电动车控制器范文

时间:2023-12-04 11:23:01

电动车控制器

电动车控制器篇1

关键词:STC12C5410AD; 电动车; 无刷控制器; 检测

中图分类号:TP23 文献标识码:A

文章编号:1004-373X(2010)07-0208-03

Detection of Brushless Motor Controller in Electric Bicycles Based on STC12C5410AD

LI Bo, DENG Xiao-yan

(Department of Electrical and Electronics Engineering, Shijiazhuang Railway Institute, Shijiazhuang 050043, China)

Abstract: Along with the progress of urbanization, the traffic distance of people′s life is expanding. Instead of fuel vehicles and bicycles, electric bicycles have entered into households. The design is based on STC12C5410AD, which can test brushless motor controller of electric bicycles. The principles of system hardware are described and the diagram of software is designed. The experiments show that the system can basically achieve various detections of brushless motor controller of electric bicycles, including detections of brake systems, phase angle and phase sequence.

Key words:STC12C5410AD; electric bicycle; brushless controller; detection

0 引 言

伴随着城市化进程,人们生活的交通距离不断扩大,代替燃油汽车和自行车的电动车的普及大幅度的提高了电力资源的利用效率,促进了国民经济的健康发展。电动自行车以电力作动力,骑行中不产生污染,无损于空气质量。从改善人们的出行方式、保护环境和经济条件许可情况等因素综合来看,电动自行车目前乃至今后都有着广阔的发展空间。电动自行车所用直流电机分为有刷电机和无刷电机两种。其中有刷电机控制较简单,但其易磨损的电刷带来维修保养工作量相对较大、使用寿命相对较短等缺点。而直流无刷电机本身没有易磨损部件,电机寿命长,维修保养工作量小。但直流无刷电机采用电子换向原理工作,其控制过程比有刷电机复杂得多,因此对控制器质量的要求也高得多。

目前电动自行车采用的直流无刷电机都是三相电机,电角度有60°和120°两种。电机极数大部分为18极,也有16极、20极等。控制器根据霍尔反馈的电机电极位置,控制相应的功率驱动管的开通或关断,在定子中产生旋转磁场,驱动电机的转子转动[1-3]。

为了判断无刷控制器是否能够正常运行,也就是检测转把和刹车功能是否正常,判断控制器的角度是60°还是120°,并且确定绕组A,B,C相与位置信号a,b,c之间的对应关系,正确地将控制器与电机进行连接,现在很多的检测仪器都采用模拟电路,使得结果不是很精确,而且需要的电路也很复杂,成本很大。设计采用STC12C5410AD单片机作为控制芯片,大大简化了硬件电路,以软件编程来实现。

1 电动车无刷电机控制器简介

控制器由周边器件和主芯片(或单片机)组成。周边器件是一些功能器件,如执行、采样等,它们是电阻、传感器、桥式开关电路,以及辅助单片机或专用集成电路完成控制过程的器件;单片机也称微控制器,是在一块集成片上把存贮器、有变换信号语言的译码器、锯齿波发生器和脉宽调制功能电路以及能使开关电路功率管导通或截止、通过方波控制功率管的的导通时间以控制电机转速的驱动电路、输入输出端口等集成在一起,而构成的计算机片。这就是电动自行车的智能控制器。

控制器的设计品质、特性、所采用的微处理器的功能、功率开关器件电路及周边器件布局等,直接关系到整车的性能和运行状态,也影响控制器本身性能和效率。不同品质的控制器,用在同一辆车上,配用同一组相同充放电状态的电池,有时也会在续驶能力上显示出较大差别。

目前,电动自行车所采用的控制器电路原理基本相同或接近。有刷和无刷直流电机大都采用脉宽调制的PWM控制方法调速,只是选用驱动电路、集成电路、开关电路功率晶体管和某些相关功能上的差别。元器件和电路上的差异,构成了控制器性能上的不同[4]。

2 系统硬件电路设计

为了判断无刷控制器是否正常,测量控制器各个部分的输出信号是否符合标准,并且能够接收电机、转把、刹车的信号,判断这个控制器是否能实现其需要实现的功能,系统要检测控制器的转把和刹把是否有稳定的5 V电压输出,判断控制器的角度,以及判断霍尔控制线相序及与其对应的电机电源相序是否一致。只有位置传感器信号和绕组A,B,C正确连接才能使电机正常运行。图1为电路整体设计原理图,系统采用STC12C5410AD单片机作为主要控制芯片。STC12C5410AD系列单片机是宏晶科技生产的单时钟/机器周期(1T)的单片机,是高速、低功耗、超强抗干扰的新一代8051 单片机,指令代码完全兼容传统8051,但速度快8~12 倍,内部集成MAX810专用复位电路,4 路PWM,8 路高速10 位A/D 转换,专门针对强干扰场合电机控制[5]。

图1 电路整体设计

2.1 桥式整流电路

因为控制器工作需要的是直流电,所以需要加个整流电路。系统选用的是单相桥式整流电路。这种电路只要将四只二极管口连接成“桥”式结构,便具有全波整流电路的优点。

2.2 刹车与转把信号的检测

刹车信号高低电位的变化,是控制器识别电动车是否处于刹车状态,从而判断控制器是否给电机供电的依据。只要将刹车和转把信号的输出端接到STC12C5410AD单片机的A/D转换端P16和P17,便能检测输出是否正常[6-8]。

2.3 控制器角度与相序的判断

如图2所示,首先判断绕组电压A的输出,将两个光藕合器连到控制器的末级,与A的上下管并联起来,当A的上管导通时,A输出高电压,使下面的光耦导通,从而输出一个电压值,通过STC12C5410AD单片机的A/D转换端P11口送到单片机中;当A的下管导通时,A输出低电压,使上面的光耦导通,从而输出一个电压值,通过STC12C5410AD单片机的A/D转换端P10口送到单片机中。B和C用上面同样的接法[9,10]。在输出时没有直接输出,而是通过光耦隔离后才输出,原因如下:光耦合器的信号单向传输,输入端与输出端完全实现了电气隔离,输出信号对输入端无影响,抗干扰能力强、工作稳定、无触点、使用寿命长、传输效率高。

图2 相序检测

3 系统软件设计

3.1 总体设计流程图

总体设计流程图如图3所示。

测量控制器输入端阻抗,当其大于10 Ω时为正常,否则电源输入端短路。转把、x把、霍尔电源端的检测要保证输出电压大于4.5 V。控制器角度和相序的判断根据无刷真值表进行判断和检测,以下仅以控制器角度判断为例进行说明。

3.2 控制器角度判断程序设计

由表1可以看出当a,b,c都取“0”,控制器角度为120°的时候,A,B,C上下管都不导通;而控制器为60°时A的上管和B的下管导通,这样便能根据a,b,c都取“0”时,A,B,C的输出信号来判断控制器的角度。流程图如图4所示。

表1 输入、输出真值表

60°abc

120°abc

正向/反向使能电流检测

顶部驱动

ATBTCT

底部驱动

ABBBCB

010000XXX111000

000101110011010

图3 总体设计流程图

图4 角度判断流程图

4 结 语

系统设计采用STC12C5410AD单片机作为控制芯片,电路简单,测量精确,很好地满足了电动车无刷电机控制器检测的各项需求,能够检测控制器接转把和刹把端是否正常,能够判断控制器的角度,霍尔控制相序以及与其对应的电机电源相序是否一致。希望该设计在将来的应用中得到更好的改进和完善。

参考文献

[1]周志敏,纪爱华.电动自行车使用与维修技术问答[M].北京:人民邮电出版社,2006.

[2]谢炎民,刘孝伟,葛淇陪.电动自行车维修速成[M].福州:福建科学技术出版社,2006.

[3]许晓桢.电动自行车使用与维修――从入门到精通[M].郑州:河南科学技术出版社,2007.

[4]张琛.直流无刷电动机原理及应用[M].北京:机械工业出版社,1996.

[5]宏晶科技.STC12C5410AD系列单片机器件手册[EB/OL].,2007.

[6]潘新民,王燕芳.微型计算机控制技术[M].北京:高等教育出版社,2001.

[7]张友德.单片微型机原理、应用与实验[M].上海:复旦大学出版杜,1995.

[8]纪宗南.单片机器件实用手册输入通道器件分册[M].北京:北京航空航天大学出版社,2002.

[9]童诗白,华成英.模拟电子技术基础[M].3版.北京:高等教育出版社,2001.

