概念转变教学理论范文

时间:2023-11-13 05:39:35

概念转变教学理论

概念转变教学理论篇1

关键词 耗散结构理论 概念转变 教学策略 生物学教学

中图分类号 G633.91 文献标志码 B

1 引言

1969年,比利时科学家伊利亚・普利高津提出耗散结构理论,并于1977年获得诺贝尔化学奖。普利高津认为一个开放的非线性系统在不断的物质和能量的输入达到阈值时,系统会从最初的无序状态转变为有序状态,这种远离平衡状态的有序结构称为耗散结构。耗散结构形成的条件可概括为:系统是一个开放的系统;系统必须远离平衡状态;系统内部存在非线性的相互作用;系统可以发生内部涨落。耗散结构的出现完全是自组织的,人们无法创造耗散结构,但可以创造出现耗散结构的条件。

2 学生的概念认知结构作为耗散结构所具有的特征

2.1 认知结构是一个开放的系统

建构主义认为,人的学习不是封闭于个人头脑中的过程,而是同周围环境中的工具、符号、语言乃至人际关系等媒体和功能性资源的交互过程中生成的过程,学生的学习依赖于认知结构。学生的认知结构一方面需要从外界环境输入信息,作为具有自我能动性的个体,学生通过纸质文本、视频、广播等途径获得大量的信息输入;另一方面,学生的认知结构通过对信息进行加工,完成对外的输出,即对抽象的理性问题或生活中一些实际问题的解决。因此,学生的认知结构必然是一个开放的系统。

2.2 认知结构是一个远离平衡态的系统

学习者无法解决世界上所有的问题。学生的认知结构与外部环境存在这样一个矛盾,即问题解决所需要的知识与学生认知结构中知识的不足或缺失之间的矛盾。这种矛盾导致学生的认知结构远离平衡态,矛盾越大,认知结构就离平衡态越远。这种矛盾促使学生不断地完善认知结构,从而形成更高水平的认知结构。另外,学生认知结构中的各组成部分之间也存在较大差别,这种内部组成部分间的差别也反映出学生认知结构并非是一个由均一同质的各部分所构成的平衡系统。

2.3 认知结构存在非性的相互作用

认知结构由认知形式、认知策略与方法、知识经验及其结构、认知风格和解悟认知等5个小系统组成。这五个小系统中还可细分为更小的组成部分。认知结构的功能不等于各部分功能的简单加和。在学生的学习过程中,认知结构的各组成部分之间存在复杂的相互影响和相互作用。这种复杂的作用说明认知结构各组成部分之间存在极为复杂的非线性作用,而非简单的线性作用。

2.4 认知结构内部存在涨落

在学习过程中,学生的认知结构受到很多信息的刺激,如文字、声音、图片等。在概念学习过程中,教师为学生提供了指向概念转变的多种信息,创造出多元的对话活动和情景。这些外在刺激能够使学生的认知结构发生微涨落。微涨落通过非线性的相干作用和连锁效应不断放大,当达到一定的阈值时,学生的认知结构就会巨涨落。此时,概念发生转变,认知结构的水平层次提高。因为阈值是可以通过试探性尝试找到的,因此在教学中具有操作性。

综上所述,学生的概念认知结构具有耗散结构特征,具备耗散结构形成的必要条件。

3 耗散结构理论视阈下的概念转变教学策略

概念转变的过程类似于耗散结构的出现过程,学生获得生物学概念的过程实际上就是经历从“无序”的迷思概念概念转变为“有序”的科学概念的过程。因为概念转变是通过学生自组织实现的,因此教师在教学中需要创造学生概念转变的必要条件,帮助学生自主构建起对科学概念的理解,从而使学生实现概念转变。

以高中生物学概念“细胞呼吸”为例,耗散结构理论视阈下的概念转变教学策略可以按以下环节进行。

3.1 充分了解学生认知结构中的“无序”:迷思概念

学生认知结构中的无序状态是指学生所具有的迷思概念。迷思概念是学生在进入课堂学习前所具有的对某事物或事件不完全合理的认识、想法。学生迷思概念的无序体现在:(1) 迷思概念具有片面的、零碎的内容,在知识联系上缺乏适当的关联;(2) 学生面对情景不同的同一类型问题时,往往会有不同的解释;(3) 有些迷思概念前后不一致,而有些迷思概念则十分稳定,极难改变。在教学中,教师应该调查和了解学生在学习“细胞呼吸”概念之前所具有的迷思概念,并做为教学的起点和突破口。

“细胞呼吸”属于微观的细胞水平的内容,学生主要是通过教材和教师的介绍,获得有关的了解。浙教版初中教材八年级下册第三章第五节“生物的呼吸和呼吸作用”通过汽车内部燃料与氧气发生化学反应的类比,向学生介绍了动物、植物和微生物体内葡萄糖和氧气发生反应的呼吸作用过程。通过调查发现,学生对“细胞呼吸”具有以下迷思概念:

(1) 细胞呼吸是葡萄糖的氧化分解过程;

(2) 细胞呼吸的发生必须有氧气的参与;

(3) 细胞呼吸的产物都是二氧化碳和水;

(4) 在动物、植物和微生物的体内都可以进行葡萄糖与氧气的反应。

3.2 提出问题,小组讨论,暴露学生的不平衡状态

社会建构主义强调概念的学习不应只是强调个体心智的主动建构,而更应该兼顾社群和集体中的对话、互动和切磋。

概念转变教学理论篇2

关键词:中学力学;前概念;概念转变;教学尝试

中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2016)6-0008-4

前概念广泛地存在于每个人的思维中,美国著名心理学家奥苏泊尔说:“影响学生最重要的因素是学生已经知道什么,我们应当根据学生前概念的状况进行教学。”[1]做学生前概念的调查揭示及转变策略的探索研究是很有必要的。本文选取中学力学中两个具有代表性的前概念,尝试将前概念理论运用于中学物理教学,提出调查诊断及教学的策略,探索物理前概念转变的有效途径。

1 前概念概述

1.1 前概念的界定、分类及特点

1)界定

前概念是前科学概念的简称,是指个体在没有接受正式的科学概念之前,通过长期的经验积累与辨别式学习而形成的对事物的非本质认识[2]。前概念的“前”,不仅指此观念是在学生学习系统物理知识之前形成的,也指学习后仍存在于学生头脑中的不正式、不准确、不合理的思维方式。前概念的“概念”,也不仅指常说的对某一事物现象的定义,还可以是在物理学领域的某种规律、某一原理,或者思维方式、逻辑习惯等。

2)分类

要想以前概念为出发点,提高教学有效性,就必须分清教学工作中哪些是拦路虎,哪些是推动器。前概念中与科学概念相矛盾的、对学生科学概念和严谨思维的建立造成不利影响的部分,称之为“相异前概念”,它们是教学的拦路虎;前概念中,有科学概念的雏形,对教师教学产生有利影响的部分,称之为“朴素前概念”,他们是教学的推进器。故此,对于前概念的教学处理不能一概而论,要做一分为二的辨证处理,因势利导,趋利避害。恰当的教学策略应该是对“相异前概念”采取暴露、转化,进而重构,而对“朴素前概念”,则进行顺化、补充、完善。

3)特点

物理前概念的5个特点:①普遍性,即每个中学生在学习物理前都积累了丰富的生活常识和日常经验,其中包括广泛的物理前概念;②直观性,即中学生对于摸得着、看得见、宏观的、日常生活中经常接触到的事物形成了较多的物理前概念;③顽固性,即物理前概念是中学生长期经验积累的结果,在他们脑海中印象深刻;④层次性,即每个中学生的知识背景和日常经验不同,对同一物理概念有不同层次的前概念。⑤反复性,即如果学生没真正理解和接受科学概念,一段时间后仍会用原有思维模式解决问题,反复出错、无法根除。

1.2 前概念的成因及转变

1)主要成因

知己知彼,方能百战不殆。要获知前概念转变的教学策略,就必须了解学生的原有认知结构、思维方式和经验系统从何而来。前概念的主要来源是,学生在学习科学概念前从日常生活经验中获得的对物理现象的理解和认知。另一种来源是,学生接触到此科学概念之前,学习过其他领域的类似概念,在此基础上进行一定的类比推理、主观联想,形成了自己的认知观念。

2)概念转变

概念转变是指个体原有的某种认知经验由于受到与此不一致的新经验的影响而发生重大转变[3]。一直以来,许多中学物理教育工作者以认知心理学的理论为基础,提出了一系列前概念的诊断方法和概念转变的教学策略。

①诊断方法

要完成新旧认知和经验的转变,对原有经验进行提升或重构,教学中首先进行的应该是“诊断”,通过诊断揭露出学生头脑中已有的认知结构、思维方式、经验来源,其次才是“治疗”[4]。中学常用的前概念诊断方式有问卷调查、访谈研究、二段式诊断测试、制作概念图等。

②转变策略

概念转变过程是认知冲突发生并得以解决的过程。在诊断后,教学程序可以是:首先,针对不同类型的前概念采用不同的教学策略,尝试创设物理情景,使学生对自身已有认知结构中的不足部分产生怀疑和不满。其次,配合教师的实验演示、探究和分析,学生进行小组合作讨论、交流与分享,以及教师进行引导、总结。最后,师生共同进行对比、分析,得出科学概念。如此,可以使学生的原有认知和经验有所增长或发生改变,实现概念转变。许多已有研究成果中的策略方法是值得借鉴和参考的。如:Savander-Ranne和Kolari提出的基于概念转变的PDEODE教学策略(Predict-Discuss-Explain-Observe-Discuss-Explain策略)[5],周中森提出的前概念对话式反思教学策略[6]。

