容易产生畏难情绪。

二、教学改革与实践

(一)修改教学大纲,理论与实践结合

生物信息学是一门实践性很强的学科,仅仅靠教师单一的讲解理论和软件的使用方法学生是很难理解和掌握的,因此在教学过程中要理论和上机实践结合。教学大纲中原36学时为理论24学时、上机实践12学时。考虑到我校学生学习该门课程的实际需求,强化实践运用,将理论和上机实践课时均调整为18学时,学生在实践的过程中带着问题主动去思考,发现问题、解决问题,更好地去理解生物信息学的理论知识。原教学大纲中理论课学习结束后再进行上机实践,但是教学过程中发现理论课信息量大,有些知识学生初次接触没有较好地理解,或者当时能够理解,但过了一段时间后再进行上机实践时又要重新学习。在课程安排方面,调整为一个章节的理论课学习结束后开设相应的上机实践,通过实际操作练习有利于巩固所学理论知识,学生也比较喜欢这样的教学方式。

(二)调整教学目标,优化教学内容

生物信息学内涵广泛,应用领域广,但是生物信息学在不同研究领域中的研究内容和应用程度有所不同。选修本课程的学生都是生物学背景,主要希望运用生物信息学知识去解释课题研究中的生物学问题。考虑到本科生理论知识基础相对较弱,很多学生尚未开展课题研究,因此应该在有限的学时里让学生掌握与专业需求相关的生物信息学知识和实用技术,教学的重点和难点要根据本校学生特点进行调整,对教学内容进行优化、精简。例如多序列比对算法、马尔科夫模型等涉及数学、计算机知识,可以简要介绍,但不做深入的讲解。理论和上机实践部分主要介绍生物信息学数据库资源、序列比对、核酸序列分析、系统进化分析、蛋白质结构与预测,同时理论部分还包括生物芯片、高通量测序技术、介绍生物信息学的前沿进展。此外,还结合学生的需求在上机实践课中增加了引物设计内容。

课堂教学内容并不拘泥于一套教材,而是根据讲授的章节选择该章节适合的2~3套教材综合讲解,最终形成适合我校学生学习的讲义。例如在讲系统进化发育时,理论讲解选择由Masatoshi Nei和Sudhir Kumar编写的高等教育出版社出版的《分子进化与系统发育》和蔡禄编写的《生物信息学教程》,上机实践选择吴祖建等编写的《生物信息学分析实践》。

(三)教学与科研相结合,学以致用

生物信息学有很多分析软件,应用很广,即使是分章节按照序列比对、核酸序列分析、系统进化树构建等给学生逐一讲解相关的算法和实际的应用,学生仍然感觉知识零散,信息量太大难以掌握,容易产生畏难情绪而导致学习积极性不高。有些应用软件学生即使有所了解,却又不知道在科研中如何运用。所以在教学过程中,我们以课题研究为例,再结合相关的文献来进行讲解。例如选择DNA条形码开展物种鉴定为例,让学生去查阅相关文献,如DNA条形码在中药材混伪品鉴定中的应用、DNA条形码在肉制品掺假中的鉴定等。这个课题应用性强,对本科生而言阅读专业文献的难度相对较小,仅涉及DNA提取、PCR扩增等实验内容,容易激发学生的学习兴趣。在学生理解课题背景知识的基础上,让学生重点看文献中涉及的生物信息学相关知识,要求学生下载文献中涉及的基因序列,根据下载的序列用MEGA软件进行序列比对,计算遗传距离,同时利用MEGA软件构建NJ树。这个过程就把生物信息数据库、序列比对、系统发育分析等几个章节的教学知识串联起来,学生就知道为什么要下载序列、做序列比对,更好地理解系统进化树构建的原理及意义。同时,也促进了学生阅读专业文献,尤其是外文文献,增加专业英语词汇量,主动关注学科前沿发展动态,更好的利用生物信息开展课题研究,做到学以致用。

(四)改革教学手段和教学方法

生物信息学理论教学中往往是教师主讲、学生听,学生被动接受,这种“灌输式”的学习让学生感觉枯燥乏味,教学效果较差。教学时应突出学生的主体地位,教师起主导作用,引导学生积极思考,参与课堂教学,激发学生的学习热情。例如讲解生物信息学数据库资源时,可以布置课后作业,要求学生搜索国外生物信息学数据库资源,并将查阅的资料制作成PPT,下一次上课时让学生利用PPT讲解搜索情况,分享经验。教师在学生讲完后点评,鼓励学生关注生物信息学的前沿进展,在学习生物信息学的同时提高专业英语的水平。在讲解生物芯片与高通量测序技术时,布置课前预习作业,针对高通量测序技术原理、应用、数据分析等教学内容设置几个选题,让学生分小组,每个小组选择一个选题,通过查阅文献资料,以PPT形式在课堂上讲解。学生根据讲解内容提问,交流讨论。教师根据学生的汇报内容进行点评,进行有针对性的讲解、补充。这样的形式使学生主动去探究问题,而不是被动地接受教师传递的信息,对知识的理解更加深入,学生也反馈这种教学活动提高了学习的积极性,并留下深刻的印象。

三、结语

生物信息学作为一门新兴学科,仍然在不断的发展中,知识更新速度快,因此生物信息学课程的教学内容、教学方式应紧跟学科前沿发展,立足学校专业特点及培养特色,不断摸索教学经验,在教学模式上深入研究,提高教学质量,实现培养学生理论与实践运用综合能力的教学目标。

参考文献:

[1]许忠能.生物信息学[M].北京:清华大学出版社,2008.

[2]Masatoshi Nei,Sudhir Kumar.分子进化与系统发育[M].北京:高等教育出版社,2002.

[3]蔡禄.生物信息学教程[M].北京:化学工业出版社,2007.

[4]吴祖建,高芳銮,沈建国.生物信息学分析实践[M].北京:科学出版社,2010.

[5]李红惠.新课改背景下高师院校师范教育中存在的问题与对策分析[J].扬州大学学报(高教研究版),2006,(01).

