平行四边形的面积教案范文

时间:2023-02-21 06:11:18

平行四边形的面积教案范文第1篇

1、让学生知道平行四边形面积公式的推导过程,以平行四边形与长方形关系为基础,引导学生通过动手操作和观察、比较,掌握平行四边形面积的计算公式,并能应用公式正确地计算平行四边形面积或是解决一些简单的实际问题。

2、培养学生想象力、创造力,及用转化的方法解决新的问题的能力。

3、培养学生自主学习的能力。

4、使学生初步感受到事物是相互联系的,在一定条件下可以相互转化。

二、教学重点:平行四边形面积的计算公式的推导及计算。

三、教学难点:平行四边形面积计算公式的推导过程。

四、教学用具:长方形、平行四边形硬纸片、剪刀、直尺

教学过程:

一、引出主题:

师:大家知不知道我们学校正在将操场隔壁的地方改造为校园一角,专门留出两个空地作为我们同学们的学农小基地(在黑板上贴出两个图案,一块是长方形——甲地,一块是平行四边形——乙地)。下面我们就看一下这两块空地是什么形状的?学校啊,又决定将甲地分给四年级,乙地分给五年级负责除草,那么大家知道哪一个年级负责地方要大一点呢?

师:现在我们先看一下甲地。我们要求这块长方形地的面积,只要量出什么啊?

生:长方形的长和宽(点出长、宽)。

师:现在老师已经量出来长15米、宽10米,那么它的面积是什么?

生:(计算)150平方米。(要求学生回忆起长方形的面积公式,并运用公式计算出这个长方形的面积。)(板书:长方形面积公式)

师:同学们现在都能很熟练地计算出长方形的面积啦!那么,这块平行四边形地的面积是多少啊?我们该怎样计算呢?这就是今天我们要一起探讨的问题啦!(板书:平行四边形的面积)

二、动手操作(得出公式):

师:以前我们是用面积器量数出长方形有多少个小格子或是得出长方形的长和宽来用面积公式来算出了长方形的面积。那我们可不可以运用以前的知识或是我们的经验,想出计算这个平行四边形的面积的方法呢?有哪位同学已经想到办法来?

生:用剪刀沿着平行四边形的高剪,再拼成长方形,再用尺子量出底(长)18厘米,高(宽)10厘米。面积是180平方厘米。(让学生把操作展示给全班同学看)

师:这位同学很聪明,他是沿着高来剪,再拼成一个长方形。那老师现在再问你一个问题,你为什么要剪拼成长方形?

生:因为长方形的长和宽与原来平行四边形的底和高相等,而长方形面积我们会求。

三、得出结论:

师:沿着这条垂线把平行四边形剪成了一个三角形和一个梯形,把三角形移到梯形的一边,就变成了长方形。拼成的长方形的长与平行四边形的底相等,宽与平行四边形的高相等。因为长方形面积=长×宽(板书),所以我们推导出平行四边形面积=底×高(板书)。我们称这种方法为“割补法”(板书)。如果我们用s来表示平行四边形的面积,a来表示平行四边形的底,h来表示平行四边形的高,你能自己写出平行四边形的字母公式吗?

生:s=a×h

师:我们还可以将这条公式缩写为:s=a·h或者是s=ah。

四、巩固提高:

练习:一块平行四边形钢板,底为4.8厘米,高为3.5厘米。

它的面积是多少?(结果保留整数。)

解答:4.8×3.5=16.8(平方厘米)≈17(平方厘米)

五、小结:面对着求平行四边形面积的问题,我们利用割补的方法把平行四边形转化成学过的长方形,用旧知识解决了新问题,以后我们还要用这种思想方法继续学习其他图形的面积计算。

平行四边形的面积教案范文第2篇

“谁能说一说,要想求出平行四边形的面积,就必须知道什么条件?”

学生对这个问题几乎一致的回答是:“必须知道这个平行四边形的底和高。”

小学数学课堂上,这样的师生问答非常普遍。教师问得好,可以启发学生思维,使学生形成正确概念;问得不好,就可能禁锢学生的思维,甚至导致学生形成错误概念。

前面这一问一答,连起来说,就是:要想求出一个平行四边形的面积,就必须知道这个平行四边形的底和高。

这个结论或许会使学生形成这样一个思维定式:只要遇到求平行四边形面积的问题,就必须先求平行四边形的底和高。如果求不出底和高,自然就求不出平行四边形的面积。这样一来,学生如果遇到下面的问题,可能就无从下手了。

问题:在下图中,三角形ABE的面积为24平方厘米,求平行四边形ABCD的面积。

翻阅一些《小学数学教案选》发现,类似提问还比较普遍,比如:

要求出长方形的周长,就必须知道这个长方形的什么?(答:长和宽)

圆锥和圆柱的体积在什么条件下存在三分之一的倍数关系?(答:等底等高)

要求一个小数的倒数,就必须先把它化为分数。

为了说明这种语言的问题所在,下面我从逻辑和数学两个方面进行分析。

从逻辑的角度看,一个命题(在逻辑学中称为“判断”)与它的逆否命题是等价的,它的逆命题与它的否命题是等价的。但命题与它的逆命题和否命题并不等价。这就是说,一个真命题的逆命题和否命题未必是真的。根据平行四边形面积公式,可以知道命题——如果已知一个平行四边形的底和高,则可以求出这个平行四边形的面积——是真的/:请记住我站域名/。其逆命题和否命题分别是:如果可以求出一个平行四边形的面积,就一定知道这个平行四边形的底和高;如果不知道平行四边形的底和高,就无法求出这个平行四边形的面积。这样的结论与原来的命题并不等价。老师将求解面积的一条途径简单化为唯一途径,极容易给学生造成错误认识。事实上,能用公式求出面积的平面图形是很少的,更一般的方法是寻求图形面积之间的关系。比如在前图中,只要看出平行四边形ABCD的面积是三角形ABE面积的2倍,问题就可以迎刃而解了。

平行四边形面积公式“面积=底×高”,在数学中可以看作是一个函数关系。函数通常描述自变量和因变量之间的依赖与制约关系,体现的是当自变量确定的时候,因变量随之确定。反过来却不一定成立,就是说当因变量确定的时候,自变量未必随之确定。

在“面积=底×高”这一函数关系中,底和高是自变量,面积是因变量,当底和高确定的时候,则面积随之确定;反过来,当面积确定的情况下,底和高未必能够确定。

教师在课堂上提问,其根本目的在于促进学生思考。因此不妨把提问设计得宽泛一些,让学生有充分的思考空间。在教学平行四边形的面积公式之后,如果提出如下问题供学生思考,也许会得到更好的效果。

1.如果两个平行四边形等底等高,那么这两个平行四边形的面积具有什么样的关系?

2.如果两个平行四边形面积相等,那么这两个平行四边形的底和高具有什么样的关系?