2 两个前概念转变的教学尝试

下面,选择中学力学中两个具有代表性的前概念作为研究对象:一为“重的物体比轻的物体下落得快”,属“相异前概念”;一为“重的物体保持匀速运动更困难”,属“朴素前概念”,以前概念理论为依据,进行前概念的调查诊断及概念转变教学策略的教学尝试。

2.1 “相异前概念”的教学尝试

1)“重的物体比轻的物体下落得快”的前概念诊断

教学过程中,笔者发现部分学生虽已学过自由落体运动,但在日常生活的理解、交流中仍有“重的物体比轻的物体下落得快”的想法。调查分析揭示,许多教师在概念教学中,是以口头阐述或强压、硬塞给学生新概念,而不是以在根除其头脑中根深蒂固的错误观念的基础上构建新概念的方式进行教学,这是导致学生出现这种“看似理解,一用就错”的情况的重要原因。

针对“重的物体比轻的物体下落得快”这一前概念,由于在做初步诊断时发现许多学生都存在此类错误观念,且学生反映出的问题较多。所以,笔者选取昆明某中学高一年级12个班,并在每班随机抽取10人共计120人,在学生未学习《自由落体运动》一节内容之前,进行问卷调查(见附录“关于‘重的物体比轻的物体下落得快’的问卷”),以完成对这一前概念的诊断调查。调查数据统计如表1。

“关于‘重的物体比轻的物体下落得快’的问卷”,通过贴近生活的一些问题的设置,把学生隐藏在大脑深处未根除的“相异前概念”暴露了出来。由表1可见,在学生头脑中,“重的物体比轻的物体下落得快”的前概念根深蒂固,而且对“同质量的物体在不同空气阻力下”和“不同质量的物体在无空气阻力下”的下落情况的认识也模糊不清。学生关于自由落体运动的“相异前概念”来自哪里?针对这一问题,笔者选择前面被调查学生中的部分学生,采用谈话的方式,就自由落体运动的“相异前概念”的形成原因和依据作了进一步调查,并观察各组员表达观点的方式,分析各组员表达的观点。调查表明,学生头脑中“相异前概念”的形成,更多是受日常生活经验的影响。

2)“重的物体比轻的物体下落得快”的概念转变策略

经过诊断环节,教师对学生的“相异前概念”已有一定了解,接下来的环节中教师可以采用创设物理情境,通过演示探究实验的方法,来突显出已有认知与物理事实的冲突,以激起学生对已有知识经验的怀疑与不满,主动意识到引入新概念的必要性。

为纠正学生这一错误的前概念,笔者采用PDEODE策略来设计相关教学,具体做法如下:

【预测环节】描述如下实验情景并要求学生记录预测结果。

①一张纸片和一个与纸片同质量的纸团同时从同一高度静止释放,哪个先着地?

②一个纸团和一个质量更大的纸片同时从同一高度静止释放,哪个先着地?

③一枚硬币和几枚粘合在一起的硬币同时从同一高度静止释放,哪个先着地?

④在真空状态下的牛顿管中,金属块和羽毛哪个下落得更快?

学生的预测:

①纸片和纸团同时着地。

②质量更大的纸片先着地。

③粘合在一起的硬币先着地。

④金属块下落得更快。

【讨论环节】让学生在各自的小组中(3~4人)讨论和分享彼此做出预测的理由,然后通过讨论和协商来对实验情景形成组内统一的预测,为之后的解释环节作准备。

【解释环节】让各小组内部在针对实验情景达成共识之后。通过全班讨论的形式向其他小组公布自己的预测结果,并在讨论中参考他人的见解和反思自己的观点。

【观察环节】经过以上环节学生很渴望知道自己的预测是否正确,教师要充分把握学生的积极性,对预测环节中的实验情景“④”涉及的真空管实验进行演示。引导同学进行与目标概念相关的观察:不仅要观察实验现象,也要注意观察老师的操作步骤和顺序,准确判断金属块和羽毛的下落情况,并做好记录。

实验:教师完成真空管实验后,实验结果与学生预测出现极大反差。此时,认知冲突将激励同学们迫切地找出原因,接着让学生分组进行实验情景“①”“②”“③”的实验,教师给予适当的提示。实验结果如下:

①纸团先着地。

②纸团先着地。

③硬币和粘合在一起的硬币几乎同时着地。

④金属块和羽毛下落得一样快。

【讨论环节】教师抓住时机引导学生通过组内讨论的方式,对比分析实验结果与预测不一致的原因,试图寻找新概念。

【解释环节】最终,教师只需给予学生关于“空气阻力”问题的适当提示,学生即会豁然开朗,此时讲述科学概念,即可实现“相异前概念”向科学概念的转变,同时保障理解效果和长时记忆。

2.2 “朴素前概念”的教学尝试

1)“重的物体保持匀速运动更困难”前概念诊断

摩擦力部分教学过程中,了解到学生对“滑动摩擦力的大小与接触面所受正压力成正比”结论较容易接受,未出现明显疑惑。是什么样的原有认知和经验使学生对与此相联系的科学概念的理解和接受更顺利呢?本次诊断因为所需研究的问题较单一、不复杂,笔者采用访谈方式,在昆明某中学高一年级学生未学习《摩擦力》一节的内容之前,与其中的10名同学进行对话式交流。

下面是笔者与其中一名同学的谈话。

教师:物体在水平面上运动,要保持其匀速运动,是否需要一个水平拉力F?

学生:当然需要。

教师:那如果是两个质量不同的物体,哪个需要的拉力更大?

学生:重的物体需要的拉力大。

教师:物体越重保持其匀速运动需要的拉力越大吗?

学生:是的,应该与物体的质量有关。

教师:具体是什么样的关系,你能用数学表达式说明吗?

学生:我想,是质量越大的需要的拉力越大。

教师:那是什么支持你的想法?

学生:应该是平常的生活经验吧。

对话式访谈诊断揭示:学生头脑中关于“滑动摩擦力大小与接触面所受正压力关系”的前概念虽也源于日常生活经验,但并没有完全与科学概念相冲突,只是不够抽象严谨,与抽象的科学概念比较而言,相对表面、感性。仅有“所需推力F与物体重力G有关”的定性认识,并没严谨到“F=μFN”的定量表达。

2)“重的物体保持匀速运动更困难”的概念转化策略

经过诊断环节,教师对学生的“朴素前概念”已有一定了解,教学时可以采用以原有认知经验为起点,进行适当同化和顺应的策略。通过适当的实验演示,创设物理模型,即可抽象提升出科学概念。

为了同化、顺应学生脑海中的“朴素前概念”,笔者作了如下的教学设计。

【观察环节】 教师进行实验演示,引导同学进行与目标概念相关的观察。

实验:取质量约200 g的带挂钩木块,置于长木板上,用弹簧测力计拉动,然后保持匀速运动,读取测力计读数,即为拉力大小,视为木块受到的摩擦力的大小。然后,逐步往木块上加50 g的砝码,分别读取读数,完成表2第三行的内容。实验过程提示学生检查并调整弹簧测力计,注意量程和分度值。(g=9.8 m/s2)

由此,同学发现拉力F与重力G间有数据上的具体联系,刺激学生找出原有认知与科学概念的差距。

【讨论环节】此环节教师利用学生熟悉的控制变量法,引导其对比分析,通过分组讨论,分享想法,找出数据比值的共同点,发现拉力F与重力G的线性关系。

【解释环节】利用二力平衡,作用力和反作用力的受力分析,明确正压力FN=G=mg。引导学生得出“滑动摩擦力的大小与接触面所受正压力的线性关系”,从而顺利地完成朴素观念“重的物体保持匀速运动更困难”向“滑动摩擦力大小与接触面所受正压力成正比”的科学概念转变,将感性认知抽象成 “F=μFN”的定量表达。

通过教学,学生基本理解“自由落体运动规律”和“滑动摩擦力大小与接触面所受正压力的关系”。但是,概念转变的教学环节不是封闭的,而是不断循环的,每次循环中对概念的理解都在不断深入[7]。在随后的教学中还将留意进一步的反馈信息,分析评价采用的策略,针对未达效果的情况再次调查诊断和修改,以求得出更完善的教学模式,让学生体会严谨地建立科学概念的过程。

参考文献:

[1]郑挺谊.前概念――科学教学中的一道坎[J].物理教学探讨,2014,32(3):22―27.

[2]黄树玲.消除物理前概念的不利影响[J].福建教育:中学版,2012(10):60―61.

[3]沈兰.高中物理教学中前概念转变的策略与实践[J].中学物理,2013(1):19―21.

[4]吴志标.初中科学教学中学生前错误概念揭示和矫治[J].中学物理:初中版,2012(9):80.

[5]蒋军用,张军朋.基于概念转变的PDEODE策略在物理教学中的应用[J].物理教学探讨,2013,31(1):30―33.

[6]周中森.浅谈针对物理前概念的“对话式反思教学策略”[J].物理通报,2012(5):106―109.

[7]姜明.浅谈高中物理的概念转变教学――以重力和引力概念教学为例[J].教育实践与研究,2013(9):31―34.

