煤矿自动化控制范文

时间:2023-02-24 13:04:23

煤矿自动化控制

煤矿自动化控制范文第1篇

关键词:煤矿生产;中央泵房;自动化控制

引言

在煤矿生产企业中,排水系统是整个煤矿生产流程的重要组成部分,排水系统不但要及时排出煤炭生产过程中的积水,还要在涌水期间有良好的矿井水排出能力,由此看见,中央水泵房在煤矿生产中担负着重要责任,目前中国大多数煤矿行业都是采用人工化的排水系统,这类系统操作繁琐、管理复杂、自动化程度比较低、应急能力较差,所以对与中央泵房的自动化控制系统的研究就显得尤为重要,对提高煤矿生产行业的安全性具有重要的现实意义。

1中央泵房自动化控制系统

中央泵房一共有5台D280—65X5水泵,并配用400kW功率、6kV的电压,共有15络阀门,水仓分为内外两仓,并选用Φ325mm钢管铺装;中央泵房采用的是真空泵和水射流两种方式进行抽真空操作,并且互相备用,增加了中央泵房的应急处理能力。井下泵房主要以主排水泵作为排水设备,其主要包括水泵、电机、底座、真空表、压力表等部件构成,每台水泵都由相应的一台电机、一个底座、三个闸阀及一套真空泵、真空表组成[1]。中央泵房的自动化系统主要以PLC数据自动采集功能为核心,其运行原理是将PLC收集的模拟数据传送输入模块中,然后通过传感器分析,对中央泵房的水仓水位进行实时检测,通过系统对水位变化数据的转换和处理,计算水仓中水位在不同时间段内单位时间的上升情况,并且将单位时间内的水位变化作为依据判断井下涌水量的变化,并及时调整排水泵的运行状态。中央水泵的自动化控制系统还可以根据水泵轴温变化、电机电流变化、电机的温度变化等方面,对电机及水泵运行状态进行实时监管,发挥出系统的监控报警功能,避免因水泵及电机温度变化过大而出现设备损坏的情况。在自动化系统中的PLC数字量输入模块中,相关部件通过将运行信号采集到PLC中,并通过设定的逻辑分析对排水泵进行控制[2-3]。

2煤矿井下中央泵房自动化控制功能

煤矿企业的自动化控制系统通常采用一般性的控制柜,并且配套相应的集中控制台对水泵进行自动化控制。目前中国大多数泵房自动化控制系统都是在水泵房中设置一台单独的控制站,并且在每个水泵旁设定相应的控制线,自动化控制系统不但要实现水泵启停控制功能,还要实现对水泵设备的就地/集控转换。中央泵房自动化系统集操作简单,集扩展输入/输出等特点为一体,除了可以完成对水泵运行控制操作,还可以将工业以太网与井下中央变电所的网络交换机进行联系,从而将设备的运行状态上传到调度中心。另外控制系统应该具备较强的防外界干扰能力,以此保证系统信号传输的稳定性,并且具有汉字显示功能,增加系统本身的实用性。2.1操作方法中央泵站自动化控制系统主要分为遥控和手动两种操作方式,一般遥控操作方式为主要控制模式。系统遥控方式主要是对地面控制器的远程控制,以此监控设备的工作运行状态及运行过程中参数的变换。另外遥控操控还可以检测水仓水位的实施情况,通过水位的变化情况对水泵与阀门进行相应调整,还可以检测控制系统中设备的运行状态,如果设备在运行过程中出现故障,可以在第一时间及时停止设备,并发出报警信号,通知维修人员及时对故障设备进行维修。自动化系统的手动控制,工作人员应该根据水仓在一定时间段内的水位变化情况确定开启水泵的数量,另外,手动操作方式还可以通过设备触摸屏手动控制水位中水泵运行,通常情况下此操作方式都会作为设备故障检修的主要方式[4]。2.2液位控制液位控制是中央泵站自动化控制系统中的重要组成部分。在自动化控制系统中,利用液位传感器实时监控矿井的水位变化。当矿井水位处于高液位状态下时,不论是否处于峰谷电价时间段,系统都会在第一时间内根据自动轮换原则启动水泵。如果水井液位还在继续升高,则自动化系统将启动多台水泵降低水井水位。当水井水位处于低液位状态时,自动化系统可以不受任何限制的通用所有水泵,以此保证水井水位呈上升趋势。另外在水仓的水位保护装置中,工作人员可以设置独立的液位计作为备用检测设备,便于在主检测设备出现故障后,继续用液位计检测水仓水位。另外,在液位控制系统中,可以选用超声波液位传感器提高液位控制精度,另外超声波液位传感器还具有非机械型、维护简易、安装便捷等诸多优点。液位传感器设备可以针对实际情况对水泵进行智能化控制,当水仓水位处于2号水位时,在低计费时间段内,水泵会立即启动,当处于高计费时间段内,控制系统会控制水泵电机缓慢启动。当水位上升到3号水位时,则控制系统无论在何种情况下启动水泵,以此使得水仓水位逐渐正常。当水位上升到4号位置时,这时一台水泵设备已经无法对水仓水位进行有效控制,此时就需要启动第二台水泵设备,在第一时间内将水仓水位恢复到正常位置。上文所叙述水位控制,皆是由超声波液位计将水位的实时变化情况传输到PLC中,通过PLC的分析,执行相关操作,其分时计费也是由PLC通过相应软件标定[5]。2.3通讯功能通信功能是现代化控制系统的重要标志。在煤矿泵房的自动化控制系统中都配备了以太网通讯模块及交换机设备,通信功能的应用可以很便捷的将水泵设备在运行过程中的运行状况、运行参数、设备故障信息传输到地面的控制中心,由控制中心分析处理后,将相关信息公布到煤矿企业的局域网上。通过企业管理人员授权后的相关信息,可以到互联网上,供用户查看。在该通讯系统中,对用户的授权等级不同,其赋予相应的操作权限也不相同,高级用户除了可以查看控制系统的相关信息,还可以通过互联网进行远程操控,这在一定程度上实现了无人值守的自动化系统控制,降低了人力物力的投入,减少运行成本,增加企业经济效益。