3.在同一个平行四边形中,底、高、面积三者满足什么关系?

第一个问题体现的是函数关系中自变量对因变量的制约,也就是函数的确定性;学生对第二个问题的思考,可以初步体会因变量对自变量不具有这种确定的制约,只能得到两个平行四边形底和高的乘积相等;第三个问题相当于对前两个问题进行了综合和总结。学生对这三个问题进行充分思考和讨论,可以更加准确地理解本节课的学习内容,而且还可以经历逻辑思维的训练以及函数思想的渗透。

平行四边形的面积教案范文第3篇

听过潘小明的课的同行都有这样的感受:用“真”和“深”可以高度概括其课堂特色。这样的课堂,到底蕴藏着什么玄机呢?让我们一起走近上海名师、名校长潘小明,走进他的数学课堂。

课堂上,学生的一举一动,一个表情,一声叹息,都逃不过潘小明的眼睛。

一次,潘小明给学生上《平行四边形面积》一课。一开始上课,他就给每个学生发了一张印有一个平行四边形的纸,让学生想办法求纸上这个没有注明尺寸的平行四边形的面积,并探究平行四边形面积的计算方法。

如此开放的教学方法,如此大胆的教学设计,令在场的每一位听课教师都捏了一把汗:要是教学中出现什么问题,该怎么办?老师们仿佛看见了学生茫然、探究夭折、教程断裂的“悲惨”场景。

明确任务后,学生们根据自己的知识经验,用自己的思维方式积极地进行探究。8分钟后,学生们展示出自己的答案:①(7+5)×2=24(平方厘米);②7×5=35(平方厘米);③7×4=28(平方厘米)。

“怎么有这么多的答案,你们说说?”在潘老师的课上,学生是主体。很快,学生们通过讨论(生生互动)排除了做法①,而对做法②、③却久久争执不下。

这时,潘老师让采取这两种不同做法的同学大胆求证。采取做法③的学生展示了剪拼法来求证自己的做法;而采取做法②的学生认为平行四边形具有不稳定性,可以把它拉成一个长方形,这样,平行四边形的两条相邻的边就变成了长方形的长和宽。这时,很多学生领悟过来了,原来采取做法②的学生认为把平行四边形拉成长方形,只是形状改变,而面积没有改变(其实面积变大了)。

之后,潘老师利用课件演示了平行四边形“底不变,高改变”引起的面积改变。学生们终于明白了,原来平行四边形的面积同底和高有关!这一过程中,学生不仅掌握了计算公式,更重要的是化归了数学思想方法,特别是对割补转化、实行化归有了深切体悟。

“教师只有在教学前十分清楚学生已经知道了什么,尚未获得哪些学习经验,才能开始新知识的传授;只有清楚了解每一个学生的‘锚桩’(即起点)在哪里,才能使满载新知识的航船停靠。”这是潘小明在多年教学中的体会。他也因此形成了自己的课堂特色:每一次提问,出发点都是学生。

上海市名师研究所的教学专家们在听了潘老师的课后,颇有感慨地说:“潘老师上课,其最大特点在于,不是从教案上起,而是从学生上起,整个教学过程是围绕学生的问题展开的。”

一位优秀的教师,一定是一位勤于了解学生、善于研究学生的教师。这是记者采访潘小明后的深刻体会。

平行四边形的面积教案范文第4篇

[关键词] 最近发展区;导学稿;编制;实效性

学生小组互助合作式教学是以导学稿为抓手,以发现问题、解决问题为主线展开的. 适宜的导学稿是引导学生自主学习、培养学生学习兴趣的有效载体. 优化导学稿编制是提升学生小组互助合作式教学质量的重要方面.

心理学研究表明,学生的发展有两种水平:一种是学生的现有水平,指独立活动时所能达到的解决问题的水平;另一种是学生可能的发展水平,即学生在他人帮助下能够达到的发展水平,两者之间的差异就是最近发展区. 教学应着眼于学生的最近发展区,为学生提供带有恰当难度的内容,调动学生的积极性,发挥其潜能,促成学生达到下一个发展阶段的水平,然后在此基础上进行下一个发展区的发展. 教学要想对学生的发展发挥主导和促进作用,教学设计就必须置于学生的最近发展区中,为此,教师必须深入研究学生,洞悉学生的最近发展区,优化导学稿编制.

教师基于学生的最近发展区编制导学稿,借助导学稿开展教学,有利于引导学生通过课外自学、课堂上的互助合作学习达成教学目标,使学生们“跳一跳,摘到苹果”,激发学生的学习热情;反之,脱离学生的最近发展区,盲目编制出的导学稿,往往不能有效地引导学生自主学习,甚至有的内容,学生虽然尽心竭力,但是仍不能领会,会挫伤学生的学习积极性.

2012年5月,在一所普通初中,笔者采用学生小组互助合作式教学模式上了一节公开课,内容是浙教版初二数学下册“5.3.1平行四边形的性质”,深有感触. 开课前一天,本备课组编制了如下导学稿,供学生们课前自学.

课题:平行四边形性质(1)

No.050301?摇 姓名______?摇?摇 第___小组

【学习目标】

1. 掌握平行四边形对边相等的性质和推论.

2. 运用平行四边形对边相等的性质和推论,解决有关平行四边形简单的计算与证明问题.

【重点与难点】

重点:平行四边形的性质定理――“平行四边形的两组对边分别相等”.

难点:平行四边形性质定理和推论的应用.

【基础部分】

1. 到目前为止,你知道平行四边形有哪些性质?请结合图1写出来.

2. (1)任意画一个平行四边形ABCD,量一量它的对边,你发现了什么?

(2)请证明你的发现.

已知:如图2所示,四边形ABCD是平行四边形,求证:AB=CD,AD=BC.

(3)归纳:平行四边形的两组对边______.

几何语言叙述:因为四边形ABCD是平行四边形,所以______.(?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇 )

3. (1)如图3所示,l1∥l2,AB,A1B1是夹在l1与l2之间的平行线段,AB与A1B1相等吗?请说明理由.

(2)若AB,A1B1是夹在l1与l2之间的垂线段(如图4所示),AB与A1B1还相等吗?请说明理由.

(3)归纳:①夹在两条平行线间的平行线段______.

②夹在两条平行线间的垂线段______.

几何语言可分别叙述为:

①(如图3所示)因为l1∥l2,AB∥A1B1,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)

②(如图4所示)因为l1∥l2, ABl2,A1B1l2,所以______. (?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇?摇)

4. 已知平行四边形相邻两边之比为3 ∶ 4,周长为28 cm,则这个平行四边形的四条边长分别为______.

5. 在?荀ABCD中,已知AC=3 cm,ABC的周长为9 cm,则平行四边形ABCD的周长为______.

6. 如图5所示,E是直线CD上的一点,已知?荀ABCD的面积为32 cm2.