附录:

关于“重的物体比轻的物体下落得快”的问卷

1.日常生活中,0.1 kg的石头和1 kg的石头同时从同一高度静止释放,哪个先着地?( )

A.0.1 kg的石头 B.1 kg的石头 C.一起着地

2.日常生活中,0.1 kg的石头和一张纸片同时从同一高度静止释放,哪个先着地?( )

A.0.1 kg的石头 B.纸片 C.一起着地

3.日常生活中,一张纸片和一个与纸片同质量的纸团同时从同一高度静止释放,哪个先着地?( )

A.纸片 B.纸团 C.一起着地

4.日常生活中,一个纸团和一个质量更大的纸片同时从同一高度静止释放,哪个先着地?( )

A.纸团 B.纸片 C.一起着地

5.日常生活中,一枚硬币和几枚粘合在一起的硬币同时从同一高度静止释放,哪个先着地?( )

A.一枚硬币 B.粘合在一起的硬币

C.一起着地

6.在真空状态下的牛顿管中,金属块和羽毛哪个下落得更快?( )

概念转变教学理论篇3

学生带着各种前概念进入数学课堂,影响着数学概念的学习。教师教学的起点,就是要了解学生具有怎样的前概念,以促使学生的前概念向科学概念的转变。但是,前概念有哪些类型?如何探测学生的前概念?怎样进行合理的教学干预,使前概念顺利地转变为科学概念?一些数学教师对此知之甚少,本文将重点探讨上述问题。

一、前概念的分类

关于前概念的分类,不同的学者基于不同的角度给出不同的分类。比如李高峰、刘恩山(2007年)依据前概念产生的时间,将其分为原发性前概念和继发性前概念;依据前概念的状态,将其分为空壳概念、不完整概念、异质性概念、条件缺失概念、绝对化概念,[1]等等。笔者基于前概念的意义,即诊断学生的前概念旨在实现向科学概念的顺利转变,故而依据前概念与科学概念的差异度,将前概念分为:与科学概念完全一致的前概念、与科学概念部分一致的前概念、与科学概念完全不同的前概念。

(一)与科学概念完全一致的前概念

在数学概念教学中,这类前概念与科学概念完全一致,如“1天有24个小时”“1年有12个月”等等,这些概念学生在日常生活中早已接触,并且已经掌握。这类前概念对数学学习是有促进作用的,其为科学概念的学习和掌握奠定了扎实的基础。在教学过程中,教师可以不把这些前概念作为教学重点,只要适当提及、引出即可,以便合理安排教学时间。

(二)与科学概念部分一致的前概念

这类前概念与科学概念部分一致,学生头脑中已经知道这些概念,只是存在一定的偏差,需要进一步完善。如“圆的认识”,“圆”是日常生活中最常见的图形,也是小学生最熟悉的一种图形。学生对“圆”的认识与“圆”的科学概念大体一致,但是,小学生经常将“球形物体”看作是“圆形物体”。因此,教师在教学中,对这类与科学概念部分一致的前概念要加以重视,需要通过一定的教学干预来丰富或修正学生的前概念。

(三)与科学概念完全不同的前概念

这类前概念与科学概念完全不同,又称错误概念,如小学生认为“角的大小和它的两边画的长短有关” “长方形的周长越大,面积就越大”等等,这类错误的前概念会影响科学概念的学习,会阻挠科学概念的顺利形成,它们是学生犯错的地雷区,是教师教学的挑战点。在教学过程中,教师应该花大力气将这类前概念合理转变为科学概念,这是教学的难点,也是学生学习的关键点。如果这类前概念不能很好地实现转变,不但妨碍对新知识的理解,而且后患无穷――会使后续学习产生新的错误概念。

综上所述,教师应该把教学的重点和难点定位在后两类前概念上。与前概念的类型相呼应,概念转变主要有两种途径:一是充实,二是重建。[2]充实是指在现存的概念结构中概念的增加或删除,仅仅涉及量的变化,主要指向“与科学概念部分一致的前概念”;重建是指摧毁旧的概念结构,创造新结构,它是一种质的变化,主要指向“与科学概念完全不同的前概念”。在小学数学概念教学中,教师不但要学会分析前概念的类型,而且要依据不同的类型提供不同的概念转变途径,使前概念能更好地转变为科学概念。

二、前概念的诊断

学生前概念的诊断方法有很多,小学数学教师熟悉的或者经常使用的方法有:提问法、访谈法、画图法,等等。还有一些方法,教师可能不太熟悉,却能有效诊断学生数学学习的前概念,笔者在此稍作简单介绍。

(一)概念图分析

奥苏伯尔指出:为了使学习有意义,学习者个体必须把新知识和已有的概念联系起来。这里的“已有的概念”事实上就是本文提及的“前概念”。概念图是康乃尔大学的诺瓦克博士根据奥苏伯尔的有意义学习理论提出的一种教学技术,是一种知识的组织与表征的方式,能有效地联结前概念和新知识。概念图分析一般有两个步骤,首先给学生一组概念,让学生进行画线连接;然后教师对这些连线进行深入分析,了解学生的前概念。如教学“角的初步认识”这一课之前,教师可以指导学生制作“角”的概念图,了解学生对这一概念的理解程度,清楚学生对“角”的前概念,找到合适的教学切入点。

(二)二段式诊断测试

二段式诊断测试是国际上常用的问卷测试方法,该测试包括两个部分:第一部分评价学生的具体知识,一般由选择题构成,选项包含正确答案和错误答案;第二部分评价学生对知识的理解,即针对第一部分提供原因解释,由选择题或填空题构成,要求学生说明选择该项的理由。并必须同时答对第一、二部分的选项,才能视为正确。与普通问卷测试相比,二段式诊断测试可减少学生猜题倾向与机会,施测结果更能表现学生内心的真实想法,更能准确测出学生的前概念。

(三)确定性指数分析

确定性指数 (Certainty of Response Index,简称 CRI) 是Saleem Hasan、Diola Bagayoko和Ella L Kelley(1999年)提出的,他们认为教师在教学过程中区分学生“知识的缺乏”和“错误概念”非常重要,于是他们通过确定性指数分析来诊断学生的错误概念。[3]具体操作步骤如下:首先,学生对某题作出选择;然后,学生对自己作出的选择进行确定性评价,即给定 CRI值。CRI值域是0~5,随着数值的增加,确定性程度逐渐加强,其中0表示完全猜测,1表示几乎是猜测,2表示不肯定,3表示肯定,4表示几乎确定,5表示确定,而中间值2.5作为衡量标准,低于2.5表示低确定性,高于2.5表示高确定性。确定性指数分析即依据学生作出的选择和CRI值进行分析,当确定性指数低于2.5,不论是正确或是错误的回答,都可以诊断为缺乏知识;当确定性指数高于2.5,正确的回答可以诊断为具有正确概念,而错误的回答则诊断为具有错误概念(如表1)。确定性指数分析可以帮助教师诊断学生前概念的类型,尤其对错误概念的诊断具有重要意义。

最后,补充说明一下前概念诊断方法的时效性。一般而言,上述各种方法既可以安排在教学前,也可以安排在教学后,当然,不同时间的安排意义是截然不同的。教学前的诊断,目的往往是了解学生的前概念,以便及时进行教学干预;教学后的诊断,往往是探测学生通过教学是否已将前概念(尤其是错误概念)成功转变为科学概念,以便为有效的概念转变教学提供良好的反馈。

三、前概念的教学干预

前概念的教学干预,实则进行合理的概念转变教学。教师分析前概念的类型,诊断学生的前概念,旨在教学过程中进行合理的概念转变,使学生的前概念能顺利转变为科学概念。从建构主义的角度看,概念转变教学是学生前概念改变、发展和重建的过程,这是一个十分复杂的认知建构过程,教师应注意以下几点。

(一)创设认知冲突点

波斯纳等人在皮亚杰认知建构理论和库恩“范式更替观”的基础上,提出了概念转变学习的条件理论。[4]为了促使学生进行概念转变,他们认为必须提供4个条件:①对已有概念的不满;②新概念的可理解性;③新概念的合理性;④新概念的有效性。其中第一个条件“对已有概念的不满”是概念转变的前提条件,也是4个条件中唯一关注“已有概念”的条件。学生只有感到自己的某个概念失去作用,他才可能改变原概念。也就是说,在小学数学概念学习中,学生只有对自己已有的前概念产生不满,才有可能进一步促进概念转变,该条件是概念教学的起始点,也是教师进行教学干预的落脚处。

那么,如何让学生对已有概念产生不满呢?最好的做法是――创设认知冲突。认知冲突是一种认知矛盾,在学生原有认知结构和新知识之间产生的无法包容的矛盾,也是学生前概念和新概念之间最初的“不协调”。教师只有深入了解学生的前概念,才能合理创设认知冲突点,并且,认知冲突越强烈,学生对已有概念的不满也会越强烈,这点与我们生活中的其他“冲突”案例有异曲同工之处。

从认知冲突产生的原因来看,认知冲突大致分为两类:第一类是与实验结果相冲突,即学生通过动手操作,发现实验结果与预测(前概念)截然不同;第二类是与他人观点相冲突,即学生通过讨论、对话等形式,发现自己的观点与他人的观点有明显差异。此处“他人”的观点,在课堂情境中,既包括教师的观点,也包括其他学生的观点。教学过程中,教师应重视学生之间观点的冲突,那是实现概念转变教学的契机。钟启泉教授指出:“处于同样认知水准的同学之间通过略有差异的观点与认识的碰撞,各自产生内部的认知冲突,这种认知矛盾的解决将会引起每―个个体内部的知识的重新建构”。[5]针对这两类认知冲突,教师在教学过程中应依据客观情况创设冲突情境,既可以创设需要学生实际操作的实验情境,也可以创设小组合作的讨论情境,还可以通过教师直接提问创设冲突点,激发学生的求知欲和探索心向。当然,情境的创设往往是综合的,很多冲突情境既有师生对话,又有生生对话,更有动手操作。如教学“角的大小”时,为了转变学生的错误概念“角的大小和它的两边画的长短有关”,教师可以创设这样一个问题情境:“同学们,你们觉得鳄鱼妈妈(见图1)的嘴巴张得大,还是鳄鱼宝宝(见图2――图1的缩小版)的嘴巴张得大?”在这个过程中不同的学生会呈现不同的答案,那些有着错误前概念的学生会产生认知冲突,教师可以引导学生合作学习,进行充分的生生对话,最后通过实验测量得出正确答案。

