化学遗传学技术范文

时间:2023-11-13 11:18:04

化学遗传学技术

化学遗传学技术范文第1篇

关键词:生物科学;核心课程;逻辑关系

中图分类号:G633.91

文献标识码:A 文章编号:1674-9944(2016)21-0130-03

1 引言

生物化学、遗传学、细胞生物学、分子生物学、基因工程学是生物科学专业的核心课程,由于它们相互联系,交叉渗透,因此存在逻辑关系不清,课程内容重叠较多等问题,例如原核生物和真核生物基因表达调控在生物化学、细胞生物学、分子生物学都有介绍,基因工程原理在分子生物学、基因工程学中都有介绍,导致教师教学内容难以起舍,课程顺序难以安排。要理顺生物化学、遗传学、细胞生物学、分子生物学、基因工程学的逻辑关系,确定各课程教学内容和教学顺序,必须把其定义,研究内容,发展历史动态结合起来。

2 生物科学专业核心课程概述

2.1 生物化学

生物化学是运用化学的理论和方法研究生物分子结构与功能、物质代谢及遗传信息传递与调控规律的科学。

生物化学是生命科学中最古老的学科之一。 随着生命科学的发展,各学科相互渗透。18世纪,一些从事化学研究的科学家转向生物领域,为生物化学的诞生播下了种子。19世纪末,生物化学从生理化学中独立。20世纪中后期又从生物化学分离出部分内容与遗传学部分内容结合为分子生物学,然后,分子生物学基因操作部分独立出来,形成基因工程学。

1920年以前,生物化学研究内容以分析生物体的化学组成、性质和含量为主,称为静态生物化学时期。

1920年-1950年,随着同位素示踪技术、色谱技术等物理学手段的广泛应用,生物化学从单纯的组成分析深入到物质代谢、能量转化,如:光合作用、生物氧化、糖、脂肪、蛋白质代谢等领域。这是生物化学飞速发展的时期,称为动态生物化学时期。

1950年以后,蛋白质化学和和核酸化学进展迅速,生物化学进入了分子生物学时期。分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类在认识的巨大飞跃。根据生物化学的定义和历史,生物化学研究的内容包括以下几个方面。

2.1.1 生物的物质组成

生物是由一定的物质按特定的方式组成的,直到今天,新物质仍不断被发现。如陆续发现的干扰素、环核苷一磷酸、钙调蛋白、粘连蛋白、外源凝集素等都具有重要的生物学功能。另一方面,早已熟知的化合物也发现了新的功能,如20世纪50年代才知道肉碱是一种生长因子,而到60年代又发现其是生物氧化的载体。

2.1.2 物质代谢

生物体内绝大部分物质代谢是在酶催化下进行的,具有高度自动调节能力。一个小小的细胞内,有近2000种酶,在同一时间内,催化各种不同的化学反应。这些化学反应互不干扰,有条不紊地进行。表明生物体内的物质代谢有精确的调节控制系统。

2.1.3 结构与功能

生物大分子的功能与其特定的结构有密切关系。如酶的活性中心的结构决定其催化活性及其特异性;变构酶的活性还与其催化的代谢终末产物的结构有关。

核酸中核苷酸排列顺序的不同,其结构就不同,所含遗传信息不同。这些不同的构象对基因的表达具有调控作用。

生物体的糖包括多糖、寡糖和单糖。由于多糖链结构复杂,具有很大的信息容量,对于细胞专一地识别、相互作用具有重要作用。糖类将与蛋白质、核酸并列成为生物化学的主要研究对象。

在生物化学中,有关结构与功能关系的研究才仅仅开始,尚待大力研究的问题很多,其中重大的有:亚细胞结构中生物大分子间的结合,细胞的相互识别、细胞的接触抑制、细胞间的粘合、抗原与抗体的作用、激素、神经介质与其受体的相互作用等。

2.1.4 繁殖与遗传

生物典型特点是具有繁殖与遗传特性。基因是DNA分子中的一段核苷酸序列,现在DNA分子的核苷酸序列已不难测得,不但能在分子水平上研究遗传,而且还可能改变遗传,从而派生出基因工程学。

2.2 细胞生物学

细胞生物学是从显微水平、亚显微水平和分子水平研究细胞的结构及其生命活动规律的科学。

过去,细胞生物学主要是在光学显微镜下对细胞的形态结构和生活史进行研究,称为细胞学。20 世纪 50 年代以来,由于电子显微镜、放射性同位素、细胞结构组分分离技术、细胞培养等技术的广泛应用,特别是分子生物学的兴起,使细胞生物学研究的广度和深度都有迅猛发展,从宏观到微观、从平面到立体、从定性到定量、从分析到综合;从细胞、亚细胞、分子三个水平研究细胞的结构与功能、分裂与分化、衰老与死亡等生命活动规律及其调控机制,细胞与细胞、细胞与环境之间的相互关系。使原来以形态结构研究为主的细胞学转变成以生理功能研究为主、将结构与功能紧密结合起来的细胞生物学。由于细胞生物学在分子水平上的研究工作取得了深入的进展,因此细胞生物学又称为细胞分子生物学。细胞生物学研究内容如下。

2.2.1 细胞社会学

细胞社会学是细胞生物学中的一个新的领域。它是以系统论的观点研究细胞群体中细胞间的相互关系、细胞群体的社会行为;细胞识别、通讯、相互作用;整体和细胞群对细胞的生长、分化、形态发生和器官形成等活动的调控;细胞外环境对细胞的影响。

2.2.2 细胞的增殖、生长、分化与调控

研究细胞增殖、生长、分化及其调控机制,不仅是控制生物生长和发育的基础,而且是研究细胞癌变和逆转的重要途径。

2.2.3 细胞遗传学

细胞遗传学从细胞学角度来研究染色体的结构和行为以及染色体与细胞器的关系,从而探讨遗传与变异的机制等。

2.2.4 细胞化学

细胞化学:用切片或分离细胞成分,对单个细胞或细胞各个部分进行定性和定量的化学分析,研究细胞结构、化学成分的定位、分布及其生理功能。

2.2.5 分子细胞学

分子细胞学:从分子水平研究细胞与细胞器中蛋白质、核酸等大分子的组成、结构与功能及其遗传性状的表现和调控等,探讨细胞生命活动的分子机理。

2.3 遗传学

遗传学是研究生物遗传和变异规律的科学。孟德尔认为生物性状的遗传是受遗传因子控制的,并提出了遗传因子分离和自由组合的基本遗传规律。1900年,孟德尔的成果得到广泛重视,成为遗传学的基石。

20世纪初,利用光学显微镜发现了细胞有丝分裂和减数分裂过程中染色体及其行为,奠定了遗传的染色体理论基础。1910年左右,美国遗传学家摩尔根及其同事根据对普通果蝇的研究,提出了基因的连锁交换规律,并结合当时的细胞学成就,创立了以染色体遗传为核心的细胞遗传学。

遗传信息在分子水平上研究始于20世纪40年代。随着电子显微镜的发明,人们已能够直接观察遗传物质的结构及其在基因表达过程中的特征,使细胞遗传学的研究进入分子水平。

1953年,沃森和克里克提出了DNA的双螺旋结构模型,为进一步阐明DNA的结构、复制和遗传物质如何保持世代连续的问题奠定了基础,开创了分子遗传学这一新的学科领域。

遗传学研究的领域非常广泛,可划分成经典遗传学、细胞遗传学、分子遗传学和生统遗传学4个分支,各个分支领域相互联系、相互重叠、相互印证,组成了一个不可分割的整体。

经典遗传学研究从亲代到子代的遗传特性,包括遗传的分离规律;独立分配规律;连锁和交换遗传规律及机理;基因互作及其与环境的相互关系;性别决定与伴性遗传;基因及染色体变异;数量性状的特征及其多基因假说,近亲繁殖和杂种优势;细胞质遗传等。

细胞遗传学是通过细胞学手段对遗传物质进行研究。其内容包括细胞的结构和功能;染色体的形态结构;细胞的有丝分裂,减数分裂;配子的形成和受精。

分子遗传学是从分子的水平上研究遗传物质的结构及遗传信息的传递。内容包括DNA复制、转录和翻译,基因突变及修复,原核生物和真核基因表达与调控;基因、基因组及作图,遗传重组。

生统遗传学是用数理统计学方法来研究生物遗传变异规律的学科。根据研究的对象不同,又可分为数量遗传学和群体遗传学。前者研究生物体数量性状即由多基因控制的性状遗传规律,后者是研究基因频率在群体中的变化、群体的遗传结构和物种进化。

2.4 分子生物学

分子生物学是从分子水平研究核酸与蛋白质的结构与功能、遗传信息传递和调控,阐明生命本质的科学。

从19世纪后期到20世纪50年代初,确定了蛋白质是生命的主要物质基础,DNA是生物遗传的物质的载体,是现代分子生物学诞生的准备和酝酿阶段。

从20世纪50年代初到70年代初,是现代分子生物学的建立和发展阶段,1953年Watson和Crick提出的DNA双螺旋结构模型为现代分子生物学诞生的里程碑,确立了核酸作为遗传信息分子的结构基础,提出了硷基配对是核酸复制、遗传信息传递的基本方式,为核酸与蛋白质的关系及其在生命中的作用打下了最重要的基础。

70年代后,基因工程技术出现,人类进入认识生命本质并开始改造生命的发展阶段。

分子生物学原来是生物化学的一部分,因其太重要了,20世纪中后期从生物化学中分离出来并与遗传学结合,独立出来成为单独的学科,是生物化学的发展和延续。涉及的部分内容比生物化学更细致深入,并从整体上考虑。

分子生物学从蛋白质、核酸、基因及基因组结构开始,以中心法则为主线,阐述生物大分子在信息传导、基因表达调控中的相互作用和机理。主要内容包括蛋白质、核酸、基因和基因组的结构、DNA的复制、转录、转录后加工、基因突变与修复、蛋白质生物合成和翻译后加工、原核生物基因表达的调控、真核生物基因表达的调控。基因工程技术的原理和应用等。