生物信息学论文范文第6篇

中图分类号: G643;Q-3 文献标识码: B 文章编号: 1008-2409(2008)05-0967-03

人类基因组计划的成功实施使生命科学进入了信息时代。基因组学、蛋白质组学和生物芯片 技术的发展,使得与生命科学相关的数据量呈线性高速增长。对这些数据全面、正确的解读 ,为阐明生命的本质提供了可能。连接生物数据与医学科学研究的是生物信息学(Bioinform atics)。应用生物信息学研究方法分析生物数据,提出与疾病发生、发展相关的基因或基因 群,再进行实验验证,是一条高效的研究途经。医学是研究生命的科学,医学研究在基础上 就注定离不开对生物信息的了解。

我国目前医学研究生教学模式主要有两种, 一是医学本科教育延续过来的理论型, 这种类型 的教育是在本科教学大纲的基础上, 按照教学计划进行理论讲授, 最后按照导师指定的课题 完成毕业论文。这种培养模式突出理论学习, 忽视了实验机能和科研能力的培养。二是科研 能力培养的前轻后重型, 前期只是进行理论授课, 后期由导师指导学生的科研。这种模式虽 然开设了一定的实验项目, 但对研究生科研能力的培养缺乏系统性, 并且前期的培养不足直 接影响到研究生后期的学位课题和论文的进度、质量。

因此,笔者对生物信息学在医学硕士研究生中的教育初探,不但有利于该门课程尚未完全形 成成熟的课程体系之际,为教师学习借鉴先进的教育思想与教学实践经验,更有利于医学硕 士研究生对生物信息学的学习。

1 生物信息学的研究范围

生物信息学是一门新兴的交叉学科,涉及生物学、数学和信息科学等学科领域,并注定以互 联网为媒介,数据库为载体,利用数学知识、各种计算模型,并以计算机为工具,进行各种 生物信息分析,以理解海量分子数据中的生物学含义。

生物信息包括多种类型的数据,如核酸和蛋白质序列、蛋白质二级结构和三级结构的数据等 。由实验获得的核酸蛋白序列和三维结构数据等构成初级数据,由此构建的数据库称初级数 据库。由初级数据分析得来的诸如二级结构、疏水位点、结构域(Domain),由核酸序列翻译 来的蛋白质以及预测的二级三级结构,称为二级数据。创新算法和软件是生物信息学持续发 展的基础,高通量生物学研究方法和平台技术是验证生物信息学研究结果的关键技术。因此 ,现代生物信息学是现代生命科学与信息科学、计算机科学、数学、统计学、物理学和化学 等学科相互渗透而形成的交叉学科,是应用计算机技术和信息论方法研究蛋白质及核酸序列 等各种生物信息的采集、存储、传递、检索、分析和解读,以帮助了解生物学和遗传学信息 的科学。从其研究所涉及的学科上看,生物信息学是集生物学、数学、信息学和计算机科学 一体化的一门新的科学;从其研究的主要内容上看,基因组信息学、蛋白质的结构模拟以及 药物设计是生物信息学的三个重要组成部分,并有机地结合在一起[1]。

2 医学硕士研究生中的生物信息学教学初探

2.1 课堂教学重在教授实践技巧与方法

生物信息学在医学研究生中的教学应以教授实践技巧为主,以介绍原理为辅,深入浅出,注 重课堂知识与科研实践的紧密结合。课堂讲授应简要介绍生物信息学的相关算法、原理,着 重介绍其使用技巧与方法,真正做到“有的放矢”,而这也是教学的重点和难点。

在教学中对于这部分内容应遵循深入浅出、避繁就简的原则,结合具体实例分析算法,避免 空洞复杂的算法讲解让学生觉得枯燥乏味、晦涩难懂,产生畏惧心理,知难而退;注重讲解 使用技巧与方法的思想和来龙去脉,让学生真正掌握解决问题的思路,培养其科学思维能力 ,并采用探讨式教学鼓励学生思考,通过讨论与研究的方式循序渐进的掌握复杂的内容,介 绍相关的教学和物理学知识,使学生充分体会到生物信息学与其他学科的关系,其他学科的 思想方法对于生物科学的重要性,培养其自觉地将其他学科的方法和思想应用于解决生物 学问题的科学素质。 任何学科都处于不断地发展、更新中,生物信息无论是理论研究还是 应用研究仍处于不断发展完善中,同时随着新的应用领域和新问题的发现,其他学科的方 法也在不断地应用于生物信息学,进一步增加了其多学科交叉融合的深度和广度。

2.2 充分利用现代化教育技术,采用案例教学

目前,高等院校在教室内配备的多媒体投影播放系统,促进了多媒体教学的广泛应用。生物 信息学采用多媒体教学是适应学科特点、提高教学效果和充分利用现代化教育技术的一项基 本要求。作为生物信息学教学的基本模式,多媒体教学使讲解的内容更加直观形象,尤其是 对于具体数据库的介绍以及数据库检索、数据库相似性搜索、序列分析和蛋白质结构预测等 内容涉及到的具体方法和工具的讲解,可以激发学生的学习兴趣,加深学生对知识的理解和 掌握,提高学生理论与实践相结合的能力。

但多媒体教室也有局限性,学生主要以听讲为主不能及时实践,教师讲解与学生实践相脱节 ,如果将生物信息学课程安排在计算机房内进行,并采用多媒体电子教室的教学方式可以解 决上述问题。在教学中采用启发式教学,为学生建立教学情景,学生通过与教师、同学的协 商讨论,参与操作,发现知识,理解知识并掌握知识。例如在讲授“目的基因序列的查寻” 时,除对基本内容的介绍,如数据库的发展、分类等,其他采用案例法,让学生利用搜索工 具查找三大公共核酸数据库,并通过数据库网站的介绍内容对该数据库的发展、内容、特点 进行学习并总结,通过讨论和实际的数据库浏览操作了解三大公共核酸数据库并且掌握数据 库使用方法。

2.3 采用“讲、练”一体化的教学模式,强调学生实践能力的培养

生物信息学课堂教学积极学习借鉴职业培训和计算机课程教学中“讲、练、做”一体化的教 学模式,在理论教学中增加实训内容,在实践教学中结合理论讲授,改变了传统的“以教师 为中心、以教材和讲授为中心”教学方式。

根据教学内容和学生的认知规律,灵活地采用先理论后实践或先实践后理论或边理论边实践 的方法,融生物信息学理论教学与实践操作为一体,使学生的知识和能力得到同步、协调、 综合发展。通常采用先讲后练的方法,即首先介绍原理、方法,之后设计相关的实训内容 让学生上机实践。对于操作性内容和生物信息分析的方法和工具的讲解采取了进行实际演示 的方法,教师边讲解边示范,学生在听课时边听讲边练习或者教师讲解结束后学生再进行练 习,理论与实践高度结合,充分发挥课堂教学的生动性、直观性,加深学生对知识的理解, 培养和提高学生的实践操作能力。