(二)读懂概念“时空区”

有人把前概念表述为“发展中概念”(Developing Conception),确实,概念转变不是一朝一夕、一蹴而就的事情。学生的认知发展及前概念自身的发展都要经历一片时空区。概念转变教学中,教师不能急于求成,要学会读懂学生概念的“时空区”,要学会包容学生的错误概念,真诚地等待学生的生长,保持良好的教学心态。

学生的认知发展有一片时空区。概念转变是一个不断发展、深化的过程,对同一个事物受制约于前概念的影响,不同年龄阶段的学生会出现不同的认知结果。奥苏伯尔认为:当学生认知尚不成熟、心理准备尚未充分的情况下,强迫学生进行概念学习,必然会使学生产生错误概念。如吴娴等人作过一项关于儿童对于速度概念的研究,结果发现:低年级儿童的速度概念有其特殊性,并不是以度量的形式出现,而是以序数的形式出现,具有位置决定倾向。幼儿园大班学生的速度概念持明显的位置决定论;一年级学生的速度概念与幼儿园大班学生相比,有一定的进步;三年级学生的速度概念与幼儿园大班学生相比,有了很大提高,超过半数的学生不再持位置决定论,能够对运动物体进行动态分析,表现出对距离和时间的综合考虑。[6]学生前概念的发展也有一片时空区。前概念一旦形成,就会有思维定势,在学生头脑中根深蒂固,具有 “顽固性”,因而前概念向科学概念的转变并不是一帆风顺的。甚至学生在学习科学概念后,前概念仍然很难在一个有限的学习时间里彻底消除,很容易形成反复,并且先前的知识结构还会对新的知识结构产生负面影响,出现负迁移。由此可见,前概念的发展轨迹错综复杂,时空感很强。如教学“分数除法”时,对于“2除以等于8”,某生不能理解,疾呼:“商怎么可能比被除数大,简直没有逻辑!”教师这时不能简单批评该生。事实上,该生的观点是符合其自身概念转变路径的,该生带着前概念进入课堂,认为“除法意义”要沟通“除法与平均分”的联系,此时,该生正在沟通“除法与平均分”的联系,他不能理解“分到的东西居然比要分的东西还多”。这个案例中,生活化与数学化的矛盾出现了,有些数学内容是很难用具体的生活情境加以解读的,而学生的前概念仍停留在生活化的数学中,在前概念和科学概念之间找不到合适的桥梁过渡的时候,怎么办?有些学生就简单地背诵分数除法的计算法则:甲数除以乙数(零除外),等于甲数乘以乙数的倒数。这也不失为一种方法!这个案例中,还出现了“负迁移”,先前学习的科学概念却成为新知识的绊脚石!确实,这种情况也是存在的,我们知道,科学知识的发展和探索是永无止境的,当新的科学理论出现时,旧理论往往就成为与“科学概念部分一致的前概念”。

教师在这个过程中,能做什么呢?首先,当然是读懂概念的“时空区”,对学生的认知发展和前概念的发展轨迹,做到知根知底。其次,教师在了解的基础上,应该具有一种大气的心态,能包容学生由于这方面的原因而犯下的错误,还能在概念时空区里耐心等待,静静地聆听花开的声音,直到瓜熟蒂落。

参考文献:

[1]李高峰,刘恩山.前科学概念的研究进展[J].内蒙古师范大学学报(哲学社会科学版), 2007(04): 62~67.

[2] Hsiao―Ching She.Fostering Radical Conceptual Change through Dual-Situated Learning Model[J]. Journal of Research in Science Teaching,2004. (2):142~164.

[3] Saleem Hasan,Diola Bagayoko,and EllaL Kelley.Misconception and the certainty of response index(CRI)[J].Phys.Educ,1999,34(5):194~299.

[4]GJ.Posner,K. A. Strike,P. W. Hewson,W. A. Gertzog. Accommodation of a scientific conception: Toward a theory of conceptual change[J].Science Education,1982. 66:211~227.

[5]钟启泉.社会建构主义:在对话与合作中学习[J].上海教育,2001(7):45~48.

[6]吴娴.一项关于低年级儿童速度概念发展的研究[J].广西师范大学学报(哲学社会科学版),2005(11):95~98.

(华东师范大学 200062

概念转变教学理论篇4

1物理前概念和概念转变学习的重要性

物理学是一门自然科学,物理现象大量存在于学生的周围,学生在学习物理之前通过日常生活的观察和体验,对许多物理现象已形成了自己的一些理解和认识,这就是物理前概念.学生的这些物理前概念有些是正确的,有些是片面的、错误的,例如他们普遍认为“摩擦力就是阻碍物体运动的力”、“重的物体下落的更快”、“做圆周运动的物体受到向心力的作用”、“物体沿斜面下滑就是受到沿斜面的下滑力的作用”、“超重就是物体的重力增加,失重就是物体的重力减小”,他们常常将“加速度和速度的增加”、“静摩擦力和滑动摩擦力”、“时间最短和位移最短”、“相对静止和静止”混为一谈等等.所以在高中物理教学中,让学生正确的掌握物理科学概念是一个重要的核心问题.要解决这一核心问题,需要教师指导学生进行概念转变学习.

所谓概念转变学习就是将学生原有概念改造、重组和发展的过程,即学习者的前概念(又叫错误概念)向科学概念的转化过程.如果学生的前概念和科学概念基本上是一致的,概念转变学习就是一种同化原有认知结构的过程;如果学生的前概念和科学概念之间是不一致的,甚至是有悖于科学概念的,这些前概念将成为学生学习的障碍,将影响学生对物理新知识的同化和顺应.

高中学生在物理学习中除了学习之前形成的前概念外,在物理学习过程中又会产生一些新的前概念,就是之前学过的一些知识或做过的一些练习等对以后的学习产生负面影响,这些新的前概念主要表现在以下几个方面:物理对象前概念、物理情境前概念、物理条件前概念、物理结论前概念、物理公式前概念、物理过程前概念等;教师在教学过程中要分清学生错误的根源,及时引导他们进行分析、比较、概括、抽象和综合等,使学生的前概念经同化与顺应的过程有效地转变为科学概念.

2“变易理论”的核心观点

变易理论(variationtheory)是由瑞典学者马飞龙教授于20世纪90年代提出,它源自马教授创立的“现象图式学”(phenomenography).变易理论的核心观点是:“为了认识某个事物,就必须注意到这个事物与其他事物之间的不同.为了注意这个事物与其他事物在某个属性上的不同,这个属性就必须在某个维度上发生变化.在所有其他属性都保持不变的情况下,这个属性才会被识别出来.”变易理论认为,“学习必须透过审辨,而审辨必须透过变易”;“如果我们不能审辨事物,我们便不能学习.”变易理论强调学习的意义在于能够审辨到学习内容中的变易.

3“变易理论”在高中物理概念转变学习中的应用

变易理论应用到高中物理课堂学习中就是当一个“关键”的物理特征发生变化时,而其他特征维持不变,我们必须同步聚焦于这些“关键特征”,让这些“关键特征”从背景中审辨出来变成前景,学生才会更好地察觉这种变化,然后在头脑中建构起自己的知识系统,从而形成学习空间.马飞龙和他的同事们透过变易聚焦学习内容,并基于学习内容中“变”与“不变”的不同组合,得出了“对照(contrast)”、“区分(separation)”、“类合(generalization)”和“融合(fusion)”四种变易图式.

(1)对照性变易图式指的是事物的特征都是通过对比而呈现的,要学习一件事物,我们可以透过“对照”,突显出不同或变的方面,让学生意识到什么在变.对照有助于我们审辨事物的关键特征.

例1一小船渡河,河宽d=180 m,水流速度v1=2.5 m/s,若船在静水中的速度为v2=5 m/s,求:(1)欲使船在最短的时间内渡河,船头应朝什么方向?用多长时间?位移是多少?(2)欲使船渡河的航程最短,船头应朝什么方向?用多长时间?位移是多少?

分析小船渡河是运动合成与分解中的重要问题,渡河时间最短与渡河航程最短是学生理解的难点,这主要是受以往“位移最短就是时间最短”的前概念的影响,教师在教学中要帮助学生“对比”两个问题的“关键特征”:渡河时间仅由船在垂直于河岸方向的分速度决定而与水速无关,而实际航线是由船速和水流速度共同决定的,如图1所示.

(2)区分性变易图式指的是要学习一件事物的某一方面时,我们就必须把这方面的因素从事物的整体中区分出来.要从一个整体区分出其关键属性,学生必须经历这纬度上的值的变易,其方法是开创一个新的变易维度,而使其他各方面保持不变.

分析此题是力学中的难题,大多学生会选择C选项,这是学生对“物理对象”的前概念引起的;大多学生做过如图3所示的用大小相同的外力沿不同方向把物体拉动或推动时物体受到地面摩擦力不同的题目.因此,给斜面上的物块m施加不同方向的外力时,学生就主观上把这个力传递给斜面体.教师在教学过程中要引导学生开创一个新的变易维度,把斜面体隔离出来,对斜面体进行受力,如图4所示,抓住三种情况的关键特征:斜面体受到物块的压力和滑动摩擦力始终不变,斜面体受到地面的摩擦力始终为零,所以D选项正确.

(3)类合性变易图式指的是透过聚焦于什么是不变的,从而推论出定理或规律;类合有助于我们区分关键特征和非关键特征.通过“类合”,可以使学生从变化中审辨出不变的维度,而这个具有普遍性的“维度”会成为这几类事物的共同特征.