3煤矿中央泵房自动化控制的工作环节

3.1自动注水水泵只有在保证一定真空度的情况下才能正常工作,当叶轮完全浸入到水中时,水泵才能保持一定真空度。当真空度不足时,泵内就会存在空气,那么在水泵工作时,就有可能出现上不去水的现象,叶轮空转还会可能会导致水泵内部部件被烧毁。所以,为了避免出现这种情况,在启动水泵设备时,要进行自动注水操作,一般在进行自动注水操作时通常采取喷射泵或底阀抽真空的方式进行,并选用精度较高的真空传感器实时检测水泵内部的真空度,以此确保水泵设备运行的安全性,降低运行过程中的故障风险。3.2闸阀操作对设备进行闸阀操作的主要目的是为了降低设备的启动功率,在操作水泵的相关规定中,明确规定在出水闸阀关闭状态下才能使用离心式水泵。当水泵停止运行后,为了降低水锤事故的发生率,通常都会选择将闸阀关闭,以此逐渐减少液体的流动速度,当水泵中充满水,在停止水泵运行时,先将相应的电机启动,再打开与之对应的电动阀;停止后,先将电动阀关闭,再停止水泵电机的运行。3.3参数传输参数传输工作是指将集中操作台上的可显示水仓水位、水泵流量及电动机运行参数等数据通过PLC传输给地面控制系统,并通过控制中心的计算机设备进行分析处理。将分析结果在显示器上进行模拟显示,并以图表、曲线的形式为地面的工作人员提供判断依据,并向泵房自动化控制中心反馈操作指令。3.4水泵设备电机保护由于水泵电机在运行时所承载的负荷量较大,所以其工作运行过程中的故障发生率也较高。该系统中的保护形式较多,较为常见的保护形式为:a)系统对水泵电机设备进行流量保护,当水泵设备在运行过程中的流量值不在正常范围内时,系统会启动流量保护装置,对正在运行中的设备停止操作,并立即启动备用水泵维持工作的正常运转;b)电动机故障。自动化控制系统还可以实时检测水泵设备的电机欠压、短路、过载等故障,主要是由高压开关柜的保护器进行。

4结语

对煤矿中央泵房的自动化控制系统的应用进行了详细论述分析,通过该系统在投入使用后的实际运行情况来看,其运行状态较为稳定,操作比较便捷,既能满足中央泵房的排水要求,还可以有效提高中央泵房的自动化控制水平,提升煤矿企业的经济效益。

参考文献:

[1]薛志刚.现代化矿井主排水泵自动控制技术分析[J].中国高新技术企业,2010(36):65-66.

[2]赵孟,朱文军,韩小庆.浅谈矿井排水自动化监控系统的应用[J].山东煤炭科技,2010(5):33-34.

[3]武希涛,张浩,王亚丽.PLC在中央泵房远程自动化监控系统的应用[J].科技信息,2010,2(17):57.

[4]吴同性.基于PLC及以太环网平台的井下中央泵房自动化系统设计[J].煤炭技术,2010(5):45-46.

[5]宋其成,张建鹏.中央泵房远程自动化控制的研究与应用[J].煤矿现代化,2009(S1):102-103.

煤矿自动化控制范文第2篇

[关键词] 煤矿; 遥感技术; 遥感背景; 遥感应用

1 前言

自动化技术在开发我国矿业资源、促进矿业经济发展、实现矿山生产现代化的进程中起着不可替代的作用。因此,将自动化技术应用于传统煤炭企业的改造具有现实意义,它可以提高企业现代管理水平,改变煤炭工业的形象。在上世纪的60年代逐渐兴起的遥感技术,以其具有高速、精确、快捷等特点,被广泛的应用于农业领域、资源领域、环境领域、生态领域、地质及海洋领域等。煤矿区是一种不同的背景、不同的要素之间互相作用而形成的相对复杂的区域,人们的高强度的开采使自然环境遭到了严重的破坏,极大的改变了生态环境,造成了大气和水体等方面环境污染,当然也引发许多的地质灾害,笔者经过对今年来的有关这方面的科技成果的前提上,提出了遥感技术领域应用在煤矿有关领域的具体的三个方向:煤矿区环境污染的监测、煤矿区生态环境的调查及煤矿区地质灾害的分析。遥感技术的广泛应用为煤矿区提供了先进技术和方法储备,为服务于煤矿区资源的环境保护,实现煤炭资源的可持续性开发提供有价值的参考。

2 遥感技术的概述

早在1981年,我国第一个煤炭遥感的专门机构就正式成立了,承担着国家科学委员会“六、五”等重点科研的课题。总结并发现煤层和煤系在地面的光场内及热场波谱特征,建立了煤碳层热红外的辐射分带模式,确定煤炭遥感理论的基础,建立遥感技术对煤炭地区地质调查的工作方法及程序。在1984年,“煤炭部的遥感地质中心”正式的成立,通过对设备的引进及技术的改造,遥感技术的应用领域也随着进一步的扩大,煤矿生产过程中的水害方面的防治、矿井突水方面的预测、矿区的地质灾害及环境调查、煤矿区火烧区域调查监测等发挥着重要的作用。完成“鄂尔多斯地区构造特征遥感地质的研究”项目,很好的奠定煤炭遥感地位。在1986年,煤航遥感的应用研究院正式成立,随着科学技术的进步,计算机软件及硬件的技术快速发展和计算机技术广泛的普及,促使遥感技术也发生突破性飞跃,煤炭资源的调查评价、矿区灾害的调查监测、生态环境的调查和动态监测、煤矿信息管理的系统研究方面,使遥感技术优势得到充分的发挥。前后完成许多诸如“云南三江地区煤炭资源的调查级评价”等复杂项目,取得一系列的高水平研究的成果。在这20多期间,我国有关单位和人员经过了不断的探索、力求创新发展,现在煤炭遥感等方面的技术已经形成航空高光谱和航天的高分辨率、地面的探测及GPS与GIS相结合相对完善的遥感技术研究应用体系,完成各种遥感技术应用的科学研究的项目达到200多项,获得了部级和省部级的奖励30多项,取得良好社会效益与经济效益。虽然煤炭遥感总应用的水平和西方发达国家相比较仍然有一些差距,但是在煤炭的资源调查和评价方面、煤田火区的调查和动态监测方面研究水平已经正在不断的接近,甚至可以达到世界领先水平。