2.5 基因工程学

20世纪70年代,随着 DNA的内部结构和遗传机制逐渐呈现在人们眼前,生物学家不再仅仅满足于探索、揭示生物遗传的秘密,而是开始设想在分子的水平上去干预生物的遗传特性。这就像工程设计,按照人类的需要(设计)把这种生物的某个“基因”与那种生物的某个“基因”进行“施工”,“组装”成新的基因组合,创造出新的生物的工程技术被称为“基因工程”。

基因工程包括如下几个主要的内容:①目的基因的合成或提起分离。②载体的构建。③将载体转移到受体细胞并增殖。④重组DNA分子的受体细胞克隆筛选。⑤将目的基因克隆到表达载体上,导入寄主细胞,使之在新的遗传背景下实现功能表达,产生出人类所需要的物质。

3 课程间的逻辑关系,教学内容选择及课程顺序安排

从生物化学、遗传学、细胞生物学、分子生物学、基因工程学的定义,研究内容,发展历史动态可知,各学科的逻辑关系是:理解细胞结构及功能需要一定的生物化学基础,理解遗传物质的结构和功能需要一定的细胞生物学基础,而分子生物学是生物化学、遗传学交叉融合的产物,研究核酸和蛋白质分子结构和功能以及相互关系,而各个分子不能孤立发挥作用,必须依赖于一定的细胞结构,因此,生物化学是细胞生物学的基础;细胞生物学是遗传学和分子生物学的基础。基因工程是利用分子生物学的理论和实验技术进行转基因操作的部分独立出来的,因此分子生物学是基因工程学的基础。所以,高校应按生物化学、细胞生物学、遗传学、分子生物学、基因工程的顺序安排课程教学最为合适。

由以上可知,由于历史的原因,生物化学、细胞生物学、遗传学、分子生物学、基因工程学相互联系,交叉渗透,研究内容重复较多。因此,本研究根据其定义、逻辑关系及发展历史,同时为编写教材和教学的方便,建议生物化学、遗传学、细胞生物学、分子生物学、基因工程学教学内容如下。

(1)生物化学主要教学内容主要有:蛋白质化学、核酸化学;酶学基础;糖代谢与生物氧化;脂类代谢;蛋白质的分解代谢等内容。而将DNA复制、转录、翻译、突变、修复及原核生物和真核生物基因表达调控留在分子生物学讲授。

(2)细胞生物学的教学内容主要有:细胞的基本结构;细胞生物学研究方法;细胞膜的结构与功能及物质跨膜运输;细胞质基质与细胞内膜系统;细胞通讯与信号传递;线粒体和叶绿体;细胞核与染色体;细胞骨架;细胞增殖及其调控;细胞分化、衰老与凋亡。

(3)遗传学的教学内容主要有:遗传的分离规律;独立分配规律;连锁和交换遗传规律;基因互作及其与环境的关系;基因定位与连锁遗传图;性别决定与伴性遗传;基因及染色体变异;染色体畸变;数量性状的特征及其多基因假说;近亲繁殖和杂种优势;细胞质遗传;遗传重组。

(4)分子生物学的教学内容主要有:DNA的复制、转录、转录后加工、基因突变与修复、蛋白质生物合成和翻译后加工、原核生物基因表达的调控、真核生物基因表达的调控。

(5)基因工程学的主要教学内容有:基因工程技术的原理和应用等。

以上各门课的教学内容相对前述和我国现行教材的教学内容作了较大调整,例如;核酸和蛋白质的组成及结构只在生物化学中讲授,细胞信号传递只在细胞生物学中讲授,基因工程原理只在基因工程学中讲授,避免了课程内容的重复。

参考文献:

[1]沈振国.细胞生物学(第2版)[M].北京:中国农业出版社,2011.

[2]欧阳五庆.细胞生物学[M].北京:高等教育出版社,2010.

[3]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2007(8).

[4]George M.Malacinski,David Freifelder.essentials of molecular biology(third edition)[M].北京:科学出版社,2003.

[5]Jeremy M.Berg,John L. Tymoczko,Lubert Stryer[J].Biochemistry,2002.

[6]徐晋麟.现代遗传学原理[M].北京:科学出版社,2000.

[7]王亚馥,戴灼华.遗传学[M].北京:高等教育出版社,1999.

[8]孙乃恩.分子遗传学[M].南京:南京大学出版社,1990.

[9]Robert H.Tamarin:Principles of Genetics[J].5th ed.,1996.

[10]朱玉贤,李 毅.现代分子生物学[M].北京:高等教育出版社,2002.

[11]杨业华.普通遗传学[M].北京:高等教育出版社,2000.

[12]Hartwell L,Hood L,Goldberg M L,et al.Genetics:From genes to Genomes(first edition)[J].McGraw-Hill Companies,Boston,2000.

[13]马建岗.基因工程学原理[M].西安:西安交通大学出版社,2001.

[14]孙 明.基因工程[M].北京:高等教育出版社,2006.

化学遗传学技术范文第2篇

二年以上工作经验|男|25岁(1988年9月22日)

居住地:杭州

电 话:189********(手机)

E-mail:

最近工作 [ 1年8个月]

公 司:XXX师范大学生物科学

行 业:生物科学

职 位:技术硕士

最高学历

学 历:本科

专 业:生物科学,技术

学 校:哈尔滨师范大学

自我评价

熟悉分子生物学及细胞,蛋白等多方面的实验技能,有良好的理论及实验基础,有较强团队合作精神和学习能力,在两年多的工作实践中熟练掌握了慢病毒载体系统以及腺病毒载体系统的构建病毒包装,干扰筛选,稳转细胞株构建等细胞生物学技能,一直从事项目服务行业,了解项目服务的情况。

求职意向

到岗时间:一个月之内

工作性质:全职

希望行业:生物科学

目标地点:杭州

期望月薪:面议/月

目标职能:技术硕士

工作经验

2012 /7—至今:XXX师范大学生物科学[1年8个月]

所属行业: 生物科学

化学部技术硕士

1. 生物化学,基因工程,生物技术,细胞生物学,遗传学,微生物学,生物统计学,发酵工程,生化工程,微生物遗传学。

2. 植物组织培养,动物学,植物学,分子遗传 学,细胞遗传学及染色体工程。

3. 细胞遗传学实验,现代遗传学讲座,基因工程原理与技术。

4. 基因组学,叶绿体基因工程,生物电镜应用,生物信息学。

5. 实验设计与统 计分析 ,生物学中的计算机应用, 文献检索等课程。

2011 /6—2012 /6:XX生物技术有限公司[1年]

所属行业: 制药/生物工程

科研部 科研管理人员

1、 隶属于部门细胞组,主要进行细胞相关工作。

2、 包括细胞日常维持,慢病毒包装、纯化、滴度测定,腺病毒包装、纯化、滴度测定;质粒转染、病毒感染稳定细胞株筛选。

教育经历

2007/9—2011 /6 哈尔滨师范大学 生物科学,技术 本科

证 书

2009/6 大学英语六级

2008/6 大学英语四级

语言能力

化学遗传学技术范文第3篇

【关键词】分子遗传学;教学;方法

分子遗传学是在分子水平研究生命现象的学科,已经成为21世纪生命科学前沿学科,它的基础理论已经渗透到生命科学几乎所有的领域,是涵盖面非常广的一门学科,同时也是现代生物科学发展最快的学科之一。从分子遗传学发展以来逐渐从重视形态、代谢功能方面的演变延伸到研究基因和基因的结构和功能等的演变。

分子遗传学目前已成为综合性大学、理工科大学、农林院校等生命科学类各专业研究生的专业学位课,是继本科阶段课程如生物化学、分子生物学、遗传学等课程后的进一步学习,对提高研究生的基本科学素质、提升专业素养和增强科研创新等有着十分密切的联系和重要的影响。以分子遗传学为基础的遗传工程则正在发展成为一个新兴的工业生产领域,许多国家已经把分子遗传学及技术列为优先发展的高科技项目。在这样的发展潮流中,如何使学生能够及时了解快速发展的分子遗传学理论和技术的相关知识,为我国生命科学培养富有开拓精神、创新精神,具有国际竞争力的高层次、高质量的人才,研究生分子遗传学课程的改革必将成为我们探索的一个重要课题。

一、学院特色

生物化学与分子生物学学科是生命科学领域发展最为迅速的前沿学科之一,也是中国计量学院近年来重点建设的学科,2004年入选浙江省重点扶植学科,2005年获硕士学位点授予权。该学科的主要特色包括分子检测和检验技术、重大生物安全和生物入侵问题、植物天然活性产物的提取与利用、环境分子生物学与农产品安全等方面的研究,均从基因或蛋白质等方面来阐明具体的机理,这与分子遗传学存在着密切联系。随着分子遗传学概念的深入人心,为了适应培养基础厚、知识宽、素质高、能力强、面向21世纪开拓创新的生命科学优秀基础性人才的需要,结合我院专业特色和人才培养计划,2011年新增《分子遗传学》课程为本学院生物化学与分子生物学硕士研究生的专业学位课,并于2011-2012年第二学期正式实施教学工作。

二、教材的选择和教学内容的整合优化

本课程选用了以高等教育出版社出版的由路铁刚、丁毅主编的《分子遗传学》为教材。以南京大学出版社出版的由孙乃恩,孙东旭,煦编著的《分子遗传学》和高等教育出版社出版的由朱玉贤等编著的《现代分子生物学》等为参考教材,同时也选择了一些相关的动画网络电子教材。在教材上突出基础性、综合性、前沿性、时代性、创新性和引导性,并且符合相应的课时数,同时避免与其它课程的重复,能够适合应用型人才的教材。

同时,从分子遗传学的特色出发,优化教学内容,注重知识的横向和纵向衔接,删改与生物化学、分子生物学等相关课程间重复交叉内容,同时补充本教材内容的不足,使教学内容体现课程的特色性。课堂教学主要是讲授基因组学与后基因组学、基因组结构与功能、基因表达调控、基因突变与DNA损伤修复、遗传重组与转座、杂交育种与诱变育种、突变体的创制与应用、分子遗传学研究的常用技术介绍等。同时在讲授基础知识的同时也结合相关前沿热点领域的知识和进展,如适当引入学科前沿内容以激发学生的学生兴趣,并将最新的知识理论和科学热点通过文献介绍给学生。不仅达到授课内容国际化、教学理念前瞻化,而且可以培养研究生学习外文文献的能力和思考科学问题的方法和习惯。教学过程全部采用多媒体与动画网络资源的教学方法相结合。在讲授部分内容时,注重启发研究生寻找自己相关课题进一步研究的新切入点,引导其通过科研和实验过程去解决问题。实现在有限的课时中讲授分子遗传学的新发展、新观念,为学生的思维打开一扇通向未来之门。