电动车控制器篇2

1、电动车的电机按结构可分为两种,即有碳刷及换向器的电机(简称“有刷电机”)和没有碳刷靠霍尔元件进行换向的电机(简称“无刷电机”)。

2、其控制器也分为有刷控制器和无刷控制器两种,二者不可互换。有刷控制器的电路组成及原理请参见前文,下面通过实际电路讲述无刷控制器的工作原理。

3、举例48V/350W电动自行车无刷控制器电路原理。该控制器由CPU(PIC16F72)、2片74HC27(3输入或非门)、1片74HC04D(反相器)、1片74HC08D(双输入与门)和1片LM358(双运放)、6只大功率场效应管等组成,功率达350W。是一款比较典型的无刷电动车控制器,具有60°和120°驱动模式自动切换功能。

(来源:文章屋网 )

电动车控制器篇3

【关键词】电动自行车;充电器;UC3842;PLC控制

1.引言

在倡导“绿色环保、节能减污”的二十一世纪,电动自行车的研发不仅有效解决了当今世界能源危机和环境污染的问题,而且其安全、方便、省力和相对燃油汽车低成本的优点使电动自行车不断受到人们的青睐而广泛普及。

电动自行车充电器是为其蓄电池充电的装置,它的性能的好坏对蓄电池使用寿命的长短有着不可小觑的影响。已有研究发现:电池充电过程对电池寿命影响较大,绝大多数电池不是用坏的,是充电过程不合理而坏的[1]。由此,为延长蓄电池使用寿命,降低对电动自行车的经济投入和进一步促进电动自行车的推广使用,研制一种性能良好且能够在充电过程中对蓄电池起到保护作用的充电器成为自行车行业关注的焦点。基于此,本文就当前问题对充电器进行了合理的设计以满足实际需求。

2.充电器整体设计

目前,市场上推广的电动自行车大多数使用的是36V或48V的蓄电池,本文以36V蓄电池充电器为例进行分析设计。

2.1 基本电路组成

比较可用元器件自身性能,结合成本要求,本设计最终选择以UC3842为核心来制作充电器。

UC3842是高性能电流型PWM集成控制器,专为离线或DC/DC变换器应用而设计,提供一个只需最少外部元件而获得成本效益高的解决方案。图1为UC3842电路结构图。该集成电路能够微调振荡器而获得精确的占空比控制、一个温度补偿的基准电压、高增益误差放大器、电流取样比较器和适用于驱动功率MOSFET的大电流图腾柱输出[2]。此外它的保护特性包括:具有磁滞特性的电源电压和基准电压的欠压锁定、逐周电流限制、可编程输出静区时间和单脉冲计量锁定。与电压控制方式相比在负载响应和线性调整度等方面有很多优越之处:①微调振荡器频率控制精确,且振荡频率保证达到250kHz;②大电流推挽输出(驱动电流达1A),工作频率可达500kHz;③自动前馈补偿;④逐周电流限制PWM锁定;⑤具有欠压锁定电路和稳定的内部基准电压;⑥大电流图腾柱输出;⑦迟滞特性的电压锁定;⑧低启动工作电流(典型值为0.12mA)。

图1 UC3842内部结构图

36V铅酸蓄电池在正常充电时,对自身性能保护最好的充电方法是恒压限流式,该方法充电效率高,时间短,效果也好,重要的是有利于延长电池使用寿命[3]。图2是以UC3842为核心驱动的充电器电路图,该电路正可以实现恒压充电和限流充电控制两大功能,以满足良好的充电需求。

1)恒压充电控制

蓄电池先进行电压取样,之后与精确的参考电压值进行比较,然后通过控制脉冲的宽度来确定恒压充电的电压阈值。当输出电压偏高时,取样电压会因此超过参考电压,进而改变驱动信号的脉冲宽度,使滤波后的平均电压值下降,使充电器输出电压回到原来的值,从而达到稳压的目的。

2)限流充电控制

蓄电池放完电后处于欠压状态,当再次充电时,一开始电流会很大,这对蓄电池和充电器均有损坏,因此应加以限制。本设计电路可将电流转换为电压,利用UC3842及其相关元件控制脉宽。当电压超过设定值时,元器件会对输入脉冲脉宽进行一一控制,直到下一脉冲到来时自动置位,如此工作最终使输出电流降低至设定值,即达到恒流目的。

图2 以UC3842为核心驱动的基本电路组成图

2.2 PLC控制线路程序设计

以UC3842为核心驱动的充电器电路简单、成本低,充电中能够自动调节充电电压与电流,充电过程稳定,对蓄电池能够起到一定的保护作用。然而美中不足的是智能性有所欠缺,即电池满电后,不能自动断电,需要人为完成这一操作。而在实际中,当蓄电池充电完成后,如果不能及时拔除充电器,造成充电时间的过长,这仍能对电池性能有所损坏,进而影响使用寿命。鉴于此,本设计在以UC3842为核心驱动的充电器电路组成基础上设计一种基于PLC程序的控制电路(如图3)以达到电池满电后自动断电的效果,进一步保护电池,提高充电器智能性。

在该PLC程序设计中,首要工作是将蓄电池充电过程装换为PLC程序中计数器计数过程,当电池满电时,即是计数器达到最大值(设定值)。如图3中梯形图所示,当充电器接通电源后,通过点动控制使I0.0产生瞬时脉冲以便M0.1接通(电池开始充电),接着定时器T37开始工作,每1分钟,T37通电一次;当T37通电一次时,计数器C21计数一次,计数达到最大值时,内部电路接通一次,此刻立即复位;当C21接通时,C22计数一次;以上程序不断循环(电池电量不断增多)直至C22计数达到最大值(电池满电),此刻C22内部电路接通,报警器Q0.0通电响铃,而它的常开触点闭合,使C22复位;常闭触点断开,使M0.0断电,最终整个电路断电。(程序中假定10h电池充满电)

梯形图 语句表

图3 基于PLC设计程序的控制电路

与继电器控制线路相比,该PLC程序设计优点如下:①PLC采用存储器控制逻辑,灵活性和扩展性好;②PLC程序开关动作由无触点的半导体电路完成,体积小、寿命长、可维护性好、可靠性高;③PLC程序指令控制速度快,执行时间微秒数量级[4]。

通过以上两部分设计最终得到整体流程图如图4所示。

图4 系统流程图

3.结语

本文就充电器充电过程稳压限流、工作稳定和电池满电后电路自动断电两方面对其结构组成进行分析设计。然而,如何实现PLC控制线路中计数器计数与蓄电池电量增长的完美匹配却是有待解决的难点。虽然如此,但随着电动自行车行业的不断壮大、科学技术的不断进步以及创新能力的不断提高,我们坚信,一些技术困难终将被克服,充电器智能性将更上一个层次。

参考文献

[1]孙莉莉,雷永锋,郑菲.基于PICl6C73B的电动自行车充电器的设计[J].现代电子技术,2007,20:27-28.

[2]陈竹.电动自行车充电器原理与维修要点[J].电动自行车,2011,12:46-47.

[3]阴家龙,基于MC3842的电动自行车充电器的设计[J].现代电子技术,2005,18:15-16.

[4]王永华.现代电气控制及PLC应用技术(第3版)[M].北京:北京航空航天大学出版社,2013.

电动车控制器篇4

【关键词】电动汽车;四轮独立转向;最优控制

汽车四轮转向技术对于提高汽车的操纵稳定性及安全性有着十分重要的意义。从总体上讲,对于四轮转向技术,国内外学者做出了一些研究[1-3]。本文根据单轨二自由度汽车动力学模型建立四轮独立转向整车二自由度模型,以质心侧偏角恒等于零为目标设计前馈控制器,并引入参考模型,根据使性能指标函数最小的最优控制理论,设计最优控制器,并进行仿真分析与实验,验证了模型的准确性和控制器的良好品质。

1.四轮独立转向整车模型建立

2.四轮独立转向整车控制器设计

2.1 参考模型建立

理想四轮独立转向系统控制模型,应能保证四轮独立转向汽车的横摆角速度增益与传统的前轮转向汽车保持一致的同时又能满足转向时无侧滑,即质心侧偏角为零的要求。

在转向盘转角低频输入的条件下,横摆角速度对于前轮转角的响应可以简化为一阶滞后环节,即:

状态反馈增益矩阵K是在性能指标J最小的条件下求得的,而性能指标取决于加权矩阵Q和R。Q和R选取不同,会产生不同的控制效果,质心侧偏角和横摆角速度对于四轮转向系统至关重要,因此在选取加权矩阵时,在兼顾系统响应速度的同时,还应考虑质心侧偏角尽可能小,横摆角速度尽量符合参考模型理想值。Q中q1、q2取值的大小反映对状态变量中某一量的重视程度,R中R1、R2取值的大小决定了对于输入中某一量的控制程度。

2.4 四轮转向角的匹配

四轮模型的目标是控制四个车轮的转角(δ1、δ2、δ3、δ4),因此要解决从(δf、δr)到(δ1、δ2、δ3、δ4)的角度匹配问题。在计算转角分配时,为了简便,忽略轮胎侧偏角,根据阿克曼转角原理,确定δ1、δ2、δ3、δ4与δf、δr的关系如下所示:

3.动力学仿真分析

3.1 整车模型建立

在Matlab/Simulink中建立四轮独立转向系统仿真模型,如图1所示。

在整车控制框图中,U表示车速,SW为等效前轮转角(即将方向盘转角除以转向机传动比),车辆模型输出为质心侧偏角(框图中用SA表示)及横摆角速度(框图中用YV表示)。

3.2 仿真与实车试验分析

图2为方向盘角阶跃输入,幅值1.4rad,车速为1m/s工况下,车辆实际响应与仿真值对比图。

图3为方向盘正弦输入,幅值1.4rad,周期10s,车速为1m/s工况下,车辆实际响应与仿真值对比图。

从图5和图6可以看出,车辆在受到方向盘阶跃输入和正弦输入时,车辆的横摆角速度和车轮转角实际测量值虽然不稳定,有噪声干扰,但是其值与仿真值较为接近;质心侧偏角由横摆角速度值、侧向加速度值,以及采样时间解析计算而来,受采样间隔、传感器信号跳动,误差累计等一系列因素的影响,其实际值与仿真值有一定误差。

4.结论

(1)引入车辆参考模型,并以前后轮转角比例系数作为前馈控制参数,以最优控制器作为反馈控制器。

(2)将控制系模块与车辆模块联接,分析了在有转向轮转动滞后情况下车辆的转向特性。试验结果证实,设计的控制器,能很好的适用于四轮独立转向二自由度车辆模型。

参考文献

[1]王洪礼,张伯俊.汽车四轮转向系统的H∞控制[J].天津大学学报,2004,37(3):221-224.

[2]A.Higuchi,Y Saitoh.Optimal Control of Four Wheel Steering Vehicle.Vehicle System Dynamics,1993:397-410.

[3]Ossama Mokhiamar,Masato Abe.How the Four Wheels should Share Forces in an Optimum Cooperative Chassis Control.Control Engineering Practice,2006(14):295-304.

[4]刘战芳.4ws车辆的建模和控制方法的研究[D].合肥工业大学硕士学位论文,2008:28-32.

[5]卢艳楠,周建辉,等.基于ADAMS与Matlab联合仿真的4WD电动汽车模型建立[J].农业装备与车辆工程,2012,50(8):21-25.

电动车控制器篇5

[摘要]电子技术在现代汽车上应用越来越广泛,电子技术的应用对于改进汽车性能、提高行驶安全、降低污染、节约能源有着非常重要的作用。文章就现代汽车电子技术的应用、发展趋势及应用前景进行了综述。

[关键词]电子技术微处理器电子控制装置汽车传感器

随着微电子技术的不断发展,车辆中的电子自动化程度越来越高。可以说,机械技术构成了现代车辆的筋骨,电子技术则构成了现代车辆的神经中枢。汽车电子化的程度被看作是衡量现代汽车水平的重要标志,是用来开发新车型,改进汽车性能最重要的技术措施。增加汽车电子设备的数量、促进汽车电子化是汽车制造商夺取未来汽车市场的重要的有效手段。

汽车电子技术主要包括硬件和软件方面的内容:硬件包括微处理器及其接口、执行部件、传感器等;软件主要是以汇编语言及其他高级语言编制的各种数据采集、计算判断、报警、程控、优化控制、监控、自诊断系统等程序。

特别是微处理器的出现给汽车的电子自动化程度带来了革命性的变化,车辆上微处理器的使用数量激增,电子装置在整个汽车制造成本中所占的比例越来越大。例如,一些豪华轿车上,使用单片微型计算机的数量已经达到50个左右,电子产品占到整车成本的50%以上,微处理机将更广泛地应用于汽车安全、环保、发动机、传动系统、速度控制和故障诊断中,目前电子技术的应用几乎已经深入到汽车所有的系统。

一、电子技术在现代汽车中的应用

按照对汽车行驶性能作用的影响划分,可以把汽车电子产品归纳为两类:一类是汽车电子控制装置,汽车电子控制装置要和车上机械系统进行配合使用,即所谓“机电结合”的汽车电子装置;它们包括发动机、底盘、车身电子控制。例如电子燃油喷射系统、制动防抱死控制、防滑控制、牵引力控制、电子控制悬架、电子控制自动变速器、电子动力转向等,另一类是车载汽车电子装置,车载汽车电子装置是在汽车环境下能够独立使用的电子装置,它和汽车本身的性能并无直接关系。它们包括汽车信息系统(行车电脑)、导航系统、汽车音响及电视娱乐系统、车载通信系统、上网设备等。

1.在发动机上的应用

现代汽车发动机的基本功能没有根本变化,但引入了大量的电子控制装置,极大地改进了车辆的排放性能、燃油经济性和耐用性。发动机电子控制系统包括很多电子控制装置,电子燃油喷射和点火装置是其重要组成部分,除此外,还有自适应控制装置、智能控制装置及自诊断操作装置等。

现代汽车上,电子控制燃油喷射装置,因其优越的性能,已得到普及。这种新型燃油喷射装置可以自动保证发动机始终工作在最佳状态;电子点火装置(ElectronicSparkAdvance,ESA)由计算机、传感器及其接口、执行机构等部分构成。该装置可根据传感器送来的发动机各种参数进行运算、判断,然后进行点火时刻调节。在输出一定功率的条件下最大限度地节约燃油和净化空气。

各公司相继研制成功了多种新技术,并且投入了使用,取得了很好的效果。例如,由RobertBosch公司制造的计算机控制系统使用嵌入式微处理器技术实时监测发动机运转情况,确保喷射燃油量恰到好处,使燃油喷射量刚好满足要求,对清洁这些发动机大有帮助。

特别是电控直接喷射和共轨燃油系统两项技术的突破,催生了具有优良性能的新型柴油机的出现。这些新型柴油机电控、加速性良好、气味不浓也不产生烟尘、行程大并且耐用。

在通常的柴油机中,喷油泵在同一时间射出所有燃油,其结果就是产生柴油机标志性的乓乓的敲击声。在直接喷射时,燃料射入之前先有一小部分先行射入,这样当燃料射入时产生的敲击声会变得柔和。与此同时也可以降低燃烧温度,减少NOx(氮氧化物)的排放量。

共轨燃油系统的作用则在于它可以更好地控制燃油数量和喷射定时。共轨系统有一个高压泵,当喷油嘴开启时,高压使燃油产生很好的薄雾使得燃烧更加充分,同时还减少了尾气排放。

现代汽车的各种性能(燃油经济性、排放、驾驶性能和功率等)越来越好,而使这一切成为现实的正是电子技术与计算机辅助设计的结合。

2.在底盘上的应用

底盘电子控制系统包括很多电子控制装置,电子控制自动变速器(Electronic-C0ntrolledAutomaticTransmission,ECAT)是其重要组成部分。现在许多轿车的自动变速器是电子控制的,电子控制也就是微处理器控制。

自动变速器主要由液力变矩器和行星齿轮变速器组成,微处理器根据传感器输入信号和开关信号,通过电磁阀控制换档和变矩器锁止这两个工作过程,达到自动变档的最佳控制精度。发动机曲轴与变矩器涡轮之间通过离合器接合的装置也称为变矩器锁止,其作用是减轻变矩器涡轮与叶轮之间的打滑现象,改善燃油经济性。ECAT优点是加速性能好、灵敏度高、能准确地反映车辆行驶负荷和道路条件等。

自动变速器的电子控制装置是由信号输入系统、计算系统和控制信号输出系统这三部分组成。信号输入系统有:变速器输入速度传感器、变速器输出速度传感器、发动机冷却温度传感器、节气门位置传感器、发动机曲轴转速传感器、油温度传感器、歧管压力开关、制动开关等信号。这些信号反馈到ECU(在通用汽车上称为PCM-动力传动控制组件),在ECU进行计算然后输出控制信号,通过换档电磁阀、离合器电磁阀等控制换档和锁止动作。微处理器接到传感器反馈信号后,根据程序计算的结果发出控制信号接通变矩器的离合器电磁阀电源,驱使电磁阀启动,使离合器接合;如果切断离合器电磁阀电源则离合器分离。ECU是根据汽车行驶状态来操纵电磁阀通电开关开启或关闭的。当汽车速度比较慢或停止时,ECU不启动电磁阀,当汽车速度达到一定值时,ECU就会启动电磁阀使离合器接合。微处理器接到传感器反馈信号后,根据汽车车速、发动机转速及工作温度、节气门位置、歧管真空度、选档位置等输入信号参数选择换档。ECU根据即时变速杆的位置,对照参数计算选择最佳的档位位置,发出控制信号驱动换档电磁阀,令变速器换档。

通用、福特、丰田等等大厂商采用的自动变速器电子控制系统,根据与其连接的变速器和发动机的不同型号而不同,每个系统中的元件和系统的工作过程也随着不同的变速器而有所变化,但其基本的工作方式及基本部件还是一样的。