3 煤矿领域的遥感技术应用

3.1 煤矿区环境污染的监测

第一、大气污染的监测

矿区的大气污染一般来源是工业生产产生的污染和交通运输产生的污染,以及生活污染,主要的污染物有气态的污染物、气溶胶类污染物。在工业生产的过程中所需要的动能、热能及电能来源是燃烧化石等燃料。在工艺生产的过程中排放及泄漏气体污染物和粉尘所造成煤矿区的大气污染。除此之外,矿区的交通运输及居民的生活需要,燃烧矿物燃料向大气排放烟尘和油烟也能致使大气污染。

遥感技术的应用与煤矿区大气污染环境监测理论基础:第一、大气污染可以直接影响到空气中微粒的分布和构成,影响到电磁波在大气中的传播,并利用特定的波段实现其对大气污染中成分直接的分析。第二、空气污染会影响到植被的生长。特定的波长会对植被的光谱特产生很多影响。因此,对植被光谱的特征定量诊断和分析,从而可以反推出大气污染。

第二、地表水污染的监测

煤炭的开采对水污染有着多源性。伴随着煤炭的开采产生的矿井水中一般都含有大量悬浮物,有的表现出高矿化度及酸性或含放射性元素和氧化物,如果直接外排将会对地表上的水资源产生比较大的污染。煤矸石若在雨水淋滤的作用下逐渐形成酸性水。会对周围的水环境造成严重的污染。大型矿井中的工作机械用油泄露,其中一部分会随着矿井水排到地面导致污染环境。另一部分会流到井下也造成污染。除此之外,矿区中的固体废弃物、液态的污染物及空气污染会直接影响到区域地表及地下水资源,将导致严重水污染。卫星遥感技术应用在矿区的水污染监测,主要通过增强的方法来突显出影像中得水体分布情况。运用一种密度分割的方法对矿区不同波段的水体进行分化等级,建立有效水资源污染的遥感技术解译标志。从而实现对地表水污染程度宏观的调查。与此同时,高光谱遥感技术在水资源环境的监测分析和水体污染的定量分析及水质参数的提取等方面应用有明显的优势。

第三、其他的污染监测

矿山中的固体废弃物是由于矿产开采、加工等过程中产生了的废弃岩石,其中煤矸石的排放量最多。矸石山的堆积会引发大气、水、土壤的污染等方面问题。并且会使矿区的景观破坏,会严重影响到附近居民生活及植物生长。遥感监测矿区的土壤污染,主要是通过遥感技术影像对土壤污染区进行定性识别和划分。其次是对植物生长的状态及参数来反推出土壤的污染状况。与此同时用遥感数据来反演出土壤中的污染元素浓度及其他参数。运用高光谱技术遥感信息能定量反演出污染元素和污染物的浓度,进而实现对于土地污染及监测和分析,也能提高监测的效率。除此之外,矿山中的开采通过对视觉、噪音等影响附近居民的生产生活环境,从而构成看到潜在环境的污染源。

3.2 煤矿区生态环境的调查

第一、植被覆盖信息的提取

矿区开采的过程中,在矿山建设工业广场、修简易公路、砍伐附近树木、搭建工人大棚、堆放矿区中的废石废渣等,都会对地表的植被有着较大的破坏,降低本区域的植被覆盖率。与此同时,煤矿区的生产和建设中造成土壤的坚硬和板结,有机质和养分及水分的缺乏。造成了土地的贫瘠,土地养分的短缺,土地承载力的下降,植物会难以生存,将导致矿区很大面积的人工裸地形成。会极大破坏矿区的生态系统。从矿区各个年份和不同类型的影像数据,并运用一些遥感图像方面的处理软件平台,提取和计算出归一的化植指数,再根据类似元二分线性的模型估算出矿区植被的覆盖率。同时,用非监督分类的方法对煤矿区植被的覆盖率进行分类和赋色,进而得出这若干年植被的生长状况和时空变化。

第二、土地利用及覆盖信息的提取

遥感技术应用于煤矿研究中最广泛地方是煤矿区的土地利用分类、环境调查、变化监测。长期煤矿的开采对煤矿区土地和生态环境都造成了严重破坏。尤其是露天煤矿区的土地复垦和生态重建等问题成为煤矿区生态问题中最为重要的研究性内容。热点地区(珠江三角洲、长江三角洲、环渤海湾)和脆弱地区(东北一带,干旱半干旱带)相关的研究已经趋于成熟。在遥感技术与地理信息系统的支持下,以煤矿区相遥感的影像作为数据源。依据矿区土地使用分类的特点及需要。用最大似然法来监督分类和人机相互解译结合的方式来解译。计算出土地利用的程度综合性指数和动态度指数等。有效的分析矿区的土地利用方面的僵盖状况,从而反映出区域土地使用变化结构特征和各个利用土地类型变化方向的演变规律。

第三、景观生态的分类研究

矿区由于是矿业生产有着特殊规律。例如生态环境的扰动和效益递减等规律的影响,生态景观与农地、林地、城市等景观不同。景观变化也会比一般农地和城市的景观更显著。在煤矿区地物遥感技术信息的提取基础上,根据突出的景观演化与生态类型的变化、空见尺度的选择分析和定量研究相结合的原则,构建出有景观类型、景观组及景观系多类分层的煤矿区生态的分类体系。与此同时,基于不同的尺度,煤矿区多时相、多传感器和多分辨率等遥感技术影像的景观分类也是研究的热点。

3.3 煤矿区地质灾害的分析

第一、煤矿塌陷的调查

地下煤炭的开采导致矿区塌陷已经是目前煤矿区主要的地质灾害。因开采塌陷而造成土地的塌陷,致使原来平整的土地逐渐变成凹凸不平,造成了水土流失和季节性或常年性积水的现象,给工业和农业的生产带来巨大损失。用遥感技术能快速且准确的确定塌陷位置及其范围,进一步分析土地塌陷对矿区土地利用有着重要的影响的意义。

第二、草地荒漠化的分析

煤炭开发对于草地的影响体现:草地被直接破坏和草地的荒漠化。采矿扰动是一种人为的驱动力,在生态脆弱区,破坏了草地饿生态系统结构及功能。致使草地的生态系统自我调节的功能下降,破坏了原有的生态系统平衡,导致生态系统脆弱且不稳定。会对草地荒漠化的产生和发展起到重大推动作用。煤矿区的草地荒漠化进行分析比较好的方法是:利用光谱混合分解模型光谱删来提取出沙壤比例及植被盖度。通过主成分饿变换及散度分析,选取植被、沙壤、阴影、轻壤,并利用无约束线性光谱混合分解模型对不同时相的遥感图像进行混合像元分解,采用了逐像元线性内插的方法,构建出不同时段的植被盖影像。