三、采用启发式、引导式、讨论式的教学方法

研究生教育是我国教育结构中最高层次的教育,培养的研究生不仅要有坚实的理论基础,还要有鲜明的创新性,所以对于这种层次的教学,需要采用多种教学方式如启发式、引导式、讨论式。首先,在授课中进行启发式教学,引导学生积极思考,按照提出问题、分析问题、解决问题的思路进行讲解,而不是简单的背记已有的结论,并在教学过程中增加专业英语词汇,通过课堂上的反复讲授,既能增加学生的专业英语词汇量,帮助学生更好地理解教材内容,又提高了阅读外文文献的能力,为将来的专业及科研工作打下良好的基础。其次,为了进一步巩固理论课堂所学知识,并将理论与将来的研究课题联系起来,设立相关的讨论课,每个学生以分子遗传学技术结合自己的研究方向,写出课题设计思路,可以是目前正在研究的课题,也可以是假想的课题。让学生在课余时间通过文献查找和整理,准备讨论提纲,并分组讨论。鼓励学生积极发言,阐明自己的科研思路,同时教师通过积极正确的引导,使课题设计更加合理,并赋予创新性。最后,进行课堂学术报告竞赛活动,通过设计一些学科发展前沿与动态相关的讨论议题,如突变体创制的应用前景、转基因作物的安全性等。

四、采用综合测评的方式评定成绩

本课程成绩的评定采用综合测评的方式,进行基础理论闭卷考试、综述撰写和课堂讨论表现相结合的方法,让研究生通过查阅文献,撰写综述,课堂讨论等,锻炼研究生的归纳总结,推陈出新,开拓创新的综合能力。也有利于提高研究生的学习热情,并充分调动研究生主动探究的积极性和主动性。这种考试方法的建立,也增加了对学生的学习情况评价的客观性,对创新能力培养和教学评价方式作有益的探索。

综上所述,本次教学改革将全面推进研究生的教学工作,并且使教学内容体现基础性、综合性、前沿性、时代性、创新性和引导性。不仅可以有效地提高分子遗传学的教学效果和处理与其它相关课程的衔接问题,而且还可以增强研究生的自主学习、科研创新等能力,让他们实现科学知识向技术的转化,为研究生独立开展项目研究和申报课题奠定基础,最终产出一定的科研成果,甚至实际的生产力。

参考文献

[1]屈艾,朱必才,潘沈元,李宗芸,高焕,汪承润,王秀琴.提高遗传学课程教学质量有效途径的探讨及体会[J].生物学通报,2002,37(11):44-45.

[2]余诞年.遗传学的发展与遗传学教学改革谄议[J].遗传,2000,22(6):413-415.

[3]林海萍,张立钦,张昕,胡加付.几种讨论式方式在微生物学教学中的应用[J].微生物学通报,2010,37(7):1054-1057.

[4]赵新民,夏莉,徐玲,彭晓赟,刘石泉.分子生物学教学动画网络资源的利用[J].广东化工,2011,7(38):196-198.

[5]王晓霞,刘志荣,解军,程牛亮.如何在分子生物学教学中培养研究生的科研创新能力[J].西北医学教育,2011,19(1):78-80.

[6]贺根和,叶九根,郭小华,段世华,朱立成.分子生物学双语教学中“双主体互动”教学模式构建策略初探[J].河北农业科学,2011,15(3):148-149,161.

资助项目:浙江省植物生物学精品课程;中国计量学院教改项目(HEX2011039)。

化学遗传学技术范文第4篇

自从1957年Waddington提出表观遗传学的概念后,表观遗传学和表观基因组学有了相当大的发展。表观基因组学是在全基因组水平上研究表观遗传学标志及其与基因表达的相互关系。这一新兴领域已对毒理学研究与实践产生重大的影响。国内,表观遗传学在毒理学研究已较深入地开展了一些研究,并发表了综述。

1外源化学物的表观遗传毒性

基因表达的表观遗传调控是通过DNA甲基化,组蛋白编码和相关的非编码RNA(如miRNA)来完成的。3种机制各自的贡献取决于特定基因及其环境,如物种,细胞类型,机体的发育阶段和年龄,此外,每个因素可能受到其他因素的影响。因此,表观基因组的调控是一个强大的和动态的综合过程,在发育和维持分化状态中起关键作用。虽然表观基因组不是所有的改变预期都是有害的,但有些可能产生有害结果(如发育异常,增加疾病易感性等)。在体外,动物和人类的研究已经确定了几类环境化学物,可以修饰表观遗传标志,包括金属、过氧化物酶体增殖剂、空气污染物、毒物和内分泌干扰物/生殖毒物。目前环境化学物表观遗传标志的研究大多数集中在DNA甲基化,只有少数研究涉及组蛋白修饰和miRNA(表1~3)。外源化学物引起表观遗传学改变可影响细胞应激,并是潜在可逆的;也可能是可遗传的。表观遗传毒性(epigenotoxicity)是指脱离外源化学物暴露后,可遗传的有害改变。广义的表观遗传毒性也可以包括外源化学物引起非遗传的表观遗传学改变中介的外源化学物毒效应。可遗传的表观遗传毒性和表观遗传改变中介的毒效应是有区别的。表观遗传毒性可以被分为有丝分裂的,减数分裂的或跨代遗传的3类。表观遗传毒性这一新兴研究领域对毒理学产生了重大的影响。下文主要讨论目前表观遗传毒性测试的主要发现及国际生命科学研究所(ILSI)“评估表观遗传变化”的研讨会的意见。

2表观遗传毒性的主要发现

2.1化学致癌近年来在多种肿瘤细胞观察到表观遗传事件。表观遗传事件可能引起基因表达的变化通过DNA甲基化,组蛋白修饰和/或染色质重构。并估计,在肿瘤细胞中检测到甲基化变化的数目远远多于遗传改变的数目。研究发现表观遗传事件参与环境与职业因子诱发癌变进程的引发和进展。DNA甲基化异常对肿瘤发生有因果关系作用,甲基胞嘧啶增加突变可能性,增加致癌物结合,肿瘤抑制基因沉默,DNA修复基因沉默,癌的DNA低甲基化和遗传学改变。组蛋白修饰可能通过影响DNA修复和细胞周期关卡,引起遗传学改变。传统的致癌性试验可确定表观遗传修饰诱导肿瘤的可能性。许多不同的啮齿类致肝癌物已被确定,而研究发现这些化合物的作用模式并无遗传毒性,与人类也无关联性。例如过氧化物酶体增殖物激活受体-α(PPAR-A)介导的和构成性雄甾烷受体(CAR)介导的啮齿类动物癌变。肝肿瘤促长剂苯巴比妥(PB),其与CAR的激活和随后的效果相关。PB诱导的啮齿类表观遗传学改变包括甲基化改变的区域,基因表达的特殊改变和外源性及内源性化合物的代谢。持续的核受体介导的肝脏致癌物的分子分析,将更加明确地表征每个受试化合物的作用模式。表观基因组正常变异性的表征和与处理相关的表观遗传学影响的理解,将是研究致癌作用模式的巨大挑战。

2.2遗传毒理学评价化学物引起遗传损伤的能力是风险评定的重要内容。表观遗传学影响基因表达的可遗传的变化可能构成遗传毒性。表观遗传导致基因改变的机制包括:错配修复基因表观遗传缺陷,增加DNA修复基因表观遗传缺陷与癌症特定突变谱相关,参与双链断裂修复的基因的表观遗传失活,有丝分裂关卡基因表观遗传缺陷,致癌物解毒基因与甲基胞嘧啶突变可能性增加,DNA全面低甲基化和染色体不稳定等。已经确定表观遗传学改变在肿瘤形成中具有一定的作用。在肿瘤发展过程中DNA甲基化模式的改变往往是最早观察到的分子事件。甲基胞嘧啶(5meC)已知是C∶G至T∶A转换突变的热点,起因于胞嘧啶自发性水解和酶脱氨基率的增加和DNA修复降低。增加的5meC脱氨基率和T碱基修复受限可解释在CpG位点突变频率的增加。人类肿瘤p53基因突变的1/4和肿瘤抑制基因p16的C-T转换的1/3已知会发生在CpG位点上。突变的增加也可能来自于饮食中甲基供体的不足。已证明叶酸补充剂能减少溃疡性结肠炎患者发生结肠癌的风险和和预防结肠癌细胞p53突变。参与叶酸代谢的酶遗传多态性影响表观遗传标志,改变SAM水平,并能调节结肠癌的风险。也已提出DNA氧化性损伤在癌症的发生、心血管疾病和衰老中所起的作用。8-羟基鸟嘌呤(8oxoG)改变了CpG二核苷酸相邻的C的甲基转移酶活性,可能改变DNA甲基化。在CpG内C5-位的损伤影响DNA甲基化。在体外,5meC和5-氯C因启动子甲基化引起次黄嘌呤-鸟嘌呤磷酸核糖基转移酶(Hgprt)基因的沉默。此外,CpG内的8oxoG和HmC或显著减少结合于DNA的MeCP2,并直接导致染色质结构改变。光二聚物,烷基化碱基,脱碱基位点,以及链断裂也会诱导DNA的甲基化变化。对性细胞的致突变性将于下文讨论。体外哺乳动物细胞基因突变试验能够筛选表观遗传学介导的危害。例如,在不同啮齿类细胞系经5-氮胞苷处理TK基因可恢复活性。此外,DNA合成抑制剂3-叠氮基-3-脱氧胸苷(AZT)可引起TK位点超甲基化。应进一步开发筛选试验以确定表观遗传学中介的遗传毒性。