2.4 发挥网络教学优势,优化生物信息学实验教学内容

生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生 物信息学知识和方法进行生物信息提取、储存、处理、分析的能力,提高学生应用理论知识 解决问题的能力和独立思考、综合分析的能力。生物信息学实验教学内容的选择与安排应按 照循序渐进的原则,针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容 为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习 的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。生物信息学实验教学以 互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络 的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工 具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教 师在网上批改实验报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况。

生物信息实验教学与现代网络和信息技术密不可分,在教学工作中充分利用现代教育技术较 其他课程更具优势。区别于其他生命科学课程,在教学过程中要求有发达的互联网和计算机 作为必备条件。调查显示国内高校都已建立校园网,其中拥有1000 M主干带宽的高校已占调 查 总数的64.9%,2005年一些综合类大学和理工类院校将率先升级到万兆校园网[2] ,这些都为生物信息学课程在高校开设提供了良好的物质基础。

2.5 考试无纸化,加强实践能力考核

考试重点是考查学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力 。因此,在生物信息学考试中尝试引入实践技能考试,重点考核学生知识应用能力。实践技 能考试采用无纸化考试方式,学生在互联网环境下,对序列进行生物信息分析并对结果进行 解释,不仅考核学生对基本知识和基本原理的掌握,而且考查学生进行生物信息分析的实际 能力和分析思考能力。通过实践技能考试,淡化理论考试,克服传统的死记硬背,促进学生 注重提高理论用于实践的综合能力,同时更有效地提高学生计算机应用能力。除采用实践技 能考试并将其作为学生成绩的主要部分外,还加强了对学生平时学习态度、学习能力、创新 思维等方面的考核。

总之,生物信息学教学是网络环境下生物教学的全新内容。通过上述教学措施,提高了学生 的 学习积极性、实践操作能力、解决实际问题的综合应用能力及创新能力,收到了良好的教学 效果,得到了学生的普遍欢迎,具有较强的可操作性和实践性。在今后的教学实践中,随着 教师自身素质的提高和进一步的教学改革将会不断完善生物信息学教学,培养具有“大科学 ”素质和意识的医学研究生人才。

参考文献:

[1] 张阳德.生物信息学[M].北京:科学出版社,2004:4.

[2] 教育部科技发展中心.教育部科技发展中心对大学校园网建设应用状况 调查结果.千兆已成主流,应用全面渗透[J].中国教育网络,2005,5:36-39.

生物信息学论文范文第7篇

关键词:生物技术;生物信息学;教学;实践

中图分类号:G642 文献标志码:A 文章编号:1674-9324(2015)47-0123-02

生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学,是一门新兴的交叉学科。生物信息学针对生物学问题,发展各种算法及软件,对迅速增长的浩如烟海的核酸和蛋白质序列进行收集、整理、储存、、加工等,目的在于通过生物信息学手段及分析,逐步认识生命的起源、进化、遗传和发育的本质,破译隐藏在DNA序列中的遗传语言,揭示生物体生理和病理过程的分子基础,为探索生命的奥秘提供合理和最有效的方法或途径[1]。作为当今生命科学和自然科学领域发展最为迅速的学科之一,生物信息学已成为介于生物学和计算机科学前沿的重要学科。实验室的每一项技术,从简单的克隆、PCR到基因数据分析都需要在计算机上应用生物信息学的方法进行处理。因此,对生物技术专业的学生而言,具备一定程度的理解和应用生物信息学方法和技术的能力是十分必要的。

目前,国内外许多高等院校相继开设了生物信息学课程,我校也于2007年针对生物技术专业学生开设了此门课程。该课程不仅是一门新兴的学科,而且学习难度大,理论课内容相对枯燥,如何让学生更好地掌握本门课程的内容,是教师在教学过程中值得深思的问题。实验教学是帮助学生理解抽象理论知识的有力手段,在教学中显得尤为重要,但由于开设专业的特殊性,生物信息学实验教学一直比较薄弱。本文对过去实验教学中存在的问题进行了分析,并针对问题结合《基因工程原理》课程以及自己的科研对教学内容进行了优化和教学方法上的改进,取得了一定的成效。

一、过去教学中存在的问题

(一)实验课教学学时偏少

生物技术专业五年制生物信息学课程总学时为72学时,其中理论48学时,实验24学时。生物信息学课程最主要的目标是培养学生通过在线程序或利用生物信息学软件来分析生物学问题的能力,有效解决学生实验学时不足,实际操作时间少,解决实际问题能力较弱的问题。

(二)与其他课程联系较少

生物信息学课程开设在生物技术专业教学进程的第6学期,此时学生已具备普通生物学、细胞生物学、分子生物学、生物化学、医学免疫学、遗传学、基因组学、基因工程原理等生命科学的基础知识。但是,在生物信息学理论课和实践课学习的内容,如查阅的文献、分析的目的则由授课教师自行指定,忽略了与其他课程的联系,不利于学生系统地学习专业课的知识。

二、教学体系的改革和完善

(一)增加实验课教学学时

从2012年起,我校生物技术专业由五年制调整为四年制,同时在修订教学进程的时候将学时调整为理论36学时,实验36学时,理论课结束后即为该内容的实践部分,以此增加学生的实践训练时间。

(二)将基因工程原理实验课程与生物信息学实践相联系

在基因工程原理的实验中,我们把家蝇防御素基因作为目的基因,主要设计的实验内容包括:(1)目的基因的获得:利用PCR技术扩增已经克隆到pMD-18T载体上的家蝇防御素基因;(2)pSK质粒载体的小量制备;(3)目的基因与载体的酶切;(4)目的基因与载体的连接;(5)大肠杆菌感受态细胞的制备;(6)重组质粒的转化;(7)重组子的蓝白斑筛选;(8)菌落PCR鉴定重组子[2]。

在学生对基因工程实验内容熟悉的基础上,我们在生物信息学的教学过程中对学生提出问题:家蝇防御素基因现有的研究现状是怎样的?PCR扩增目的基因的过程中引物该如何设计?获得阳性重组子后我们如何判断获得的插入序列就是目的基因呢?