第三、其他地质灾害的调查

煤矿区土地的沉降往往会引起地面的塌陷裂缝、山体滑坡等地质的灾害。通过结合大量的野外调查,可以从遥感技术影像中的各个位置、不同色调及形态等,构建滑坡、地裂缝、崩塌等矿区地质灾害影像的识别标志。滑坡壁会在遥感影像中呈亮白色,常出现于比较高的山坡;在形态上会呈弧形或簸箕形;山底常被人类干扰呈浅蓝色。崩塌在影像上是白色和浅蓝色相混合的现象,往往出现在较陡峭地势的山区,形态表现是漏斗状和片状分布,总体上的面积比较大,人工干扰的因素相对比较弱。地裂缝则在遥感影像中表现为不规则的线,灰白色的色彩,与周边褐色的荒地形成了对比。

4 结论

随着我国经济的快速发展,能源的需求量不断增大,尤其是煤炭资源在我国能源中的比重依然很大,这就对煤矿自动化技术快速发展提出了要求。遥感技术在应用于煤炭的开采和矿区生态环境的分析发挥着重要的作用。因此,煤矿的自动化控制中自然少不了对遥感技术的需求和应用。本文通过对遥感技术在煤矿各个领域中的应用,重点分析了煤矿区环境污染的监测、生态环境的调查和地质灾害的分析和研究,来阐述煤炭自动化控制中的遥感技术。

[参考文献]

[1]戴立乾,赵鸿燕.媒矿区煤尘污染遥感监测研究卟河南科学。2011.27.

[2]张娟,彭胜龙,靳云鹏.等遥感监刺技术在煤矿区环境地质问题中的应用UJ企业导报.2010(11).

[3]胡振琪,陈涛基于ERDAS的矿区植被覆盖度遥感信息提取研究――以陕西省榆林市神府煤矿区为例UJ西北林学院学报.2012,23(2).

[4]谭得健. 国内外煤矿自动化现状及我国煤矿自动化发展对策.煤矿自动化,2007 (1).

煤矿自动化控制范文第3篇

关键词:自动化控制;煤矿;通风;

一、基于IP协议的控制系统在煤矿通风中的应用

1.1系统主要功能

一是现场手动操控功能,即可以不经过分站控制器,完全通过人工操控系统外部硬件,实现风机的启动、暂停和停止;二是半自动操控功能,即人工现场操控远程系统的主分站,有针对性的选择风机的启动、暂停和停止;三是自控功能,即系统通过现场采集对风机的状态信息实施分站,以决定风机的自动化控制启动、暂停、停止,达到矿井生产的需求;四是“三遥”功能,即遥测和遥信以及遥控功能。遥测功能主要是对现场通风系统风机的风量、风压和瓦斯浓度以及电机的速度、温度、电压、电流和功率等数值进程远程测量,并传递给系统主机,遥信功能则是远程采集风机、风门和电机现场开关的状态量,并传递给系统主机;遥控功能则是负责实施远方系统主机的操控命令;五是数据显示功能,即能对监测到的远方和本地的信号数据实时显示;六是故障记忆功能,即故障自动发生之后自动记录故障发生的相关数据信息;七是自动报警功能,即只要系统监测值超过预设的极限值,不管是在远方还是本地系统都能自动报警;八是冗余功能,即在系统局部出现故障之后,尽可能的维护整个系统安全有效的工作;九是拓展功能,即能在需要增加监控分站时,确保能随时与系统相连接。

1.2煤矿通风系统实现自动化控制的运转

应用这一系统之后的煤矿自动化控制通风系统主要由地面集控中心和工业以太环形网络与监控及信息集成分站三部分构成。主站借助以太网实现系统分站数据的实时交换,自动化控制系统分站则负责接收和执行系统主站的指令。

二、通风变频自动化控制系统在煤矿通风中的应用分析

2.1实现煤矿通风系统变频自动化控制的基本前提和原理

实现煤矿通风系统变频自动化控制,必须基于改造原有设备的前提之下。其原理是:将原控制柜与变频控制柜相并联,借助变频器操控风机,以实现变频与工频双回路操作系统的控制,并采取“一拖二”、“一用一备”的操作系统方式用于操控主通风机,最终实现变频与工频之间的自动切换。该系统主要是运用2台自动化控制的变频器,并分别由一台自动化控制的变频器操控,再将原有的风门控制阀箱撤销,可编程系统控制器由变频自动化控制系统控制柜直接操控,达到煤矿通风的需要。

2.2煤矿通风系统变频自动化控制的改造技术

煤矿通风系统变频自动化控制的改造,首先应将监视并控制分布式集控系统和远程通信系统的接口联网,达到远程监视与控制的目的,并能在微机监控上实现启动和监控主通风机的任意一台电机及运行实况;其次,在改造过程中,应在自动化控制的变频柜上设置能自动和手动的两种风量调控方式,并能在电机风量自动调节的情况下,能根据指定风量,实现自动化控制的调控变频器,并输出变频器运行的频率,实现频率与风量的自动化控制闭环操控;最后,经改造的煤矿通风系统,既要具备过流、过压、电源缺、过载和欠压的声光报警功能,又要实现自动性的保护功能以及频率的显示、运行状态的指示和电源显示的功能,更能在故障发生第一时间自动发出报警信号以及各种参数在各控制系统内得到即时显示的功能。

2.3煤矿通风系统变频自动化控制改造效果

煤矿通风系统的变频自动化控制改造,其效果主要有:一是实现原工频和变频相互闭锁的控制,借助PIE变频控制技术进行全程控制,控制通风机的方式主要有自动、微机和就地控制方式,但大都选用自动化控制的方式运行,这样变频器一旦出现故障就能立即切换至主通风机;二是通风机实现柔性启动,能从0~50Hz就系统电网进行适时、合理的调整,在减少机械之间相互掌机的同时降低电动机的运转温度和噪音,进而延长电动机的使用年限;三是具有较好的节电效果,节电率高达37%,这些节约的电费为企业实现经济效益最大化的同时也保证了煤矿安全高效的生产。