2.3发育与生殖的表观遗传毒理学完全分化的体细胞,在正常情况下,将有相对稳定的表观基因组传递到子代细胞。但在哺乳动物的发育过程中,早期胚胎发育过程(着床前),以及在子宫内原始生殖细胞的发育过程中,有两个表观遗传学的重编程阶段,重新设置DNA的甲基化模式。这两个发育的表观遗传重编程事件有可能是破坏表观遗传编程的敏感窗口。发育和生殖毒理学家特别感兴趣的是毒物暴露是否可以直接改变发育的表观基因组,有害的表型是否可跨代遗传,及因此存在的潜在危害。表观遗传编程紊乱可能有助于对表型的跨代遗传。使用Avy小鼠(黄色刺小鼠)模型,饮食暴露双酚A,使Avy和CabpIAP亚稳外延等位基因低甲基化。甲基供体膳食补充剂或染料木素可抵消此低甲基化效应。这些结果与造成表观遗传影响的其他内分泌干扰物报告一致。在环境相关水平低浓度的双酚A(1.2和2.4μg/kg体重)对大鼠可诱导跨代遗传表型异常。暴露于双酚A围生期雄性后代的计数和活力降低,并在F3代持续这些表型。甲氧滴滴涕和乙烯菌核利在子宫中暴露也会导致跨代生殖遗传表型异常。虽然甲氧氯和乙烯菌核利在高于人类接触的剂量观察到病理学改变,但此研究提供了一个模型来研究表观遗传跨代的机制。已证明,乙烯菌核利暴露后破坏了多达3代的小鼠一些印迹基因甲基化模式,这表明跨代遗传异常的表型也有表观遗传的基础。

2.4免疫毒理学已发现,表观遗传调控多能幼稚辅T细胞(Th)分化的启动和其效应亚群的成熟。启动后不久,幼稚T细胞同时转录低水平的Th1(CD4)和Th2(CD8)细胞因子,包括IL-2。在选择性转录成为Ifng(Th1细胞因子标记)或Th2细胞因子基因(IL-4和IL-5,IL-13)之前需要几次复制。在体外用5-aza诱导T细胞,导致由早先不产生这些细胞因子的T细胞系产生IL-2和IFN-g。在用组蛋白去乙酰酶抑制剂处理的CD4T细胞研究证实干扰素IFN-G和Th2型细胞因子的表达增强。上述研究结果表明,表观遗传机制是Th细胞分化和功能的关键因素。尽管与小鼠相比,人类IFNG基因缺乏脱甲基化,分化的人类Th细胞CpG甲基化分析显示出与小鼠类似的结果。将化学物诱导的小鼠T细胞分化的表观遗传学改变数据外推到人应要谨慎。

2.5其他终点从鼠类模型或单一基因的表观遗传学的某些成果已被外推于人类疾病原因。表观遗传学基础的表型被认为是人类疾病的起源有待进一步的研究,特别是确定表观遗传的正常变异和评价表观遗传影响需要适当的实验设计和对照。已经提出,内分泌干扰物的表观遗传毒性可能导致暴露人群的许多发育,代谢和行为障碍。对其他靶器官或终点的表观遗传毒性还有待研究。

2.6检测流程和模型Szyf2007年对检测表观遗传毒性提出的研究思路为:①在生命一个时间点的环境暴露可能会改变表观遗传编程,导致稳定改变表型和反应性,②毒物暴露可能导致表观遗传重编程,导致生命后期表型的变异。Reamon-Buettner和Borlak提出使用动物模型(如鼠类)环境暴露后分析表观遗传机制的研究方案,见图1。已推荐了检测表观遗传毒性的动物模型,特别是Avy小鼠和Axin1融合(Axin1Fu)小鼠能用于研究表观遗传学和发育畸形之间的联系,因为在特定的DNA甲基化模式的改变可以与小鼠遗传疾病广泛链接。

3ILSI的“评估表观遗传变化”研讨会

2009年10月ILSI的健康与环境科学研究所(IL-SI/HESI)主办“评估表观遗传变化”研讨会,评估和提高表观遗传学方面的科学知识基础及其在疾病中的作用,包括跨代的表观遗传变化的影响,还讨论了将表观遗传纳入安全性评价的几个问题。

3.1可能用于评价化学物产生表观遗传毒性的模型系统大鼠和/或兔可能是评价外源化学物产生表观遗传变化影响F1和/或F2和F3代的适当的模型。小鼠可能是更易于处理的模型,因为小鼠基因组有更多的数据,并已有用于检测表观遗传变化的工具。已建议Avy小鼠模型作为潜在的筛查工具,其毛色受亚稳Avy等位基因IAP隐蔽启动子附近CpGs甲基化状态的影响。然而,Avy小鼠模型用于筛选可能过于敏感。其他可能的模型包括斑马鱼和秀丽隐杆线虫,以及蜜蜂和果蝇。体外模型是使用哺乳动物细胞或利用干细胞。干细胞包括其他物种不存在的印迹基因。印迹基因有可能作为确定表观遗传改变的感应器。以上讨论的模型有可能用于潜在危害识别,并提供机制基础。然而,将很难直接解释这些数据对整体动物和人类的意义。在表观遗传模型转化为管理决策测试之前,需要进行大量的基础工作和验证研究。

3.2可能评价的终点/靶对于表观遗传变化的指标,应确定适应反应还是有害反应。确定表观遗传修饰与可能提示特定有害影响的疾病相关基因表达改变之间的因果关系或强的关联需要表型锚定。在发现受影响的表观遗传效应的基因与某种疾病相关的基础上,应建立由表观遗传机制调控的基因数据库。表观遗传效应很可能有物种,组织,暴露和时间特异性。目前,在研究中实验对照组是化合物反应表观遗传变化的最适当的参照,建立表观遗传印迹的参考对照范围可能是有意义的,因为这些区域甲基化模式可能更趋于稳定和遗传。

3.3可能应用的技术关于DNA甲基化和miRNA,以阵列为基础的平台,针对人类和小鼠样品已优化。针对大鼠可用的工具有限,但可用根据大鼠基因组序列基于阵列的高通量方法。虽然硫酸氢盐为基础的测序评价DNA甲基化方法可用于所有物种,但需要发展高通量测序方法。区分异常信号和背景信号并不容易,最大的挑战将是数据分析和解释,应发展信息学。

3.4管理机构的观点为了将表观遗传毒性纳入风险评定,有很多的考虑。必须明确的问题,理解环境、营养和/或药物暴露对个人,群体及跨代水平的公共健康的潜在长期影响,界定希望解决的问题,确定模型系统。这就需要努力使与有害结局和基线改变相联系的研究设计、方法和模型标准化。以适当的参考化合物、途径和剂量验证该模型。模型试验检测的任何变化必须以合理的方式链接到表型或临床结局。对于法规测试,方法必须标准化,具有重复性和重现性。为了将表观遗传数据有效地纳入人类风险评定,最好与管理机构共同努力,确定一个正常基线范围,并与有害结局关联,界定公共卫生关注的适当水平。管理机构将需要开发分析工具,以对公共健康方面的数据进行解释,并将此类数据应用于风险评定模式和慢性健康结局。

4小结

化学遗传学技术范文第5篇

《遗传与疾病》现已更名为《中华医学遗传学杂志》。

《中华医学遗传学杂志》(CN:51-1374/R)是一本有较高学术价值的月刊,自创刊以来,选题新奇而不失报道广度,服务大众而不失理论高度。颇受业界和广大读者的关注和好评。办刊宗旨是贯彻党和国家的卫生工作方针政策,贯彻理论与实践相结合、普及与提高相结合的方针,反映中国医学遗传学、人类遗传学和相关领域的基础理论、技术方法等最新研究成果;以从事医学遗传学工作的各科临床医生、计划生育工作者、大专院校和科研单位有关人员为主要读者对象。

《中华医学遗传学杂志》是CSCD中国科学引文数据库来源期刊(2019-2020年度)(扩展版)、北京大学《中文核心期刊要目总览》来源期刊(1992年第一版、1996年第二版、2004年版、2008年版、2011年版、2014年版)、中国科技核心期刊,被万方数据库、CA 化学文摘(美)(2020)、JST日本科学技术振兴机构数据库(日)(2018)等收录。

据2021年8月24日中国知网显示,《中华医学遗传学杂志》总被下载302636次,总被引29218次,(2020版)复合影响因子0.626,(2020版)综合影响因子0.600。

据2021年8月24日万方数据知识服务平台显示,《中华医学遗传学杂志》被引量为 28007次,下载量为510228次;据2018年中国期刊引证报告(扩刊版)数据显示,该刊影响因子为0.6,全部统计源期刊(6718种)中排第3124名。

化学遗传学技术范文第6篇

1 细胞遗传学时期

1.1 细胞遗传学的发展史

孟德尔于1856~1864年在他所在修道院的小花园内对豌豆进行了杂交实验,于1865年在当地召开的自然科学学会上宣读了实验结果。他认为生物性状的遗传是受遗传因子控制的,并提出了遗传因子分离和自由组合的基本遗传规律。

在1875~1884年间,德国解剖学家和细胞学家弗莱明在动物中,德国植物学家和细胞学家施特拉斯布格在植物中,分别发现了有丝分裂、减数分裂、染色体的纵向分裂以及分裂后的趋向两极的行为;比利时动物学家贝内登还观察到马副蛔虫的每一个身体细胞中含有等数的染色体;德国动物学家赫特维希在动物中,施特拉斯布格在植物中分别发现受精现象。这些发现都为遗传的染色体学说奠定了基础。

1903年萨顿发现染色体行为与遗传因子的行为一致,于是提出了染色体是遗传因子的载体的观点。

约在1910年,美国遗传学家摩尔根及其同事根据对普通果蝇的研究,确定了基因是染色体上的分散单位,在染色体上呈直线排列,提出了基因的连锁交换规律,并结合当时的细胞学成就,创立了以染色体遗传为核心的细胞遗传学。

细胞遗传学时期大致是1910~1940年,可从美国遗传学家和发育生物学家摩尔根在1910年发表关于果蝇的性连锁遗传开始,到1941年美国遗传学家比德尔和美国生物化学家塔特姆发表关于链孢霉的营养缺陷型方面的研究结果为止。因显微技术所限,该时期细胞遗传学材料主要集中于各种动植物。