针对这样的疑问,我们结合基因工程实验对教学内容进行适当的调整:(1)PUBMED获取文献信息:由学生通过PUBMED查找近五年发表的有关家蝇防御素基因研究的文献;(2)核酸序列分析:以家蝇防御素基因为对象,分核酸序列的检索、搜索开放阅读框(ORF)、限制性酶切分析、引物设计、载体序列识别、核酸序列的比对、分子质量/碱基组成/碱基分布分析和序列转换共8大部分内容进行讲解和学生实践操作;(3)蛋白质序列分析:同样以家蝇防御素蛋白为对象,分蛋白质序列检索、蛋白质序列比对、蛋白质基本性质分析(蛋白质的氨基酸组成、分子量、等电点、亲疏水性分析、跨膜区分析、信号肽分析)、蛋白质功能预测、蛋白质结构预测(蛋白质二级结构和三级结构预测)共5大部分内容进行讲解和指导学生进行实践操作。

(三)以科研促进生物信息学的教学改革

笔者所在课程组主要集中于功能基因组学的研究,涉及了功能基因的获取、生物信息学分析、功能验证等方面的内容。学生在课程学习中,参与到教师的科研课题中,学会运用生物信息学所学知识实际解决科研问题。学生可自行完成从文献的查阅、目的序列的获取(由公共数据库获得或实验室测序获得)、基因序列的分析、理论推导氨基酸序列基本性质的分析及结构和功能的预测、系统发育分析,如有可能,学生可通过实验的方法验证生物信息学分析的结果,同时鼓励学生自主选择感兴趣的基因、蛋白进行课程设计研究,实践结束后学生将结果以论文形式提交给教师。

三、教学探索的成效

生物信息学是一门实践性很强的学科,实验教学作为培养学生的重要手段,在该门课程学习中有着举足轻重的作用。在医学院校生物技术专业生物信息学课程的教学中,立足于生物医学视角的实践教学,以与医学相关的基因、蛋白质等数据作为研究的主体,结合基因工程实验教学改革生物信息学的授课内容,有利于学生对专业课程知识的系统学习。同时,结合生物信息学研究前沿和自主科研课题成果,形成科研教学相融合的实践性教学,能够充分调动学生学习的主动性和积极性,进而激发学生的求知欲和创新能力。教学与科研形成相辅相成的互助关系,科研成果转化为教学资源,明显充实了教学内容,提升了教学水平和学生能力。在教学改革探索过程中,已有学生参与到课题组的科研工作中,利用所学的生物信息学知识,通过指定题目或自主选题,顺利完成毕业实习并发表了科研论文《印鼠客蚤线粒体COⅡ基因的克隆、序列测定和分子系统学分析》[3]、《美洲大蠊i型溶菌酶基因的克隆及其功能预测》[4]、《致倦库蚊防御素基因的克隆与原核表达及蛋白纯化》[5]、《德国小蠊致敏原Blag 2的Glu 233突变的分子对接研究》[6]、《伏马菌素B1特异单链抗体的同源建模及分子对接模拟研究》[7]等,证明生物信息学课程教学改革切实可行。

参考文献:

[1]郭丽,赵杨,柏建岭,等.医学院校生物统计学专业生物信息学教学探索[J].南京医科大学学报(社会科学版),2013,10(5):457-460.

[2]张洁,王S,刘红美.结合科研改进基因工程实验教学的教学实践[J].教育教学论坛,2012,28(42):70-71.

[3]王S,张迎春,张春林,等.印鼠客蚤线粒体COⅡ基因的克隆、序列测定和分子系统学分析[J].贵州科学,2012,30(5):35-39.

[4]王S,龙高群,张春林,等.美洲大蠊i型溶菌酶基因的克隆及其功能预测[J].动物医学进展,2012,33(9):21-27.

[5]王S,王吉平,张春林,等.致倦库蚊防御素基因的克隆与原核表达及蛋白纯化[J].动物医学进展,2012,33(11):45-50.

[6]杨铁,王浩,周波,等.德国小蠊致敏原Blag 2的Glu 233突变的分子对接研究[J].河南科学,2015,33(3):359-363.

生物信息学论文范文第8篇

关键词 高校;生物信息学;科研机构;组织模式;共词聚类;科研热点

中图分类号 Q811.4 文献标识码 A 文章编号 1007-5739(2016)11-0337-03

生物信息学以计算机技术为基础,对生物学数据进行系统研究。人类基因组计划开始后,大量的生物序列需要进行测定,生物信息学正是在这样的契机下运用于对海量生物数据的分析,运用计算机方法对生物信息进行分析预测[1]。

1 生物信息学学科研究团队及科研机构组织模式

1.1 高校生物信息学学科研究团队

1.1.1 高校生物信息学学科学术梯队。生物信息学采用跨学科培养人才的方式,正是教育观念改变的体现。生物信息学人才培养模式的宗旨是培养知识面广、基础知识扎实的综合性人才。人才培养严格按照生物信息学的研究方向进行,为生物信息学专业培养一支高水平的专业人才团队。一是表现在研究团队成员的年龄分布、知识结构、专业分布上。二是表现在研究团队成员的能力匹配度上。各高校生物信息学研究中心、实验室还需继续推进人才队伍建设。结合学校的人才引进和培养政策,培养和造就一批从事农业信息学研究的高水平学术人才,形成在国内外具有学术影响力、创新能力强、结构合理的研究团队[2-4]。

1.1.2 高校生物信息学研究成果发表期刊。从表1可以看出,《中国农业科学》《生物技术通报》《生物信息学》《中国畜牧兽医》《遗传》这几个期刊是国内高校生物信息科研成果发表较多的刊物,且高校生物信息科研成果发表相对较多的期刊的复合影响因子和综合影响因子都较高。

1.2 高校生物信息学科研机构组织模式

1.2.1 实体模式。高校生物信息学科研的实体模式主要以实验室、研究中心或研究所为代表。研究型大学中的跨学科实验室兼有跨学科研究与教学职能,是当前跨学科研究最主要的组织模式。这些研究型大学科研实力较强,综合实力过硬,在资金支持与政策扶植方面优势明显,高校生物信息学科研实体组织模式机构见表2。

1.2.2 虚拟组织模式。跨学科研究虚拟组织模式以生物信息学研究为基础,通过科研课题及项目将不同科研机构、企业及高校的科研工作者联系起来,合力共同解决相关问题。该模式虽然具有组织模式灵活等优点,但其缺点是组织结构不够稳定,导致组织的凝聚力不强,加上软硬件资源的短缺,阻碍了我国研究型大学中生物信息学科学研究的发展。

2 数据处理与研究方法

2.1 数据采集与处理

2.1.1 数据采集。采用关键词检索的方式来确定本次研究的数据集合。以中国知网、万方数据库和维普数据库为数据源,以生物信息学、计算生物学、计算分子生物学、基因组学和蛋白组学为检索主题词,对我国1986―2015年29所高校生物信息学领域公开发表的研究论文进行检索,检索到6 008篇文献。