三、煤矿自动化控制的发展方向

3.1煤矿自动化控制实现由过程控制系统到现场信息集成的发展方向

自动化控制技术的高速发展为完成过程控制系统的自动化控制奠定了坚实的基础,高度的现场信息集成是实现过程控制中集控远控的基本要求。以往的过程控制自动化控制系统虽然可以满足现场设备的自动化控制控制的需求,但是却不能够为远程的监控提供充足的现场设备的各类信息,也就是说,传统的过程控制自动化控制系统远程监测现场设备的能力相对较弱。智能化仪表、工业以太网与现场总线等技术的不断发展成为了实现过程控制系统的现场信息高度集成的有力基础。过程控制自动化控制的思路就是以各类设备自动化控制为基础,实现煤矿安全生产的自动化控制、信息化、网络化、数字化、机械化,并且形成远程、本地、移动、固定的立体性数字信息的网络管理系统。

3.2建立基于企业级的中央集控的系统是煤矿自动化控制控制的必然趋势

在矿井一级的自动化控制集中过程控制中心引进高新的矿下采煤操作的过程控制系统,建设高效和先进的自动化控制过程控制系统,使用最新的自动化控制采煤机器和工业以太网等先进技术,并且以建设煤矿集中控制中心为基础,实现了在企业的集控中心来完成对煤矿设备的远程监测、远程控制以及远程管理。在集中控制中心使用统一的、标准的组态软件实施编程,在地面上进行各种设备或系统的现场参数化,并且经过地面的支援中心实施远程诊断,然后下达故障指令以及通知矿井工作人员及时进行处理和维护,实现集中统一企业的各类资源。

3.3未来的企业级远程集中控制中心主要功能

a) 通过快速的通讯输送网和高效的自动管理网,实现了远程在线监测、控制和操作对企业所有煤矿的采煤、挖掘、运送、提升等各类系统的全部生产过程;

b)利用中心集控的软件,监测矿井内部各种设备的运行状况,远程诊断而且对煤矿设备参数进行适宜调整,做出设备的检查、维护等计划,再依据设备或系统的不同故障类型下达不同的维修指令,通知煤矿人员迅速处理现场问题;

c) 在企业的集控中心内建立成企业级数据库,利用煤矿生产执行系统,综合分析生产各环节的数据,优化煤矿生产过程,合理安排关键设备的检修时间。在集控中,实施煤矿生产计划的安排、下达、检测和反馈,达到对各种设备、备件、备品的优化调度和合理配置的目标。

四、结语

总之,将自动化控制技术在煤矿通风中的应用具有十分重要的意义。但也是一份十分系统、复杂的工作。为确实提高煤矿通风系统的自动化控制水平,我们在注重提升专业技能的同时还应坚持节能环保、以人为本的基本原则,确保煤矿安全、有效、高效地运行。

参考文献:

[1]尤德玲,王磊。 基于CDT通信规约的煤矿供电自动化控制分站[J]。 煤矿机械,2012,(10)。

[2]王水林,孟凡平。 煤矿井下排水自动化控制系统研究[J]。 煤矿机械,2012,(10)。

[3]张昊。 城郊煤矿综采工作面自动化控制监控系统[J]。 煤炭科技,2012,(3)。

[4]李宗明。 煤矿自动化控制与矿山物联网的探讨[J]。 煤炭技术,2012,(8)。

煤矿自动化控制范文第4篇

【关键词】综合自动化控制系统;煤矿企业;系统构成

前言

煤炭在我国能源结构中所占的主体地位将仍然持续于未来大半个世纪,但我国90%的煤炭都以井工开采为主,生产隐患多,生产效率低,生产成本高,各种矿井事故(如瓦斯突出与爆炸事故、矿井突水事故、机电事故、顶板事故等)层出不穷,因此,有必要研究新型技术逐渐代替部分人力的作用。随着计算机技术的快速发展,自动化控制技术逐渐被运用到各个行业与领域中,基于现代化管理与安全监测系统的需要,在煤矿行业中安装采用综合自动化控制系统已成必然趋势。自该项技术在煤矿应用一二年以来,显著提高了矿井生产效率与安全系数,因此,大力发展自动化控制技术是新型现代化矿山企业建设与实现安全高产高效的必然途径。以下笔者将从煤矿综合自动化控制系统特点、构成与实现三方面进行详细阐述。

1 煤矿综合自动化控制系统的特点

煤矿综合自动化控制系统作为煤矿自动化总平台,实现了在地面对煤矿井上下诸多设备的可靠控制。

(1)采用光纤组建了煤矿井下工业以太网并形成环网,全矿井下胶带、轨道、供电、排水、通风、矿井提升、选煤等自动控制子系统均以现场总线等形式就近接入工业以太环网,同时,采用OPC及组态软件等技术接入软件平台,形成全矿井自动控制信息传输及处理的总集成平台,基于该平台实现了在地面集控中心对井下胶带、供电、排水、轨道、通风、压风、提升、选煤等设备的远程开停控制和在线监测,井下诸多环节和岗位实现了无人值守,大大减少了井下现场人员,提高了矿井安全水平。

(2)煤矿安全监控、人员定位等监测监控系统在地面接入煤矿自动化平台,实现了矿井自动化信息、安全生产监测信息的集成、共享和Web等功能,实现了对井下所有掘进头、工作面的瓦斯自动检测和超限自动断电、告警,实现了对井下所有重要地点的风速、温度、风门、局扇开停的自动监测,实现了对井下人员分布情况的在线监测和统计。

(3)建立了矿井自动化监控中心,具有大屏幕显示功能,控制功能,数据统计汇总功能,网络功能等,操作员站之间具备相互冗余功能。

(4)建立了矿井工业电视监视系统,将井下和地面各主要地点摄像机的信号传输到地面视频服务器,在集控中心显示和切换图像,为地面远程控制提供了必备的监视手段。

(5)建立了矿井移动通信系统,实现了井下现场与集控中心的清晰通话,为地面远程控制提供了畅通的联络手段。

(6)完成了煤矿综合自动化控制系统与煤矿管理网络安全对接,将煤矿井下现场的自动化信息、安全监测信息、井下视频与管理信息系统联通,通过Web等方式实现了各类信息在全公司的资源共享。

2 煤矿综合自动化控制系统构成与网络架构

2.1 煤矿综合自动化控制系统构成

矿山综合自动化系统以矿用千兆冗余工业以太环网为通讯平台,采用3层网络结构,将数据、视频、音频、通讯一条线路同网传输,基于VLAN、IGMP等工业以太网技术,通过优化资源配置,合理分配各系统的资源和带宽,确保重要数据的实时性和可靠性及各种情况下通信的畅通。通过光纤通信为骨干通信平台,将主井提升子系统、选煤厂控制系统、井下人员定位系统、带式输送机监控系统、井下供电无人值守系统、电力调度子系统等统一集成在一个骨干光纤软件平台上,构成一个统一的煤矿综合自动化信息管理平台。