1.2 细胞遗传学时期几种常用遗传学材料

1.2.1 豌豆

豌豆属豆科植物,一年生藤本作物,羽状复叶,小叶卵形,开白色或淡紫色的花,果实有荚。嫩荚和种子供食用。

作为遗传学实验材料的优点是:自花传粉,闭花授粉;品种间性状差别显著,且相对性状多;花大,便于操作,成熟的种子保留在豆荚中,不容易脱落,利于观察和统计。

1.2.2 果蝇

果蝇是果蝇科果蝇属昆虫,约1 000种。广泛用作遗传和进化的室内外研究材料,尤其是黄果蝇易于培育。其生活史短,在室温下不到两周。其生活环境有些种生活在腐烂水果上,有些种则在真菌或肉质的花中生活。

作为实验动物,果蝇有很多优点。饲养容易,并且繁殖快,在25℃左右下约10 d就繁殖一代,一只雌果蝇一代能繁殖数百只。同时果蝇只有四对染色体,数量少而且形状有明显差别,便宜观察;并且果蝇性状变异很多,比如眼睛的颜色、翅膀的形状等性状都有多种变异。这些特点对遗传学研究也有很大好处。

1.2.3 玉米

玉米是一年生禾本科草本植物。植株高大,茎强壮,挺直。叶窄而大,边缘波状,于茎的两侧互生。雄花花序穗状顶生。雌花花穗腋生。玉米是遗传学研究的良好材料,其理由如下:玉米开单性花,雌雄同株(可同株受精也可异株受粉),雌雄蕊长在不同花序上,去雄容易杂交方便;很多性状可在种子上看到,种子虽然长在母株上的果穗上,但已是下一代了;同一果穗上有几百粒种子,便于统计分析;生长周期短;具有易于区分的相对性状。

2 微生物遗传学时期

2.1 微生物遗传学发展史

大致是1940~1960年,从1941年比德尔和塔特姆发表关于脉孢霉属中的研究结果开始,到1960~1961年法国分子遗传学家雅各布和莫诺发表关于大肠杆菌的操纵子学说为止。在这一时期中,采用微生物作为材料研究基因的原初作用、精细结构、化学本质、突变机制以及细菌的基因重组、基因调控等,取得了已往在高等动植物研究中难以取得的成果,从而丰富了遗传学的基础理论。1900~1910年人们只认识到孟德尔定律广泛适用于高等动植物,微生物遗传学时期的工作成就则使人们认识到遗传学的基本规律适用于包括人和噬菌体在内的一切生物。

2.2 微生物作为遗传学研究材料的优点

大约从1910年~1930年间的主要成就是阐明遗传物质的传递规律,包括染色体变异和进化的研究在内,从20世纪40年代起则主要是阐明基因突变机制和基因作用机制,而在这些研究中,微生物方面的研究占有重要地位。微生物作为研究遗传学的材料有如下优点:① 便于获得营养缺陷型;② 便于作为基因作用研究的材料;③ 便于作为基因突变的研究材料;④ 便于作为研究杂交、转导、转化等现象的材料;⑤ 便于作为基因精细结构的研究材料;⑥ 能被用作研究复杂体制的生物的简单模型,常用大肠杆菌和噬菌体。

肠埃希氏菌通常称为大肠杆菌,是Escherich在1885年发现的,是一种普通的原核生物,属细菌。

2.3 常用的微生物——红色面包霉

红色面包霉(2n=14)是一类被称为子囊菌的真菌中的一种。子囊菌门是最大的一个真菌门类。其营养体由单倍体多细胞菌丝体和分生孢子所组成。红色面包霉的生活史包括无性和有性两个世代,其无性世代是通过菌丝的有丝分裂发育成菌丝体,或由分生孢子发芽形成新的菌丝体。而有性世代是由两种不同生理类型(接合型)菌丝或称不同的接合型通过融合,或异型核结合形成二倍体合子。合子形成后进行减数分裂产生4个单倍体的核,称为四分孢子,四分孢子再经一次有丝分裂形成8个子囊孢子,并以4对“双生”,成线性排列在子囊中。

作为遗传学研究的材料其优点有:① 因为是单倍体,染有显隐性的复杂问题,基因型直接在表现型上反映出来;② 一次只分析一个减数分裂的产物;③ 个体小,生长快,易于培养,一次杂交可产生大量后代,便于科学统计;④ 生殖方式是有性生殖,染色体的结构和功能也与高等生物类似。

3 分子遗传学时期

3.1 分子遗传学发展史

1953年,美国分子生物学家沃森和英国分子生物学家克里克提出DNA的双螺旋模型标志着遗传学研究进入分子遗传学时期。

分子遗传学是在微生物遗传学和生物化学的基础上发展起来的。分子遗传学的基础研究工作都以微生物,特别是以大肠杆菌和它的噬菌体作为研究材料完成的;它的一些重要概念如基因和蛋白质的线性对应关系、基因调控等也都来自微生物遗传学的研究。分子遗传学在原核生物领域取得上述许多成就后,才逐渐在真核生物方面开展起来。

正像细胞遗传学研究推动了群体遗传学和进化遗传学的发展一样,分子遗传学也推动了其他遗传学分支学科的发展。遗传工程是在细菌质粒和噬苗体以及限制性内切酶研究的基础上发展起来的,它不但可以应用于工、农、医各个方面,而且还进一步推进分子遗传学和其他遗传学分支学科的研究。

3.2 分子遗传学常用材料

3.2.1 大肠杆菌

大肠杆菌是人和许多动物肠道中最主要且数量最多的一种细菌,周身鞭毛,能运动,无芽孢。其主要特征如下:

(1) 大肠杆菌是细菌,属于原核生物;具有由肽聚糖组成的细胞壁,只含有核糖体简单的细胞器,没有细胞核有拟核;细胞质中的质粒常用作基因工程中的运载体。

(2) 大肠杆菌的代谢类型是异养兼性厌氧型。

(3) 人体与大肠杆菌的关系:在不致病的情况下(正常状况下),可认为是互利共生(一般高中阶段认为是这种关系);在致病的情况下,可认为是寄生。

(4) 培养基中加入伊红美蓝遇大肠杆菌,菌落呈深紫色,并有金属光泽,可鉴别大肠杆菌是否存在。

(5) 大肠杆菌在生物技术中的应用:大肠杆菌作为外源基因表达的宿主,遗传背景清楚,技术操作简单,培养条件简单,大规模发酵经济,倍受遗传工程专家的重视。目前大肠杆菌是应用最广泛最成功的表达体系,常做高效表达的首选体系。

(6) 大肠杆菌在生态系统中的地位,若生活在大肠内,属于消费者,若生活在体外则属于分解者。

(7) 它的基因组DNA为拟核中的一个环状分子,同时可以有多个环状质粒DNA。

大肠杆菌作为遗传学材料的优点是:体积小、结构简单(拟核中只有一个环状DNA分子)、繁殖迅速、容易培养、变异类型容易选取。

3.2.2 噬菌体

噬菌体是感染细菌、真菌、放线菌或螺旋体等微生物的细菌病毒的总称。噬菌体具有病毒特有的特性:个体微小;不具有细胞结构;只含有单一核酸。噬菌体基因组含有许多个基因(比细菌少),但所有已知的噬菌体都是在细菌细胞中利用细菌的核糖体、蛋白质合成时所需的各种因子、各种氨基酸和能量产生系统来实现其自身的生长和增殖。一旦离开了宿主细胞,噬菌体既不能生长,也不能复制,即不能独立完成代谢。

化学遗传学技术范文第7篇

关键词:遗传学;实验教学;教学改革;自主性实验

《遗传学》是生物科学的一门基础学科,是农学、园艺、林学类专业重要的专业基础课程,其研究内容涵盖了从遗传因子到群体遗传的多个层面,对探索生命起源和生物进化,以及推动整个生物科学的发展起着巨大的作用。遗传学实验不仅仅是验证遗传学理论的重要环节,同时也担负推动遗传学理论发展的重要角色[1]。因此,遗传学实验的教学要打破传统验证型实验的束缚,适应创新人才培养目标,以强化学生实践动手能力,培养学生的创新思维、提升学生的科研意识为导向,加强学生发现问题、分析问题及解决问题的综合能力[2]。本文结合前人经验及自身在遗传学实验教学中的感受,谈谈关于遗传学实验教学改革的几点思考。

1问题的提出

目前,在遗传学教学中实验学时相对偏少。虽然理论课教材内容非常多而且大体跟得上最新研究成果进展,如基因工程、基因组学、分子标记等内容,系统性也较强,但实验课教材内容却较为陈旧[3-4],基本上都是多年前的内容,大体上是关于细胞学验证性实验,比如细胞的有丝分裂、减数分裂的观察、染色体核型分析等验证性的实验,跟不上最新的遗传学研究进展,缺乏创新性,虽然增设了分子生物学方面的实验,也多是关于基因组DNA的提取实验,且该实验在其他课程中也多有设置,存在实验教学内容重复的现象。此外,实验课的教学形式和教学方法单一,缺乏考核评价体系。这些都极大地降低了学生的学习热情,对遗传学实验不够重视[5],更谈不上促进学生创新思维、科研意识的培养以及综合能力的提高。因此,有必要对目前的遗传学实验教学进行改革。

2整合实验内容,提高学生兴趣

针对实验教材内容过于匮乏及偏验证性的问题,遗传学实验教学内容应精选基础性实验,开设具有遗传学特色的实验,同时拓展分析性、探索性和创新性的自选实验。在完成基础实验的同时,整合实验内容,增加自主性实验,培养学生的科研意识、创新能力,提高综合实验能力。精选的遗传学基础性实验内容可以是“植物染色体制片技术及细胞有丝分裂的观察”,基于强化学生自己动手能力和提高观察、分析问题能力,从实验的选材、材料的预处理到最后的制片观察,学生都应参与。为避免与其他课程的实验内容相冲突,可开设具有遗传学特色的实验,如“植物染色体显带技术”“植物染色体荧光原位杂交”等。自选性实验的开设是基于学生对遗传学某个科学问题产生兴趣,希望通过具体的遗传学实验来研究,其实验方案可在教师指导下由学生自己设计。相对于传统的实验教学,学生自主实验的开设能更好地发挥学生的主观能动性,有利于学生自主学习、自主研究创新能力的培养。例如,有的学生在学习“基因工程”这一章内容时对基因工程表现出极大的兴趣,那么就可以在实验教师的指导下,查阅相关文献,自己制订实验方案,包括如何进行受体系统的构建、表达载体的构建、遗传转化、转基因检测、表型观察与基因表达分析,并且根据实验方案合理安排时间进度,自己动手开展系列实验。当然,这样的自选系列实验是无法在教学大纲规定的实验学时里完成,也需要较多的实验资源。这就需要学生合理利用课外时间自主完成,而实验室则要面向学生开放,实现实验教学的资源开放与时间开放,提高资源利用率,增强实验教学效果,提高学生的综合素质。

