功率因数范文

时间:2023-11-18 19:44:13

功率因数

功率因数篇1

一、视在功率

我们将正弦交流电电路中电压有效值与电流有效值的乘积称为视在功率,有功功率和无功功率的几何之和(即平方和的均方根),它用来表示电气设备的容量。关系式:

视在功率的平方=有功功率的平方+无功功率的平方

用符号S表示,计算单位:伏安(VA)、千伏安(kVA)。

变压器的容量是用视在功率表示。

视在功率不表示交流电路实际消耗的功率,只表示电路可能提供的最大功率或电路可能消耗的最大有功功率。在交流电路中,由电源供给负载的电功率有两种: 一种是有功功率,一种是无功功率。

二、有功功率

有功功率是保持用电设备正常运行所需的电功率,也就是将电能转换为其他形式能量(机械能、光能、热能)的电功率。比如:5.5千瓦的电动机就是把5.5千瓦的电能转换为机械能,带动水泵抽水或脱粒机脱粒。有功功率的符号用P表示,单位有瓦(W)、千瓦(kW)、兆瓦(MW)。

三、无功功率

无功功率是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持磁场的电功率。它不对外作功,而是转变为其他形式的能量。凡是有电磁线圈的电气设备,要建立磁场,就要消耗无功功率。比如40瓦的日光灯,除需40多瓦有功功率(镇流器也需消耗一部分有功功率)来发光外,还需80乏左右的无功功率供镇流器的线圈建立交变磁场用。由于它不对外作功,才被称之为“无功”。无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。

无功功率决不是无用功率,它的用处很大。电动机需要建立和维持旋转磁场,使转子转动,从而带动机械运动,电动机的转子磁场就是靠从电源取得无功功率建立的。变压器也同样需要无功功率,才能使变压器的一次线圈产生磁场,在二次线圈感应出电压。因此,没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器不会吸合。

用电设备不但要从电源取得有功功率,同时还需要从电源取得无功功率。如果电网中的无功功率供不应求,用电设备就没有足够的无功功率来建立正常的电磁场,那么,这些用电设备就不能维持在额定情况下工作,用电设备的端电压就要下降,从而影响用电设备的正常运行。

无功功率对供电、用电产生一定的不良影响,第一,降低发电机有功功率的输出。第二,降低输、变电设备的供电能力。第三,造成线路电压损失增大和电能损耗的增加。第四,造成低功率因数运行和电压下降,使电气设备容量得不到充分发挥。

从发电机和高压输电线供给的无功功率,远远满足不了负荷的需要,所以在电网中要设置一些无功补偿装置来补充无功功率,以保证用户对无功功率的需要,这就是电网需要装设无功补偿装置的道理。

四、功率因数

电网中的电力负荷如电动机、变压器等,属于既有电阻,又有电感的电感性负载。电感性负载的电压和电流的相量间存在着一个相位差,通常用相位角φ的余弦cosφ来表示。cosφ称为功率因数,又叫力率。功率因数是反映电力用户用电设备合理使用状况、电能利用程度和用电管理水平的一项重要指标。三相功率因数的计算公式为:

式中:cosφ—功率因数;

P —有功功率,kW;

Q —无功功率,kVar;

S —视在功率,kVA;

U —用电设备的额定电压,V;

I —用电设备的运行电流,A。

功率因数分为自然功率因数、瞬时功率因数和加权平均功率因数。

1.自然功率因数

指用电设备没有安装无功补偿设备时的功率因数,或者说用电设备本身所具有的功率因数。自然功率因数的高低主要取决于用电设备的负荷性质,电阻性负荷(白炽灯、电阻炉)的功率因数较高,等于1,而电感性负荷(电动机、电焊机)的功率因数比较低,都小于1。

2.瞬时功率因数

指在某一瞬间由功率因数表读出的功率因数。瞬时功率因数是随着用电设备的类型、负荷的大小和电压的高低而时刻在变化。

3.加权平均功率因数

指在一定时间段内功率因数的平均值,其计算公式为:

cosφ

五、提高功率因数的意义及方法

1.提高功率因数的意义

(1)提高用电质量,改善设备运行条件,可保证设备在正常条件下工作。

(2)可节约电能,降低生产成本,减少企业的电费开支。例如:当cosφ=0.5时的损耗是cosφ=1时的4倍。

(3)能提高企业用电设备的利用率,充分发挥企业的设备潜力。

(4)可减少线路的功率损失,提高电网输电效率。

(5)因发电机的发电容量的限定,故提高cosφ也就使发电机能多出有功功率。

提高功率因数的方法有两种,一种是改善自然功率因数,另一种是安装人工补偿装置。

2.提高自然因数的方法

(1)选择合适的电动机容量,减少电动机无功消耗,防止“大马拉小车”。

(2)对平均负荷小于其额定容量40%左右的轻载电动机,可将线圈改为三角形接法(或自动转换)。

(3)避免电机或设备空载运行。

(4)合理配置变压器,正确地选择其容量。

(5)采用同步电动机或异步电动机同步运行补偿。

(6)调整生产班次,均衡用电负荷,提高用电负荷率。

3.人工补偿法

实际中可使用电路电容器或调相机,一般多采用电力电容器补尝无功,即:在感性负载上并联电容器。在感性负载上并联电容器的方法可用电容器的无功功率来补偿感性负载的无功功率,从而减少甚至消除感性负载于电源之间原有的能量交换。在交流电路中,纯电阻电路,负载中的电流与电压同相位,纯电感负载中的电流滞后于电压90?,而纯电容的电流则超前于电压90?,电容中的电流与电感中的电流相差180?,能相互抵消。并联电容器的补偿方法又可分为:

(1)个别补偿。即在用电设备附近按其本身无功功率的需要量装设电容器组,与用电设备同时投入运行和断开,也就是再实际中将电容器直接接在用电设备附近。适合用于低压网络,优点是补尝效果好,缺点是电容器利用率低。