2.2 煤矿综合自动化控制系统网络架构

煤矿综合自动化控制系统的主干通信网络使用千兆环型工业以太网,使用核心交换机将井上信息管理平台与井下各类自动控制系统互连,骨干网提供工业以太网接口,保证整个系统具有良好的可扩展性,骨干网一旦出现故障,可以迅速自适应恢复通信,保证整个系统的稳定性与可靠性。煤矿综合自动化控制系统的网络系统由井下网络和井上网络2部分构成,网络均为环型拓扑结构,2部分网络使用核心交换机完成互联。全矿骨干网络使用1000M工业以太网构建,为全矿各子系统提供方便灵活的工业以太网接口,地面、井下子系统均可以方便接入。

图1 煤矿综合自动化控制系统结构

煤矿综合自动化控制系统井上部分由核心交换机和以太环网组成,以太网使用千兆带宽,保证系统通信的稳定性与安全性,其他子系统接入附近的交换机,主网络通过地面网关交换机接入调度指挥控制中心网络。井下控制网络通过环形工业千兆太环网,构成井下生产过程控制自动化的统一软件平台。煤矿综合自动化控制系统结构图如1所示。

3 煤矿综合自动化子系统软件功能的实现

煤矿综合自动化控制系统使用统一的平台集成了电力调度子系统、压风机子系统、锅炉房子系统、中央回风井通风机子系统、副井提升子系统、井下带式输送机集中控制系统、考勤、人员定位和无线通讯系统等不同功能子系统。不同的子系统软件的实现主要采用组态软件完成,组态软件根据现场情况进行快速二次开发,真实模拟现场动画效果,有效处理数据。例如煤矿综合自动化控制系统中的井下主排水系统的监控软件需要实现水泵的在线监测和自动化控制。能对水泵的各项运行工况参数在线实时监测、统计和显示,通过智能专家系统使水泵始终处于高效的运行状态,通过故障参数进行分析预警,防止事故,控制操作程序,防止误操作,同时可根据操作员指令或预定控制程序,按要求自动完成水泵的定时启动、定水位启动、自动切换启动、智能经济运行等操作,自动控制分时运行、削峰填谷,即可现场操作控制,也可远程操作控制,实现水泵的高效经济运行和现场无人值守运行。通过组态软件可以快速高效的实现上述功能,利用组态软件设计的井下主排水系统监控界面形象直观,具体界面如图2所示。

图2 井下主排水系统监控界面

4 结语

煤矿综合自动化控制系统在地面远程控制井下设备,实现现场无人值守,不仅减人提效,也是煤矿“无人为安”思想的体现,对煤矿安全生产的发展具有重大意义。通过在煤矿建立综合自动化控制系统,可以实现在煤矿地面控制中心对井下胶带运输、轨道运输、供电、排水、压风、地面选煤设备的开停控制,并减少井下现场作业人员数量,从而可取得较好的经济效益和社会效益。

参考文献:

[1]王健.浅谈煤矿综合自动化的发展及应用[J].科技信息,2011(08).

[2]唐宝国.煤矿综合自动化及机电技术[J].信息系统工程,2014(06).

煤矿自动化控制范文第5篇

关键词:自动化;煤矿通风;自动化控制;应用

引言

当前形势下,煤矿企业日益注重生产的安全性,应用煤矿通风系统可以实时地控制与监控矿井状况,降低出现事故的概率,从而提升煤矿生产的安全性。然而,国内当今煤矿通风系统当中,人工操作依旧是主导,这难以实现动态化的控制与监控[1]。为此,在煤矿通风中合理地应用自动化控制技术,可以提升煤矿生产安全性,大大提升煤矿通风系统的管理能力。

1煤矿通风中自动化控制系统的组成部分

煤矿通风中的自动化控制系统主要由三个部分组成,即通风系统、传感器系统、中央控制系统[2],其原理如图1所示。

1.1传感器系统

自动化系统当中应当对各种监控指令与数据进行接收,多路信号存在两种传输方式:a)时分制,结合各种时序对异样的信号进行传送;b)频分制,结合自身的频率发送信号,不会发生混淆的情况,电路组成较为简单,不容易发生故障,所以应当在应用实践中普及。在频分制系统当中,借助载频器来传送与接收信号,不到500V的动力传输线是传输信号的介质。传感器系统当中的检测元件还可以体现关键的功能,在精确检测通风量的情况下,重点是将传感器放入巷道中,这样可以准确检测有毒气体含量、温度、风量等。遥测风量能够在业已确定的断面积巷道中安装检测元件(光耦感应器、恒温风速仪、热式风速仪等),从而可以对巷道的一系列性能标准进行动态监测。

1.2通风系统

调节风量的方式有两种:a)借助风门角度与百叶窗的调节来控制风量的大小,频率发送器向地面控制室传输信号,在处理之后结合需要发出指令,就可以转动叶片或风门;b)对电机频率进行改变的基础上控制通风量。电机借助变频设备能够调节和控制通风机转速。另外,将定时控制应用于矿井局部通风机的自动化控制系统中,安装爆破冲击波开关,在引爆之后可以通风。在通风系统当中,结合矿井气体浓度、温度改变状态通过设计的检测元件来调节和控制局部通风机的运行[3]。

1.3中央控制系统

中央控制系统重点借助微型化的计算机实现系统功能,因为微型计算机接口比较多,具备强扩散性,可以完成系统划分的任务。中央控制系统的速度快和精度高,实现了自动化系统的任何需要。中央控制系统的关键任务是处理监控站搜集的一系列信息数据,且制定有效的通风对策,结合实际需要调节和控制通风量。并且,中央控制系统还可以实现报警的作用,涵盖下面几点:a)将发出的指令传递向监控站,从而动态地监控通风系统;b)处理和修改一系列监控站的反馈信息;c)结合系统的实际需要制定通风调节对策,且向控制指令转换,确保执行机构的动作;d)监控工作过程中设备的不正常情况,可以实时报警,且能够启动处理程序。