2.1.2 数据处理。将检索到的高校6 008篇生物信息学科研文献的题录信息保存为EndNote格式的文档,然后将EndNote格式的文档导入到统计分析工具SATI 3.2中,对期刊、作者、关键词等主要题录信息进行统计分析。为避免误差,研究中剔除了与生物信息学研究主题关联性不强的词,并对同义词进行合并,从而得到11 767个关键词。最后选取了68个高频词,高频词的出现频次为22次及以上,并将其按照频次高低进行排序[5]。

2.2 研究方法

2.2.1 构造共现矩阵。同一篇文献中关键词或主题词并不是单独存在的,往往包含多个词,并且彼此之间存在着紧密联系。共词分析就是根据词之间的共现关系来进行内容分析的。本研究利用SATI 3.2软件对68个高频关键词两两配对,构造了高频关键词共现矩阵(表3)。

2.2.2 构造相异矩阵。2个关键词的绝对频次会影响它们的共现频次。因此,仅根据共词矩阵进行分析,不足以全面地反映主题内容的关系。为了消除原始共词矩阵绝对值差异对结果带来的影响,需要对共词矩阵进行标准化处理。用Ochiia 系数将共词矩阵转换成相关矩阵,即将共词矩阵中的每个数字都除以与之相关的2个词总频次开方的乘积,其计算公式是:

对角线上的数据表示某词自身的相关程度经上式计算均为1。为方便进一步处理,用“1”与全部矩阵相减,得到表示两词间相异程度的相异矩阵(表4)。

2.2.3 利用SPSS聚类。选择系统聚类(Hierarchical Cluster)的方法,其基本思路是:先将每个样品(或变量)各自看成一类,然后逐步并类,直至全部并成一个大类。在具体操作时,选择最近邻元法来计算类间距离,选择欧式平方距离来计算点间距离,完成2个时期高频关键词的共词聚类,得到各自的类团,并输出高频关键词聚类树状图(图1)。

3 结果与分析

3.1 蛋白组学研究

关键词9(蛋白质组学)、17(基因组学)、25(人类基因组计划)、44(生命科学)、61(计算机科学),此部分主要介绍了生物信息学蛋白组学研究。目前研究蛋白质间相互作用的方法有亲和层析、酵母双杂交系统、蛋白质交联、免疫沉淀等[6]。各种蛋白质组数据库的建立标志着蛋白质组的研究水平,其中最有代表性的是SWISS-PROT。

3.2 转录组研究

关键词35(系统生物学)、52(转录调控)、7(启动子)、12(转录因子),此部分主要介绍了国内生物信息学研究方向涉及转录组。随着蛋白组学、转录组学、代谢组学等的出现,生物学研究已经进入后基因组时代,转录组学在生物学前沿研究中得到了广泛的应用。

3.3 序列分析

关键词1(克隆)、3(序列分析)、2(基因克隆)、4(表达分析)、6(原核表达)、5(基因表达),此部分主要包含了生物信息学研究方向序列分析。经典的算法如记分法和概率统计法,Needleman-Wunsch算法、Smith-Waterlnan算法和Hidden Markov ModelNeural Network,还有语言学方法、z曲线法等。目前有关DNA特别是RNA序列及针对系统发育推断大规模序列(全基因组的序列)的更新更灵敏,效率高的算法也不断推出[7]。

3.4 生物学数据库的建设

关键词14(数据库)、18(基因组)、43(蛋白质组),此部分主要包含了生物学数据建设研究方向。目前主要有美国国立卫生研究院全国生物技术研究中心的GenBank,欧洲生物信息学研究所的EMBL数据库,日本国立遗传学研究所的DNA数据库,瑞士生物信息学研究所的SWISSPROT,美国Brookhaven国家实验室的PDB。NCBI开发的ENTERZ系统综合了上述各大数据库的信息和MEDLINE的文献信息。

3.5 结构分析与功能预测

关键词60(蛋白质)、47(结构预测)、63(蛋白质相互作用)、59(功能预测)、34(序列比对),此部分包含了生物信息学的结构分析与功能预测研究方向。结构分析主要是对蛋白质的空间结构进行研究分析。分子模拟技术及图形分析技术能够将蛋白质的分子结构更加形象直观的展现出来,对于研究蛋白质的结构与功能、总结蛋白质结构规律等具有积极作用[8]。

3.6 大规模功能表达谱的分析

关键词62(表达谱)、11(MicroRNA)、15(miRNA)、13(靶基因),此部分包含了生物信息学生物大规模功能表达谱的分析研究。生物芯片可进行自动化分析,并对不同组织来源、不同细胞类型及不同生理状态的基因表达、蛋白质反应进行监测,从而获得功能表达谱,可用于DNA、蛋白质的快速检测及药物筛选等。因此,生物信息学技术广泛地应用于生物芯片的发展应用中。

3.7 生物信息学中计算机技术的应用

关键词28(数据挖掘)、50(机器学习)、66(支持向量机),此部分包含了生物信息学中计算机技术的应用。生物学是生物信息学的核心与灵魂,计算机技术则是它的基本工具之一。计算机技术包括机器学习、随机模型、字符串和图形算法等,获取信息资源的主要媒介为互联网。生物信息学从产生到发展都与计算机科学联系紧密,包括数据库的建立和维护、生物信息学软件的开发和利用等。

4 结论

通过科研管理组织结构的创新,以实体组织模式或虚拟组织模式有效运行,充分发挥其科研人才、学科等多方面优势,使高校生物信息学科学研究快速、稳步发展。

5 参考文献

[1] 何懿菡,孙坤.生物信息学研究进展[J].青海师范大学学报(自然科学版),2011(3):69-72.

[2] 任仙文,李北平,王月兰,等.蛋白质相互作用的生物信息学研究进展[J].生物技术通讯,2006(6):976-980.

[3] 郑国清,黄静,段韶芬,等.生物信息学研究进展与展望[J].河南农业科学,2003(1):4-8.

[4] 刁雪涛,张小芳,宋洁,等.生物信息学研究进展[J].安徽农学通报,2008(22):160-162.

[5] 赵屹,谷瑞升,杜生明.生物信息学研究现状及发展趋势[J].医学信息学杂志,2012(5):2-6.

[6] 朱杰.生物信息学的研究现状及其发展问题的探讨[J].生物信息学,2005(4):185-188.

[7] 陈文聪,胡朝晖,朱庆义.生物信息学的进展及其在分子微生物学研究中的应用[J].分子诊断与治疗杂志,2011(3):207-211.