分析此题是2013年厦门市高中毕业班适应性考试理科综合能力测试第22题,得满分的考生很少;第(2)问是学生对“物理情境”的前概念引起的,不少学生以力学中常见圆周运动最低点的情境N-mg=mv2R来解,没有进行正确的受力分析,无视电场力的存在;第(3)问是学生对“物理过程”的前概念引起的,之前做过与传送带相关的大多题目是匀变速运动,大多考生把此题中洛伦兹力当作恒力,把物体的运动当作匀减速运动来处理;教师在教学中要进行正确受力分析,引导学生审辨出本题的关键特征是洛伦兹力是变力,摩擦力做功是变力功,无法直接用动能定理求解.教师在教学过程中要引导学生把物理问题的不同方面有机地融合起来,能够觉察到物理问题各方面的变化,对物理问题进行整体认识.

概念转变教学理论篇5

关键词:科学教学;前概念;科学概念;对策

中图分类号:G420文献标识码:A 文章编号:1992-7711(2013)16-049-2

学生生活在丰富多彩的科学世界中,在正式学习科学之前,就已形成了一些“概念”(前概念)或者说经验。这些概念来源于学生自己的生活经验和直观感受,通常以他们的生活常识为主,是自然而然形成、缺乏引导的。这些生活经验有些是正确的,有些则是片面的,甚至是错误的。但前科学概念是学生根据自己的经验观察和理解世界得出的结果。虽然它仅仅是一种朴素的观念,却是学生思维的产物,也是学生理解新事物的基础,有其存在的客观性。教师不能忽视或嘲笑学生的前科学概念,否则将会挫伤学生的自尊心,降低学生的学习兴趣。

利用什么方式可以有效地进行概念转变呢?在实际教学中,我们尝试以下几种基本对策,取得了较好的效果。

一、以自身的前概念为基石,自我发现问题,使概念转变更深刻

四年级下学期进行电学学习的时候,学生脑子里存在相当多的前概念例,如大多学生认为电池只要和导线、电珠相连,无论连在哪里、怎么连都能使电珠亮起来;电池的电量会使他们触电等等;而关于电路的串联和并联,想法更是五花八门。

这个单元的起始课是让学生了解生活中许多地方都存在电,并学会简单电路的连接方法。既然学生在脑海里对电路有最初的“印象”,于是教师为每位同学准备了一节电池,一根导线,一个小电珠,让他们带着自己的前概念随意摆弄。两个要求:一让小电珠亮起来,二是不论小电珠亮与否,都将连接图画下来。学生们拿到材料后兴致勃勃地动起手来。可是几分钟过去了,没有一个人成功,都未能让电流形成通路,他们不知道导线应该怎么与电珠和电池相连。心急的同学不断向教师打听正确的连法,教师故意置之不理。偶尔,有个同学的小电珠亮了,大家都异常兴奋,走下座位去学习连法,接着一声声“亮了,亮了”不断在教室中响起,同学们更是兴奋地频频展示他们的成果。至此教师再带领同学们回过头来看自己所记录下的连接图,为什么新的连接方法可以使小电珠亮起来,关键在什么地方?这里面有什么规律吗?通过比较再加上他们实验时的感受,学生们马上得出了通路、短路的概念,并且还能举一反三找到其他正确的连接方法。这样,就为学生后面的电路知识的学习打下了一个很好的基础。事实上,在后面的教学中,学生的基本概念一旦得到正确的转变后,再让他们加开关、导线甚至连接并联、串联等复杂些的电路也都难不倒他们了。

从这个例子中,我们可以看出,学生凭借自己的前概念,展开探究,也能发现问题,从而建立正确的、科学的概念,这样的概念转变过程应该是比较常用的,并且学生对转变后的科学概念的印象也是相当深刻的。

二、以他人的前概念为诱饵,引发思维冲突,使概念转变更有效

由于学生头脑中的前概念大多是在具体生活环境中建立的,因此,在课堂上展示出与现实相类似的情境,让学习在与现实相类似的情境中发生,将易于让学生意识到他们的前概念,也易于激发学生的思维冲突,从而建立科学概念。

在五年级下半学期物体的沉浮学习中,物体的沉浮与什么有关系呢?很多学生都会说与物体的重量、物体的大小等等有关。教师创设了一个情境,说:“上节课我在××班时,有个同学跟我说,我给的橡皮泥太大太重了,所以沉了,如果小一点的话橡皮泥就轻了,它就会浮在水面上了,你们觉得呢?”大多数同学顿时都同意这个虚拟同学的说法,而少数同学与之产生了矛盾,他们认为与物体的大小或重量没有关系。教师以此为契机让学生动手进行进一步的探究活动,不同意见的同学都通过自己的实际探究,了解了知识的真相,这样比教师直接传授或开始就放手让他们胡乱动手更易在学生大脑中进行科学概念的转变。

再比如,学生在学到“物体的下落速度与物体的重量无关”这一概念时,教材中阐述了亚里士多德和伽利略的理论,并用伽利略的实验来说明问题。如果让学生看书,或者由教师讲述,能不能达到概念转变的良好效果呢?尝试的结果是,纯理论的东西孩子们并不喜欢。因此,教师让学生扮演伽利略,并且让他们用自己的理论以各种方式来说服代表亚里士多德的理论的教师。有的学生试图从假说的角度来说服教师,有的学生做起了著名的比萨斜塔的两个铁球(硬币)同时下落的实验,孩子们仿佛回到了伽利略当时进行科学论证的年代。在探究过程中,教师进一步利用硬币和纸片不同时下落的实验来迷惑他们。他们又用硬币和纸团来“回敬”教师,一来二去,再由教师出示真空管,完成了在真空条件下羽毛与小铁片同时下落的实验,这个问题的最终答案也揭晓了。大家比课本上要求掌握的知识了解的更多。知道“在真空条件下,物体的下落速度与物体的重量无关”。

就这样,利用同学的前概念、他人的前概念,甚至是古人的前概念与学生自己的概念进行碰撞。在碰撞的过程中产生矛盾,以此来激发有效的思维活动,从而进行有效的概念转变。

三、以众人的前概念为动力,形成合作交流,使概念形成更清晰

很多前概念能通过观察、实验等方法进行探究以获得科学概念,但有些是无法操作的,所以让他们进行交流,让他们在思维上进行碰撞也是行之有效的方法。因为在交流中,学生可以看到与自己不同的理解,他们可以从不同方面了解与认识事物,因此,在教学中应促使学生与学生、学生与教师,甚至是学生与家长的交流,通过合作交流,使学生之间,师生之间,亲人之间交换对某一事物或观念的不同看法。如在学习四年级下册《动物的繁殖活动》,指导学生了解我们是怎样出生的这课时,大多数学生对自己的出生情况并不清楚,有些同学可能听过剖腹产、顺产等他们无法理解的名词,有些家长则会因为无法给孩子一个合理的解释而灌输“你是从垃圾桶捡来的;是从妈妈胳肢窝里挤出来的;是自己从妈妈的肚子里蹦出来的。”等等错误概念,而有些家长虽然平时可能会讲一部分的内容,但也不完整,所以在学生脑子里的印象非常模糊。因此,教师在课前先给每位同学发了一份告家长书,上面罗列了必须了解的几个问题,如你妈妈生你时是顺产还是剖腹产、你生出来有多重等等。又设计了几个需要学生详细与父母交流的问题,如妈妈在怀你的时候有什么样的变化等等,避免了家长无法笼统地向孩子解释他们是怎样出生的这个尴尬问题。然后带着问题走进课堂,与同学交流,看看自己的出生和别人有什么不同,再结合相关的视频和他们进行交流,让他们在自己与别人不断的思维碰撞中了解相关的知识。

概念转变教学理论篇6

关键词:迷思概念;小学科学教学;概念转变

中图分类号:G623 文献标识码:A 文章编号:1671-0568(2012)19-0086-03“迷思概念”来自科学教育中建构主义理论取向,是指某一特定科学概念组织中,对某事物或某现象所持有的一些有别于目前科学所公认的想法。在小学《科学》教学中,学生对某些科学知识存在理解偏差或混淆,极容易形成迷思概念。笔者对小学《科学》(3~6年级)教学中产生的迷思概念进行了诊测,从而分析小学迷思概念的成因和转变策略。

一、 小学《科学》(3~6年级)中迷思概念的诊测

诊测包括问卷和访谈。诊测问卷由选择题和填空题组成,包含教科版3~6年级《科学》教材(教学)中34个易出现“迷思”的概念以及相关的日常科学概念,并选取了135名小学6年级学生实施问卷调查及访谈。所选取的诊测概念如下表1:

选取这些知识点的主要依据是《小学科学课程标准(3~6年级)》、教材及教师用书、期末测试题中易错的知识点及科学教师的建议。问卷测试后统计了被试各自的选择题、填空题、总分的得分及得分率。选择题平均得分率为47.7%,填空题为30.0%,问卷题目平均得分率 40.7%。可见总体上来看小学生对《科学》教学中科学概念的理解和掌握情况不容乐观。针对问卷测试结果中典型的的迷思概念,笔者随机抽取若干被试作了访谈。通过问卷诊测和访谈总结了小学科学中迷思概念的特点和成因,并对转变迷思概念的教学策略做了初步探讨。

二、小学《科学》教学中迷思概念的成因

小学《科学》教学中迷思概念的成因可概括为三点:学生前认知的影响;日常生活经验和各类大众媒体的影响;科学教材和教师教学的影响。

1.学生前认知的影响。建构主义理论认为,学生总是以已有的知识经验为基础来构建对新知识的理解。在正式学习某些概念前, 儿童已经通过对日常生活的观察和体验形成了个人的“前概念”。前概念有时能帮助他们理解新概念,而有时则会产生负面作用, 妨碍新概念的建立。前认知中相关知识的缺失也能很大程度地影响学生对新概念的理解。例如本研究的问卷关于光的传播路径的题,有 86.7%的被试认为光在水中是沿曲线传播的。访谈中笔者发现他们受到生活中“折射现象”的干扰,但他们前认知中没有“折射”这一概念,由于前认知的局限导致了迷思概念。