(2)分组补偿。即将电容器组分组安装在车间配电室或变电所各分路出线上,它可与工厂部分负荷的变动同时投入或切除,也就是再实际中将电容器分别安装在各车间配电盘的母线上。优点是电容器利用率较高,且补尝效果也较理想(比较折中)。

(3)集中补偿。即把电容器组集中安装在变电所的一次或二次侧的母线上。在实际中会将电容器接在变电所的高压或低压母线上,电容器组的容量按配电所的总无功负荷来选择。优点是电容器利用率高,能减少电网和用户变压器及供电线路的无功负荷。缺点是不能减少用户内部配电网络的无功负荷。

在实际中,上述方法可同时使用,对较大容量机组进行就地无功补尝。

功率因数篇2

关键词:功率因数接线无关检测方法

随着现代工业的发展,人们对电能的需求量越来越大,对电能质量的要求也越来越高。目前电力网中的电力负荷如感应式异步电动机、变压器等,大部分属于感性负载,在运行过程中需要向这些设备提供相应的无功功率,使电网的功率因数降低。为了对电力负荷设备进行更好的监测,针对具体情况采取相应的措施,有必要对电网的功率因数进行检测。在三相电网的功率因数测量中,一般假设电网是三相平衡的,此时任意一相的功率因数就相当于三相系统的功率因数。由于测量单相功率因数需要中性点(如果采用三相四线制),在某些应用场合有很大的不便,因此本文提出了通过采样三相中一相的电流以及另外两相的线电压之间的相位差来得到三相系统的功率因数的检测方法。

由于利用该方法测量功率因数的接线方式有12种,每种接线方式的相位关系又不一样,所以功率因数的计算以及超前滞后的判断方法也有些差别。因此如何使功率因数的检测与接线方式无关将成为一个重点。由于相关文献较少,因此对与接线无关的三相功率因数检测方法进行研究有着重要意义。

本文利用电网三相电压、电流间的相位角关系,通过直接检测相电流相邻的方波信号上升沿的时间差以及相电流和线电压的相邻的两个方波的上升沿的时间差,来确定功率因数以及功率因数的超前滞后情况,从而得到了一种与接线无关的三相功率因数检测方法。

1工作原理

设三相的电压分别为Ua、Ub、Uc,电流分别为Ia、Ib、Ic,假设电网三相平衡,则它们的表达式如下:

Ua=UmSinωt

Ub=UmSin(ωt-120°)

Uc=UmSin(ωt+120°)

Ia=ImSin(ωt-φ)

Ib=ImSin(ωt-φ-120°)

Ic=ImSin(ωt-φ+120°)

式中,Um表示每相电压幅值,Im表示每相电流幅值,ω表示角频率,表示相电流滞后相电压的相角(功率因数角)。由此可以得到:

其中,-Ia表示负A相电流,-Ib表示负B相电流,-Ic表示负C相电流。可见,采用其中一相的相电流和另外两相的线电压之间的相位差来测量功率因数的接线方式有12种,分别为:Ia,Ubc;Ia,Ucb;Ib,Uca;Ib,Uac;Ic,Uab;Ic,Uba;-Ia,Ubc;-Ia,Ucb;-Ib,Uca;-Ib,Uac;-Ic,Uab;-Ic,Uba。下面以Ia,UbcI型接线和Ia,UcbII型接线两种接线方式来讨论的计算。

1.1I型接线φ的计算

设α为Ubc滞后Ia的相角,由于Ia滞后Ua的相角为φ,而Ubc滞后Ua的相角为90°,所以有α=90°-φ。针对三种负载情况,α表达式如下:

在电路设计中,若把A相相电流和Ubc线电压的采样信号放大后,再进行上升沿过零触发,即可得到反映相位的方波信号。针对纯阻性负载、容性负载和感性负载,经过上升沿过零触发后可得到相电流和线电压的方波信号,从而得到如图1(a)所示的一组波形,从上到下分别为相电流与线电压的正弦波、上升沿过零触发后的方波、纯阻性负载电流与电压上升沿时间差、容性负载电流与电压上升沿时间差(图中取φ=-45°)、感性负载电流与电压上升沿时间差(图中取φ=45°)。τ为相电流与线电压的上升沿的时间差,τ的宽度随φ的变化而变化。

图1A相相电流与线电压波形图

设T为正弦波的周期,则τ和T满足下面的表达式:

显然,α=(τ/T)×360°。根据α与的关系,可以得到:

因此,针对A相电流Ia和线电压Ubc的接线方式,超前滞后的判断和相位角的绝对值||的计算表达式如下:

T/4<τ≤T/2,超前;

0≤τ<T/4,滞后;

|φ|=|(τ/T)×360°-90°|(1)

1.2II型接线的计算

设α为Ucb滞后Ia的相角,由于Ia滞后Ua的相角为,而Ucb滞后Ua的相角为270°,所以α=270°-。针对三种负载情况,有如下表达式:

同理,按照Ia、Ubc的分析方法,可以得到如图1(b)所示的一组波形。此时τ和T满足下面表达式:

显然,α=(τ/T)×360°。根据α与角的关系,可以得到:

因此,针对A相电流Ia和线电压Ucb的接线方式,超前滞后的判断和相位角的绝对值||的计算表达式如下:

3T/4<τ≤T,超前;

T/2≤τ<3T/4,滞后;

||=|τ/T×360°-270°|(2)

1.3与接线无关的功率因数测量原理

采用同样的分析方法,可以发现-Ia,Ucb;Ib,Uca;-Ib,Uac;Ic,Uab;-Ic,Uba等五种接线方式的相对位置的波形图与Ia,Ubc接线方式的一样,其的计算同式(1);而-Ia,Ubc;Ib,Uac;-Ib,Uca;Ic,Uba;-Ic,Uab等五种接线方式的相对位置的波形图与Ia,Ucb接线方式的一样,其的计算同式(2)。

因此,直接检测相电流的两个相邻的方波信号上升沿的时间差,即可得到周期T;检测相电流线电压的相邻的两个上升沿过零触发方波的上升沿的时间差,即可得到时间τ;根据τ落在周期T的范围可确定接线方式是属于I型还是II型,然后参照相应的计算公式可以很容易算出相位角以及超前滞后情况,从而得到三相系统的功率因数,这样就可以做到功率因数的检测与具体的三相接线方式无关。