(1)ABE的面积为______cm 2.

(2)若AB=4 cm,则AB和DE间的距离为_____cm.

【要点部分】

1. 如图6所示,E,F分别是?荀ABCD的边AD,BC上的点,且AF∥CE,求证:DE=BF.?摇

2. 如图7所示,在?荀ABCD中,∠B=30°,AD=3,CD=2.

(1)求AD与BC间的距离;

(2)求?荀ABCD的面积.

变式:(1)平行四边形的两邻边长分别为8和10,两条较长边之间的距离为4,求两条较短边之间的距离.

(2)如图8所示,在?荀ABCD中,AEBC于点E,AFCD于点F,若AE=4,AF=6,?荀ABCD的周长为30,求?荀ABCD的面积.

3. 已知点A(3,0),B(-1,0),C(0,2),以A,B,C为顶点在图9中画平行四边形,求第四个顶点D的坐标.

【拓展部分】

如图10所示,在?荀ABCD中,AB=6 cm,AD=4 cm,∠BAD的平分线交CD于点E,∠ABC的平分线交CD于点F,求线段EF的长.

【课堂小结】

本节课你学到了哪些知识?在探索知识过程中你用了哪些方法?请写下来.

【当堂检测】

1. 已知?荀ABCD的周长为16,若AB=5,则BC=________.

2. 如图11所示,?荀ABCD的周长为18 cm,AB=4 cm,AE平分∠BAD交BC边于点E,则EC等于(?摇 )

A. 1 cm?摇?摇?摇 B. 2 cm?摇?摇?摇?摇C. 3 cm?摇?摇?摇?摇D. 4 cm

3. 已知直线a∥b,夹在a,b之间的一条线段AB的长为6 cm,AB与直线a的夹角为150°,则夹在a,b之间的距离为______.

4. 在?荀ABCD中,AB=2,BC=3,∠B=60°,则?荀ABCD的面积为______.

5. 如图12所示,在?荀ABCD中,∠ABC的平分线交CD于点E,∠ADC的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.

课前,笔者批阅了学生们交上来的导学稿,发觉学生们认真进行了课前自学,导学稿中的基础部分做得很认真.

上课伊始,笔者创设情境,调动起学生们的学习热情,明确本堂课的学习目标,开展学生小组展示活动.学生们兴趣盎然,认真参与小组对学、群学,学生们积极讨论遇到的疑难问题. 经过学生们的自主、合作探究,得出平行四边形的性质定理1及其两个推论,并运用已学的基础知识灵活解决了基础部分的问题4、问题5及问题6.

学生们从基础部分学习顺利地过渡到要点部分学习. 在大展示环节,在教师的引导下,“兵教兵”,学生们依旧非常投入. 讲解要点部分问题1时,学生们能运用新学的知识一题多解;讲解要点部分问题2时,学生们能灵活地运用所学知识解答,条理清晰;但当解答要点部分问题3时,学生遇到了很大的困难. 笔者看了各组学生的解答结果,发现学生们都没有完全做对,笔者就该题引导学生开展小组讨论、合作探究. 通过激烈的讨论与探究,学生们逐渐得出第四个顶点D的坐标有3种情况:(-4,2),(4,2),(2,-2).

大展示后,笔者引导学生进行了课堂小结和当堂检测,学生们表现积极,当堂检测结果良好,学生初步达成了本堂课的学习目标. 但是课后,学生们也提出了对要点部分问题3“第四个顶点D的坐标”的确定仍不甚理解,原因出在哪里呢?

课后,笔者与本备课组老师一起分析了这个问题,我们认为,引起这种情况的主要原因是:该题解答对学生的要求超越了学生当时的“最近发展区”. 课中,学生利用平行四边形的定义学习平行四边形的性质,而该题的解答涉及了平行四边形的判定,并要求学生分类讨论. 方法一,根据平行四边形的判定定理,当AB是平行四边形的一边时,分两种情况分别画出图形,得顶点D的坐标分别为(-4,2)和(4,2);当AB是平行四边形的一条对角线时,画出图形,得顶点D的坐标为(2,-2). 方法二,根据平行四边形的判定定理,分三种情况,画出图形,可知当AB,BC是平行四边形的一组邻边时,顶点D的坐标为(4,2);当AB,AC是平行四边形的一组邻边时,顶点D的坐标为(-4,2);当AC,BC是平行四边形的一组邻边时,顶点D的坐标为(2,-2). 由于学生还未学过平行四边形的判定定理,虽然导学稿上印有网格图,学生通过作图得出了顶点D的坐标,但是对于此时的学生来说,仍不甚理解,不能领会顶点D的坐标的求解过程. 教学实践表明,这个问题放在学生学习了平行四边形的判定定理之后解答,情形就完全不同了.

启发学生理解知识是促成学生主动掌握知识的前提. 导学稿应是教师基于学生的“最近发展区”,根据该课时的教学内容、学习目标,依据学生的认知水平与知识经验,为指导学生进行主动的知识建构而编制的学习方案;是集教师的教案、学生的学案、分层次的评价练习于一体的师生共用的“教学合一”文本. 在编制导学稿时,教师应遵循从学生的“最近发展区”出发,把学生所需掌握的知识和能力精心设计成问题,以引导学生预习、练习、总结.

根据学生学习的“最近发展区”原理,教学是把学生的“最近发展区”转化为“现有水平”的过程. 科学编制导学稿,需要教师重视研究学生的“最近发展区”,洞悉学生已学的知识,熟悉教材,明确新课标要求. 基于学生的“最近发展区”编制导学稿时,首先,教师应重视衔接学生已有的知识,讲究恰当的呈现方式,在问题的设计上体现知识问题化、问题探究化、探究层次化;其次,教师编制导学稿,既要有一定的深度,又要掌控好难度和跨度,将教学问题设置在学生的“最近发展区”中,设置认知冲突,激发学生的求知欲望. 此外,教师应注重学生的个体差异,给予学生合理的铺垫,填补学生的现有发展水平与他们潜在发展水平之间的鸿沟,做好分层导学、分层目标、分层训练、分层达标.