2.日常生活经验和大众媒体的影响。在日常生活中,学生通过直接观察和感知已经从大量的生活见闻和自然现象中获得了不少科学的知识,这些会直接影响到学生对新事物和新概念的理解。问卷中有个题目:“胖子和瘦子拔河不相上下,哪个说法正确?”这个题目仅有50.4%的学生认为胖子瘦子力气一样大。访谈中笔者了解到部分被试都认为胖子用力大,因为生活中一般胖子力气都比较大。这就是日常生活中的直觉经验对科学概念理解的影响。大众传媒也是误导小学生形成迷思概念的一个“罪魁”。我们生活在媒体时代,电视、互联网、报刊杂志等成为迷思概念产生和传播的重要渠道。例如,在一些环保宣传类节目中都能看到,每当讲到“白色污染”时就会呈现出一片白茫茫的垃圾,这样很可能让小学生把“白色污染”的概念误解为所有白色的垃圾。可见,大众媒体传播过程中画面呈现形式、陈述方式的不恰当会导致小学生迷思概念的形成。

3.《科学》教材和教师教学的影响。科学教师的教学方法和《科学》教科书的知识呈现形式也是学生迷思概念的成因之一。科学教科书总体上来说是适应学生认知特征和心理特征的,但对于某些学生来说可能在某些章节上会出现学习困难。若科学教师不及时更新教学理念,以学生前认知为起点调整知识呈现顺序并选取适当的教学方法就可能会导致迷思概念产生。教材编写也是影响学生的科学概念形成的因素,如教材内容的选择和知识的呈现顺序,都能在一定程度上影响学生对新知识的理解。如果教师不注重学生现有认知,并采用灌输式教学方法一味地照本宣科,也可能导致学生概念理解不深刻从而产生迷思概念。

三、促进迷思概念转变的教学策略

1.探究式教学。科学探究是当前科学教学改革中大力倡导的一种教学方式,也是新课改积极倡导的理念。探究式教学是指教师在理解“科学探究”基本精神的基础上,在自由创设的、有结构的、能促进学生认知与情感发展的教学情境中,让学生自己动手动脑,主动获取科学知识和发展探究能力的一种教学方式。在我国新的科学课程标准中指出:科学学习要以探究为核心。在加拿大科学教师写的教案中我们可以发现每节课的教学目标一般包括三个部分:学生要学习的科学概念;学生要发展的探究能力;学生要获得的应用能力。在科学教学中所有的探究活动都应指向核心概念,以学生现有概念为起点设计探究方案,让学生在提出问题、猜想假设、设计实验并观察、收集资料、得出结论和交流的过程中建构科学概念。

2.POE策略。所谓POE是Prediction-Observation-Explanation(预测-观察-解释)的简称,该策略通过诊断学生的迷思概念来促进学生建立正确的、科学的概念。具体来讲包括三个步骤:第一,让学生对实验或事件中可能发生的现象、结果做出预测。第二,让学生观察实验或事件,记录下结果。第三,让学生对自己预测和观察到的不一致(冲突)做出解释,并力求调和冲突。POE策略可广泛运用于科学概念教学中,能促进学生理解掌握科学概念,有效预防迷思概念的生成。

3.基于学生前概念的NN三步教学模式。纳斯伯姆和挪威克提出:让学生尝试解释某事件,引起概念冲突发现矛盾事件,然后引导和鼓励学生调整认知,建立科学概念。我国学者将其归纳为NN三步教学模式,在科学教学中也可采用这种方法:第一步,揭示并重视学生头脑中的前概念。教学实践中教师可运用问卷调查、访谈、实验等方式使学生暴露前概念。第二步,创设情境,引发认知冲突。认知冲突是指人们原有认知与新感受到的事件或客体之间的对立性矛盾,学习者需对新信息与原有认知做出调整才能解决冲突。引发认知冲突主要有两种方式,一是教师直接呈现错误概念,二是通过小组讨论时个体的不同观点来引发。第三步“鼓励评价”。鼓励评价是指鼓励学生大胆地对新的观念进行阐述和评价,组织学生进行总结与交流。

4.概念图法。概念图是由美国诺瓦克在20世纪60年代开发的一种能形象表达命题网络中一系列概念含义及其关系的图解。概念图的理论基础是奥苏贝尔的学习理论,他认为有意义学习是以符号代表的新概念与学生认知结构中原有概念建立实质性的关系。概念图中节点代表概念,连线代表概念之间的关系。概念图能引导学生将新学习的概念和原有的概念进行沟通,它强调从事物的关系中把握概念本身。例如下面是关于宇宙空间与动植物关系的概念图:

从图中我们可以清楚明确地知道:地球自转导致昼夜交替,昼夜交替影响动植物的生活,白天能够看到太阳,白天里由于太阳影子的变化移动形成“太阳钟”等。这个图清晰展现了各个概念之间的关系,便于我们系统地理解和掌握科学概念。

总之,如何在科学教学中促进学生迷思概念的转变是新课程理念下科学教学的一个新的研究领域,对科学教学来说意义重大。小学科学教师在教学中应以学生的已有认知为基础,通过合理的教学设计优化使用教材、运用恰当的教学方法促进学生认知的同化与顺应,实现学生迷思概念的预防和转变。

参考文献:

[1]孙建新.新课程化学“迷思概念”的研究和教学对策[J].教师论坛,2006,(6).

[2]任英杰.Internet环境下改善迷思概念的策略探究[J].远程教育杂志,2007,(4).

[3]陈化来.科学课堂教学中迷思概念产生的原因及对策[J].科技创新,2010,(9).

[4]丁邦平.探究式科学教学:类型与特征[J].教育研究,2010,(10).

[5]刘占兰.加拿大小学科学教育对我们的启示[J].课程·教材·教法,2006,(12).

[6]任英杰.促进小学生“迷思概念”转变的POE策略及案例分析[J].基础教育研究,2008,(2).

[7]李高峰,刘恩山.前科学概念的进展研究[N].内蒙古师范大学学报,2007.

[8]袁维新.论基于模型建构的概念转变教学模式[J].教育科学,2009,(4).

概念转变教学理论篇7

关键词 化学前概念 相异构想

教学策略

前科学概念(前概念)亦称为日常概念,指“未经专门教学,在同其他人进行日常交际和积累个人经验的过程中掌握的概念,其内涵受狭隘的知识范围限制,往往被不适当地扩大或缩小”。学生正式学习某一学科前形成的前概念,有些与科学概念一致,有些与科学概念不相一致,这些偏离或背离科学概念的观点与看法即为“相异构想”。

已有研究表明,学生正式学习化学前已形成大量的相异构想,这些相异构想经正规化学学习后,一部分可以转变,还有一部分难以转化,并影响学生的进一步学习。因此,发现并采用一定教学方法帮助学生转变这些相异构想,一直是迫切需要解决的实际问题。笔者在探析初二学生化学前概念中相异构想成因的前期研究基础上,分析了影响学生相异构想转变的因素,并结合笔者的教学实践研究,提出了促进学生相异构想转变的教学策略。

1 相异构想形成特点及影响相异构想转变的因素

笔者前期研究结果表明,相关学科知识掌握的清晰度、日常生活经验丰富的程度、媒体信息的科学性等因素对学生化学相异构想的形成具有一定的影响,且由于思维方法不当、日常生活经验不足等原因,在信息的接收与内化过程中,学生的化学相异构想表现出简单枚举,错误推理,望文生义,主观臆断,思维定势,缺少辨证思维等形成特点。这些特点与学生的元认知水平、认识风格、学习兴趣与动机、教师教学方式、班级学习氛围等因素相互交织、共同制约主体相异构想的转变。

如元认知水平较高、学习兴趣浓厚、思维灵活、学习较扎实的学生,能主动将已有的知识与科学概念相比较,找出差异,正确定位科学概念,并有意寻找一些方法主动监控,调节自身认知过程;在已有观念不能解释新现象和解决新问题时,这些学生较易从新的角度看待问题,寻求问题的答案,从而为相异构想的转变提供更多机会与空间。而元认知水平较低或对学习不感兴趣、学习不踏实的学生,虽然有时能很快接受新概念,但由于仅仅凭外部信息和类似“这是科学的,我应该记住此概念”的潜意识自我强化做出判定,缺少深入有效的证明,因此一段时间后,有些学生记住的仍是自己的最初概念;这些学生发现自己认知错误的可能性较小,纠正相异构想的意识较低,相对前者相异构想较难转变。又如,在科学概念教学中,教师如果忽视学生已有的非科学观念,未采取适当方式引起学生对原有错误观点的不满,或未提供比学生原有的观点更为合适,包摄性更强的学习材料,也会影响学生相异构想的转变。

相对来说,学生通过观察或亲身经历并经抽象逻辑思维而形成的相异构想较难改变。如由于学生在日常生活情景中确实多次观察到“纸张、木柴等物质燃烧需要点燃”、“物质燃烧时有火”的现象等,因而学习化学前有37.0%的学生认为“燃烧需要用火去点燃”、“燃烧离不开火”,既使经过一年的化学学习后,仍有24.7%的学生持有这些观点;又如“金、银不会锈蚀”、“金属不能燃烧”等,均表现出较低的转化率。而学生因缺乏辨证思维形成的片面认识,或由于知识经验不足形成的相异构想,较易随辨证思维能力的提高和知识经验的不断积累而转变,如“化学物质是有害的、有毒的”、“空气中主要是氧气、二氧化碳”、“水能变油”等相异构想,表现出较高的转化率。