2信号的获取

由与接线无关的三相功率因数测量方法的工作原理可知,获取三相电网中一相的相电流和另外两相的线电压信号是本测量方法实现的一个重点。下面简述该测量方法的信号获取过程。

图2为功率因数测量中相电流和线电压的信号获取连接示意图,其中,左边的虚框部分为配电柜的相关信号的连接示意图,右边的虚框部分为信号获取连接示意图。配电柜的输入为电源侧电源,输出则为负载电源。在配电柜内部,每一相都配有一个一次侧电流互感器,该互感器把相电流(称为一次侧相电流)按照一定的变比(一般为10005)变换为较小的相电流(称为二次侧相电流)。在实际应用中,相电流信号取样二次侧相电流,而线电压信号则只需取另外两相的线电压即可。二次侧相电流经过电流采样互感器后得到0~5mA的电流采样信号IS,该信号通过电阻R1后得到反映相电流大小的电压信号UIS,而线电压则通过电压互感器后得到0~2mA的电流信号,该信号通过电阻R2后转换为电压采样信号US。信号US和UIS经过低通滤波和放大后得到0~5V的标准信号,该标准信号通过上升沿触发后可以得到标准方波信号。

有了相电流和线电压的上升沿过零触发后的方波信号,利用单片机的中断和定时器定时功能,可以分别得到与电网周期T成正比的计数值N1以及与相电流和线电压方波信号上升沿时间差τ成正比的计数值N2。由于N1、N2的定时基准相同,因此软件只需根据N2、N1/4和3×N1/4的大小情况,来判断接线方式是属于I型还是II型;然后再根据对应的计算公式即可得到相位角以及超前滞后情况,从而得到电网的功率因数cos。对于的具体计算方法以及如何提高的精度,可以参考相关文献。

功率因数篇3

【关键词】功率因数;节约电能;供电质量

功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。在电力网的运行中,我们所希望的是功率因数越大越好,如能做到这一点,则电路中的视在功率将大部分用来供给有功功率,以减少无功功率的消耗。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分地发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于全国广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效地搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。

1 影响功率因数的主要因素

首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P有一定时,如减少无功功率P无,则功率因数便能够提高。在极端情况下,当P无=0时,则其功率因素=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。影响功率因素主要是下面几个方面。

1.1 异步电动机和电力变压器是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成的。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

1.2 供电电压超出规定范围也会对功率因数造成很大的影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

1.3 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

2 低压网无功补偿的一般方法

低压无功补偿我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。下面简单介绍这三种补偿方式的适用范围及使用该种补偿方式的优缺点。

2.1 随机补偿

随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补偿磁无功为主,此种方式可较好地限制农网无功峰荷。

随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活、维护简单、事故率低等特点。

2.2 随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是农网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

随器补偿的优点是:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

2.3 跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。

跟踪补偿的优点是:运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

3 采取适当措施,设法提高系统自然功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率减少负载取用无功来提高工矿企业功率因数的方法,它不需要增加投资,是最经济的提高功率因数的方法。下面将对提高自然功率因数的措施作一些简要的介绍。

3.1 合理使用电动机

合理选用电动机的型号、规格和容量,使其接近满载运行。在选择电动机时,既要注意它们的机械性能,又要考虑它们的电器指标。若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确地合理地选择电动机的容量。

3.2 提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

3.3 采用同步电动机或异步电动机同步运行提高功率因数

由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

3.4 合理选择配变容量,改善配变的运行方式

对负载率比较低的配变,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

通过以上一些提高加权平均功率因数和自然功率因数的叙述,或许我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识。

参考文献:

[1]肖运新.用电监察[M].水利电力出版社,2003.

功率因数篇4

关键词: 节电技术 功率因数 无功补偿

0 引言

无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。无功补偿的合理配置原则:①总体平衡与局部平衡相结合,以局部为主。②电力部门补偿与用户补偿相结合。在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。③分散补偿与集中补偿相结合,以分散为主。集中补偿,是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。④降损与调压相结合,以降损为主。

1 影响功率因数的主要因素

1.1 异步电动机和电力变压器是耗用无功功率的主要设备 异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

1.2 供电电压超出规定范围也会对功率因数造成很大的影响 当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

1.3 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

1.4 以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

2 低压配电网无功补偿的方法

提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。

2.1 随机补偿 随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制用电单位无功负荷。随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等。

2.2 随器补偿 随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是用电单位无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。随器补偿的优点:接线简单、维护管理方便、能有效地补偿配变空载无功,限制农网无功基荷,使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,是目前补偿无功最有效的手段之一。

2.3 跟踪补偿 跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。但当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

3 无功功率补偿容量的选择方法

无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。

3.1 单负荷就地补偿容量的选择的几种方法

3.1.1 美国资料推荐:Qc=(1/3)Pe

3.1.2 日本方法:从电气计算日文杂志中查到:1/4~1/2容量计算 考虑负载率及极对数等因素,按此法选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,对一般情况都可行,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。

3.1.3 经验系数法:由于电机极数不同,按极数大小确定经验系数选择容量 比较接近实际需要的电容器,采用这种方法一般在70%负荷时,补后功率因数可在0.95~0.97之间

电机容量大时选下限,小时选上限;电压高时选下限,小时选上限4、Qc=P实际测试比较准确方法此法适用于任何一般感性负荷需要精确补偿的就地补偿容量的计算。

3.1.4 如果测试比较麻烦,可以按下式:Qc≤ √3UeIo×10-3 (kvar)

Io-空载电流=2Ie(1-COSφe ) 瑞典电气公司推荐公式:Qo

若电动机带额定负载运行,即负载率β=1,则:Qo

根据电机学知识可知,对于Io/Ie较低的电动机(少极、大功率电动机),在较高的负载率β时吸收的无功功率Qβ与激励容量Qo的比值较高,即两者相差较大,在考虑导线较长,无功经济当量较高的大功率电动机以较高的负载率运行方式下,此式来选取是合理的。