生物信息学论文范文第9篇

关键词:生物信息学;教学方法;实践

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)32-0219-02

生物信息学是在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴交叉学科,其实质就是利用信息科学与技术对生物数据进行获取、处理、存储、、分析和解释,进而揭示纷繁复杂的数据中所蕴含的生物学本质[1]。作为21世纪生命科学领域发展最为迅速的学科之一,生物信息学已经成为生命科学研究领域的重要学科[2]。实验室的每一项技术,从简单的基因克隆、基因数据分析到生物大分子进化研究都需要应用到生物信息学,因此,对于生物类专业的学生而言,掌握生物信息学的相关知识尤为重要。我国各大专院校都在不断努力创新和改进现有生物信息学课程的教学方法与方式。因此,作者结合近五年来开设生物信息学课程的教学实践,分析了目前生物信息学课程教学中存在的主要问题,提出几点建议,希望能够有助于推动生物类专业生物信息学课程教学质量的提高。

一、生物类专业生物信息学课程教学中的问题

1.生物信息学教材的选择。生物信息学的发展速度快、内容广泛,目前很多国内高校使用的教材多为国外教材的影印版或者中文翻译版本,国内引进的生物信息学相关的英文原版教材中有些属于科普性质,内容过于简单,而有些偏重介绍生物信息学的计算方法或模型的建立,过于复杂[3]。而国内相关教材更新较慢,课堂内容涵盖的知识面和知识点相对减缩,而且一些前沿的数据和先进软件没有讲授,这些对学生的发展和生物信息知识的合理运用极为不利[4],因此,目前导致很多高校教师无法选择适用于生物类专业的生物信息学教材。

2.教学大纲安排不合理。生物信息学是一门集分子生物学、计算机科学和数学等多个学科的交叉学科,它囊括了基因数据获取、基因预测、序列比对、序列拼接、分子进化、蛋白质序列分析、蛋白质结构预测、分子建模、药物设计以及基因芯片蛋白芯片等内容模块,同时各领域内容还涉及到具体的计算方法、概率统计、机器语言等知识模块。由于课时设置有限,如果教师在课堂教学对各领域内容面面俱到,会造成大部分内容都只是蜻蜓点水,学生学完以后虽然接触了很多东西,但在生物研究中遇到实际问题还是束手无策。

3.教学内容滞后。生物信息学是一个快速发展的学科,随着生物学科自身的发展和研究的深入,新的数据库和信息资源不断涌现,各种数据库和软件的更新换代非常频繁,如果教师所讲授的在线服务器、分析软件、讲解实例都不是当前最普遍的,学生学完后打开最新的在线服务器或是相关分析软件依然不会操作。

4.教学方法和教学手段存在不足。生物信息学教学普遍采用普通教室多媒体讲授,而生物信息学课程是一个实践操作课,学生经常要动手操作,普通多媒体教学与实践操作教学相脱节。传统的讲授很难与实践教学效果相比,很多学生虽完成了生物信息学课程学习,也接受了很多生物信息学的理论知识,但在进入大四阶段做课题研究完成毕业论文时,遇到需要在数据库查询序列、用软件分析序列或蛋白性质、结构特点等问题时依然束手无策。

二、生物类专业生物信息学课程教学建议

1.调整教学大纲。对于生物类专业的学生来说,生物信息学是生物研究中的辅助工具,不需要掌握生物信息学算法或软件编程细节,而是培养学生运用生物信息学的方法来解决生物研究中遇到的问题,比如能够应用检索工具查找序列等相关的数据信息、利用比对软件或是BLAST在线服务器对感兴趣的序列进行比对分析、选择适当的建树方法对DNA或蛋白序列进行系统发育树的构建、可分析蛋白序列信息并预测其三维结构以及引物设计等。因此对于生物类专业学生的教学,应重点培养学生的实践能力,尤其是关于数据库的使用和分析软件的操作,使他们以后在生物相关领域的工作中能学以致用,所以对于当前生物类专业的培养目标应以应用为核心安排教学大纲。据此,确定了以下的教学内容:教学内容共54学时,分为理论基础和上机实践两部分。理论教学内容共36学时包括:生物信息学绪论、生物信息数据库的查询与搜索、基因和蛋白质序列比对、序列拼接、生物进化与分子系统发育分析、基因预测与引物设计、蛋白质结构及其预测、计算机辅助药物设计;上机实践共18学时包括:常用生物数据库的查询与搜索、核酸序列检索与分析、多重序列比对和系统发育树的构建、PCR引物设计及评价、蛋白质序列分析及结构预测。

2.教学内容主次分明。由于生物信息学技术及分析手段更新迅速,教学内容会显得越来越臃肿,作者建议对于生物类专业的学生可以以生物信息学方法的掌握和生物信息学工具的应用来设计教学内容,关于生物信息学本身涉及到的一些数学模型和编程算法,可简略讲授,教学过程中尽量把有限的教学学时用到以生物信息学为工具解决生物学研究问题的教学中去,避免“面面俱到”的灌输式教育。例如,对于讲授序列比对这一章的知识,关于序列比对所使用的方法PAM和BLOSUN矩阵,对于如何采用数学方法构建这些计分矩阵过程可略过,只需简要介绍PAM和BLOSUN矩阵的概念意义以及用途,重点放在如何使用生物信息学软件进行序列比对,并理解各参数设置的意义。另外,在生物信息学各教学内容模块中涉及到的相关数据库及软件种类繁多,其数量在不断增加,版本也在不断更新。例如在讲授生物信息数据库的查询与搜索这一章节时,涉及到的数据库有核酸序列数据库、蛋白质序列数据库、蛋白质结构数据库、基因组数据库、蛋白组数据库、代谢组数据库等,而每个种类又含多个不同的数据库,比如核酸序列数据库有GenBank、EMBL和DDBJ等,蛋白质序列数据库有swiss-prot、TrEMBL、NCBI和UniProt等。因此,我们重点介绍了3大门户网站NCBI、EBI和SIB,其中我们着重介绍了NCBI的用于提取序列信息的工具――Entrez系统,Entrez将科学文献、DNA和蛋白质序列数据库、蛋白质三维结构数据、种群研究数据以及全基因组组装数据整合成一个高度集成的系统。因此我们给学生演示并要求学生掌握如何采用Entrez查询DNA和蛋白质序列等。另外在讲授分子进化与系统发育分析这一章节时,要进行序列比对及系统发育树的构建,可以使用ClustalW、BioEdit、DNAstar、phylip、MEGA、PAUP等本地软件,也可以使用The PhylOgenetic Web Repeater(POWER)和Evolutionary Trace Server等网络在线服务器分析。考虑到软件的通用型、易用性及本专业学生的英语水平、计算机操作水平,我们选择ClustalW进行多序列比对,然后采用phylip软件包构建系统发育树,并要求学生掌握如何使用这两个软件构建系统发育树。MEGA及其他在线服务器只简单介绍具体操作方法作为辅助资料供学生自学。