2 促进学生相异构想转变的教学策略

2.1引发学生形成认知冲突

学习时学生是基于原有认知结构理解新知识的,当运用已有经验不能解释新情景时,便引发认知冲突。根据波斯纳等人提出的观念改变模型,让学习者对当前的概念产生不满是促进学生观念转变的重要有效条件。为此,引发学生产生认知冲突,使学生对已有观念产生怀疑与不满,是转变相异构想的首要步骤。

(1) 通过合作与讨论引发认知冲突

在教学中,教师可引导学生与他人(同学或老师)就某一问题进行讨论或合作,在讨论或合作中,当学生发现他人观点与自己不同,且比自己的观点更适合解决问题时,往往会对自己的观念提出怀疑,产生认知冲突和求知心理,此时,学生较易接受新的、正确的科学观念。丹瑟里恩的一项研究也表明;学生在合作学习中学到的知识比单独学习时多得多,且合作学习有助于克服错误观念,能使学生超越自己的认识,通过他人与自己不同的观点,看到事物的其他方面,从而形成对事物更加丰富的了解。

(2) 通过揭示差异产生认知冲突

当学生看到自己认为“正确”的观点被老师宣布为“错误”时,易引起认识和情感的强烈反差,促使学生找出原有观点错误的原因。如针对学生“金属不能燃烧”的错误观点,教师可以在讲授金属有关特性或铁丝与镁条的燃烧时,呈现出错误观念,并给予纠正,再与学生讨论,总结出正确的观念与解释。

教学中教师也可直接呈现出易使学生产生错误观点的情景(绿色植物通过什么作用吸收二氧化碳,又通过什么作用将二氧化碳释放到大气中),激活学生头脑中与新信息有关的相异构想(如分不清光合作用与呼吸作用,光合作用与蒸腾作用等),然后教师给出正确答案,解释光合作用与呼吸作用、蒸腾现象的区别与联系。该方法在引发学生认知冲突的同时,也帮助学生清晰的理解概念间的关系。

(3) 通过创设问题情境引发认知冲突

设置与学生相异构想产生冲突的问题情景,可以让学生充分暴露错误观念,反思自身观点与科学观点之间的差异,激发探求新知的热情。

在教学中可以通过与日常生活联系紧密、能产生与学生原有观点相矛盾的化学实验暴露学生的错误认识,引发认知冲突。例如,可将“在透明玻璃装置中点燃一只蜡烛,并盖上玻盖”与“用聚光镜将阳光聚焦到一张纸上,确保一段时间以上”的实验对比,让学生分析2个实验的异同点,分析燃烧所需要的条件,并在交流讨论中让学生发现并转变“燃烧肯定要点燃”、“物质燃烧需要火”等的相异构想。又如教师可通过“水果电池使音乐卡片发出声音”的实验,激发学生思考电能的来源,通过实物情景促进学生转变“电池中的电是通过外界充进去的”、“电池本身带电”等相异构想。

历史上一些科学家或化学家勇于打破传统束缚、不懈追求科学真理的资料也可用与创设问题情景。如通过从古代阿那克西米尼认为空气是一种元素,到亚里士多德认为空气是一种物质,再经伽里略通过实验测知空气的重量,至舍勒、拉瓦锡等发现空气中的氧和其他成分的过程,让学生了解人类对空气组成认识不断发展的过程,同时引导学生将这些观点与自己的原有认识进行对比(如有些学生认为空气没有质量、空气中主要含有氧气和二氧化碳),找出自己与科学家之间的认识差异,促进相异构想的转变。

2.2促进学生的认知顺应

学生产生认知冲突后,如何促进学生的认知顺应是转变相异构想需要解决的第二个问题,为此,笔者根据学生形成相异构想的特点,提出了以下促进学生认知顺应的策略。

(1) 通过“对话”促进顺应

对话策略是以让学生产生认知冲突的内容为主题,让学生展开讨论或辩论的方法。在“对话”过程中,教师要引导学生充分发表自己的意见,认真聆听他人的观点,并时刻检验自己与他人观点的正误。例如以“二氧化碳的功与过”为主题,让学生各抒己见,不仅可以让学生认识二氧化碳常见性质与“可灭火、是光合作用的原料、可作气肥”等用途,也让学生了解“温室效应”、“大气污染”等危害,使学生在活跃的氛围中完善和转变头脑中原有的“二氧化碳对人类有害无利”、“二氧化碳是有毒气体”、“把空气中的二氧化碳除去后,空气质量会变好”等一些非科学认识。

(2) 加强方法渗透促进顺应

笔者的前期研究表明,许多相异构想的形成是因为学生缺乏一定的科学方法而导致。为此,教师在教学中渗透科学方法教育,引导学生认识科学方法的内涵与适用范围,有助于学生相异构想的转变。如使学生知道简单枚举法是一种不完全归纳法,所得结论并不一定可靠,需经过实践的检验;进行推理时,推理前提的正确性,是保证推理结果正确与否的必要条件之一;用类比方法解释新事物与新问题时,应确保两类研究对象在某些属性或特征上的真实相似,且相似属性与类推属性必须有本质的甚至必然的联系,才能使推论结果具有一定的正确性;有目的、有计划、有步骤的观察是获得更多信息的科学观察方法。

(3) 引导主动调控加强顺应

已有研究表明,学生的元认知水平与学习成绩之间呈正相关系。同样,学生相异构想的转变也需要学生去反思已有认识、调整已有思维方式,为此,教师应在教学中指导学生主动监控,促进认知顺应地完成。

确立学习目标是学生形成自我监控的重要方面。教师可指导学生认识具体的学习目标,理解自己所要达到的目标水平,并在教师引导下根据目标要求检查自己的学习结果,从而引发学习过程的自我监控;教师可以通过正误实验的设计,引导学生更加积极的思考,去探究事物的内在规律性;教师还可以针对某一知识的学习目标,通过学习提问单,如“看到此概念我想到了什么?”、“我的想法与老师所讲的概念有什么异同点?”等,使学生不断对自己的思维过程和状态进行总结和调整,在自我监控下使自己真正参与相异构想的转变;也可以通过化学日记等方法,将学生关于此知识的已有错误观点与科学观念联系起来,促进相异构想的转变。

2.3促进学生及时反馈

由于学生的一些相异构想根深蒂固,难以纠正,因此,了解学生相异构想的转变情况,并根据反馈信息进一步设计方案促进其转变是学生相异构想转变不可或缺的环节。在教学过程中,教师可通过指导学生建立化学档案袋、测评、绘制概念图等方法进行信息反馈,并在发现问题的基础上,进一步通过“引发认知冲突”、“促进认知顺应”的策略,巩固和加深学生对科学概念的有效理解。

转变学生相异构想的策略多且复杂,教学策略的选择也应视具体教学内容、不同学生相异构想形成的特点而定。笔者认为在众多策略中引发认知冲突、促进认知顺应、促进主动调控是学生相异构想获得根本性转变的关键因素,这些策略的使用,能使学生对自己的相异构想从潜意识转为有意识状态,从心理和行动上真正参与到相异构想的转变过程中。

参考文献

[1] 顾明远主编.教育大辞典-5.上海教育出版社,1996:264

[2] 李佳.中学生化学模糊概念的成因及其转变因素的研究.广西师范大学硕士研究生学位论文,1999:36-40

概念转变教学理论篇8

关键词:概念;概念改变;述评

本文将系统梳理有关概念改变的几种理论,讨论这些理论的特点。

一、不满和概念替换理论

Posner等人提出的概念改变模式在科学教育领域产生了巨大的影响。其概念改变的理论基础是皮亚杰(Piaget)的认知发展的动机理论,他认为要在儿童原有概念和要学概念之间,创设失衡、不满或者不一致,而解决这种认知冲突的努力会导致对新观念的“同化”和“顺应”过程。

Strike和Posner(1985)概念改变的模型扩展了Piaget通过同化和顺应学习概念的观点。他们描述了概念改变的四个条件:(1)首先 ,学习者对当前的概念产生不满,即当前的概念不能解释新的事件或者不能解决当前遇到的 问题;(2)新的概念必须是可理解的,学习者能明白新概念的含义,理解其意义,发现表征它的方式;(3)新概念必须是合理的,并能够与学习者所认同的其他概念相符;(4)新概念必须是富有成效的,不仅可理解、合理,而且对学习者来说,还必须有价值,能够解决其他概念所不能解决的问题,从而使学习者认为有必要花费时间和精力去学习。由Strike和Posner提出的概念改变理论的核心主张,就是在概念情境——概念生态中,新概念可被理解、判 断、获得或者拒绝。值得注意的是,有许多因素影响概念改变,而非仅概念自身。他们认为学 习者在概念改变的过程中可能经历停止、开始甚至沿原路退回等状态变化。

在这以后,Strike和Posner(1992)又修改了其概念改变的理论,扩展了概念生态的作用。他们认为,错误概念不是被人们明确表达的观点的产物,而是在概念生态中产生的。 他们提出稳定性的问题,认为错误概念是相对松散的、暂时的、不一致的;事实上,它们是 受概念生态的影响。另外他们还提出了概念结构的问题,并关注概念网络的系统本质。

Strike和Posner理论的重要性有两点:(1)对一些因素的关注,例如影响学习者形成概念生态的动机和目标;(2)在课堂教学中的应用。他们的理论已经成为大多数概念改变教 学的里程碑,但是该模型没有充分地提出如何建构相异的概念的过程,不过一旦概念改变过 程和机制的理论弄清楚,研究者要想改变别人的概念,就要返回到这个模型上。

二、知识建构理论

知识建构理论认为某一概念是嵌于稳定而复杂的其他概念的网络中,这些网络能够表征朴素的个人理论,而最基本的思维单元,如本体论和认识论的观点,构成了对因果的自我 解释,这些自我解释一起支持了个人的朴素理论,它将帮我们揭示普遍存在于科学学习的错 误概念。下面阐释两个知识建构理论。