3.1.5 按电动机额定数据计算:Q=k(1-cos2φe )3UeIe×10-3(kvar)

K为与电动机极数有关的一个系数

极数: 2 4 6 8 10

K值: 0.7 0.8 0.85 0.9

3.2 多负荷补偿容量的选择 多负荷补偿容量的选择是根据补偿前后的功率因数来确定。

3.2.1 对已生产企业欲提高功率因数,其补偿容量Qc按下式选择:Qe=KmKj(tgφ1-tgφ2)/Tm 。式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ1、tgφ2意义同前,tgφ1由有功和无功电能表读数求得。

3.2.2 对处于设计阶段的企业,无功补偿容量Qc按下式选择:

Qc=KnPn(tgφ1-tgφ2)。式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。但电气设备不连续运转或轻负荷运行时,会造成过补偿,使运行电压抬高,电压质量变坏。因此这种方法选择的容量,对于低压来说最好采用电容器组自动控制补偿,即根据负荷大小自动投入无功补偿容量的多少,对高压来说应考虑采取防过补偿措施。

4 无功补偿的效益

在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。由于减少了电网无功功率的输入,会给用电企业带来效益。

5 结论

功率因数篇5

关键词:供电企业 电网功率因数 影响因素 提高措施

1 引言

随着人类社会的发展,电能成为现代社会使用最广泛的能源,对供电网可靠性、安全性以及技术合理性、经济性等都提出了更高的要求。供电网络涉及电动机、变压器以及电磁开关等设备,这就要求电力系统除了供给这些设备有功功率外,还要提供大量的额无功功率,这就导致供电电能的质量降低,同时导致发电和输配电设备的功能不能完全的发挥,造成大量的能源损耗以及安全隐患。在整个输送电系统中,无功功率占用了大量的设备容量,在配电线路上产生大量的线损。提高电网功率因数,可以有效的降低电能损耗,提高供电效率,已经成为广大供电企业研究的重点,因此,本文分析了供电网络功率因数的影响因素,并找出提高供电网功率因数工作的措施。

2 电网功率因数概述

2.1 供电网功率因数概念

电网功率因数是指电力系统中有功功率占总功率消耗的百分比。一般来说,电网的功率因数越高,说明电网中设备、发电和供电的效率越高,因此,提高电网的功率因数,可以有效的发挥发、供电以及电气设备的生产能力,减少电能的损失,提高供电质量,同时提高用户的满意度和节约电能。

2.2 提高电网功率因数的意义

(1)提高功率因数,可减少无功电力购入费用

电力系统所需的无功电力主要是由发电厂的发电机进行供给的,只有很少一部分是通过电网加装的无功补偿装置进行补充。在各个发电厂的发电机工作时,产生有功功率的同时也制造出无功功率,这一部分的功功率是耳钉的。我们把这部分叫做超额无功成本。如果供电企业和用户能够提高供电网功率因数,就可以减少无功功率的需求,同时就减少了购买超额无功的费用,由于供电企业节约了大量的成本,电力价格也相应的下降。

(2)降低供电网络中的功率损耗

根据电工的相关理论可以知道,如果输电线路的电压以及输送的有功功率保持不变时,电网中的功率因数的平方和功率损耗成反比例关系。目前,我国输配电损耗占总发电量的7%左右,因此,如果提高了功率因数,可以有效的降低线损,提高电能的利用率,促进电网经济效益的提高。

3 电网功率因数影响因素

3.1电力变压器和异步电动机是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙导致异步电动机需要比较多的无功功率。异步机所消耗的无功功率主要由其空载运行时的无功功率和一定负载情况下的无功功率增加值构成,因此,想要减少异步电动机所消耗的无功功率,就必须防止异步电动机的空载运行,同时尽量的提高异步电动机的负载率。电力变压器消耗的无功功率主要是空载无功功率,也就是常说的铁损,想要改善电力系统的功率因数,就必须防止变压器的空载运行。

3.2整流装置对电网功率因数的影响

因为电网的电流并不是完全数学意义上的正弦波,即使电网的整流装置可以将系统功率因数提高到0.96左右,但是整流变压器在向电网吸收基波电流的时候,还不断的向电网送出谐波电流,这严重的影响了补偿功率因数用的并联电容的运行。因此,必须尽量的减少整流装置对功率因数补偿设备的影响,提高电网功率因数。

3.3供电电压超出规定范围对功率因数造成的影响

如果供电网络中的电压高于额定值10%以上,受到磁路的饱和影响,无功功率将会快速的增长。根据相关资料的统计,当供电电压超过额定值10%时,无功功率将会增加35%左右。同理,如果供电网络的电压低于额定值的时候,无功功率就相应的减小,电网的功率因数也就相应的提高。然而,虽然减低电压可以提高功率因数,但是电压的降低将会影响电气设备的正常运行,因此,必须采取有效的措施保障电力系统电压的尽可能稳定。

4 提高电网功率因数的措施

4.1 合理使用电器设备,提高异步电动机的检修质量

应该坚持合理性的原则选取电气设备,尤其是在选择异步电动机的时候,除了要重视其机械性能外,还应该对其规格、型号以及容量等电气指标进行科学考察,保证其能够最大程度的接近满载运行。为了提高电网的功率因数,降低电能的损耗,应该保证电动机的负荷达到额定容量的70%以上,这样才能实现节能运行。异步电动机定子绕组匝数变动以及电动机定、转子间的气隙变动,都会造成电动机无功功率的变化,因此,必须加强异步电动机的检修质量,提高电网功率因数。