平行四边形的面积教案范文第5篇

一、旧观念向新观念转变

为了使新课程取得预期的效果,首先要更新观念,使先进的教育理念转化为广大教师的教育行为,落实到课堂教学中去. 在传统观念的影响下,教师过于偏重知识传授、接受学习、机械模仿. 有些课成了执行教案的过程,使课堂成为教案剧场演出的舞台,教师是主角,学生是配角,大多数学生是剧本的演员或是观众和听众. 这既忽视了作为独立生命个体的师生在课堂教学中的各种需要与有待开发的潜能,又忽视了师生在课堂教学中的双边多向及多种形式的师生互动、生生互动和创新能力. 这一切使我们越来越深切地感到要用动态生成的观念重新认识和评价课堂教学. 目前九年义务教育教材,在内容上的要求是基本的,绝大多数学生通过努力是可以达到的,但综合性、弹性不够,这在一个班级中不一定适合每一名学生. 因此,就要求老师必须根据课堂教学的需要,对旧教材进行适当的加工处理,将课本中的例题、文字说明和结论等书面的东西,转化为学生易于接受的信息. 为此,在教学设计时,应对下列问题引起注意:(1)旧教材内容是不是达成教学目标所必需的?应删去或从略哪些学生已学过或已经认识的内容?哪些数学知识的素材不够充分需要补充?(2)在校内外和网站上可利用哪些与旧教材内容密切的课程资源?(3)本节课的教学重点、难点是什么?从学生的实际情况看怎么定位比较恰当?(4)结合哪些内容进行数学思想和教学方法的教育?结合哪些内容培养学生的情感和态度?(5)在练习中如何处理好基本和提高的关系,为水平不同的学生得出不同的数量和质量要求?这样,教师以旧教材为基石,改变旧教材为新教材,不仅可以将更新的课程理念具体地落实到旧教材的处理中,而且也使自己成为新教材的积极实践者和创建者.

二、内容枯燥向富有情趣转变

由于旧教材具体一定的封闭性,有的教师又不能创造性地使用教材,仍是以书教书,势必让学生感到数学内容枯燥无味,产生厌学心理. 因此,教师应努力创设良好的学习情境,变抽象为形象,变无趣为有趣,使课堂永远对学生都有一定的魅力. 一些教师教学观念陈旧,仍把教材当成学生学习的唯一对象,照本宣科满堂灌,学生听得很乏味,“闷课”仍是较为普遍的现象. 现在,课程设计将“给予知识”转向“引起活动”,学生不再是被动地接受现成的知识,而是通过活动获取知识,获得体验. 如“年月日”一课让学生先看日历表再填写表格,从中找到一年中有多少个大月或多少个小月. 然后提出问题:拿出自己的拳头怎样帮助记忆大月或小月?学生自己数一数,然后讨论结论,学习效果都出乎意料的好. 这完全得益于课堂教学内容有情趣化的设计,使学生在良好的教学氛围中愉快地学习.

三、操作工向探索者转变

《数学课程标准》就如何实现学生动手实践、自主探索、合作交流的学习方式指出:学生是数学学习的主人,教师只是学生数学学习的组织者、引导者和合作者. 例如:小学数学五年级上册“平行四边形面积的计算”,首先给出长方形和平行四边形的图形,提问:这两个图形的面积是否相等?在小组里说说你准备怎样比较这两个图形的面积. 并让学生数一数它们各占几个小格子,分组交流. 老师帮他们验证一下. 然后动手数,自己找出长方形和平行四边形面积的关系. 接着提问:你能想办法把图中的平行四边形转化成长方形吗?让学生演示剪和拼的过程. 继续请学生演示,启发学生沿平行四边形的高剪开. 平行四边形拼成长方形后,让学生找出平行四边形和长方形的关系,即:第一,它的面积大小有没有变化?第二,长方形的长和宽与平行四边形的底和高有什么关系?第三,根据长方形的面积公式,怎样求平行四边形的面积?再从教科书的第127页上选一个平行四边形剪下来,先把它转化成长方形,并求出面积,再填写表格. 最后,通过反馈,交流推导出其面积公式.

可见,上述整个推导公式的过程全部由学生自主操作、观察、交流、总结. 学生积极主动地参与学习活动,真正成为了学习的主人――探究者,亲身经历探索知识的全过程,同时掌握了科学探究方法,既培养了科学探究方法的精神,又提高了自主获得知识解决问题的能力.

四、让理论的数学生活化

新《数学课程标准》指出:数学教学要注意联系实践,加强活动,使学生更好地理解和掌握数学基础知识,能够运用这些知识解决简单的实际问题. 现在我们的数学教学存在着:学生往往会进行一些长度测量,却不知道一米有多长;不知道一千克鸡蛋大约有多少个;会进行面积计算,却不能估计自己的房间有多大――数学的生活意义被忽视,数学成了和生活脱节的知识. 让学生到生活中去,必须让学生对这类问题产生兴趣,愿意用数学的知识眼光去思考. 而传统的数学题,名词术语多,必不可少的信息多是以文字形式给出,解题方法没有固定套路,难以让学生产生兴趣. 必须让学生走进生活. 例如,教学“米和厘米”时,教材中常出现“1米2厘米-8厘米”,教师习惯上把它当做计算题对待,学生不感兴趣. 但若创设一定的情境,则是另一番情形,我见有的教师设计成:小华的爸爸现在腰围是1米2厘米,经过锻炼,减少了8厘米,小华爸爸的皮带孔应放在什么位置?题目下方是一根长1米的皮带图,这样的改变,计算的要求和原题相同,而增加了看图的难度,但调动了学生的积极性,因为这是他们日常生活中的实例,并且初步感受到自己能够运用所学的知识解决生活问题. 再如“找规律”一课的教学,教师以如下例子展开教学:引入(向学生提供学校食堂周一的菜单:鱼、芹菜、韭菜)让学生按照一荤一素搭配起来,使学生能够初步理解搭配的意义;展开(周二的菜单:排骨、鱼、青菜、豆腐、萝卜)让学生以一荤一素自由搭配,在搭配的过程中体验有序搭配的必要性和价值.

平行四边形的面积教案范文第6篇

[案例一]在教学“平行四边形的面积”时,我正按照预设的步骤展开教学,一位学生说道:“我觉得平行四边形面积应该等于底乘高,因为长方形的长和宽是互相垂直的,平行四边形的底和高也是互相垂直的。”虽然该生的结论是对的,但是解释似乎出了“问题”。于是,我既没有肯定也没有否定他的判断,而是让全班学生检验他的猜想。

经过思考、动手操作,有的学生用透明方格片放在平行四边形上摆一摆、数一数,用数方格的方法来求出平行四边形的面积,从而验证这种方法是正确的。

也有的学生认为单凭一个例子就下结论,为时尚早,再说并不能都用数方格的方法去验证非常大的平行四边形的面积,这样就太麻烦了。

正当学生们冥思苦想的时候,有一个学生提出了质疑:“我们可以沿着高,把平行四边形左边割下一个三角形,补到右边就得到一个长方形,平行四边形与长方形的面积大小相等。”