(一)Vosniadou的理论

Vosniadou认为概念根植于并被限定在一个更大的理论结构中。它区分了两种不同水平的理论控制学习者的观念:朴素的框架理论和各种具体的理论。

Vosniadou提出框架理论不为意识所觉察;虽然意识不到,但框架理论限制学习者获得物 理世界的真实知识。它是由本体论和认识论假设组成的。另一方面,具体理论是意识可觉察 到的,并且由一套相互关联的命题组成,这些命题能描述物体可观察到的行为。也就是说, 具体理论是基于个体观察,还有教学信息,并在框架理论的假设限定下逐渐出现的。这两种 理论联合在一起构成了概念结构,学习者通过它们能建立对世界的因果解释。

Vosniadou区分了两种概念改变的方式:丰富和修正。前者被描述为在原有知识上新信息的增加,并且通过累加过程可以获得。后者是发生在新信息与具体理论或框架 理论不一致的时候,是学习者要实现的实质性变化。她认为,新信息和框架理论之间的不一 致比与具体理论之间的不一致更难于解决。

Vosniadou认为在修正的过程中有些概念很难改变,因为框架理论是解释的连贯系统,这些解释是以日常经验为基础,以多年的证据为依托的,从而形成相应的本体论和认识论 ,而概念是以本体论和认识论为根基的,所以概念改变都会引发框架理论系统的变化。这个 论断相似于Strike和Posner的概念生态的含义。学生未能学习某一概念,就是因为要学知识与框架理论之间存在不一致。当儿童力图把一些信息加到错误的原有心理结构上时,就会 产生不一致。错误概念就是学习者努力协调不一致信息块的结果,在这个过程中会产生混合 的模型。这种解释异常数据的尝试类似于解决认知冲突。

Vosniadou(1994)的实证研究表明:(1)存在一个概念获得的顺序;(2)概念结构的重要性就在于对知识获得过程的限定。这些结论引发了这样的理论假设,即概念改变是一 个渐进的,并能导致错误概念的过程。她们也认为,在概念改变过程中存在不同的发展阶段 :(1)起初的心理模型;(2)混合的心理模型——学习者力图将起初的模型和科学模型协调起来;(3)科学的心理模型。

最近,Vosniadou和Ioannides对原始模型作了两个主要的精致,首先,她们对概念改变的类型做了区分,表明概念改变可能是:(1)自发的,或者(2)基于教学的。前一种类型是源自在社会学习情境中丰富的观察所带来的一种变化,而非正式的科学教学,其中一个例 子就是语言学习,它是社会化的结果。后者是正式教学的结果,它要求建立混合的模型,力 图把科学教学协调到原有的理论中。第二,她们对Vosniadou关于精致过程的原有论断做了进一步阐释。元概念意识所起的作用被加强了,精致被看作“带有更系统、连贯和 解释力的理论框架”的发展。

(二)diSessa的理论

diSessa和Sherin(1998)非常关注概念形成和概念改变的过程和机制等更深入的问题。以朴素学习者占有空乏的因果模型这一假设为基础,理解物理概念的学习,提出了概念形 成的理论。他认为因果观点由现象本源(phenomenological primitives简称p-prim)组成, 现象本源是从一般的经验中抽取出来的,P-prims是特定知识成分的最小单元,并能产生解释 。p-prims直观地等同于物理定律,并构成了人们所见和解释世界的基础。因此,p-prims能 解释diSessa所称的因果网络的结构。而p-prims并不是概念自身,多个p-prims涉及到因果网络的创设。

因果网络近似符合人们直观期望的因果。他们认为:“因果网络大致是‘在观察背后的理论’的替代品,或者是蕴含在基于理论的种类观点中”(diSessa & Sherin)。因此 ,因果网络可被描述为用于理解世界的基于推论的解释,这反过来构成了人们理解世界的理论基础。他们通过一个结构成分,即联合种类,把这种解释机制与概念获得联系起来。为了理解这个复杂的成分交织情形,我们需要一些背景信息。

diSessa和Sherin首先认为所有概念都是不相同的。事实上,像“知更鸟”这样的概念不同于像“速度”或者“力”这样的概念,理解它们需要不同的认知过程。人们需要将前者分类到鸟的类似种类的概念中,人们需要将后者分到一个特殊种类的概念中,他们将其称为联合种类,这些联合种类由结构成分构成,结构成分执行两个明显不同的活动:(1 )围绕通过选择所“看”到的(称为“读出策略”)事物收集信息;(2)以已经提及的因果网络活动为基础。

第一部分,读出策略,或者信息收集,相当于一个隐喻的“看”,“看”的方式上的转 变被看作是概念改变的核心问题。他们表示:“在许多例子中,这种‘看’是学习的实质完成 ,并将在一定程度上依赖人们基本的知觉能力。此外,‘看’的这些形式有时涉及明确的策略和扩展的推论”。

因此,diSessa和Sherin把概念改变定义为在读出策略中和在因果网络中的不同变化的介入。他们同时还举例说明,有可能现有的读出策略会被逐渐组织起来,以不同方式使用。在因果网络方面,可能需要建构一个新的因果网络,或者可能需要发展和再组织一个的因果网络。

因果网络是学校中学习物理学科的困难源泉。因此他们建议:“在其他事情中,它(因果网络)需要更系统的组织起来,恒定和整合的观点可能在要使用的因果网络的组织和选择中起到作用”(diSessa和Sherin)。但是他们并没有阐释,在因果网络中发生了什么 样的变化?换句话说,如果我们要关注新的因果关系,需要什么填补这个空缺?要回答这个问题,我们必须转向Chi的概念改变的理论。

三、Chi的概念改变的本体类别理论

Chi等人(1994)建立了这样一个基本假设,学习者在学习概念的时候,可能已经将这些概念归到某一本体类别中。因此,概念改变就被定义为种类分配上的变化。据此,Chi的概念改变理论的最重要方面是概念从某一本体树种类重新分配到另一本体树种类中。在某一树的种类特征本体上不同于另一本体树的种类特征。

Chi的概念改变的理论(Chi te al.,1994)建立在三个假设的基础上:(1)一个认识论 假设,它是关于本体论上的分配和世界上实体本质的观点,由这一假设可以定义“相异”的标准;(2)一个形而上学的假设,它是关于特定科学概念的本质;(3)一个心理假设,它是关于学习者的朴素概念和揭示出的错误概念的分类。

Chi等人(2002)的概念改变理论有两个主要变化。第一,在错误概念移除上的难度;第二,种类的结构。她澄清了嵌于朴素理论中的概念结构的观点。此外,她明确承认朴素 理论和科学理论的假设是不相容的。她认为概念改变的主要挑战源自于这样的事实,“学生 可能缺乏什么时候需要转变的意识和可能缺乏转变后的另一种类”。她们假设,科学上适当 种类的缺乏会阻止学生进行必要的重新分类:“如果实现概念转变不可能,那么学生就不能 修改错误概念,这就是为什么某些错误概念比其他概念更难于修改的原因”。

Limon(2001)称:“尽管我们已经报告了一些积极的效果,可能使用认知冲突策略研究所得到的最突出的结论就是,学生缺乏效力去达到一个强大的概念重建,和随后深入理 解新的信息。有时,学生可以达到部分的变化,但是在某些案例中,教学介入后的短暂时期 内部分变化会消失。为什么即使学生意识到冲突,他们还如此抵抗变化?为什么学生能部分 修改观念和理论,而保持起初理论的核心成分?”。

Chi的概念改变理论恰能够回答这些问题,正如她所说:“问题是除非学生有一个不同种类,把概念分配到这个种类中,不然这种教学将不会有效。”

四、评述

从概念改变的理论研究中我们可以看到:第一,研究者越来越重视概念背后的东西,概念生态、因果网络、具体理论、框架理论、本体类别等等,其中有些描述具体的知识领 域的概念,如具体理论和因果网络等等,然而比较这几个理论的发展变化,研究者越来越认识 到有些从具体知识领域中抽取出来的更深层次的东西,如框架理论和本体类别等的重要性, 这些往往是概念难于改变的最根本原因。第二,概念改变并不仅仅是改变概念本身,还要 触及到支持概念的复杂的知识体系,有些概念非常难于改变,就是因为其背后有一个完整的 、连贯的、复杂的知识体系,所以对概念的理解和学习要放到与之相联系的复杂的知识网络中 。

参考文献:

[1]Chi M T H,Roscoe R D.The processes and challenges of conceptual chan ge.In:M.Limon and L.Mason(Eds).Reconsidering Conceptual Change:Issues in Theoryand Practice.Kluwer Academic Publishers,The Netherlands,2002,3-27.

[2]Chi M T H,Slotta J D,ds Leeuw N.From things to processes:A theory ofconceptual change for learning science concepts.Learning and Instruction,1994,4 :27-43.

[3]diSessa A..Knowledge in pieces.In:G forman & P Pufall(Eds.),Construc tivism in the computer age.Hillsdale,NJ:Erlbaum,1988.

[4]Limon M.On the cognitive conflict as an instructional strategy for c onceptual change:a critical appraisal.Learning and Instruction,2001,11:357-380.

[5]Strike K A,Posner G J.A conceptual change view of learning and under standing.In L.West and L.Pines(Eds.),Cognitive structure and conceptual change(P .211-231).New York:Academic Press.1985.

[6]Strike K A,Posner G J.A revisionist theory of conceptual change.In R .A.Duschl & R.J.Hamilton (Eds.),Philosophy of science,cognitive psychology,and e ducational theory and practice.New York:State University of New York Press,1992.

上一篇:法制教育总结讲话范文 下一篇:初中物理等效替代法范文