4.2装设必要的无功补偿装置,以补充系统无功

供电企业应该弄清楚当前电力系统的无功功率情况,综合考虑经济效益、供电质量等因数,科学分析,确定供电企业的各级电网中合理的功率因数水平。按照确定的功率因数水平,合理的选择功率补偿设备,帮助企业实现既定的功率因数水平,达到较好的经济效益。对于缺乏无功功率的系统,安装无功功率补偿装置,有效的补充系统的无功功率。供电企业在进行无功补偿工作时,应该坚持两个原则:首先,供电企业应该充分的利用地区性的发电厂进行无功功率补偿生产;其次,应该利用好电网内部已有的无功补偿装置。在这两个原则的指导下,科学的设计无功补偿计划,确定补偿的方式和容量。一般来说,无功补偿优先选用就地补偿,其次再进行集中补偿,实现无功负荷和无功电源的平衡。

4.3采用同步运行提高功率因数

根据电机原理可知,同步电动机所消耗的有功功率,主要取决于电动机上机械负荷的大小,而无功功率的大小则取决于转子间的励磁电流大小。在欠激状态下,定子绕组吸收电网的无功功率,在过激状态下,定子绕组送出无功功率。通过这种方式,既不需要添加任何的无功补偿装置,又可以有效的进行无功补偿,提高功率因数,实现电网的高效、节能运行,提高供电质量,促进节能减排的实现。

5 结束语

随着电网建设的不断加快,提高供电网络功率因数可以有效的降低线损,提高电网的运行效率,因此,必须合理的使用电器设备,提高异步电动机的检修质量,装设必要的无功补偿装置,以补充系统无功,采用同步运行提高功率因数,有效的加强电网的运行效率,促进电力系统的安全性和稳定性提高。

参考文献:

[1]徐锋.提高电网功率因数的几项措施[J].内蒙古石油化工,2012(5).

[2]王正风,徐先勇,司云峰.电力系统无功功率的最优分布---等网损微增率准则和最优网损微增率准则的接合[J].现代电力, 2011(6).

功率因数篇6

【关键词】功率因数;补偿;消耗

在电力系统中,我们将各种设备所消耗的能量分为有功消耗和无功消耗。有功消耗是指电流通过电阻性负载所消耗的电能,它是一种能量转变中做功消耗的电能;无功消耗是指电流通过感性或容性负载时产生了磁场、电场,这些磁场、电场只在电源和负载之间往返转换,在交换中不能转变成其它形式的能量。视在功率是指有功损耗和无功损耗的平方和的平方根值。功率因数是指电力网中线路的视在功率供给有功功率的消耗所占百分数。

在电力网的运行中,我们所希望的是功率因数越大越好,否则将产生以下我们所不期望的不良影响:功率因数的降低导致电流增大,则发电机和变压能输出的有功功率下降,设备容量不能充分利用;使电能损耗和导线截面增加,电网的初期投资和运行费用相应增高;使发电机、变压器和电力网中的电压损失增大,电动机的端电压下降,则感应电动机的起动传矩和过负荷能力下降。用户功率因数的高低,对于电力系统发、供、用电设备的充分利用,有着显著的影响。适当提高用户的功率因数,不但可以充分的发挥发、供电设备的生产能力、减少线路损失、改善电压质量,而且可以提高用户用电设备的工作效率和为用户本身节约电能。因此,对于广大供电企业、特别是对现阶段全国性的一些改造后的农村电网来说,若能有效的搞好低压补偿,不但可以减轻上一级电网补偿的压力,改善提高用户功率因数,而且能够有效地降低电能损失,减少用户电费。其社会效益及经济效益都会是非常显著的。

一、影响功率因数的主要因素

首先我们来了解功率因数产生的主要原因。功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其功率因数=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。

1. 异步电动机和电力变压器是耗用无功功率的主要设备

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。

变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长期处于低负载运行状态。

2. 供电电压超出规定范围也会对功率因数造成很大的影响

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

3. 电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响

综上所述,我们知道了影响电力系统功率因数的一些主要因素,因此我们要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

二、低压配电网无功补偿的一般方法

就目前普遍使用的在用户端增设电容器的无功补偿方式分析,按补偿电容器在供电网络中装设的位置不同可分为集中补偿、分散补偿、就地补偿和跟踪补偿几种形式。

集中补偿是指在企业的总降压站或配电室集中安装一批无功补偿装置的做法。其特征是安装地点为企业的电源进线中心,其作用是补偿大地区(高压)及本企业内部所消耗的无功功率。此方法也可称为随器补偿。即:将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是低压电网无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加,不利于电费的同网同价。

集中补偿具有接线简单、维护管理方便、能有效地补偿配变空载无功,限制低压电网无功负荷的优点,可使该部分无功就地平衡,从而提高配变利用率,降低无功网损,具有较高的经济性,所以集中补偿是目前补偿无功最有效的手段之一。

分散补偿是指将无功补偿装置分散到分变电所(大型企业)和车间配电室的做法。其特征是安装地点为电力负荷中心,其作用是补偿小区域或车间所消耗的无功功率。电压等级通常为10(6)kV及0.66(0.4)kV。

就地补偿是在负荷旁对其进行电容直接补偿,其特征是无功补偿装置就在所补偿的电动机附近,其作用是仅补偿本台电动机所消耗的无功功率。电压等级通常为0.66(0.4)kV。此方法也可称为随机补偿,即:将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制低压电网无功负荷。

就地补偿的特点体现在用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。此种补偿方式具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等优点。

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kV母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果较好。

跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。但缺点是控制保护装置复杂、首期投资相对较大。因此当这三种补偿方式的经济性接近时,应优先选用跟踪补偿方式。

三、采取适当措施,设法提高系统自然功率因数

提高自然功率因数是在不添置任何补偿设备,采用降低各用电设备所需的无功功率,减少负载取用无功来提高工矿企业功率因数的方法,它不需要增加投资,是最经济的提高功率因数的方法。下面将对提高自然功率因数的措施作一些简要的介绍。

1. 合理使用电动机

合理选用电动机的型号、规格和容量,使其接近满载运行。在选择电动机时,既要注意它们的机械性能,又要考虑它们的电气指标。若电动机长期处于低负载下运行,既增大功率损耗,又使功率因数和效率都显著恶化。故从节约电能和提高功率因数的观点出发,必须正确的合理的选择电动机的容量。