3改进实验教学方法,改革实验考核方式

遗传学实验教学中,在教学方法上,教师也应该改变原有的实验教学模式,而采用灵活多变的教学方法,比如在讲授实验原理时采取案例式的教学方法;关于实验步骤的讲解可以贯穿老师提问和学生问问题的方式进行[3]。实验成绩的评价不能只凭实验报告,而应更注重实验过程的考核。可以将实验预习、实验操作、实验技能、实验结果等各环节赋予一定的分值,最后进行综合评价。实验指导教师不仅要客观地给出学生实验成绩,而且要指出其存在的问题及解决的办法,注重学生动手能力的培养,提高学生学习的积极性和主动性,提高其分析和解决问题的能力。

4结语

为激发和维持学生学习的兴趣,培养学生的科研意识和创新意识,提高学生观察问题、分析问题及解决问题的综合能力,适应新时期创新人才培养的目标,遗传学实验教学的改革不仅在实验内容方面要进行整合,精选基础性的实验,开设具有遗传学特色的实验内容,拓展探索性和创新性的自选实验,而且实验教学要采取灵活多变的教学方法,在学生实验成绩的评价上要注重实验过程的考核。

参考文献:

[1]严晋清.论科学假说在遗传学理论中的先导作用[J].皖西学院学报,2004,20(5):52-54.

[2]王娟,黎双飞,余少文.遗传学实验模块化教学改革的精细与粗放管理[J].实验室研究与探索,2010,29(8):244-245.

[3]熊大胜,席在星.本科生遗传学实验教学的改革探讨[J].遗传,2005,27(5):811-814.

[4]皮妍,林娟,郭滨,等.改革遗传学实验教学方法培养新型创新人才[J].实验室研究与探索,2008,27(10):86-88.

[5]肖建富,石春海.激发学生对遗传学实验学习兴趣的教学方法探索[J].遗传,2014,36(2):181-187.

化学遗传学技术范文第8篇

关键词:生物信息学 遗传学 教学方法 教学内容

遗传学(Genetics)是研究自然界中生物的遗传和变异规律的科学,是生命科学领域中最为重要和基础的学科之一。它也是生物科学中一门最具活力,发展最迅速的理论科学,又是一门紧密联系生产实际的基础应用科学,对探索生命起源和本质,推动整个生物科学的发展起着巨大的作用。因此,遗传学作为生命科学相关专业的一门重要主干课程,在教学中起着举足轻重的作用。

一、生物信息学专业开设遗传学的必要性

20世纪80年代末,由分子生物学、计算机科学以及信息技术等学科的交叉和结合产生了生物信息学(Bioinformatics),它是基于分子生物学与多种学科交叉,以计算机为工具对生物相关信息进行储存、检索和分析的科学,是当今生命科学和自然科学的重大前沿领域之一。近20年,特别是随着人类基因组计划(human genome project,HGP)不断拓进,生物信息学作为跨越和融合生命科学与信息技术的新兴学科已成为生命科学核心领域和最具活力的前沿领域之一。生物信息学专业应运而生。国内单独设立生物信息学本科专业的高校较少,且普遍较晚。

遗传学与生物信息学两个学科之间关系密切。有国内学者利用美国《科学引文索引》(SCI)数据库web of science,运用文献计量学方法对8种权威生物信息学期刊2001年至2010年于2011年1月15日之前上传至wed of science的全部文献进行统计及分析。对施引文献按跨学科强度排列的结果显示,遗传学及基因与生物信息学跨学科文章发表量居第二位,仅次于生物化学与分子生物学。这说明,生物信息学与遗传学直接的跨学科研究较多,二者交叉学科的发展关系密切。因此,生物信息学专业开设《遗传学》课程十分必要。

二、遗传学教学中存在的问题

多年来,不同专业的《遗传学》课程的教学过程中涌现出一些共性问题,这些问题在生物信息学本科专业的教学过程中也存在。一是,学科拓展深化与课时压缩之间的矛盾。随着遗传学研究范畴的不断拓展,新的学科分支相继涌现,信息量逐步扩增,待教授内容逐渐增加且显得零散。但随着大学素质教育改革的进行,更多新的选修课、实验课被引入,遗传学理论课时被压缩,课时减少与内容增多的矛盾日益突显。二是,遗传学与其他课程教学内容设置与组织易重复。学科交叉为科研工作提供源源不断的动力,但在教学工作中学科渗透也造成教学内容重叠,基础和关紧技术重复教学的问题。例如,分子遗传学是遗传学重要组成部分,是目前遗传学研究的重点和热点,与生物信息学关系最为紧密,它包括的遗传物质的本质,基因的调控,基因重组等内容也在基因工程、分子生物学、细胞学等课程中作为讲授重点。如何利用有限的理论课时,合理安排教学内容,提高教学效率值得思考。

与此同时,生物信息学作为比较新的本科专业,开设各课程之间的衔接问题也比较突出。生物信息学专业的学生在大二开始全面生命科学和信息技术相关程学习。在理论知识在实际中如何应用缺乏概念,学生达不到共鸣,这也是生物信息学专业低年级学生面临的通病。遗传学课程安排在大学二年级上学期讲授,对于刚刚接触专业课程的学生而言本来就陌生,而且信息技术和生命科学相关课程独立讲授,二者貌似是两条平行线,怎样相交碰撞出火花,对于学生来说很难结合,必须由任课老师在授课过程中充分引导。传统的《遗传学》课程教学注重以杂交分析为主的经典遗传学理论的讲解,很大篇幅集中在三大定律(分离定律、自由组合定律以及连锁和互换定律)的教授上。遗传学课程教学重点集中在经典遗传学定律,经典案例跟不上学科发展。这个问题已经被一线教育工作者认知。

综上,由于学科本身发展迅速,涵盖知识范围越来越广,课时压缩等原因,容易让学生在学习过程中对该课程产生“内容太发散”“课时进程快”“知识跨越大”等认识,不利于课程的学习。由此可能造成,内容广泛且繁杂“抽象且深奥”枯燥无味,容易让学生觉得难或者枯燥。学生学习主动性不高。因此,在教学实践中,针对不同专业性质和培养目标存在的差异,不同专业《遗传学》课程教学应在知识体系、内容侧重点、教学方法等方面在各专业间有所区分。特别是生物信息学这种学科交叉性强的专业,如何实施该专业本科生遗传学的教学,以达到即符合本科教学难易程度的要求,又被大多数同学接受,同时能符合生物信息学学科自身特点,需要在教学过程中逐步的探索与实践。本文将结合资深授课教师经验及笔者生物信息学本科专业《遗传学》教学经历对这一问题进行阐述。

三、教学过程中的探讨与实践

1.制定具有专业特色的教学内容

(1)优化教学内容,关注专业需求

生物信息学专业的课程教学中,遗传学相关知识是需要讲授的重点。传统遗传学课程教学将重点内容集中于经典遗传学定律及其相关知识的讲授,其优点在于能够帮助学生打牢遗传学知识基础,缺点在于教学内容过于单一,没有包含遗传学重要分支的最新知识,无法与当前的研究热点联系起来,学生学习兴趣不高。随着国际遗传学研究的深入,分子遗传学和群体遗传学得到长足发展,极大地丰富了遗传学的知识体系。为了紧跟国际研究前沿,国内许多高校对遗传学课程进行了教学改革,在经典遗传学教学的基础上,纷纷加入了分子和群体遗传学的教学内容,为后续开展更深入的专业研究和学习奠定了良好的知识基础。为了帮助学生对遗传学知识体系形成全面而系统的认识,结合生物信息学专业特点,在教学设计时借鉴了以“遗传信息”为主线的教学思想,教学内容涵盖了“经典”“分子”和“群体”三类主体遗传学内容。在现实教学中,受遗传学课时限制,对所有遗传学知识点进行了梳理和必要的删减,既把握三种遗传学知识的内在联系,做好各部分知识的教学衔接,同时注意区分三者的不同,突出教学重点,做到“主题鲜明,重点突出,点面结合,结构清晰”,使学生在掌握经典基础理论知识的同时了解最新的遗传学研究进展。

(2)生物信息学专业遗传学课程与其他课程的衔接

遗传学是研究生物遗传和变异的科学,以遗传物质结构和功能为研究对象,是生命科学的主干。因此,与其他学科在内容上有交叉或重叠无法避免。同中求异,突出遗传学的特色,是教学中值得研究的问题。遗传物质的本质、染色体畸变、基因突变、遗传调控等章节与微生物学、细胞生物学、生物化学内容重复较多,可以强调知识结构的完整性,淡化这些内容的分子结构和生化过程的讲解。例如,结合孟德尔定律和摩尔根定律案例,着重从染色体和基因角度切入,增强遗传学色彩,同时对其他课程起到提纲挈领的作用。

(3)结合生物信息学,引入最新研究成果,体现前沿性

在处理好学科衔接之后,还需要关注的就是内容与生物信息学的结合。学生在学习过程中,最想了解的莫过于,这门课程与我的专业有什么联系?因此,在讲授内容中加入生物信息学手段解决遗传学问题的新成果既体现前沿性,又能提高遗传学课程的专业针对性。教师平时要多注意积累教学素材,对于现阶段比较热点且与生物信息学相关的、应用性强的问题,要在课程基础知识讲授后,进行一定拓展。例如,在讲授基因定位和遗传图绘制时,引入用EST进行基因定位及遗传图谱绘制等内容;在讲到遗传家谱时,引入通过对患病群体或家系进行外显子组测序分析,对小家系孟德尔遗传病的致病基因进行鉴别和定位的例子。通过引入生物信息学教学例子,不仅可以使学生加深对遗传学知识的理解,还可帮助学生了解生物信息学最新进展,激发对后续生物信息学专业课程的学习兴趣。