除此外,还有电子稳定智能控制装置(ElectronicStabilitvPro-gram,ESP)、电控悬架操作装置等。ESP将多种功能整合在一起,并在此基础上进行了扩展。与其他牵引力控制系统比较,电子稳定控制程序不但控制汽车驱动轮,而且可控制从动轮。通过安装在车辆上的轮速传感器、侧向加速度传感器和横摆角速度传感器,电子稳定控制程序能对车辆的状态进行实时监控,当感应到轮胎与地面失去附着力,车辆存在侧滑危险时,电子稳定控制程序会快速而有选择地对需要制动的车轮实施独立操作或降低发动机输出,以使车辆行驶方向尽可能保持与驾驶员的预期相一致,从而提升车辆在各种工况下的方向稳定性及可控性。

目前电控悬架,汽车的悬架系统一般是弹簧刚度和减振器阻尼特性不能改变的被动悬架,它不能根据使用工况和路面输入的变化进行控制和调整,故难以满足平顺性和操纵稳定性的更高要求5近年来,随着电控和随动液压技术的发展,弹簧刚度和减振器阻尼特性参数可调的电控主动和半主动悬架,在汽车上逐步得到应用和发展。

3.整车控制技术

整车控制技术包括车身电子控制、驾驶电子控制等系统。汽车车身电子控制技术所涉及的内容很多,主要包括对汽车照明灯和转向信号灯的电子控制、对电动座椅、电动门窗、电动门锁、自动雨刮等的电子控制以及多媒体系统等。目的是保证视野性、方便性、舒适性、娱乐性、通信功能等。目前车身电控技术呈现如下的发展趋势:进一步满足用户个性化的需求;先进的驾驶和乘坐信息系统,如车辆遥控检测、智能型防盗、乘座适应性控制、42V电子系统、环保设计系统等等。

传统的机械和液力驾驶控制系统由于结构的原因(间隙、运动惯量等),从控制指令发出到指令执行会有一定的延迟,这在极限情况下是不能允许的。电控驾驶控制系统是没有机械和液力后备系统的,电控驾驶控制系统主要由三部分组成:控制系统、执行系统、通讯系统。控制系统的功能是根据驾驶员的意图和车辆行驶状况,对执行器给出执行的设定值。执行系统的功能是在控制系统的控制下,完成具体的执行动作(转向、制动等)。驾驶电子控制技术在现代汽车中,已大量使用,完全取代传统的机械和液力驾驶控制系统是必然趋势。

4.主被动安全系统

汽车的操纵稳定性和安全性是衡量汽车性能的重要指标。电子控制技术的引入为汽车的稳定性和安全性提供了保障。

提高汽车的操纵稳定性,过去一直局限于通过改进轮胎、悬架、转向与传动系的性能来实现。随着计算机、传感器和执行机构的迅速发展,研发了各种显著改善操纵稳定性和安全性的电子控制系统如防抱死制动系统(Anti-LockBrakingSystem,简称ABS)、牵引力控制系统(TractionControlSystem,简称TCS,也称ASR)、四轮转向系统(4WS)、车辆动力学控制系统(VehicleDynamicControl,简称VDC,也称VSC、ESP)。其中,VDC是在ABS和TCS的基础上,增加转向行驶时横摆运动的角速度传感器,通过ECU控制各个车轮的驱动力和制动力,确保汽车行驶的横向稳定性,防止转向时车辆被推离弯道或从弯道甩出。

轮胎压力检测系统(TirePressureM0nit0ringSystem,简称TPMS)是在每一个轮眙上安装高灵敏度的传感器,在行车状态下实时监视轮胎的各种数据,通过无线方式发射到接收器,并在显示器上显示各种数据,任何原因(如铁针扎入轮胎、气门芯漏气)等导致的轮胎漏气、温度升高,系统都会自动报警,从而确保行驶中的安全,延长轮胎的使用寿命。

为了保证行车安全,安全气囊和座椅安全带控制系统是必不可少的。安全气囊的合理触发以及座椅安全带的及时束紧,需要安全系统对行驶状况的及时监测和判断。安全气囊和座椅安全带控制系统将采用越来越多的先进电子传感器、控制芯片以及电子控制装置。

二、电子技术在现代汽车中的发展趋势

随着高性能传感器、微处理器的研制成功以及网络、总线技术的完善,汽车电子技术将向集中综合控制和网络化方向发展。

1.集中综合控制

目前汽车电子技术向集中综合控制方向发展。例如,将发动机管理系统和自动变速器控制系统,集成为动力传动系统的综合控制(PCM);将制动防抱死控制系统(ABS)、牵引力控制系统(TCS)和驱动防滑控制系统(ASR)综合在一起进行制动控制;通过中央底盘控制器,将制动、悬架、转向、动力传动等控制系统通过总线进行连接。控制器通过复杂的控制运算,对各子系统进行协调,将车辆行驶性能控制到最佳水平,形成一体化底盘控制系统(UCC)。汽车的机械结构还将发生重大的变化,汽车的各种操纵系统向电子化和电动化发展,实现“线操控”。用导线代替原来的机械传动机构,例如“导线制动”、“导线转向”、“电子油门”等。

随着汽车电子装置越来越多,消耗的电能正在大幅度地增加。现有的12伏动力电源,已满足不了汽车上所有电气系统的需要,汽车12伏供电系统需向42伏转化。今后将采用集成起动机-发电机42伏供电系统,发电机最大输出功率将会由目前的1千瓦提高到8千瓦左右,发电效率将会达到80%以上。42伏汽车电气系统新标准的实施,将会使汽车电器零部件的设计和结构发生重大的变革,机械式的继电器、熔丝式保护电路将被淘汰。

2.网络化

汽车上的电子电器装置数量急剧增多,为了减少连接导线的数量和重量,网络、总线技术十分重要。集中综合控制要求有一个庞大而复杂的信息交换与控制系统,车用计算机的容量要求更大,计算速度要求更高。采用高速数据传输网络日益显得必要。光导纤维可为此传输网络提供传输介质,以解决电子控制系统防电磁干扰的问题。通讯线将各种汽车电子装置连接成为一个网络,通过数据总线发送和接收信息。电子装置除了独立完成各自的控制功能外,还可以为其他控制装置提供数据服务。由于使用了网络化的设计,简化了布线,减少了电气节点的数量和导线的用量,使装配工作更为简化,同时也增加了信息传送的可靠性。通过数据总线可以访问任何一个电子控制装置,读取故障码对其进行故障诊断,使整车维修工作变得更为简单。

三、结束语

汽车电子技术的应用将使汽车更加智能化和舒适。智能汽车装备有多种传感器,能够充分感知驾车者和乘客的状况,交通设施和周边环境的信息,判断乘员是否处于最佳状态,车辆和人是否会发生危险,并及时采取对应措施。今天,社会进入了信息网络时代,汽车已不仅仅是一种代步工具,人们已可以在汽车上收听广播,打电话,上互联网,处理工作。随着数字技术的进步,具有信息处理、通讯、导航、防盗、语言识别、图像显示和娱乐等功能的车载计算机多媒体系统的开发,汽车也将步入多媒体时代。可以预见到的将来,汽车装置自动导航和辅助驾驶系统,驾驶员可把行车的目的地输入到汽车电脑中,汽车就会沿着最佳行车路线行驶到达目的地。人们可以通过语言识别系统操纵着车内的各种设施,一边驾驶着汽车,一边欣赏着音乐电视,还可上网预定饭桌、机票等。

[参考文献]

[1]魏万云:《浅谈当代电子技术的发展》,《中国科技信息》2005年第5期。

[2]张凡、殷承良:《现代汽车电子技术及奠在仪表中的应用》,《客车技术与研究》2006年。

[3]刘艳梅:《电子技术在现代汽车上的发展与应用》,《中国科技信息》2006年第1期。

[4]陶琦:《国际汽车电子技术纵览》,《电子技术与应用》2005年第5期。

电动车控制器篇6

关键词:地铁列车;司控器;故障;电路;改进

引言

司机控制器(简称司控器)是用来操纵地铁车辆运行的主令控制器,是通过控制电路的低压电器间接控制主电路的设备。广州市轨道交通四号线列车在运行过程中,曾多次出现司控器控制手柄稍微偏离0位,而处于临界状态,导致列车可以实现ATO牵引,但无法响应ATO制动,造成列车停车制动距离过大,存在较大的运营安全隐患。