2煤矿通风系统中自动化控制技术的功能应用

2.1及时监测煤矿通风系统当中的信息数据

煤矿通风自动化控制系统涵盖搜集到的一系列监控设备的信息数据,其中可以在显示屏上呈现矿井空气含量、风量的改变、通风机的运行状态、风压变化等信息数据,有关工作者能够以这些信息数据为基础实施有效的对策[4]。

2.2借助数学曲线演示有关信息数据

煤矿通风自动化控制系统能够以图形的形式向工作者形象地传递搜集到的信息数据,如此的图形可以形象地呈现一系列数据的改变趋势,其具备历史曲线与实时曲线。其中,历史曲线能够统计和分析某个时间段的信息数据。这一系列的曲线能够形象地演示全部通风系统中的工作现状,不但可以引导工作者明确系统工作状态,而且能够推动工作者发现不足之处及实施有效的解决对策。

2.3查询及打印有关数据报表

煤矿通风自动化控制系统能够使工作者打印观察和查询报表,进而让有关工作者可以清晰地了解系统中的工作现状,方便传输和分享数据。并且,一系列报表形式涵盖于数据报表当中,如月报表和年报表等,这极大地方便了技术工作者的查询。

2.4实时发现和解决系统当中的故障问题

通风系统出现通风机故障的情况下,自动化控制技术不但能够确保备用的风机运行,而且可以在确保其它风机运行安全性的前提条件下增加风机通风量,进而确保煤矿通风正常。而该原理是通过总控制中心下达指令,在暂时关闭存在故障的通风机的过程中,确保其它风机超额完成或备用风机开始运行,从而实时解决这一系列的故障问题。并且,煤矿通风自动化控制系统还可以自行检测和修复存在故障的风机,如果不再存在任何故障问题,那么就可以启动风机,如果又一次启动未完成,那么就会记录下所有故障信息,从而便于技术工作者接下来的工作[5]。

2.5判断有关的故障及发出警报

自动化控制技术不但可以确保通风系统运行的自动化,而且可以控制和管理系统运行,在发生故障问题的情况下发出警报。在设置系统中一系列设备运行参数范围的基础上确保系统可以发出警报,推动有关技术工作者实时明确有关的故障问题,避免发生煤矿安全事故,自动化控制技术还可以储存警报信息,从而便于将来安全研究工作的开展。

2.6设置完整和系统的安全机制

煤矿通风系统中应用自动化控制技术能够创建一种完整、系统的安全机制,对工作者来说,需要科学地划分相应权限,如针对查看系统当中的警报数据信息和平时的工作数据信息来讲,只有相关工作者才可以具备此权限,并且各种类型的工作者的密码各不相同,从而拒绝无权限的操作,最终提高全部系统的稳定性、安全性、可靠性。

3结语

在煤矿企业的生产中,煤矿通风系统有非常重要的作用,其对于确保煤矿工人的人身安全及煤矿企业的生产安全有十分重大的影响。为了减少煤矿生产事故,需要在煤矿通风系统中合理、有效地应用自动化控制技术,进而提升煤矿通风系统通风质量,方便控制煤矿的通风状态。事实上,因为自动化控制技术便于操作,所以可以普遍应用于煤矿通风系统当中。

参考文献:

[1]陈醉.关于煤矿通风系统安全运行的相关影响因素的探讨[J].科技资讯,2012(22):101.

[2]张凤琴.基于PLC的局部通风机控制与设计[J].山西煤炭,2012,32(1):67-69.

[3]王平,管红杰.煤矿通风系统三维模拟关键技术研究及其实现[J].煤炭工程,2010,1(10):115-117.

[4]庞训安,李兆军,王海军.基于以太网的煤矿通风机自动化系统[J].计算机与现代化,2008,1(9):78-81.

[5]臧小杰,王焱,宋绍楼,等.模糊控制理论在煤矿通风安全自动化系统中的应用[J].中国安全科学学报,2000,10(3):33-37.

煤矿自动化控制范文第6篇

关键词: 自动化控制;煤矿通风;PLC技术

中图分类号:C931.9文献标识码: A 文章编号:

引言:

随着经济的发展和科学技术的进步,计算机和自动化技术不但得到很快的发展并且在很多行业中得到了十分广泛的应用。尤其是近些年来,自动化控制技术在煤矿生产中逐渐应用起来,各地矿井在煤矿的开采和生产过程中选用开放、安全的自动化产品,并且构建起了覆盖整个矿井的生产系统和监控系统,提升了矿井的成功开采率以及矿区的安全指数。自动化控制技术的应用完成了煤矿开采所需要的所用功能,并且成功的搭建起了覆盖整个矿井的生产系统和监控网络系统,真正实现了煤矿生产的自动化。特别是我国煤矿通风中自动化技术的应用也得到了不断发展。

1.自动化控制技术的概况

自动控制技术是20世纪发展最快、影响最大的技术之一,也是21世纪最重要的高技术之一。今天,技术、生产、军事、管理、生活等各个领域,都离不开自动控制技术。就定义而言,自动控制技术是控制论的技术实现应用,是通过具有一定控制功能的自动控制系统,来完成某种控制任务,保证某个过程按照预想进行,或者实现某个预设的目标。在经济的不断发展和人类能源的需求下,就要求我们的生产效率不断地提升。在我国支柱产业煤炭产业上,自动化控制系统技术的应用就尤为重要了,他不断能解决我国矿井的成功开采率低的问题,同时也能解决很多矿井中的安全隐患。

2.自动化控制技术的特点

2.1 自动化控制系统采用最先进的Rockwell 的网络三层结构,在信息层应用以太网连接一些信息系统,从而进行信息的收集;在自动化系统以及系统的控制层面,使用的是DH+、RI/O 以及控制网等系统进行控制,更好的完成了 I/O 控制和闭锁以及各个部分之间的报文传送,这样就是在很大程度上保证了控制信息的实时和准确性;在自动化控制系统的设备层面,采用具备 DN 接口的先进设备,这样可以方便安装,在一定程度上降低了成本,并且可以实现对出现的故障进行快速的诊断。

2.2 采用十分先进的客户模型技术,这样可以使得自动化控制系统获得十分良好的性能以及远远优于其他系统的灵活性。客户模型技术最突出的优势就是支持输入数据的多信道广播以及对等通信数据的多信道广播,这样就会使控制数据在相同的时刻传送到操作的每一个程序,同时使的网络资源得到最大限度的利用。此外客户模型技术支持状态切换的报文发送,这样就为矿井的工作提供更加优良的确定性。