我肯定了这位学生的想法,学生的积极性又高涨了。通过操作、观察和讨论,学生很快发现:因为长方形的面积等于长乘以宽,所以平行四边形面积就等于底乘以高。

通过对提出的问题的分析探索,全班学生对平行四边形面积的推导过程更加清晰了。

[思考]苏霍姆林斯基说过:“教育的技巧并不在于能预见到课的所有细节,而在于根据当时的具体情况,巧妙地在学生不知不觉之中作出相应的调整和变动。”课堂中学生的回答往往会不经意地闪出一些亮点,当学生出现教师所预设以外的答案时,教师不要急于否定并给出正确答案,而要给学生解释或讨论的机会。教师要通过倾听学生的想法、观察学生的行为,来发掘学生的智慧,捕捉学生发言中的亮点,从而因势利导,有效利用有价值的生成性资源促进学生学习。

[案例二]在教学“比较分数大小”时,我像往常一样问学生:“同学们,你们来比一比,是1/4大还是1/3大啊?”几乎全班学生都齐声回答:“1/3大。”此时,只有一个坐在角落的男生默不作声。我问他为什么不回答,他告诉我是因为无法判断1/4和1/3哪个大。

面对这种情况,我并没有急着向他解释为什么1/3大,我建议其他学生帮忙分析应该如何比较分数大小。可是,经过其他学生的帮助,该生还是一副不解的样子。于是,我积极地鼓励他说出自己的疑惑到底是什么。他反问道:“一个西瓜的1/4大还是一个苹果的1/3大呢?”这么一问,之前帮他的一些学生也被问住了。见此,我让学生进行思考和讨论。

通过讨论,学生们统一了意见,认为一个西瓜的1/4和一个苹果的1/3是无法进行大小比较的,如果要判断大小,则必须事先知道西瓜和苹果的重量分别是多少才行。有的同学还假想,如果西瓜和苹果一样重,就更容易作出判断了。

此时,我引导学生说,比较分数的大小应该在单位统一的情况下进行。就此,那个男生的问题也就迎刃而解了,而这节课因为有了他的“错误”变得更加精彩。

[思考]由于小学生的各种经验较少,掌握知识往往不够深刻和完善,在课堂学习中难免出现一些错误。很多时候我们往往不能客观地看待学生的错误,不允许学生出错,特别是一些简单的错误。在面对这些错误时,教师甚至持鄙视的态度,希望马上消除这些影响教学顺利进行的错误,这种做法极易挫伤学生的积极性,使学生产生自卑自抑、缺乏自信等不良情绪。恩格斯说过“最好的学习是从差错中学习”,教师需要真正以宽容、理性的态度去对待学生的错误,把学生的错误当做一种资源加以利用,将学生的错误变成一节课的点睛之笔,让学生在对错误的辨析中加深对知识的理解,培养思维能力。

[案例三]在教学“轴对称图形”时,我会让学生举一些轴对称图形的例子。举例时,经常会有学生说平行四边形是轴对称图形。可见,学生虽然知道什么叫轴对称图形,但只是停留在感性认识层面,并未透彻理解轴对称图形的属性。此时,我并没有点破他们的错误,而是让他们在所举的图形中画出对称轴。

学生在画对称轴时就会发现,看似轴对称图形的平行四边形是画不出其对称轴的。这时我通过点拨、引导,让学生发现平行四边形其实也是一种对称图形,但不是轴对称图形,再经过探索、操作,学生就会发现平行四边形是关于一个中心点对称的。趁此机会,我带领学生得出“中心对称”的概念与特征。

经过观察和比较,学生便发现圆形、正方形、长方形既是轴对称图形又是中心对称图形。通过这样的引导,不仅纠正了部分学生的理解偏误,还拓展了新的知识点,体验到学习的成功。

[思考]预设是建立在教师自己经验基础之上的,带有较强的主观性。而教学的展开过程应该是师生之间知识、思考、见解和价值取向多向交流与碰撞的过程。学生是带着自己的知识经验和见解参与课堂教学的,他们往往会产生教师预设之外的学习需求,好的学习往往是从学生提出问题而开始的。如果教师不能理解学生的问题,不能包容学生的问题,也就不能处理好教学。因此,教师不应去“包办”课堂中的所有问题,而要把关键问题还给学生去探究解决,让学生在解决问题过程中发现、拓展知识,使学生能够举一反三、触类旁通。

总之,课堂教学资源的生成是永恒的,我们的教学要随学生而动,随实际情况而动,在围绕学生发展的基础上,教师要充分运用自己的智慧,在变动的课堂中发现、判断、整合信息,及时调整教学思路、教学进程和教学方法,根据学生的学习经验和思维方式来组织教学,使课堂教学充满生命的活力。在此过程中,科学而艺术地把握课堂教学中的生成性资源,演绎教学精彩,需要教师的教学智慧。美国教育家本杰明•布鲁姆曾经说过:“人们无法预料教学所产生的成果的全部范围。没有预料不到的成果,教学也就不成为一种艺术了”。对于课堂教学中的生成性资源,特别是“意外生成”资源,教师应该有效利用之。

平行四边形的面积教案范文第7篇

长方形,正方形,平行四边形,三角形和梯形,都是由三条或三条以上的线段,首尾顺序相接而组成的封闭图形。它们相互之间不仅在特征上有着密切的联系而且在推导面积计算公式的过程中也有着密切的联系。三角形面积计算公式的教学是在学生掌握了长方形,正方形,平行四边形的特征和面积计算的基础上进行的。学生掌握了三角形面积的计算方法和获取这些知识的能力又为进一步学习梯形面积、圆的面积打下了良好的基础。

一节课的教学目标,要从知识、能力、思想品德教育三方面进行考虑,以体现学科教学中的素质教育思想。本节课的教学目标是:

(1)使学生理解、掌握三角形面积的计算公式,并能运用它正确计算三角形的面积;

(2)通过指导实际操作,培养学生的抽象概括能力和思维的创造性;

(3)使学生明白事物之间是相互联系、可以转化和变换的。

完成这一教学目标,要根据学生的认识规律,在指导学生进行实践活动的过程中,把动手操作与动脑思考、动口表述结合起来。也就是说,首先把学习知识应有的思维活动“外化”为动手操作,然后通过这个“外化”的活动再“内化”为思维活动。因此在教学过程中,把操作、思维、表述紧密结合起来,才能完成这一教学目标。

本节课的教学重点是理解、掌握三角形面积的计算公式。

教学难点是理解面积公式的算理。

华罗庚说过,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”要培养学生的空间观念和创造能力,就必须重视推导公式的过程教学,从学生的认知特点出发组织学生去大胆地操作实践,探求规律,推导出公式。

学生掌握新知识的过程是在老师的引导下,充分利用已有知识和学习经验,积极主动地参与探求的过程。把教材的间接经验通过自身的活动去重新发现、完善和建立新的认知结构。

1.抓住新知识的基础,做好学习新知识的准备

学习新知识的基础是选取复习内容的依据,新旧知识的连接点是复习的重点。三角形面积这个新知识的基础是长方形、正方形、平行四边形的面积公式及三角形底和高的认识。新旧知识的连接点是图形的转化和变换。在教学新知识之前除了要复习好以上的内容外,还要指导学生回忆平行四边形面积公式的推导过程,唤起“转化图形、建立联系、推导公式”的学习方法的认识。为新知识的学习做好知识的、能力的以至情感方面的准备。

2.新知识的教学可以分为4个层次进行

第一层,操作学具。启发学生用学具袋中的两个三角形拼成一个学过的图形。学生动手、动脑相互交流,得出“两个完全一样的(全等)三角形,可以拼成一个长方形、正方形或平行四边形。

第二层,观察与思考。提出问题引导学生观察拼成的正方形、长方形或平行四边形与三角形的关系。三角形的底和高与正方形的边长、长方形的长与宽,以及平行四边形底和高的关系?