1司控器结构原理及其临界状态分析

广州市轨道交通四号线列车采用S355F司控器,司控器的面板上有控制手柄、换向手柄两种可操作机构,如图1所示。控制手柄有牵引区、0位、制动区、快速制动位;换向手柄有“向前”“0”“向后”三个档位。司控器的控制手柄0位、牵引最大位、制动最大位、快速制动位均有定位,这些档位之间为无级调节,通过转动同轴的驱动电位器来调节输入到电子柜的电压指令,从而达到调节牵引力和制动力的目的。换向手柄每个档位均有定位,可稳定在相应的档位中。控制手柄、换向手柄和机械锁之间相互机械联锁,即控制手柄在0位时,换向手柄方可操作;换向手柄在非0位时,控制手柄方可操作;换向手柄只有在0位时,机械锁方可锁闭司控器。列车ATO模式驾驶时,司控器控制手柄应处于0位,如图2所示。如果此时将控制手柄往前推一点点,司控器处于牵引位与0位的临界位置,但又未触发牵引,司控器控制手柄将处于一个特殊的状态,即临界状态,如图3所示。司控器控制手柄出现临界状态的原因为司控器控制手柄未置于完全垂直位置,造成了司控器行程开关动作的不一致。行程开关动作不一致则是因为行程开关的伸缩臂、滚轮及安装存在微小的尺寸误差,而这一轻微误差目前仍无法避免。

2故障原因分析

广州市轨道交通四号线列车牵引制动控制回路如图4所示。正常情况下,司控器控制手柄位于0位时,行程开关S21、S24均保持闭合状态,列车316线得电,惰行位继电器NPR得电。ATO模式运行时,司控器行程开关S21、S24闭合,列车316线和339线均得电,车辆显示屏和信号显示屏均显示ATO驾驶模式。

3改进方案

针对上述分析,采用自动列车运行模式(ATOMR)继电器的一对常开触点对司控器S21行程开关进行并联改进(见图4)。司控器S21行程开关导通时,列车通过316线检测ATO驾驶模式,同时接收ATO制动指令。ATO模式下ATOMR继电器得电,其常开触点闭合,如果司控器控制手柄处于临界状态,S21行程开关异常断开,可通过ATOMR继电器的触点自动短接S21行程开关,保证316线得电,确保409线正常得电,列车可以接收并执行ATO制动指令。利用ATOMR继电器的常开触点进行并联改造,可以保证ATO模式下列车的正常功能;相比直接采用硬线进行并联的方案,更加可靠;且改造不需要增加新的继电器,改造成本较低。列车ATO牵引和ATO制动正常。当司控器控制手柄处于临界状态时,司控器行程开关的动作会出现不同步,具体表现为:一方面,S21行程开关跳开,列车316线失电,制动指令线409线无法得电,列车无法响应ATO制动,且车辆显示屏显示人工驾驶模式;另一方面,S24行程开关保持闭合,列车339线得电,NPR继电器得电给OBCU(车载控制单元)ATO允许信号,OBCU输出信号激活ATO模式,信号屏显示ATO驾驶模式。

4结束语

通过对司控器电路的改进,有效地解决了司控器控制手柄处于临界状态时列车无法响应ATO制动的安全隐患,对保证列车安全运行具有重要的意义。目前广州市轨道交通四号线列车已经完成了相应的改造,列车运行中未再出现临界状态故障。同时在四号线延长线新车电路设计中对控制电路进行了相应优化,消除了该故障隐患。

参考文献:

[1]广州市轨道交通四、五号线直线电机车辆说明书[G].青岛:南车四方机车车辆股份有限公司,2008.

[2]彭宝林,林平.新型轨道交通司机控制器研究[J].机车电传动,2014(2):58-61.

[3]马林森.轨道交通列车司控器概述[J].城市轨道交通研究,2008(8):73-76.

电动车控制器篇7

1矿用无轨胶轮车电气设备分析

无轨胶轮车需要一套电气控制装置来驱动并控制车上的电气设备。这些电气设备一般可分为电启动设备、信号照明设备、声光报警设备、辅助电气设备等。电启动设备主要有启动电机,信号照明设备主要有倒车灯、刹车灯、左右转向灯、远近光灯、预热、信号灯等,声光报警设备主要有倒车声光报警器、电喇叭等,辅助电气设备主要有喷水、雨刮、暖风、等[3]。一辆完整的无轨胶轮车还需配备电源、电子仪表等电气设备,电源供电、仪表是显示参数,不属于本文讨论的控制范畴,所以暂不做讨论。为了实现防爆无轨胶轮车电气设备的控制,需要做如下几个方面的设计。(1)控制信号采集。各个电气设备都需要根据对应的控制信号实现动作,控制信号主要来源于对驾驶员动作的检测以及液压回路压力的检测,产生一系列的控制信号命令。(2)信号处理及开出控制。通过单片机处理采集到的控制信号,映射到继电器开出,通过继电器开出控制相应的电气设备工作。(3)电启动控制车辆的的启动电机在启动时所需的电流较大,所以需要设计独立的电启动控制箱,实现车辆电机的正常启动。

2电气控制装置设计

2.1电气控制装置总体规划

根据前文分析,整个装置主要由信号采集、信号处理及开出控制、电启动控制等组成。其控制方式如图1所示。图1电气控制装置总体规划驾驶员通过手柄式组合开关产生一系列控制信号,通过CAN总线传输给控制箱;液压回路的压力开关采集的控制信号通过开关量信号传输给控制箱;控制箱通过继电器输出控制相应的电气设备工作,启动信号由手柄式组合开关发出的CAN命令,经过控制箱继电器给出启动信号,再由电启动箱控制启动电机。

2.2控制信号采集的实现

控制信号采集主要有两类,一类是驾驶员的直接动作命令,如拨动左右转向灯等;另一类是液压回路的开关量信号,如制动压力、倒车开关等。驾驶员的直接动作命令通过“手柄式组合开关”采集触点,在其内部放置采集电路板,利用单片机分析动作触点并发出不同的CAN总线信号。液压回路的开关量信号则采用“压力开关传感器”采集,根据不同车型的液压回路的压力点,来定制压力开关传感器的动作点,传感器输出开关量信号。

2.3采集信号处理及开出控制的实现

采集的两类信号,无论是“CAN总线信号”还是“开关量信号”都传输至控制箱,控制箱由信号处理及继电器开出控制两部分组成,CPU板处理输入信号,控制相应的继电器动作,实现开出控制,每一个继电器开出对应一个电气设备。根据车载电气设备工作时所需的功耗,选择继电器的输出节点容量为DC24V/5A,而控制箱内有多个继电器输出,根据防爆要求,当总功率超过250W时,需分腔设计[4]。控制箱的原理图如图2所示。

2.4电启动控制的实现

有相当一部分胶轮车采用电启动方式启车,如防爆皮卡车和指挥车等,启动电机的功率主要有2.8kW、3.7kW、5.5kW以及7kW等,使用最多的是5.5kW的启动电机。启动电机为3线制,其中2线为电源线,工作时最大冲击电流可达到300A左右,另一根线作为启动电机的控制线,工作时电流约5A左右。电启动箱控制启动电机的工作原理如图3所示。当手柄式组合开关接通“ON”档,K1继电器得电动作,启动电机有电;当手柄式组合开关接通“START”档,K2继电器得电动作,启动电机,进而启车。根据启动电机的工作特性,选择相应的继电器,其中一路继电器输出接点容量为DC24V/300A,另一路继电器输出接点容量为DC24V/5A[5]。电启动箱工作时的总功率超过250W,所以也必须分腔设计。

3实例应用

在江阴某公司的皮卡车上,我们设计了这样一套电气控制装置:驾驶员拨动手柄给出控制信号接入控制箱,刹车压力开关采集刹车信号接入控制箱;控制箱连接车载电气设备,包括左右转向灯、远近光、倒车灯、刹车灯、倒车灯、倒车声光报警器、断油阀、断气阀、喇叭、喷水、雨刮、暖风等,由于此皮卡车所需控制电气设备较多,故本装置采用了2台控制箱级联的方式,分别控制不同的电气设备,通过CAN通信线实现级联,用主令开关同时控制2台控制箱的供电;电启动箱根据控制箱给出的通电控制触点和启动控制触点信号,控制启动电机;整车系统由皮卡车已经装配的电池箱及调节器供电,车启动后调节器对电池箱充电。此皮卡车已装配成功,此套胶轮车电气控制装置应用到了实际,如图4所示。

4结束语

从矿用无轨胶轮车应用的实际情况出发,在分析无轨胶轮车车载电气设备的基础上,结合煤矿车载设备应用环境,设计了矿用无轨胶轮车电气控制装置。该装置能实现无轨胶轮车的电启动设备、信号照明设备、声光报警设备、辅助电气设备等的控制。装置中的手柄式组合开关相比于隔爆开关大大节省了安装空间,并且美观实用。装置中的控制箱可增减配置,对于开出控制数量较多的无轨胶轮车,可用多个控制箱级联使用。装置中电启动箱由于控制启动电机时功率较大而单独设计。目前,该无轨胶轮车电气控制装置已在防爆皮卡车、指挥车等无轨胶轮车上使用,装置运行稳定可靠,解决了矿用无轨胶轮车整车电气控制的难题。