2. 提高异步电动机的检修质量

实验表明,异步电动机定子绕组匝数变动和电动机定、转子间的气隙变动时对异步电动机无功功率的大小有很大的影响。

3. 采用同步电动机或异步电动机同步运行提高功率因数

由电机原理知道,同步电动机消耗的有功功率取决于电动机上所带机械负荷的大小,而无功取决于转子中的励磁电流大小,在欠激状态时,定子绕组向电网“吸取”无功,在过激状态时,定子绕组向电网“送出”无功。因此,只要调节电机的励磁电流,使其处于过激状态,就可以使同步电机向电网“送出”无功功率,减少电网输送给工矿企业的无功功率,从而提高了工矿企业的功率因数。异步电动机同步运行就是将异步电动机三相转子绕组适当连接并通入直流励磁电流,使其呈同步电动机运行,这就是“异步电动机同步化”。因而只要调节电机的直流励磁电流,使其呈过激状态,即能向电网输出无功,从而达到提高低压网功率因数的目的。

4. 合理选择配电变压器容量,改善配电变压器的运行方式

对负载率比较低的配电变压器,一般采取“撤、换、并、停”等方法,使其负载率提高到最佳值,从而改善电网的自然功率因数。

通过以上一些提高加权平均功率因数和自然功率因数的叙述,我们已经对“功率因数”这个简单的电力术语有了更深的了解和认识,知道了功率因数的提高对电力企业的重要影响,下面简单介绍对用电设备进行人工补偿的方式和对补偿容量的确定方法。

四、 功率因数的人工补偿

功率因数是工厂电器设备使用状况和利用程度的具有代表性的重要指标,也是保证电网安全、经济运行的一项主要指标。供电企业仅仅依靠提高自然功率因数的办法已经不能满足工厂对功率因数的要求,工厂自身还需装设补偿装置,对功率因数进行人工补偿。对用电设备进行人工补偿的方式有:

1. 静电电容器补偿

当企业感性负载比较多时,它们从供电系统吸取的无功是滞后(负值)功率,如果用一组电容器和感性负载并联,电容需要的无功功率是引前(正值)功率,如果电容C选得合适,令QC+QL=0,这时企业已不需向供电系统吸取无功功率,功率因数为1,达到最佳值。

(1)电容器补偿容量的确定

( 2 )并联补偿移相电容器,应满足以下电压和容量的要求

2. 动态无功功率补偿

动态无功功率补偿一般应用于用电容量大、生产过程中负载急剧变化且具有重复冲击性的大型钢铁企业。这种波动频繁、急剧、幅值很大的动态无功功率,采用调相机或固定电容器进行补偿已远远满足不了要求,目前一般采用的新型动态无功功率补偿设备是静止无功补偿器。它具有稳定系统电压、改善电网运行性能、动态补偿反应迅速、调节性能优越等优点。但最明显的缺点是投资大、设备体积大、占地面积大。

五、结束语

功率因数篇7

【关键词】功率因数;电路基础;工程应用

1.功率因数的基本理论

企业中的用电设备,大部分都是用电磁感应原理来进行工作:比如电力变压器、电焊机和感应电动机就是用电磁感应的原理而实现的。这样的用电设备必须从电网上吸收两种能量,一部分能量用于做功,转化为机械能、热能、化学能及光能等能量形式,这部分能量用于生产和生活所需,即有功功率;另一部分能量用来产生交变磁场,是依靠磁场来传送和转换能量,这种转换只在电源和用电设备之间进行,不对外输出能量,即无功功率。有功功率与无功功率都是电能的应用所必需的。若有功功率不足,则不能满足用电负荷的需要,且电网质量变坏,威胁发电厂的安全;若无功功率不足,电网质量同样变坏,电网电压降低,用电设备电流上升,电机过流、发热,导致用电设备的绝缘损坏,甚至烧毁。

平均功率P可反映电路网络实际吸收的有功功率,根据定义,平均功率为:。它不仅与电压、电流的有效值有关,而且还与电压、电流的相位差有关。称为电路的功率因数,又称为功率因数角。一方面电路的功率因数直接影响发电设备的利用率,另一方面当输送相同的功率时,功率因数低,则电流大,流过电路时造成的损耗就大。为提高发电设备的利用率和降低输电线上的损耗,需要提高功率因数[1]。

图1 并联电容进行功率因数补偿的

电路图及相量图

在交流电路中,纯电阻负载中电流IR与电压U同相位,纯电感负载中电流IL滞后电压90°,而纯电容负载中电流IC超前电压90°。电力系统中的负载多是感性负载(电感性和电阻性),因此总电流I滞后于电压U一个小于90°的功率因数角。为了提高功率因数,一般在感性负载上并联电容器,如图1所示,其目的是让电容的电流抵消部分电感电流,使电流I减小到I′,在提高功率因数、降低线路损耗的同时,又不会影响原感性负载的工作状态。

工业企业电力系统常用的电容器补偿方式有三种:集中补偿、分组补偿和个别补偿。企业电力系统的补偿方式的选择,要视企业的具体情况而确定。例如,从无功就地平衡来说,个别补偿效果最好(个别补偿应用于大容量、长期稳定运行、无功功率需要较大的用电设备,或者距电源较远,不便于实现分组补偿的场合,这种方式可以减少配线电流、导线截面及配电变压器的容量)。不论采用什么样的补偿方式,补偿电容的容量必须选择适当,而这一切都是为了提高交流电力系统的功率因数。功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标。

2.提高功率因数电容值的两种算法

电路如图1所示,现假设负载的功率P、端电压U及功率因数均已知,此外电源的角频率也已知,现将电路的功率因数提高到,求需并联多大的电容C。

(1)利用相量图计算 [2]

以端电压为参考相量画出电路的相量图如图2所示。其中,为负载所在支路的电流,为电容所在支路的电流,为并联电容后电路的总电流。在相量图中,将负载所在支路的电流作水平和垂直的分解,得到两个分量和。其中,由于和电压同相位,两者的有效值相乘后得到电路的有功功率,因此,称为电流的有功分量。而由于和电压相位差为90°,两者有效值相乘后得到电路的无功功率,因此,称为电流的无功分量。然后再将并联电容后的总电流作同样的分解,得到两个分量和。从相量图中可以看到:并联电容前后电路的有功功率没有发生变化,但无功功率发生了变化。