2.教学方法多样化,提升学生学习兴趣

遗传学教学内容繁杂、理论性强,不易理解。为了提高教学效果,在教学模式上必须变“以教师为主体”为“以学生为主体”,注重采用灵活多样的教学方法和手段,开展多媒体教学、案例教学和研讨教学等,将传统抽象、枯燥的说教式教学转变为具体、生动的参与式教学,增强教与学的双向互动。

(1)多媒体教学方式

计算机多媒体辅助教学改变了传统的黑板加粉笔,以教师为中心灌输式教学模式。多媒体通过实时可交互的多维动画及图像展示,可以增强教学内容的展示效果,提高课堂教学的信息量和容积率,提升学生学习兴趣,加深对枯燥晦涩知识点的理解,提高教学效率。充分利用多媒体课件的超文本功能、交互功能、网络功能的优势,比如Holliday模型是分子水平上关于遗传重组机制的重要模型,很好解释了基因转变现象。在讲到Holliday模型时,为了让学生直观了解单链交换重接及分支移动后的Holliday交叉旋转180度形成Holliday异构体的过程,采用了动画、图片、电子板书相结合的方式,很容易让学生理解空间旋转互换的过程,以及基因转变产生的原因等较难理解的知识点,反响较好。此外,声音、视频、动画、图片等便于学生拆解枯燥内容。

(2)案例教学

案例教学是一种创新型的教学方式,主要通过开放课堂、增强互动,培养学生运用所学知识解决实际问题的能力。案例教学需要结合本课程的专业理论知识,着眼于达成课程教学目的,编写和准备基于一定事实且具有一定场景的教学案例,这些教学案例要能够启发学生的思考,促进学生将从外部学习的知识吸收转化内在的专业素养和能力。在教学实践中,教学案例是“教”与“学”互动的桥梁和纽带,使枯燥乏味的学习过程变得活泼有趣;“教”不是告诉学生怎么去做,而是启发学生如何去思考,对学生针对案例问题提出的解决思路进行引导和评价,鼓励学生创新性思考,找到最优的问题解决方法;“学”不是被动的接受,而是主动的思考和创造,通过与他人而不仅仅是老师进行互动和交流,加深对知识的理解,培养解决实际问题的能力。

案例教学的核心是精心设计教学案例,将知识内化在符合实际又富于想象的故事情景中,使得学生通过身临其境将抽象的理论知识具体化,学会如何用概念性和原理性知识在实际工作和研究中解决问题,进而加深对特定原理和概念内涵的理解。在教学实践中,先以典型案例提高学生兴趣,把抽象的东西具体化,让学生变被动接受为主动思考,激发学生的求知欲。注重培养学生创造力和解决问题的能力。通过案例的分析,深化学生对基本原理、基本概念的理解。案例教学能很好地启发学生进行自主思考,对于理论性较强,比较枯燥的内容,通过案例式教学能激发学生学习兴趣。所举案例应具有针对性,要考虑案例产生的时间、背景和条件,要贴近生活,耳熟能详,与时俱进。在处理问题的同时,获取知识。进行案例教学过程中,要注重与学生的互动。围绕教学目的,选择合适案例,进行启发式教学,调动学生参与性。教师不能一味平铺直叙的讲案例,还要注意学生的参与度。只有学生和教师共同参与,才能达到预期教学效果。

(3)以学生为主体的教学

以往课程中,往往针对经典类型习题进行讲解,参考“标准答案”。在实际教学中发现,这样往往造成学生思想禁锢,学科交融性不够。特别是对于生物信息学专业的学生来说,传统习题课或者讨论课,没有实用效果。习题课及讨论课应注重实用性,关注遗传学与生物信息学学科发展与融合,设置开放性答案,突出培养学生创新性的应用能力。

课堂教学不仅要“授业”,更要“传道”,即培养学生如何学习和如何思维。根据教学内容和学生的认知水平,研究、讨论、交流式的教学模式的引入,有助于调动学生积极性。采用专题自学,规定材料与学生自学有机的结合起来,开展研讨,充分体现学生观点。同时,教师只起到点评引导作用,能培养学生获取信息、分析问题、创造性的解决问题的能力,有利于学生形成科研创新意识。教师如何正确引导是开展研讨式教学的重点。首先,应明确课程在相关领域中的作用和地位,了解课程的教学内容,选择课程中适合研讨的内容,并将研究与讨论贯穿教学的全过程。在选择题目时,要考虑专业相关程度及考虑不同学生层次的需求,考虑学生个体间的差异,难度适宜。

四、结语

生物信息学本科专业遗传学的教学,以孟德尔定律为基础,分析遗传物质的存在形式、传递、保存及变化,课程脉络更加清晰,通过案例教学的等教学模式,激发兴趣,并有利于与后续课程连接,在实践教学中体现了比较好的教学效果。因为生物信息学专业的需求与传统生物专业有差异,教学内容侧重点不同这给教师备课增加了难度。同时,在期末考核时,由于讲授侧重点不同,考试侧重点也应有所区别,在师资允许的前提下,引入小班教学,有利于教学侧重点突出。后续课程如果设置分子遗传学,将使知识体系更加完整。

参考文献:

[1]李巨超,李楠.适应应用型人才培养模式的遗传学教学改革与探索[J].中国科教创新导刊,2012,(2):66.

[2]巴恩斯.遗传学工作者的生物信息学[M].丁卫,李慎涛,廖晓萍,译.北京:科学出版社,2009.3.

[3]皮妍,林娟,侯嵘,等.国内高校遗传学教材发展研究[J].遗传,2009,31(1):109-112.

[4]武妍,胡德华.生物信息学跨学科研究[J].现代生物医学进展,2012,(12):137-141.

[5]戴凌燕,姜述君,高亚梅.《生物信息学》课程教学方法探索与实践[J].生物信息学,2009,(7):311-313.

化学遗传学技术范文第9篇

关键词 医学遗传学 医学教育

中图分类号:G420 文献标识码:A

The Role and Application of Medical Genetics in Medical Education

YANG Junbao, SONG Guiqin, MU Bo, LIANG Suhua

(Department of Medicine and Medical Biology, North Sichuan Medical College, Nanchong, Sichuan 637007)

Abstract From the content and development of medical genetics, discusses the clinical medical genetics and medical education the relationship between professional disciplines, analysis of medical genetics in medical education, the status and role of medical education, provide reference for teaching and training of personnel.

Key words medical genetics; medical education

医学遗传学(medical genetics)是将遗传学基本理论与临床医学实践相结合形成的一门学科,其任务在于揭示各种遗传病的遗传规律、发病机制、诊断和防治措施。医学遗传学是医学科学领域中十分活跃的前沿学科,尤其是分子生物学方法的引入,人们对遗传病的认识达到了新的高度,不仅对单基因病和多基因病的诊断、发病机理、治疗和预防都已达到分子水平,即使染色体病的诊断,由于显微切割、探针池建立和荧光原位杂交方法的应用,也已深入到相关基因的水平。人类基因组计划的完成为人类基因的功能分析,特别是对某些致病基因的确认、表达调控,为遗传病的防治等开辟了光辉的前景。这些医学遗传学的新成就正推动着医学科学的迅速发展,医学遗传学已成为21世纪带动医学科学发展的带头学科之一。①

1 医学遗传学的内容与发展

1.1 医学遗传学研究的基本内容

随着生命科学的发展以及研究手段的进步,人们所发现的遗传病种类日渐增多,对遗传病的认识也不断深入。疾病是由遗传因素和环境因素共同作用的结果,现代医学研究表明,几乎所有的人类疾病都直接或间接地与基因有关,在这个意义上都可视为广义的“基因病”或“遗传病”。②

医学遗传学不仅与细胞生物学、生物化学、组织胚胎学、微生物及免疫学、生理学、病理学、药理学等基础医学密切有关,而且已经渗入各临床学科之中。研究临床各种遗传病的诊断、产前诊断、预防、遗传咨询和治疗的学科称为临床遗传学(clinical genetics)。

1.2 医学遗传学的发展

医学遗传学早期受孟德尔、摩尔根经典遗传学的指引,对遗传病的发生及传递方式作了朴实的描述。1956年,由于徐道觉建立的低渗制片技术和蒋有兴使用秋水仙碱获得了更多中期细胞分裂相后,才证实了人体细胞染色数目为46。1959年相继发现先天愚型为21三体、Klinefelter综合征为47,XXY、Turner综合征为45,X等染色体改变,标志着临床遗传学的建立。20世纪70年代崛起的分子生物学将遗传病的研究推向了一个新的阶段,一大批遗传病因从分子水平得以阐明,人们在基因定位、基因诊断及产前诊断以至基因治疗等方面取得了丰硕的成果。

我国医学遗传学的研究工作始于上世纪60年代。1962年项维、吴等首先报告了中国人的染色体组型,标志着我国人类细胞遗传学的开始。1979年底我国召开了第一次人类和医学遗传学学会后,医学遗传学研究迅猛发展,部分医学院校将医学遗传学列入了必修课或选修课,各地还开办了各种形式的临床医生医学遗传学知识培训班。上世纪80年代后期,我国处于前沿的细胞遗传学,引进了先进的高分辨显带技术、显微切割及微克隆技术,此后分子生物学技术的广泛应用,在分子代谢病的突变性质、产前基因诊断、癌基因和肿瘤抑制基因的研究、基因治疗等方面都取得了可喜的成果。

2 医学遗传学与临床专业课程的关系

本科教育既是培养应用型人才,即临床医生,也可为一部分研究型人才进入更高层次深造打下良好基础。③陆振虞等④采用问卷形式对上海第二医科大学毕业的104名临床医生作了书面调查,调查表明能看懂染色体核型分析报告和DNA诊断结果的临床医生不到l0%,而半数以上的人根本不具备这种能力。这在很大程度上反映了在医学教育中不仅要搞好临床专业课程的教学而且应加强医学遗传学的教学。同时随着我国研究生培养规模的扩大,以及大型医院对高学历临床医生需求的增加,有相当一部分学生将进入硕士阶段学习或在临床开展科研工作,因此,掌握扎实的医学遗传学的新理论、新技术和新实验方法等将成为他们进入下一个阶段的新台阶。⑤