电动车控制器篇8

汽车维修论文格式

一、概述

在现代汽车上,电子技术的应用越来越广泛。随着汽车工业与电子工业的不断发展,今天的汽车已经逐步进入了电脑控制的时代。车身电器与电子设备是汽车的重要组成部分,其性能的好坏将直接影响到汽车的动力性、经济性、可靠性、安全性、排气净化及舒适性。计算机技术与电子技术广泛地应用于汽车,几乎已经深入到汽车所有的系统,大大推动了汽车工业的发展。

目前,国际汽车巨头纷纷将更多的电子信息技术设备装备到其整车中,在国外,中高档轿车采用的电子信息设备已经达到30%~50%,在一些高档车上,这个比率还要高。在电子信息技术设备供应商方面,也纷纷将下一个经济增长点定位在汽车电子产业上。摩托罗拉、英特尔、微软、德州仪器、飞利浦、西门子等这些过去为其他行业和产品提供技术支持的厂商,早已经做好了准备,有些产品已经为汽车提供了新的“动力”。

二、电子技术的应用

(一).电子技术在发动机上的应用

发动机电控技术可分为电控汽油喷射、电子点火、怠速控制、废气再循环控制、增压控制、故障自诊断、安全保险、备用控制以及其他控制技术。

1.电子控制喷油装置

在现代汽车上,机械式或机电混合式燃油喷射系统已趋于淘汰,电控燃油喷射装置因其性能优越而得到了日益普及。。电子控制燃油喷射系统是以空燃比作为主要的控制目标。通过电子控制器对各种不同传感器送来的数据进行判断和计算来控制喷油器以一定的油压,正确、迅速地把汽油直接喷入发动机汽缸。电子控制器主要是根据进气量的多少来控制喷油量的。电子控制燃油喷射系统按喷油器的喷射位置不同可以分为单点喷射系统(SPI)和多点喷射系统(MPI)两种。多点喷射系统是每个汽缸安装一个喷油器,而单点喷射系统是整个系统中只有一个或两个喷油器,安装在节气门的上方。与传统的化油器相比,电子控制燃油喷射装置的最大特点是,在获得最大功率的同时,最大限度地节油和净化排气,因此是节约能源,降低排污的有效措施。

2.电子点火装置

微机控制的电子点火系统主要由与点火有关的各种传感器、电子控制器(ECU)、点火电子组件、点火线圈、配电器、火花塞等组成。

其中传感器用来不断地收集与点火有关的发动机工作状况信息,并将收集到的数据输入电子控制器,作为运算和控制点火时刻的依据。电子点火系统中所用的传感器主要有曲轴转角传感器、曲轴转速传感器、曲轴基准位置传感器、进气管负压传感器、爆震传感器、空气流量及进气温度传感器等。其中前两种传感器是用来检测发动机转速信号的,而发动机转速信号是微机用来确定点火提前角的最主要依据。由其他传感器检测得到的数据主要用于对点火提前角和点火时刻进行修正。

图1-1某车型电子点火系统

电子控制器也叫微机控制器,它是电子点火系统的中枢,用来接收传感器收集到的信号,并且在按照一定的程序进行判断、计算后,给电子点火组件输出最佳点火时刻和初级电路导通时间的控制信号。微机控制的电子点火系统则可使发动机在任何工况下都处于最佳的点火时刻,从而更进一步改善发动机的动力性和经济性,降低排气污染。

3.怠速控制装置

怠速控制系统是电控发动机的一个子系统,主要由传感器,ECU及执行机构组成。怠速控制均采用发动机转速反馈法的闭环控制方式,即发动机转速传感器将发动机的实际转速和目标转速进行比较,根据比较的差值确定使发动机达到目标值的控制量,并通过执行机构对发动机怠速转速进行校正。

图1-2某车型怠速控制装置

车速传感器信号和节气门位置传感器信号用于判断发动机是否处于怠速工况,ECU便确认发动机处于怠速工况,并启动怠速控制系统实施怠速控制。冷却液温度传感器信号,空调压缩机接通信号,自动变速器档位信号,蓄电池电压等信号用来确定发动机怠速时的目标转速.不同怠速条件下的目标转速值已预先存储在ECU的存储器中.发动机转速信号作为怠速控制系统反馈信号,用来计算控制量的大小。ECU一般不单独设置,是由燃油喷射系统,点火系统等共用一个,这使系统简单化,提高控制精度。执行机构的作用是调节发动机进气量,实现怠速控制.

4.废气再循环控制装置

汽车发动机作为一个大气污染源,应该采取各种有效措施予以治理和改造。关于汽车发动机排气的控制和净化问题,各国都进行了大量研究工作,研制了不少的技术措施。这些方法大致可分为发动机本身的改进和增加排放净化装置。而由于发动机本身的改进,较难满足日益严格的排放法规和降低成本的要求,因此现代汽车采取了多种排放控制措施来减少汽车的排气污染,如三元催化转换、废气在循环(EGR)、活性碳罐蒸发控制系统等。废气在循环简称为EGR(ExhaustGasRecirculation)系统,是目前用于降低NOx排放的一种有效措施。

图1-3某车型废气再循环控制装置

它是将一部分排气引入近期关于新混合气混合后进入汽缸燃烧,从而实现在循环,并对送入进气系统的排气进行最佳控制。普通电子式废气在循环(EGR)控制系统由废气再循环电磁阀、节气们位置传感器、废气再循环控制阀、曲轴位置传感器、发动机ECU、冷却液温度传感器、启动信号等组成。

5.增压控制装置

发动机中增压系统的安装日渐增多,其目的是为了提高进气效率。电控增压系统的研制开发是增压技术又跨上一个台阶。目前,应用较普遍的是电控废气涡轮增压系统,其由切换阀、动作器、空气冷却器、空气滤清器、ECU、释压电磁阀组成。通常增压器是为了与发动机的低速小负荷工况相匹配的而设计的,当发动机大负荷运行时容易导致增压器超速运行而损坏,为此电控废气涡轮增压系统专门在排气管中废气涡轮使出增加了一旁通气道,由ECU对切换阀的开度大小进行调整。

6.故障自诊断系统

现代轿车发动机的电控系统中,ECU一般都带有故障自诊断系统,自行检测、诊断发动机控制系统各部分的故障。对于传感器,可通过检测器信号是否超出规定范围来直接进行判断;对于执行器,则在起初是电路中增设专门回路来实现监测,对于ECU本身,也有专用程序进行诊断。故障自诊断系统一般由电子控制器(ECU)中的识别故障及故障运行控制软件、故障监测电路和故障运行后被电路等组成。

7.安全保险装置

如果ECM的输入信号不正常,他将按照内存中存储的固定喷油持续时间和固定点火提前角控制发动机,使发动机能够继续维持工作。ECM本身出故障时,装有备用控制系统的发动机能继续对喷油和点火进行控制,使车辆继续行驶。

8.发动机传感器

发动机传感器是指在发动机上使用的传感器。由于电子技术特别是微型计算机的发展,促进了传感器在发动机上的应用,从而也使发动机的整机性能有了极大的提高。发动机电子控制用传感器主要有空气流量传感器、曲轴位置/凸轮轴位置传感器、发动机转速传感器、爆震传感器进气温度传感器、冷却液温度传感器、氧传感器等。发动机电子控制技术的发展与传感器技术的发展是密不可分的。目前发动机传感器的种类越来越多,可靠性和净度不断提高,并向集成化、数字化和智能化方向发展。

二.电子技术在底盘上的应用

1.电控自动变速器

电控自动变速器可以根据发动机的载荷、转速、车速、制动器工作状态及驾驶员所控制的各种参数,经过计算机的计算、判断后自动改变变速杆的位置,从而实现变速器换档的最佳控,即可得到最佳挡位和最佳换挡时间。

图1-4奥迪A4自动变速器

它的优点是加速性能好、灵敏度高、能准确反映行驶负荷和道路条件等。传动系统的电子控制装置,能自动适应瞬时工况变化,保持发动机以尽可能低的转速工作。电子气动换挡装置是利用电子装置取代机械换挡杆及其与变速机构间的连接,并通过电磁阀及气动伺服阀汽缸来执行。它不仅能明显地简化汽车操纵,而且能实现最佳的行驶动力性和安全性汽车维修毕业论文格式汽车维修毕业论文格式。

2.防抱死制动系统(ABS)

该系统是一种开发时间最早、推广应用最为迅速的重要安全性部件。它通过控制防止汽车制动时车轮的抱死来保证车轮与地面达到最佳滑移(15%~20%),从而使汽车在各种路面上制动时,车轮与地面都能达到纵向的峰值附着系数和较大的侧向附着系统,以保证车辆制动时不发生抱死拖滑、失去转向能力等不安全状况,提高汽车的操纵稳定性和安全性,减小制动距离。驱动防滑系统(ARS)也叫牵引力控制系统(TCS或TRC)是ABS的完善和补充,它可以防止启动和加速时的驱动轮打滑,既有助于提高汽车加速时的牵引性能,又能改善其操纵稳定性。