图2 用相量图法求解并联电容容值

由此可得如下方程组:

解方程组即可求出补偿电容值:

(2)利用功率三角形计算

图3 功率三角形

电容为储能元件,本身不消耗能量,但是要与外界发生能量的交换。因此,并联电容后电路的有功功率不发生改变,而无功功率改变。由于电容和电感两个元件的性质相反,在感性负载两侧并联电容后电路的无功功率会减小。

由此可画出电路在并联电容前后的功率三角形,如图3所示。其中,P、Q、S为并联电容前后电路的有功、无功和视在功率,QC为电容的无功功率。从功率三角形可看出,并联电容前后电路的无功功率的变化量即为电容的无功功率。由此可列出如下方程组:

解方程组即可求出补偿电容值:

(3)结论

从以上两种计算方法可以看出:第一种方法根据相量图进行计算,思路清楚,无需知道电路的能量转换情况,但涉及数学知识多,求解过程麻烦。第二种方法根据电路的能量转换情况求解,涉及数学知识少,计算简单快捷,但需知道电路的能量转换情况。教学中可根据具体情况选择求解方案。

3.应用举例

一台132kW的电机,用150mm2的塑料铜芯电缆供电运行电缆温度正常,后来在这根电缆上再增加一台30kW的电机后,电缆的温度很高,不能持续运行,现试并接50kvar的电容器。问题是:并接电容器之前功率因数是多少?并接电容器之后的功率因数又是多少?现在的有功功率是多少?我们投、切电容器,测出电容器投入时电缆的负载电流为250A,电容器切出后为300A,实测电容器电流为76A。根据之前推导结果代入可得:P=135kW,,。可知:虽然投入使用的电机总容量为132kW+30kW=162kW,但实际有功功率为135kW;增投电容器进行无功补偿之后,功率因数由0.687提高到0.824,使电缆的负载电流由300A降低到250A,这根电缆虽然增加了30kW的负载,但电流并未增加仍可安全运行。

根据电力部门的要求,功率因数应该等于0.95时为最佳。按照135kW的有功功率,功率因数在提高到0.95计算,此时电缆电流降低到216A。即在功率因数由0.824提高至0.95后,在有功功率不变的情况下,电缆电流由原来的250A降低到216A。

4.结束语

功率因数是衡量企业供电系统电能利用程度及电气设备使用状况的一个具有代表性的重要指标。提高功率因数便提高了电源设备的供电能力,减小了供电线路的电能损耗,本文根据电路基础的基本理论,探讨了功率因数的测量和计算,提高功率因数的方法,并联电容器提高功率因数时电容值的两种算法以及在生产实际中的应用。

参考文献

[1]王松林,吴大正,李小平,等.电路基础(第三版)[M].西安:电子科技大学出版社,2008.

[2]杜瑞红.采用并联电容器提高功率因数的算法[J].中国电力教育,2010:263-268.

[3]陈俊章.用测电流法计算功率因数及其应用[J].电子报,2008:571.

作者简介:

陈姝(1983—),女,硕士研究生,讲师,主要研究方向:电路与系统。

刘景夏(1963—),男,硕士研究生,教授。

功率因数篇8

摘要:本文分析了无功补偿的作用和补偿容量的选择方法,着重论述了低压电网和异步电动机无功补偿容量的配置。结合应用实例说明采用无功补偿技术,提高低压电网和用电设备的功率因数,已成为节电工作的一项重要措施。

关键词:节电技术;功率因数;无功补偿

无功补偿,就其概念而言早为人所知,它就是借助于无功补偿设备提供必要的无功功率,以提高系统的功率因数,降低能耗,改善电网电压质量。

一、无功补偿的合理配置原则

从电力网无功功率消耗的基本状况可以看出,各级网络和输配电设备都要消耗一定数量的无功功率,尤以低压配电网所占比重最大。为了最大限度地减少无功功率的传输损耗,提高输配电设备的效率,无功补偿设备的配置,应按照“分级补偿,就地平衡”的原则,合理布局。

(1)总体平衡与局部平衡相结合,以局部为主。

(2)电力部门补偿与用户补偿相结合。

在配电网络中,用户消耗的无功功率约占50%~60%,其余的无功功率消耗在配电网中。因此,为了减少无功功率在网络中的输送,要尽可能地实现就地补偿,就地平衡,所以必须由电力部门和用户共同进行补偿。

(3)分散补偿与集中补偿相结合,以分散为主。

集中补偿,是在变电所集中装设较大容量的补偿电容器。分散补偿,指在配电网络中分散的负荷区,如配电线路,配电变压器和用户的用电设备等进行的无功补偿。集中补偿,主要是补偿主变压器本身的无功损耗,以及减少变电所以上输电线路的无功电力,从而降低供电网络的无功损耗。但不能降低配电网络的无功损耗。因为用户需要的无功通过变电所以下的配电线路向负荷端输送。所以为了有效地降低线损,必须做到无功功率在哪里发生,就应在哪里补偿。所以,中、低压配电网应以分散补偿为主。

(4)降损与调压相结合,以降损为主。

二、影响功率因数的主要因素

功率因数的产生主要是因为交流用电设备在其工作过程中,除消耗有功功率外,还需要无功功率。当有功功率P一定时,如减少无功功率Q,则功率因数便能够提高。在极端情况下,当Q=0时,则其力率=1。因此提高功率因数问题的实质就是减少用电设备的无功功率需要量。

1、异步电动机和电力变压器是耗用无功功率的主要设备。

异步电动机的定子与转子间的气隙是决定异步电动机需要较多无功的主要因素。而异步电动机所耗用的无功功率是由其空载时的无功功率和一定负载下无功功率增加值两部分所组成。所以要改善异步电动机的功率因数就要防止电动机的空载运行并尽可能提高负载率。变压器消耗无功的主要成份是它的空载无功功率,它和负载率的大小无关。因而,为了改善电力系统和企业的功率因数,变压器不应空载运行或长其处于低负载运行状态。