3.基础理论结合实践教学。生物信息学教学强调学生的实践能力培养,仅靠理论授课而无实验学时,学生学完后依然只是纸上谈兵。因此建议,生物信息学的讲授应在合适的微机环境下进行,在理论课学习后,马上安排学生进行实践课,演练所学的软件和方法等。另外教师在讲课时也可结合当前生命科学的发展特点,与生物信息学有机巧妙的结合起来,选择几个典型的案例,进行课堂讲授,现场操作;或是布置实践任务,让学生课后完成,在课堂随机抽点学生让学生操作,使学生参与其中,在实践中感受生物信息学知识是如何解决生物科研中的问题的。比如作者在一开始讲授在数据库中查询序列时,将学生按5~6人分成兴趣小组,结合自己的兴趣选择特定基因,在后续整个课程的学习过程中,比如在学习到序列比对、基因预测、引物设计、系统进化树构建、蛋白质结构预测时,都要求学生围绕该基因利用掌握的各种生物信息学分析方法对其进行分析,并在课堂上随机抽点学生进行现场操作示范,对于学生遇到的问题马上给予解惑并结合知识点再次强调讲授。这样既调动课堂气氛,也提高学生的积极性,使学生有较强的参与感,同时又加强了学生分析问题、解决问题的综合能力。

生物类专业学生学习生物信息学的中心任务就是学会使用生物信息学知识从纷繁复杂的生物数据中揭示隐含的生物学意义。因此在教学中,授课教师要紧跟生命科学的发展,及时调整教学大纲、选择教学内容并突出重点、采用以培养学生实践动手能力的教学方式,做好生物信息学的课程教学工作,提高该课程的教学质量,使学生学习了生物信息学后,能在今后的生物科研中学以致用,解决实际问题。

参考文献:

[1]柴惠,赵虹,张婷.高等院校生物信息学双语教学课程建设之我见[J].中国高等医学教育,2010,(4):83-84.

[2]M.泽瓦勒贝,JO.鲍姆.理解生物信息学[M].科学出版社,2012.

[3]姚正培,张桦,代培红,等.农业院校生物信息学教学模式探索[J].教育教学论坛,2014,(20):214-215.

生物信息学论文范文第10篇

关键词:生物信息学;生物技术;教学改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)36-0197-03

一、生物信息学课程的教学背景

生物信息学(Bioinformafics)是一门集数学、计算机科学以及生物学等多学科交叉而形成的新兴热点学科,实质就是利用信息科学与技术解决生物学问题。它的内涵目前包含了分子生物大数据的获取、加工、存储、分配、分析、解释等在内的所有方面。依据分子生物大数据的类型不同,生物信息学的数据对象分布在基因组、转录组、蛋白质组等不同水平层次的数据以及跨层次的转录调控、转录后调控和表观遗传修饰等纵向连接。依据学科任务的不同,生物信息学一方面要组织好生物大数据的储存和获取,一方面要开发优良的算法和工具软件对生物大数据教学分析,同时还要利用这些生物大数据和工具来产生新的生物学认识,为下游的湿实验生物学家提供理论依据和指导。近年来,随着高通量生物大数据检测技术,如基因芯片技术、高通量测序技术等的发展,生物信息学已经在生物、医学、药物开发、环境保护以及农业应用等众多领域普及推广了起来。大量的生物数据急迫地需要处理,相应地产生了对生物信息专门人才的广泛需求。

因此,《生物信息学》课程也快速地在各院校大学生教学中开展了起来,甚至在局部高校产生了生物信息学本科专业。然而在实际的教学中也伴随着种种问题,影响了该课程的教学效果。本文现就近年来在生物背景的学生中所开展的生物信息学的教学实践浅谈一点体会,对其存在的问题和对策作一论述。

二、生物信息学课程教学改革

(一)教学内容特点

生物信息学属于多学科交叉学科,需要在分子生物学、遗传学、高等数学以及计算机编程等的课程基础上进行讲授。不同学科基础以及不同来源的生物数据反映在教学内容上,生物信息学的一个特点就是信息量大。它囊括了概率统计、计算机语言、人工智能和机器学习、生物数据库介绍、序列比对、分子进化分析、基因组序列分析、基因注释与功能分类、基因表达谱分析、蛋白质表达与结构分析、生物分子网络以及计算表观遗传学等众多的内容模块。

从历史发展角度看,这些内容以基因组测序为主体,生物信息学的发展可以划分为3个阶段:前基因组时代、基因组时代以及后基因组时代(又称为功能基因组时代)。以人类基因组计划的完成为时间节点标记,目前的生物信息学已经进入到了功能基因组学时代。因此,体现在当前的生物信息学教学内容上的另外一个特点就是“新”。

(二)教材的选择

生物信息学教学内容的以上特征要求在教材的选择上更需要全面衡量考虑。由于对生物信息学知识的大量需求,目前教材市场上的相关书籍也琳琅满目,选择余地较大。我们推荐的教材是科学出版社2010年第二版的Instant Notes Bioinformatics,由T. Charlie Hodgman等人编写[1]。这本书的教学内容以基因组的生物信息学分析为主体,兼顾概率统计、机器学习、代谢组学等数理基础知识和后续功能基因组分析。其中尤以序列比对、打分矩阵、系统发育树的构建分析为核心内容。这种课程设置把庞大的生物信息学体系缩小集中在了序列分析部分,这样既便于学生系统充分地掌握生物信息学知识,又兼顾了学科的发展基础和趋势。

另外,本教材为英文教材,这适应了生物信息学快速发展的要求,让学生近距离地体验到学科前沿气息。为了扩大学生的知识渠道来源,我在教学中推荐了几种不同类型的参考书籍。其中,David W. Mount编写的《Bioinformatics Sequence and Genome Analysis》和本校陶士珩教授主编的《生物信息学》,在教学内容以及体系上均和本教材较为相近[2,3]。乔纳森.佩夫斯纳著,孙之荣主译的《生物信息学与功能基因组学》则更侧重功能基因组学的内容[4]。李霞主编的《生物信息学》在内容全面、丰富的同时,也较为侧重功能基因组学的内容,同时还强调在医药卫生领域的应用和研究热点[5]。