现代ABS尽管采用的控制方式、方法以及结构形式各不相同,但除原有的传统的常规制动装置外,一般ABS都是由传感器、电子控制器和执行器三大部分组成。其中传感器主要是车轮转速传感器,执行器主要指制动压力调节器。

1、车轮转速传感器

车轮转速传感器是ABS中最主要的一个传感器。车轮转速传感器常简称为轮速传感器,其作用是对车轮的运动状态进行检测,获得车轮转速(速度)信号。

2.电子控制器

ABS的电子控制器(ElectronicControlUnit),常用ECU表示,简称ABS电脑。它的主要作用是接收轮速传感器等输入信号,计算出轮速、参考车速、车轮减速度功、滑移率等,并进行判断、输出控制指令,控制制动压力调节器等进行工作。另外,ABS电脑还有监测等功能,如有故障时会使ABS停止工作并将ABS警示灯点亮。

3.制动压力调节器

制动压力调节器是ABS中的主要执行器。其作用是接受ABS电脑的指令,驱动调节器中的电磁阀动作(或电机转动等),调节制动系的压力,使之增大、保持或减小,实现制动系压力的控制功能。

由于ABS是在原来传统制动系统基础上增加一套控制装置形成的,因此ABS也是建立在传统的常规制动过程的基础上进行工作的。在制动过程中,车轮还没有趋于拖死时,其制动过程与常规制动过程完全相同;只有车轮趋于抱死时,ABS才会对趋于抱死的车轮的制动压力进行调节。

通常,ABS只有在汽车速度达到一定程度(如5km/h或8km/h)时,才会对制动过程中趋于抱死的车轮的制动压力进行调节。当汽车速度降到一定程度时,因为车速很低,车轮制动抱死对汽车制动性能的不利影响很小,为了使汽车尽快制动停车,ABS就会自动终止防抱死制动压力调节,其车轮仍可能被制动抱死。

在制动过程中,如果常规制动系统发生故障,ABS会随之失去控制作用。若只是ABS发生故障、常规制动系统正常时,汽车制动过程仍像常规制动过程一样照常进行,只是失去防抱死控制作用。现代ABS一般都能对系统的工作情况进行监测,具有失效保护和自诊断功能,一旦发现影响ABS正常工作的故障时,将自动关掉ABS,恢复常规制动,并将ABS警示灯点亮,向驾驶员发出警示信号,提醒驾驶员及时进行修理。

图1-5ABS系统图

ABS系统制动过程中,ABS电控单元(ECU)3不断地从传感器1和5获取车轮速度信号,并加以处理,分析是否有车轮即将抱死拖滑。如果没有车轮即将抱死拖滑,制动压力调节装置2不参与工作,制动主缸7和各制动轮缸9相通,制动轮缸中的压力继续增大,此即ABS制动过程中的增压状态。如果电控单元判断出某个车轮(假设为左前轮)即将抱死拖滑,它即向制动压力调节装置发出命令,关闭制动主缸与左前制动轮缸的通道,使左前制动轮缸的压力不再增大,此即ABS制动过程中的保压状态。若电控单元判断出左前轮仍趋于抱死拖滑状态,它即向制动压力调节装置发出命令,打开左前制动轮缸与储液室或储能器(图中未画出)的通道,使左前制动轮缸中的油压降低,此即ABS制动过程中的减压状态。ABS系统就是如此循环进行制动的.

3.电子转向助力系统

电子转向助力系统是用一部直流电机代替传统的液压助力缸,用蓄电池和电动机提供动力。这种微机控制的转向助力系统和传统的液压助力系比起来具有部件少、体积小、质量轻的特点,最优化的转向作用力、转向回正特性,提高了汽车的转向能力和转向响应特性,增加了汽车低速时的机动性以及调整行驶时的稳定性。

4.自适应悬挂系统

自适应悬挂系统能根据悬挂装置的瞬时负荷,自动适时调节悬架弹簧的刚度和减震器的阻尼特性,以适应当时的负荷,保持悬挂的既定高度。这样就能够极大地改进车辆行驶的稳定性、操纵性和乘坐的舒适性。

图1-6奥迪A4自适应悬挂系统

在自适应悬挂控制系统配置中,悬架置于车轮和车体之间。此系统不采用气动膜盒,而代之以盘簧和液压缸。液压系统由电子装置控制,该装置对传感器在汽车运转过程中产生的各种信号进行分析。主动悬挂控制系统配有一个能自动测量高度及根据速度调整的装置,当汽车以高速行驶时能缓慢地减低其速度汽车维修毕业论文格式文章汽车维修毕业论文格式出自http://gkstk.com/article/wk-78500001092730.html,转载请保留此链接!。汽车的水平高度也可通过按钮分两次手动调节。

5.定速巡航自动控制系统

在高速长途行驶时,可采用定速巡航自动控制系统,恒速行驶装置将根据行车阻力自动调整节气门开度,驾驶员不必经常踏油门已调整车速。若遇爬坡,车速有下降趋势,微机控制系统则自动加大节气门开度;在下坡时,又自动关小节气门开度,以调节发动机功率达到一定的转速。当驾驶员换低速档或制动时,这种控制系统则会自动断开。

6.驱动防滑/牵引力控制系统(ASR/TCS)

目前安装ABS的轿车已经相当普遍,但随着对汽车安全性能的要求越来越高,出现了驱动防滑系统(ASR,AccelerationSlipRegulation),驱动防滑系统又称牵引力控制系统(TCS,TractionControlSystem),它的作用是当汽车加速时将滑动率控制在一定的范围内,从而防止驱动轮快速滑动。

汽车“打滑”可分为两种情况:一是汽车制动时车轮的滑移,前面已经分析过;二是汽车驱动时车轮的滑转。所谓汽车驱动时车轮的滑转,就当是汽车起步时,尽管驱动轮不停转动,汽车却原地不动的现象。驱动轮滑转有可能引起汽车的侧滑,且损失了发动机的转矩。为了防止驱动轮的滑转,人们在职动防抱死的基础上研制了驱动防滑系统。他的功能为:一是提高牵引力;二是保持汽车的行驶稳定。

7.减震适应系统

减震适应系统是一种全自控系统,可随每个车轮的减震动进行自动调整,以达到各种行驶状态下调顺车身的运动。路面状况、汽车本身,以及驾驶方式等都在监控之下,以随时独立调节各个车轮的减震器设置值,保证最高的舒适性。驾驶人可通过按钮手动选择以舒适为主或以跑车操纵性为主。另一种作为选项的减震适应系统带有电子自动测量高度的悬挂功能,可在高速状态下把汽车自动调低15毫米。控制开关则允许驾驶人以手动方式分两级调低车身水平。减震适应系统的使用,保证开车过程中获得最大的稳定性和安全性,提供最高驾驶舒适性并改善驾驶动感,最大程度减少翻车和侧倾危险,作为选项的自动找平系统可在恶劣路面开车时减少对车身下部的损伤危险,提高稳定性,减少燃耗。

三.车身电子控制技术

1.电动座椅

现代轿车的驾驶者和前部乘员座椅多是电动可调的,所以又称电动座椅。座椅是与人接触最密切的部件,人们对轿车平顺性的评价多是通过座椅的感受作出的。因此电动座椅也是直接影响轿车质量的关键部件之一。

轿车电动座椅以驾驶者的座椅为主。从服务对象出发电动座椅必须要满足便利性和舒适性两大要求,也就是说驾驶者通过键钮操纵,既可以将座椅调整到最佳的位置上,使得驾驶者获得最好的视野,得到易于操纵方向盘、踏板、变速杆等操纵件的便利,还可以获得最舒适和最习惯的乘坐角度。

图1-8奥迪A4电动座椅

现代轿车的电动座椅是由坐垫、坐背、坐枕、骨架、悬挂和调节机构等组成。其中调节机构由控制器、可逆性直流电动机和传动部件组成,是电动座椅中最复杂和最关键的部分。自动座椅电子控制系统由座椅位置传感器、电子控制器ECU和执行机构的驱动电机三大部分组成。位置传感器部分包括座椅位置传感器、后视镜位置传感器、安全带扣环传感器以及方向盘倾斜传感器等;ECU包括输入接口、微机CPU和输出处理电路等;执行机构主要包括执行座椅调整、后视镜调整、安全带扣环以及方向盘倾斜调整等微电机,而且这些电机均可灵活进行正、反转,以执行各种装置的调整功能。另外,该系统还备有手动开关,当手动操作此开关时,各驱动电机电路也可接通,输出转矩而进行各种调整动作。