2、供电电压超出规定范围也会对功率因数造成很大的影响。

当供电电压高于额定值的10%时,由于磁路饱和的影响,无功功率将增长得很快,据有关资料统计,当供电电压为额定值的110%时,一般工厂的无功将增加35%左右。当供电电压低于额定值时,无功功率也相应减少而使它们的功率因数有所提高。但供电电压降低会影响电气设备的正常工作。所以,应当采取措施使电力系统的供电电压尽可能保持稳定。

3、电网频率的波动也会对异步电机和变压器的磁化无功功率造成一定的影响。

4、以上论述了影响电力系统功率因数的一些主要因素,因此必须要寻求一些行之有效的、能够使低压电力网功率因数提高的一些实用方法,使低压网能够实现无功的就地平衡,达到降损节能的效果。

三、低压配电网无功补偿的方法

提高功率因数的主要方法是采用低压无功补偿技术,我们通常采用的方法主要有三种:随机补偿、随器补偿、跟踪补偿。

1、随机补偿随机补偿就是将低压电容器组与电动机并接,通过控制、保护装置与电机,同时投切。随机补偿适用于补偿电动机的无功消耗,以补励磁无功为主,此种方式可较好地限制用电单位无功负荷。随机补偿的优点是:用电设备运行时,无功补偿投入,用电设备停运时,补偿设备也退出,而且不需频繁调整补偿容量。具有投资少、占位小、安装容易、配置方便灵活,维护简单、事故率低等。

2、随器补偿

随器补偿是指将低压电容器通过低压保险接在配电变压器二次侧,以补偿配电变压器空载无功的补偿方式。配变在轻载或空载时的无功负荷主要是变压器的空载励磁无功,配变空载无功是用电单位无功负荷的主要部分,对于轻负载的配变而言,这部分损耗占供电量的比例很大,从而导致电费单价的增加。

3、跟踪补偿

跟踪补偿是指以无功补偿投切装置作为控制保护装置,将低压电容器组补偿在大用户0.4kv母线上的补偿方式。适用于100kVA以上的专用配变用户,可以替代随机、随器两种补偿方式,补偿效果好。跟踪补偿的优点是运行方式灵活,运行维护工作量小,比前两种补偿方式寿命相对延长、运行更可靠。

四、无功功率补偿容量的选择方法

无功补偿容量以提高功率因数为主要目的时,补偿容量的选择分两大类讨论,即单负荷就地补偿容量的选择(主要指电动机)和多负荷补偿容量的选择(指集中和局部分组补偿)。

1、单负荷就地补偿容量的选择的几种方法

(1)、美国资料推荐:Qc=(1/3)Pe[额定容量的1/3]

(2)、日本方法:从电气计算日文杂志中查到:1/4~1/2容量计算

考虑负载率及极对数等因素,按上式选取的补偿容量,在任何负载情况下都不会出现过补偿,而且功率因数可以补偿到0.90以上。此法在节能技术上广泛应用,对一般情况都可行,特别适用于Io/Ie比值较高的电动机和负载率较低的电动机。但是对于Io/Ie较低的电动机额定负载运行状态下,其补偿效果较差。

2、多负荷补偿容量的选择

多负荷补偿容量的选择是根据补偿前后的功率因数来确定。

(1)对已生产企业欲提高功率因数,其补偿容量Qc按下式选择:

Qe=KmKj(tgφ1-tgφ2)/Tm式中:Km为最大负荷月时有功功率消耗量,由有功电能表读得;Kj为补偿容量计算系数,可取0.8~0.9;Tm为企业的月工作小时数;tgφ1、tgφ2意义同前,tgφ1由有功和无功电能表读数求得。

(2)对处于设计阶段的企业,无功补偿容量Qc按下式选择:Qc=KnPn(tgφ1-tgφ2)

式中Kn为年平均有功负荷系数,一般取0.7~0.75;Pn为企业有功功率之和;tgφ1、tgφ2意义同前。tgφ1可根据企业负荷性质查手册近似取值,也可用加权平均功率因数求得cosφ1。

多负荷的集中补偿电容器安装简单,运行可靠、利用率较高。但电气设备不连续运转或轻负荷运行时,会造成过补偿,使运行电压抬高,电压质量变坏。因此这种方法选择的容量,对于低压来说最好采用电容器组自动控制补偿,即根据负荷大小自动投入无功补偿容量的多少,对高压来说应考虑采取防过补偿措施。

五、无功补偿的效益

在现代用电企业中,在数量众多、容量大小不等的感性设备连接于电力系统中,以致电网传输功率除有功功率外,还需无功功率。如自然平均功率因数在0.70~0.85之间。企业消耗电网的无功功率约占消耗有功功率的60%~90%,如果把功率因数提高到0.95左右,则无功消耗只占有功消耗的30%左右。由于减少了电网无功功率的输入,会给用电企业带来效益。

1、节省企业电费开支。提高功率因数对企业的直接经济效益是明显的,因为国家电价制度中,从合理利用有限电能出发,对不同企业的功率因数规定了要求达到的不同数值,低于规定的数值,需要多收电费,高于规定数值,可相应地减少电费。可见,提高功率因数对企业有着重要的经济意义。

2、提高设备的利用率。对于原有供电设备来讲,在同样有功功率下,因功率因数的提高,负荷电流减少,因此向负荷传送功率所经过的变压器、开关和导线等供配电设备都增加了功率储备,从而满足了负荷增长的需要;如果原网络已趋于过载,由于功率因数的提高,输送无功电流的减少,使系统不致于过载运行,从而发挥原有设备的潜力;对尚处于设计阶段的新建企业来说则能降低设备容量,减少投资费用,在一定条件下,改善后的功率因数可以使所选变压器容量降低。因此,使用无功补偿不但减少初次投资费用,而且减少了运行后的基本电费。

上一篇:社会效益范文 下一篇:概念模型范文