第三层,推导公式。利用图形之间各部分的对应关系,思考它们面积之间的关系,最终推导出:因为,平行四边形面积=底×高(平行四边形的面积是两个与它等底等高的三角形面积的2倍),所以,三角形的面积=底×高÷2

第四层,深化认识。

为了使学生加深对三角形面积计算公式的理解,进一步启发学生,用一个三角形通过割补的办法推导出三角形的面积计算公式。学生再次动手,动脑,相互交流,得出(如下图)如下计算公式:

(附图{图})

三角形面积=底×(高÷2)

三角形面积=(底÷2)×高

经过学生两次动手、动脑、交流,运用转化和变换多向探索,把求三角形面积这一探索过程充分展示出来。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展了学生的空间观念。

3.新知识教学后要及时组织练习。

练习可从4个方面进行。口答题(理解算理的练习),(1)已知图形的底和高,可以求出这个图形的面积。那么,这个图形可能是什么形?这些图形之间有什么共同点?面积有什么关系?(2)三角形面积等于平行四边形面积的一半。对不对?为什么?看图口算(运用公式计算的练习)。下图中哪个三角形的面积可以用6×5÷2求出,为什么(选择条件的练习)?

(附图{图})

已知三角形的面积是15平方厘米,高是5厘米。求它的底?如下图,在一个正方形和一个长方形中,有一个三角形(阴影部分),求三角形的面积(灵活运用知识的练习)。

(附图{图})

新课后的练习一定要练在重点上和关键处,以加深学生对新知识的认识和提高运用知识的能力。

本节教学设计的基本思路是:

(1)发挥教师的主导作用,同时要为学生创造主动的发展空间,引导学生创造性地参与教学的全过程。通过操作,观察,推导和深化4个教学层次,使学生不仅在理解的基础上掌握新知识,而且进一步体会运用旧知识去研究新问题的学习方法,从“学会”逐步到“会学”,寻找到解决问题的正确方法。

(2)在教学过程中,有目的的不失时机地培养学生操作能力,观察能力,分析推理的能力。使课堂教学的过程成为既传授知识又培养能力的过程。

附三角形面积教案

一、教学内容:三角形的面积

二、教学目标:

1.使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;

2.通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念;

3.使学生明白事物之间是相互联系,可以转化和变换的。

三、教学过程:

(一)复习引入

1.出示平行四边形,复习它的计算公式。

2.投影锐角三角形,直角三角形,钝角三角形,看图辨识三角形各条边上的高?

师:我们已经掌握了长方形、正方形、平行四边形面积的计算方法,那么怎样计算三角形的面积呢?这节课我们就来解决这个问题。

(二)新授

1.操作学具。

师:你能用学具袋中的两个三角形拼成一个熟知的平面图形吗?

学生拿出学具动手操作拼成一个学过的图形。

(附图{图})

出示学生拼出的图形。

2.观察与思考。

师提出问题引导学生观察:①用两个什么样的三角形才能拼成一个学过的平面图形?②平行四边形、长方形、正方形的面积与三角形的面积有什么关系?为什么?③三角形的底和高与平行四边形的底和高有什么关系?与长方形的长和宽有什么关系?与正方形的边长有什么关系?

学生观察、讨论、相互交流、弄清楚面积关系以及底、高之间的关系。

师小结板书:

平行四边形面积=底×高

长方形面积=长×宽

正方形面积=边长×边长

2个三角形面积=底×高

三角形面积=底×高÷2

3.推导公式。

(1)怎么求平行四边形的面积?长方形面积?正方形面积?

(2)平行四边形面积,长方形面积,正方形面积都是由几个完全一样的三角形组成的?

(3)怎么求一个三角形的面积?

师随着完成上面的板书并引导学生小结:怎么求三角形面积?为什么?

4.深化认识。

师启发回忆

(附图{图})

学习平行四边形面积时,我们运用割补的办法把平行四边形转化成了长方形,那么运用割补的办法能不能把一个三角形转化成一个平行四边形或长方形呢?

学生动手操作、研究、讨论、相互交流,教师辅导提示,得出下图。

(附图{图})

积=底×高的一半三角形面积=底的一半×高

=底×高÷2=底×高÷2

(1)说一说你是怎么割补的?

(2)议一议平行四边形的面积、长方形面积与三角形面积的关系,平行四边形的底和高,长方形的长和宽与三角形底和高的关系?得出什么结论?

(3)师整理公式(完成上面的板书)

(4)师总结:三角形面积等于底乘以高除以2。(板书字母公式:S=ah÷2),可以理解为底×高乘积的一半,也可以理解为底×高的一半,还可以理解为底的一半×高。

四、巩固练习

(一)理解性练习(口答)

1.三角形的底乘以高得到的是什么图形的面积?再怎么求才能得到三角形面积?

2.三角形面积等于平行四边形面积的一半;对不对?为什么?

(二)运用公式的练习(口答列式)

(附图{图})

(三)选择条件的练习

(附图{图})

哪个三角形的面积等于6×5÷2?其它两个为什么不是?

(四)灵活运用知识的练习

已知:(如右图)正方形和一个长方形求阴影面积?