医学遗传学课程是介于基础医学和临床专业课程之间的一门桥梁学科,学习该课程需具备一定的细胞生物学、组织胚胎学、生物化学等基础知识,该课程又为儿科学、妇科学等临床专业学科打好基础。该课程对培养医学生掌握有关医学遗传学基本理论知识,熟悉各种遗传病的发病机制及产前基因诊断方法,了解当今基因工程技术,掌握遗传病的预防、遗传病基因治疗的基本理论和技能起着重要作用。

3 医学遗传学在医学教育中的地位与作用

医学遗传学已经成为现代医学中一个十分活跃的领域,并迅速向医学各学科渗透。分析其原因是:

(1)遗传病对人类健康的威胁日益严重。传染病得到或基本得到控制后,遗传病的相对发病率正在增长。据统计,胚胎染色体异常是流产的主要原因。我国新生儿中,约2.4%患有某种遗传病、1.3%有严重的出生缺陷或先天畸形(其中70%~80%由遗传因素引起、3%的儿童有智力发育不全,其中4/5为遗传病引起。其次,人类遗传病的病种在不断增长,一方面是由于对遗传病认识水平的提高,对过去已存在的遗传病加以确认;但另一方面是基于研究方法的进步,从原有遗传病中分出了若干亚型。

据“在线人类孟德尔遗传”统计,至2011年10月25日,人类单基因病、遗传性状及其相应的基因条目已达20 910种。⑥现今已知的染色体病超过100种,多基因病估计不少于100种。由于后者多为常见病,故人类约有1/5-1/4的人患有某种遗传病或与遗传有关的疾病,这不能不引起人们极大的关注。

(2)有些严重危害人类健康的常见病已证明与遗传因素有关。诸如肿瘤、糖尿病、动脉粥样硬化、冠心病、高血压病、精神分裂症等。过去有些不明原因的疾病,现已确诊为遗传病。可以预计,随着这类疾病病因发病机制的进一步阐明,人们将从环境和遗传两个方面提出防治对策,这是一个正在发展的领域。

(3)控制人口数量,提高人口质量是我国实行计划生育的基本内容。因此,应用遗传学知识和技术,提高后代的健康素质是医学遗传学的一项基本任务。

因此,作为医学生仅学习传统医学是不够的,还需学习掌握医学遗传学的基本理论、基础知识和基本技术,了解基因组医学的最新进展,并在利用基因型和表现型数据库方面获得训练,才能通过病人的遗传背景以及与疾病相关的遗传和环境因素去诊断和治疗疾病。

综上所述,在高等医学教育过程中,要认识各个学科设置的目的、地位和作用,了解各个学科(或课程)之间的关系,明确其在培养高素质合格医学人才中所担负的责任,不断教育学生提高对医学遗传学在人类健康和医药卫生事业等方面所负责任的认识;并从培养综合素质医学人才的需要出发,认真分析医学遗传学与其他学科的关系,明确各个学科的重点、难点与基本内容,使医学遗传学的教学与其他课程之间,做到相互促进、相互补充、共同发展,培养高质量、高素质的新型医学人才。

注释

① 李璞.医学遗传学(第二版)[M].中国协和医科大学出版社,2005:7-9.

② 梁素华.医学遗传学(第2版)[M].人民卫生出版社,2010:3-8.

③ 刘洪,石胜军.医学本科生教育定位要准确[J].中国高等医学教育,2003(4):61.

④ 陆振虞,顾鸣敏,袁臻东等.医学遗传学教学必须密切联系临床[J].中国高等医学教育,2000(2):59-60.

⑤ 樊红,赵主江,刘啸等.改革医学遗传学教学模式,培养综合素质医学人才[J].山西医科大学学报(基础医学教育版),2006.8(1):11-13.

化学遗传学技术范文第10篇

2012年,他的研究被《科技日报》列为一周(8月27日―9月2日)国际要闻报道(2012-09-03二版);2012年,他的研究发表在影响因子高达25.9的《细胞―干细胞》上;2012年,美国Yale大学干细胞中心的NataliaB.Ivanova教授在CelStemCel上为他的研究撰写的评论指出:“本研究极大地扩展了目前我们对于干细胞自我更新和分化的分子机制的知识,为深入理解染色质修饰机制及其在胚胎干细胞自我更新和分化中的调控机理提供了重要的线索,并为今后进行新的、令人激动的进一步研究铺平了道路。”

2012年,他是闪耀表观遗传学的新星,他是李相芝。

一项成果引来关注

表观遗传学(Epigenetics)指的是在不改变基因的核苷酸序列的基础上,可以通过基因修饰,蛋白质修饰及蛋白质与蛋白质、DNA和其他分子的相互作用而影响遗传基因的调节,并且通过细胞分裂和增殖周期而遗传的新兴学科。表观遗传修饰通过DNA甲基化、组蛋白修饰、染色质重塑、以及非编码RNA等调控方式来实现对基因表达的控制,在正常的细胞增殖、分化、干细胞维持自我更新、定向分化、胚胎发育、肿瘤发生、发展、机体正常代谢调节等过程中,起着非常关键的作用。因此,深入研究表观遗传学,对于维持正常机体发育、肿瘤发生发展、治疗和预防都具有重要的指导和实践意义。

2012年,李相芝教授的一项研究成果受到人们的广泛关注,使这位在表观遗传学领域默默耕耘十几年的科学家从幕后实验室走了出来,成为世人瞩目的焦点,盛赞之下,他却依然默默无闻的进行着自己喜爱的科学研究,波澜不惊。

这一年,李相芝教授与美国密歇根大学窦亚丽教授合作,系统研究了组蛋白乙酰转移酶MOF对于胚胎干细胞核心转录网络调控的分子机制。研究表明MYST家族组蛋白乙酰基转移酶MOF是胚胎干细胞核心转录网络的关键调控因子。尽管以往的研究表明组蛋白乙酰化在维持胚胎干细胞多能性中起着重要作用,但其调控机制仍然知之甚少。研究表明MOF作为干细胞多能性的关键调控因子Nanog的共激活因子介导基因的转录激活功能,维持干细胞多能性相关基因以及主要的分化、发育调控基因的表达。MOF不仅具有维持胚胎干细胞的自我更新的能力,也就是自我复制更多胚胎干细胞的能力;同时还确保胚胎干细胞的多能性,即胚胎干细胞正确的分化为体内各种组织细胞的能力。

李相芝教授表示,本研究利用Mof,Pcls转基因小鼠,基因敲除小鼠阐明组蛋白修饰对基因表达调控的影响;明确组蛋白修饰调控在白血病,乳腺癌等肿瘤的发生发展及侵袭转移中的作用;并发现新的组蛋白修饰因子,探明组蛋白修饰与DNA甲基化之间相互作用的分子机制,鉴定一些具有潜在临床应用价值的肿瘤诊断及治疗的新的分子靶标;发现针对乳腺癌、白血病等肿瘤的有效治疗靶点。为乳腺癌和白血病等肿瘤的预防、诊断、治疗提供分子标志及药物靶标。

一种坚持令人佩服

然而,众所周知,科研工作是一项长期且艰苦的脑力劳动,没有人能够随随便便成功,每一个成功者的背后,都有着数不清的汗水和泪水。

在这项成果发表之前,李相芝教授从在日本千叶大学医学院/理化学研究所免疫与过敏研究中心(RIKEN・RCAI)跟随著名的表观遗传学、发育生物学家古关明彦攻读博士学位开始,取得博士学位之后在美国密歇根大学病理系跟随著名的表观遗传学家YaliDou教授做博士后研究,到现在十多年间,他一直从事着干细胞、个体发育、肿瘤发生发展的表观遗传学调控研究,在表观遗传学调控研究方面撒下了辛勤的汗水,积累着丰富经验的同时也取得了丰硕成果。

近5年来,李相芝教授已在国际权威期刊(CellStemCel,MolecularCel,Mol.CellBiol.,Development,RNA,Epigenetics,Blood等)上发表十余篇高学术水平SCI论文,被引用200余次,尤其分别发表在国际顶级期刊CellStemCel及MolecularCel上的论文受到了国内外的广泛关注和专家高度评价。

2011年8月,山东大学医学院从美国密歇根大学引进李相芝博士为齐鲁青年学者特聘教授。在谈到自己在山东大学工作的情况时,李相芝教授说在山大的一年多时间里,无论是学校领导还是医学院、细胞生物学研究所的领导都给了他很大的帮助和自由的学术空间。他们“不会过多地限制我该做什么,不会特别看重我是否能在短期内出成果,刚开始我主要是将大量精力放在建设实验室,培养研究生基本技能,和本科、研究生及留学生教学等方面;同时抽时间凭兴趣做一些实验,虽然取得的成果有限,但过得很充实、很有意义。”

正是这种宽松的环境令李相芝教授的科研工作有了突破性进展,也正是这种学术氛围,让李相芝教授能发现令干细胞保持“干性”的关键蛋白,也正是这一关键蛋白对干细胞治疗疾病的潜力的发挥至关重要。

此外,李相芝教授不仅在基因表达的表观遗传学调控、干细胞自我更新与分化领域有非常高的理论水平,而且掌握全面、精湛的基因敲除和转基因小鼠制作技术。从学科发展的角度来看,山东大学非常需要李相芝博士这样一位从事表观遗传学、胚胎干细胞与iPS细胞、肿瘤发生发展研究的高水平研究人才。该校有关负责人就曾表示,李相芝教授的丰富研究经验不仅仅可提升山东大学在干细胞、肿瘤发生发展的表观遗传学调控研究领域科研的国际竞争力和增强相关领域自主创新能力,其精湛的基因敲除和转基因小鼠制作技术还可为他们的医学院建立自己的基因敲除和转基因小鼠制作平台,为医学院及相关院系的研究提供技术层面支持与服务。

上一篇:社区文化管理范文 下一篇:税务财务审计范文

友情链接