该书使用了彩印版,同时伴有光盘、习题集以及参考答案,目前在教材市场上较为受欢迎。最后,考虑到生物学背景的学生在计算机实际动手能力方面相对较为弱势,我在教学中还特别推荐了几本结合生物信息学与编程语言的书籍供同学们课后学习。这些教材包括:A.基于Perl语言的《Beginning Perl for Bioinformatics》、《Mastering Perl for Bioinformatics》;B.基于R语言的《R Programming for Bioinformatics》;C.基于Python语言的《Bioinformatics Programming Using Python》[6-9]。

(三)学时和考核方式的设定

生物信息学课程尽管面临学科发展的迫切需要,教学内容广泛而众多,但由于大学本科生的学时学分限制,目前我们的相关教学仅包括32学时的理论学时以及两周的生物信息学实习。为了弥补学时不足的限制,我们更突出强调了实际表现的考核方式。考核成绩中的平时成绩由30%上升到40%,包括平时表现、随堂测验以及课后作业等。

(四)存在的主要问题与解决办法

1.激发兴趣。由于所教授的学生为生物学背景,不少学生均对数学、计算机等数理课程较为恐惧,缺乏学习兴趣和韧性。这是本课程讲授过程中所面临的第一大问题。为此,我尝试了多种教学办法进行解决,取得了一定的效果。

(1)去除学生的恐惧心理。从心理学上讲,恐惧的形成源于过去失败经历的阴影以及对于未知事物的不确定性。因此,我在教学中注意突出生物学在生物信息学中的重要地位,以生物信息学领域的成功科学家为例,破除以往失败经历的阴影。同时,适当地浓缩教学内容,降低学生对未知事物不确定性的恐惧。

(2)激发学习生物信息学的热情。通过教学的互动,让学生在互动中消除对生物信息学的陌生感,熟悉生物信息学,激起学习的欲望。

(3)在学习中感受生物信息学发展的脉搏。通过介绍生物信息学的发展史,对比历史上类似的科学发展历程,让学生深刻地领悟到当前的生物信息学在学科史中的定位。

(4)在实践中感受生物信息学的魅力。比如,在进行系统发育树构建的讲授中,同学们可以看到由于数学算法的使用,原本枯燥无味的序列数据居然能够反映物种和基因的进化历程。通过教学中的改革实践,同学们的学习兴趣有了较大的提升。

2.夯实基础。生物学背景的学生另外一个特点是数理基础和计算机语言编程能力相对较为薄弱。在教学过程中,我首先注意引导学生扬长避短,充分发挥学生在生物学理解能力上的优势,避免进入基础性的数学算法纠缠中。同时,让学生认识到,作为一个交叉性的学科,生物信息学的上下游学科链较长,同学们可以根据自身条件选择进入不同的环节。比如,擅长基础性的算法工具软件开发的同学可以进入上游的理论环节,擅长生物学理解的同学可以使用这些工具进入下游的生物信息应用领域。第三,在课程设置上,着重加强生物信息学方向的数理基础课程,比如生物统计、Linux以及Perl语言等,改善生物技术专业的学生在生物信息学方向的薄弱环节。最后,向同学们强调,注意在学习的过程中提高学习能力才是根本。让同学们意识到,基础不是问题,只要提高了学习能力,持之以恒地去实践,均能学好本门课程。

3.紧跟前沿。生物信息学是一门前沿性很强的学科。为了既能提高学生的知识水平,又提高学生的学习能力,这就要求在教学中既要恰当地剪裁知识结构和体系,又要有提供充分的学习锻炼空间。为此,我们将课程设置为双语课程,这样做的好处是既不耽误知识的学习,又能适当地提高学生的适应能力,为学生在将来英文环境较普遍的生物信息学领域中的学习研究应用打下扎实基础。同时,为了更适应将来学生对生物信息的使用环境,同时也为了降低难度,我们的双语课程更侧重阅读、理解能力的提高,以避免简化为英语学习课,和普通的英文课程内容的重叠。另外,前沿性很强的生物信息学处处蕴藏着创新的机会,在教学过程中,我注意鼓励学生的创新意识。比如,学生在上课过程中的一些小想法,我鼓励其大胆投入,形成研究性论文。

4.注重实践性。生物信息学在教学中既要注重对学生思维方式的转变的教育,形成用生物信息学去看待生物大数据的思想,而不仅仅是解决某个具体生物学问题的“小工具”,又要求学生在课程学习中具备一定的实践能力。由于长久以来的教育体制和学习习惯的制约,同学们的学习重点仍然集中在知识的记忆、考试的应付上面,缺乏对实际动手能力的正确认识。这给生物信息学这门课程的教学,特别是实践教学带来了较大的压力。为此,我在教学中着重采用身边的典型案例教学法进行教学。比如,以往届学生由于其突出的实践能力最后促成了他毕业就业的成功为例,说明动手能力的重要性。贯穿在课程教学中,我对学生实验课程的理念是鼓励其独立自主地完成实验,尽量少干涉,允许其在实践中犯错误,在犯错中学习提高。经过思想观念的转变、实践中的反复雕琢提高,学生们的实践动手能力都得到了较好的提升。

三、结语

生物信息学是一门快速发展的新型热门学科,其发展与生命科学发展是相辅相成的。本文针对《生物信息学》的教学进行了一些探讨,特别是针对生物背景学生的教学进行了深入集中的研究。

本文认为,只有激发学生的学习兴趣,夯实基础,注重实践动手能力,紧跟学科发展前沿趋势,这样才能切实做好生物信息学的课程教学工作,提高该课程的教学质量,以此满足我国目前该领域对人才的教育需要,培养出具有一定的实践操作能力和很强的创新能力的大学生。

参考文献:

[1]T.Chalie Hodgman AF,David R. Westhead.生物信息学导读版[M].北京:科学出版社,2010.

[2]Mount DW (2002) Bioinformatics Sequence and Genome Analysis:科学出版社.

[3]陶士珩.生物信息学[M].北京:科学出版社,2007.

[4]乔纳森.佩夫斯纳.生物信息学与功能基因组学[M].孙之荣,主译.北京:化学工业出版社,2009.

[5]李霞.生物信息学[M].北京:人民卫生出版社,2010.

[6]Tisdall J (2001) Beginning Perl for Bioinformatics:O'Reilly.

[7]Tisdall J (2003) Mastering Perl for Bioinformatics:O'Reilly.

[8]Gentleman R (2008) R Programming for Bioinformatics:Chapman & Hall/CRC.

[9]Model ML (2009) Bioinformatics Programming Using Python:O'Reilly.

基金项目:西北农林科技大学本科优质课程建设项目。

上一篇:生物化学论文范文 下一篇:生物制药论文范文