(附图{图})

平行四边形的面积教案范文第8篇

长方形,正方形,平行四边形,三角形和梯形,都是由三条或三条以上的线段,首尾顺序相接而组成的封闭图形。它们相互之间不仅在特征上有着密切的联系而且在推导面积计算公式的过程中也有着密切的联系。三角形面积计算公式的教学是在学生掌握了长方形,正方形,平行四边形的特征和面积计算的基础上进行的。学生掌握了三角形面积的计算方法和获取这些知识的能力又为进一步学习梯形面积、圆的面积打下了良好的基础。

一节课的教学目标,要从知识、能力、思想品德教育三方面进行考虑,以体现学科教学中的素质教育思想。本节课的教学目标是:

(1)使学生理解、掌握三角形面积的计算公式,并能运用它正确计算三角形的面积;

(2)通过指导实际操作,培养学生的抽象概括能力和思维的创造性;

(3)使学生明白事物之间是相互联系、可以转化和变换的。

完成这一教学目标,要根据学生的认识规律,在指导学生进行实践活动的过程中,把动手操作与动脑思考、动口表述结合起来。也就是说,首先把学习知识应有的思维活动“外化”为动手操作,然后通过这个“外化”的活动再“内化”为思维活动。因此在教学过程中,把操作、思维、表述紧密结合起来,才能完成这一教学目标。

本节课的教学重点是理解、掌握三角形面积的计算公式。

教学难点是理解面积公式的算理。

华罗庚说过,“难处不在于有了公式去证明,而在于没有公式之前,怎样去找出公式来。”要培养学生的空间观念和创造能力,就必须重视推导公式的过程教学,从学生的认知特点出发组织学生去大胆地操作实践,探求规律,推导出公式。

学生掌握新知识的过程是在老师的引导下,充分利用已有知识和学习经验,积极主动地参与探求的过程。把教材的间接经验通过自身的活动去重新发现、完善和建立新的认知结构。

1.抓住新知识的基础,做好学习新知识的准备

学习新知识的基础是选取复习内容的依据,新旧知识的连接点是复习的重点。三角形面积这个新知识的基础是长方形、正方形、平行四边形的面积公式及三角形底和高的认识。新旧知识的连接点是图形的转化和变换。在教学新知识之前除了要复习好以上的内容外,还要指导学生回忆平行四边形面积公式的推导过程,唤起“转化图形、建立联系、推导公式”的学习方法的认识。为新知识的学习做好知识的、能力的以至情感方面的准备。

2.新知识的教学可以分为4个层次进行

第一层,操作学具。启发学生用学具袋中的两个三角形拼成一个学过的图形。学生动手、动脑相互交流,得出“两个完全一样的(全等)三角形,可以拼成一个长方形、正方形或平行四边形。

第二层,观察与思考。提出问题引导学生观察拼成的正方形、长方形或平行四边形与三角形的关系。三角形的底和高与正方形的边长、长方形的长与宽,以及平行四边形底和高的关系?

第三层,推导公式。利用图形之间各部分的对应关系,思考它们面积之间的关系,最终推导出:因为,平行四边形面积=底×高(平行四边形的面积是两个与它等底等高的三角形面积的2倍),所以,三角形的面积=底×高÷2

第四层,深化认识。

为了使学生加深对三角形面积计算公式的理解,进一步启发学生,用一个三角形通过割补的办法推导出三角形的面积计算公式。学生再次动手,动脑,相互交流,得出(如下图)如下计算公式:

(附图{图})

三角形面积=底×(高÷2)

三角形面积=(底÷2)×高

经过学生两次动手、动脑、交流,运用转化和变换多向探索,把求三角形面积这一探索过程充分展示出来。不仅深化了对公式的理解而且渗透了转化和变换的数学思想,培养了学生操作能力和分析概括的能力,发展了学生的空间观念。

3.新知识教学后要及时组织练习。

练习可从4个方面进行。口答题(理解算理的练习),(1)已知图形的底和高,可以求出这个图形的面积。那么,这个图形可能是什么形?这些图形之间有什么共同点?面积有什么关系?(2)三角形面积等于平行四边形面积的一半。对不对?为什么?看图口算(运用公式计算的练习)。下图中哪个三角形的面积可以用6×5÷2求出,为什么(选择条件的练习)?

(附图{图})

已知三角形的面积是15平方厘米,高是5厘米。求它的底?如下图,在一个正方形和一个长方形中,有一个三角形(阴影部分),求三角形的面积(灵活运用知识的练习)。

(附图{图})

新课后的练习一定要练在重点上和关键处,以加深学生对新知识的认识和提高运用知识的能力。

本节教学设计的基本思路是:

(1)发挥教师的主导作用,同时要为学生创造主动的发展空间,引导学生创造性地参与教学的全过程。通过操作,观察,推导和深化4个教学层次,使学生不仅在理解的基础上掌握新知识,而且进一步体会运用旧知识去研究新问题的学习方法,从“学会”逐步到“会学”,寻找到解决问题的正确方法。

(2)在教学过程中,有目的的不失时机地培养学生操作能力,观察能力,分析推理的能力。使课堂教学的过程成为既传授知识又培养能力的过程。

附三角形面积教案

一、教学内容:三角形的面积

二、教学目标:

1.使学生理解、掌握三角形面积计算公式,并能运用它正确计算三角形的面积;

2.通过指导实际操作,培养学生抽象、概括能力和思维的创造性,发展空间观念;

3.使学生明白事物之间是相互联系,可以转化和变换的。

三、教学过程:

(一)复习引入

1.出示平行四边形,复习它的计算公式。

2.投影锐角三角形,直角三角形,钝角三角形,看图辨识三角形各条边上的高?

师:我们已经掌握了长方形、正方形、平行四边形面积的计算方法,那么怎样计算三角形的面积呢?这节课我们就来解决这个问题。

(二)新授

1.操作学具。

师:你能用学具袋中的两个三角形拼成一个熟知的平面图形吗?

学生拿出学具动手操作拼成一个学过的图形。

(附图{图})

出示学生拼出的图形。

2.观察与思考。

师提出问题引导学生观察:①用两个什么样的三角形才能拼成一个学过的平面图形?②平行四边形、长方形、正方形的面积与三角形的面积有什么关系?为什么?③三角形的底和高与平行四边形的底和高有什么关系?与长方形的长和宽有什么关系?与正方形的边长有什么关系?

学生观察、讨论、相互交流、弄清楚面积关系以及底、高之间的关系。

师小结板书:

平行四边形面积=底×高

长方形面积=长×宽

正方形面积=边长×边长

2个三角形面积=底×高

三角形面积=底×高÷2

3.推导公式。

(1)怎么求平行四边形的面积?长方形面积?正方形面积?

(2)平行四边形面积,长方形面积,正方形面积都是由几个完全一样的三角形组成的?

(3)怎么求一个三角形的面积?

师随着完成上面的板书并引导学生小结:怎么求三角形面积?为什么?

4.深化认识。

师启发回忆

(附图{图})

学习平行四边形面积时,我们运用割补的办法把平行四边形转化成了长方形,那么运用割补的办法能不能把一个三角形转化成一个平行四边形或长方形呢?

学生动手操作、研究、讨论、相互交流,教师辅导提示,得出下图。

(附图{图})

积=底×高的一半三角形面积=底的一半×高

=底×高÷2=底×高÷2

(1)说一说你是怎么割补的?

(2)议一议平行四边形的面积、长方形面积与三角形面积的关系,平行四边形的底和高,长方形的长和宽与三角形底和高的关系?得出什么结论?

(3)师整理公式(完成上面的板书)

(4)师总结:三角形面积等于底乘以高除以2。(板书字母公式:S=ah÷2),可以理解为底×高乘积的一半,也可以理解为底×高的一半,还可以理解为底的一半×高。

四、巩固练习

(一)理解性练习(口答)

1.三角形的底乘以高得到的是什么图形的面积?再怎么求才能得到三角形面积?