2.安全气囊

安全气囊系统称为SRS,相对于安全带,安全气囊只是一个辅助保护设备。

图1-9奥迪A4安全气囊系统

安全气囊是用带橡胶衬里的特种织物尼龙制成,工作时用无害的氦气填充。此系统由一个传感器激活,该传感器用于监视碰撞中汽车速度减小的程度。在碰撞发生的早期,安全气囊开始充气,安全充气大约需要0.03秒。安全气囊可以非常快的速度充气十分重要,这能确保当乘客的身体被安全带束缚不动而头部仍然向前行进时,安全气囊能及时到位。在头部碰到安全气囊时,安全气囊通过气囊表面的气孔开始排气。气体的排出有一定的速率,确保让人的身体部位缓慢地减速。由于安全气囊弹开充气的速度可高达320公里/小时,碰撞时如果人的乘坐姿势不正确,将给人带来严重的伤害。

3.电动门窗

电动门窗是指以电为动力是门窗玻璃自动升降的门窗。它是由驾驶员或乘员操纵开关接通门窗升降电动机的电路,电动机产生动力通过一系列的机械传动,使门窗玻璃按要求进行升降。其优点是操作简便,有利于行车安全。

电动门窗主要有升降控制开关、电动机(双向转动永磁电动机)、升降器、继电器等组成,其中电动机一般采用双向转动永磁电动机,通过控制电流方向,使其正反向转动,达到车窗升降功能。

图2-1奥迪A4电动门窗

4.辅助关门系统

辅助关门系统由气动装置、车门传感器组成。装在每个车门锁的传感器会监察车门开合运动的方向。当某个车门手动关闭到车门锁的第一卡合位或稍微超出时,气动辅助关闭装置即被触发,自动将车门拉合到锁定位。减少车门关闭所需的力量,减少车门关闭时产生的噪音,保证车门始终关紧(即使此车门只被关合到门锁的第一卡合位)。

5.自动恒温控制系统/空调

自动恒温控制系统/空调由压缩机、冷凝器、辅助电风扇或入口风扇蒸发器、温度传感器、不含氯氟烃的冷却剂、储蓄罐、温度控制装置、空气内循环开关、循环泵、余热开关等组成。在发动机运转及空调系统工作时,冷却空气由鼓风机以选定的速度和温度送入。与加热系统一样,左侧和右侧的温度可分别调节。如果空调和加热系统同时打开,由于输入的空气已经过除湿并冷却,车窗上不会产生水雾。在这种再加热模式下,空气首先经过冷却(因此成为干燥空气),然后再加热。在发动机关闭后,发动机余热利用系统(REST)启动,把热发动机的冷却剂抽入热交换器,从而自动控制空气流动和分配。余热利用系统在约30分钟后自动关闭,或者在蓄电池充电量过低时关闭。空调系统降低车内温度并减少湿度,从而提供舒适的车内环境,又能防止车窗水雾,提高驾驶安全。如果拨到空气循环工作模式,系统可防止有味气体进入车内汽车维修毕业论文格式论文。动机余热利用系统允许加热过程中不含发动机噪音和废排气,因此不消耗燃料并可在发动机关闭后继续工作。

图2-2奥迪A4空调系统

6.电子防盗系统

电子防盗系统是为了防止汽车本身火车上的物品被盗所设的系统,它有电子控制的遥控器或钥匙、电子控制电路、报警装置和执行机构等组成。

图2-3奥迪A4防盗装置

汽车防盗装置按其发展过程可分为机械锁防盗装置、机电式防盗装置和电子防盗装置三个阶段。电子式防盗报警器是目前使用较为广泛。它主要靠锁定点火或启动来达到防盗的目的,同时具有防盗和声音报警功能。电子防盗报警器共有四种功能:一是服务功能,包括遥控车门、遥控启动、阻和等;二是警惕提示功能,能触发报警记录(提示车辆从被人打开过车门);三是报警提示功能,即当有人动车时发出警报;四是防盗功能,即当防盗器处于警戒状态时,切断汽车上的启动电路。

7.汽车卫星导航系统

汽车电子导航系统是在全球定位系统(GPS)的基础上发展起来的新型汽车驾驶辅助设备,是为了解决道路交通的堵塞和拥挤问题而产生的,是一种能接收定位卫星信号,经过微处理器计算出汽车所在精确经度和纬度以及汽车速度和方向,并在显示器上显示出来的一种装置。

图2-4奥迪A4导航系统

驾驶者只要将目的地输入汽车导航系统,系统就会根据电子地图自动计算出最合适的路线,并在车辆行驶过程中提醒驾驶员按照计算的路线行驶。在整个行驶过程中,驾驶者根本不用考虑该走哪条线路就能快捷的到达目的地。

当前的汽车导航系统包括两部分:全球定位系统和车辆自动导航系统。汽车导航设备一般是由GPS天线、集成了显示屏幕和功能按键的主机以及语音输出设备(一般利用汽车音响系统输出语音提示信息)构成的。受车内安装位置的限制,一般汽车导航设备和汽车视像音响合成在一起,因此,一些汽车导航系统又称为DVD导航系统。

四.电子技术在汽车工业上的的发展趋势

在今后的十几年内,推动汽车电子产品发展的动力仍将是汽车安全、节能、环保等的需要。汽车电子系统的发展将主要集中在汽车用局域网系统LANS和处理器CPUS、发动机控制、机-电接口、ABS和行驶控制、电子控制传动系统、抬头显示系统HUDS、声音识别技术、行车导驶系统及多媒体技术和撞击传感技术等方面。

车载局域网将逐步替代单独控制器;车载计算机的处理能力将有显著提高。多媒体显示系统将为驾驶者提供更多的有关信息,包括图像信息。声音识别技术可望在5年内有重大突破,并应用于汽车领域。比CD-ROM存储量大6-7倍的DVD-ROM,将大量用于汽车的导驶系统和多媒体系统。汽车电子系统的成本将进一步大幅下降。

利用总线技术将汽车中各种电控单元、智能传感器、智能仪表等联接起来,从而构成汽车内部局域网,实现各系统间的信息资源共享。根据侧重功能的不同,SAE将总线划分为A、B、C三大类:A类是面向传感器和执行器的一种低速网络,主要用于后视镜调整、灯光照明控制、电动车窗等控制等,目前A类的主流是LIN;B类是应用于独立模块间的数据共享中速网络,主要用于汽车舒适性、故障诊断、仪表显示及四门中央控制等,其目前主流是低速CAN(又称动力CAN);C类是面向高速、实时闭环控制的多路传输网络,主要用于发动机、ABS和自动变速器、安全气囊等的控制,目前C类主流是高速CAN(又称动力CAN),但是随着下一代高速、具有容错能力的时间触发方式的“XbyWire”线控技术的发展,将逐渐代替高速CAN在C类网中的位置,力求在未来5—10年之内使传统的汽车机械系统变成通过高速容错通讯总线与高性能CPU相连的百分之百的电控系统,完全不需要后备机械系统的支持,其主要代表有TTP/C和FlexRay.

随着第3代移动通讯技术和计算机网络技术的不断发展,未来汽车正朝着移动力、公室、家庭影院方向发展,为司机和乘客提供进行中的实时通讯和娱乐信息,并把汽车和道路及其它远程服务系统结合起来,构建未来的智能交通系统(1TS)。具体功能:①提供丰富的多媒体设施环境,利用GPS、GSM网络实现导航、行车指南、无线因特网以及汽车与家庭等外部环境的互动

②具备远程汽车诊断功能,紧急时能够引导救援服务机构赶到故障或事故地点。

结束语:

汽车电子化已成为当前的热点,电子信息技术和汽车制造技术逐步走向融合,电子技术不断把音响视频、网际网络、信息引入汽车内。随着未来汽车市场的快速发展和汽车电子价值含量的迅速提高,我国汽车电子产业将形成巨大经济规模效应,成为支持汽车工业发展的一门相对独立新兴支柱产业。

可以预料,随着我国汽车技术的进步,汽车电子新技术必将会得到越来越广泛的应用,国产汽车积极采用电子装置指日可待。虽然要赶上国际汽车的最高水平还有一段路要走,但将来在世界汽车技术尤其是汽车电子技术应用这一领域,我国必定占有一席之地。

参考文献:

[1]台晓虹,申荣卫.汽车ABS技术发展与展望.汽车与配件,2006.18

[2]李炎亮,高秀华,成凯等.汽车电子技术.北京:化学工业出版社,2005.6

[3]汪立亮.现代电子控制系统原理与维修.北京:电子工业出版社,1998.9

[4]德国BOSCH公司著;魏春源等译.汽车电器与电子.北京理工大学出版社,2004.7

[5]肖永清,杨忠敏.现代家用汽车电器系统疑难故障诊断实例.人民邮电出版社,2005.1

[6]杨占鹏,杨民强.福特系列轿车电子与电气系统维修手册.北京理工大学出版社,2003.4

上一篇:控制科学与工程范文 下一篇:远程控制软件范文