2.三角形面积等于平行四边形面积的一半;对不对?为什么?

(二)运用公式的练习(口答列式)

(附图{图})

(三)选择条件的练习

(附图{图})

哪个三角形的面积等于6×5÷2?其它两个为什么不是?

(四)灵活运用知识的练习

已知:(如右图)正方形和一个长方形求阴影面积?

(附图{图})

平行四边形的面积教案范文第9篇

一、前置性学习使预设更充分

预设是对未来教学过程的前瞻性准备,是上好一节课的基础。只有课前对课堂教学进行合理的规划、设计、安排、假设,并在实际的课堂教学中得以实施,才能获得预设的教学目标。预设实际的是备课的一个重要组成部分,是课堂实施的重要依据,也是检验教学成果的标准。作为教师,应在课前对教学有一个清晰、理性的思考和安排。并且在课堂上按照预先的设计开展教学活动,保证教学活动的计划性和有效性。可见预设对课堂教学有着不可忽视的作用,而前置性学习为教师教学的预设提供了有力的依据,从我校何老师执教的《三角形的面积》一课中,两种不同的教学形式进行对比,我们就不难发现前置性学习对预设课堂的重要性。

1.传统课堂预设

师:三角形的面积怎样求?它可以转化成什么图形?

生1:两个一样的三角形可以合成平行四边形,我还发现了三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。

生2:用两个锐角三角形可以拼成平行四边形,我发现平行四边形的面积是三角形的两倍。

师转问:两个大小不一样的锐角三角形行吗?

生:不可以。

2.前置性课堂的预设

师:怎样把三角形转化成以前学过的图形?

生1:把两个同样的锐角三角形重叠在一起,通过旋转、平移的方式拼成平行四边形。

生2:把两个同样的直角三角形重叠在一起,通过旋转、平移的方式,拼成平行四边形。

生3:把两个同样的钝角三角形重叠在一起,通过旋转、平移的方式,拼成平行四边形。

师转问:我把两个三角形(任意的)拼在一起,能拼成平行四边形吗?请帮我拼一拼。

生(操作之后):不行,两个三角形不一样。

两个任意的三角形可以拼成平行四边形吗?对于这个关键性的问题从两种课堂的对比中我们可以看出,传统课堂教师对这个关键性的问题并没有充分地预设,好在这位教师还是很机智的,当学生没有说用两个完全一样的锐角三角形来拼成平行四边形时,抓住这一生成进行及时、机智的调控,顺势解决这个关键问题。而前置性课堂因为有课前的学习任务单做参照,教师对学生的学习情况有充分的了解和准备。当学生都能完整的表述用两个同样的三角形拼成平行四边形后,教师有准备、有针对性地提出“两个任意的三角形可以拼成平行四边形吗?”这个关键性的问题,为学生了解三角形和平行四边形的关系做好充分的铺垫。

由此可见,前置性课堂使教师的预设更充分,更有指向性,目标更明确,使课堂学习更有效。

二、前置性学习使生成更精彩

现代教学理念认为,课堂教学不是预设教案的机械执行,而是在课堂上重新生成、不断组织的过程,是个性不断张扬、发展、提升的过程。没有生命气息的课堂教学是不具备生成性的。从生命力的高度来看,每一节课都是不可重复的激情与智慧综合生成的过程。可见课堂生成有着不容忽视的重要意义,它能够焕发师生双方的生命活力,推动教学过程的双向互动,促成三维目标的统一融合。因此,如何让课堂生成更精彩,也是我们需要努力解决的问题,而前置性学习就是一种有效的办法。从何老师执教的《三角形的面积》一课两种不同的教学形式进行对比,也不难见分晓。

1.传统课堂的生成

师:三角形的面积怎样求?它可以转化成什么图形?

生1:两个一样的三角形可以合成平行四边形,我还发现了三角形的高就是平行四边形的高,三角形的底就是平行四边形的底。

生2:是用两个锐角三角形可以拼成平行四边形,我发现平行四边形的面积是三角形的两倍。

生3:我用两个完全一样的钝角三角形拼成的平行四边形。

当教师再问“其他小组还有其他方法吗?”此时学生无人反应表示没有。

2.前置性课堂的生成

师:怎样把三角形转化成以前学过的图形?

生1:把两个同样的锐角三角形重叠在一起,通过旋转、平移的方式,拼成平行四边形。

生2:把两个同样的直角三角形重叠在一起,通过旋转、平移的方式,拼成平行四边形。

生3:把两个同样的钝角三角形重叠在一起,通过旋转、平移的方式,拼成平行四边形。

当学生展示了这几种方法之后,当教师再问“其他小组还有别的方法吗?”此时出现意外的惊喜,还有学生高高举起小手。

生1:沿三角形的高的中点画一条线(和底平行),沿着这条线剪下把它拼到右边,此时三角形的底和梯形的底相等,平行四边形的高是三角形高的二分之一。(如下图)

生2:两个一样的三角形,将期中一个沿高剪开,和另一个三角形两边拼接。(如下图)

从同一个问题不同的生成对比中可以看成,前置性学习的生成可谓出乎意料的精彩。“怎样把三角形转化成已经学过的图形?”这个问题,传统课堂是让学生上动手操作,时间空间都比较有限,可想而知在这么有限的时间里面学生除了想到用拼这个常用的最容易方法之外,没有足够的时间再去思考去探索,这样的课堂何来的方法多样化?何来的开拓学生的思维?显而易见,这是可望而不可即的。

而前置性学习,有了学习任务单的引领,学生在探究方法时不仅有了足够的时间和空间。他们除了自己动手操作,还可以和同学、教师、父母交流,甚至还可以自己去查阅资料,这无形中为课堂学生精彩生成做了很好的铺垫,使课堂学习更加精彩有效。

总之,在数学教学中,教师课前一定要读懂学生,了解学生的学习状况,才能使预设更充分,生成更精彩,这样才有助于不断提升学生的思维水平,从而提高课堂学习的有效性。新课标指出:“数学教学是数学活动的教学,是师生之间、学生之间交往互动与共同发展的过程。”课堂教学不再是简单的知识教学过程,而是师生共同成长的历程。随着社会的进步和科技的发展,学生的知识越来越丰富,他们的见识、他们的思维、他们的经验往往是不可估量的,因此,在教学中往往会出现老师的教学预设与实际教学不相符的现象,面对这种情况,把学习任务前置,一方面教师通过学生的前置学习也更了解学生,便于进行充分的预设,另一方面也更能发挥学生的主体性地位,使生成更精彩,从而使课堂的有效性得到充分的落实。

参考文献:

上一篇:20年后的我作文范文 下一篇:随笔范文

友情链接