2.3 自动化控制系统应用 ControlNet 的先进技术,支持客户模型技术,使得其数据发送具有最大限度的确定性甚至是可重复性,此外自动化控制系统在运行时具有 5Mb/s 的传输速率,结构十分的灵活、方便。

2.4自动化控制系统应用 ND 技术,同时也是支持客户模型技术,这样就会将处在最低层的设备与控制器直接进行相连,有效的降低了成本同时这种方式的应用还十分方便安装,减少系统停机时间。

3.自动化控制技术在煤矿通风系统中的应用

煤矿通风系统中自动化控制技术的应用采用“集中控制,分散检测”的方式,进行若干监控分站的设立,对煤矿各个位置的风压、风量、有毒气体含量、温度等状况作出动态的检测,并将所获取的数据通过通信电缆来传送至煤矿通风主站,实施集中的管理与监视。而待通风主站对监控分站数据进行接收后,便就煤矿风力分布状况作出相应推算,进而明确风量控制的最佳方案。之后,转化方案为控制指令,向监控分站控制系统做出反馈,并依靠变频装置,来控制通风机风量,从而实现煤矿通风的自动化控制。对煤矿通风系统中自动化控制技术的应用进行设计,将其划分为传感器系统、通风系统、中央控制系统三部分来实现系统自控功能。首先是传感器系统设计,信号发生器为首要考虑装置,煤矿通风自动化控制系统需要完成对不同信号的传输与接收,包括指令与监控数据。其次是通风系统设计,这一系统中对于风量的调节可通过两种方法来实现,第一种是通过改变风门或百叶窗角度,来调节与控制风量;第二种则是通过对通风机的电机转速作出改变来完成的,设置变频装置,便可对通风机电机转速作出有效改变。还有就是中央控制系统设计,中央控制系统的任务主要是采集和处理监测站数据,并以实际需要为依据来对通风量作出动态的控制。此外,监控、报警等功能也要依靠中央控制系统来加以负责。

4.PLC技术在煤矿上的应用

PLC技术在煤矿提升机自动化控制系统中的应用。所谓的PLC就是可编程控制器,是一种数字运算操作的电子系统,能够进行逻辑运算、顺序控制以及算数运算等操作,具有适应性强、编程简单、抗干扰强的优点。采用PLC控制变频器,与传统的继电器控制相比,提升机制动更加平稳,操作更加简单,提高了控制精度,降低了生产过程中的故障率。

控制保护PLC功能是控制保护PLC根据外部输入的有关开关量、模拟量、光电编码器脉冲等信号进行逻辑运算、数值运算,完成提升机的启动、运行、停车等整个提升过程的运行控制及保护,他可以实行:行程控制、提升控制及中间闭锁、安全回路控制、井筒信号控制及联锁、过卷监视及控制、速度监视及控制、速度包络线监视及控制、逐点的速度监视及控制、液压站控制和恒减速控制、钢丝绳滑动监视及控制、传动装置监视及控制、闸瓦磨损监视及控制、电源故障监视及控制、控制系统故障监视、报警及控制、故障诊断、记录、过电压保护、过电流保护、错向保护等功能,为了提高PLC 控制保护功能的可靠性,对于关键的故障监测点,应采取多通道、多元件及软件、硬件并用等手段,实现“多重化”的控制保护功能。

PLC技术在煤矿提升机自动化控制系统中的应用。它可以在煤矿实现报警显示、二次不能开车、立即电气制动和立即安全制动的功能。PLC技术的使用,会在工作参数出现异常时,如当冷却器温度过高时,保护系统进行报警显示;当提升机的设备出现异常,有电机绕组过热,提升机不能进行再次的启动;当提升机在工作中,出现故障时,提升机将立即进行制动,停止运行;安全制动是保护系统的最后环节,当提升机或是安全回路本身出现故障时都能准确地实施安全制动。总之,随着数字控制技术的发展和PLC技术水平的提高,PLC技术在提升机控制系统中的应用越来越广泛。数字监控器也逐渐取代了机械式监控器和井筒开关,并作为提升机安全运行的后备保护,在提升机的生产过程中发挥的作用也越来越大。PLC技术在控制系统中的使用大大地提高了提升机的控制性能,也提高了系统自动化水平和安全可靠性,有利于提高系统的运行效率,促进矿井的安全、和谐、健康发展。

5.结束语

自动化控制技术是时代进步、科技发展的产物,在煤矿通风系统中的应用前景十分广阔。在实际的煤矿生产中,往往因煤矿通风系统存在这样那样的问题,而给煤矿抗灾能力和正常生产带来直接的影响。但考虑到煤矿通风系统在煤矿生产系统中的重要地位,保持其最佳的运行状态十分必要,而应用自动化控制技术则能够在一定程度上对煤矿通风系统运行中的各项难度进行解决。而PLC技术的使用,我们可以实现报警显示、二次不能开车、立即电气制动和立即安全制动的功能,进一步加强和完善了煤矿中自动化控制技术,使我国的支柱产业煤炭产业的得到安全稳定的发展。我们只有建立合理、完善的煤矿自动化控制系统,才能为煤矿效益提高与安全生产提供有力保障。

参考文献:

[1]高俊祥,高孝亮.自动化控制技术在煤矿通风系统中的应用[J].煤矿安全,2011 (1)

[2]邬如梁.自动化控制技术在煤矿通风系统中的应用[J].煤炭技术,2013(4)

煤矿自动化控制范文第7篇

关键词:电气自动化;PLC;控制系统;优化设计

引言

电气自动化控制系统已经深入煤矿生产的每一个环节,并取得良好的应用成果。煤矿生产离不开数字处理与风险预测,这需要专业的控制装置,而嵌入式PLC自动电气控制系统能够适应各种恶劣环境,因此在煤矿工业领域得到十分广泛的应用。本文立足于煤矿电气自动化系统,深入研究优化电气自动化控制系统的方案,从而提高系统的稳定性。

1煤矿电气自动化控制系统

1.1参数测量与控制

就电气控制系统而言,温度控制、矿井水泵的开合控制都是其核心内容,将直接反映煤矿的电气设备的运行情况,因此优化电气设备的控制系统对于煤矿的生产工作具有十分重要的意义。通常情况,测量设备的热电阻作为对应的传感器都能保持清晰的传感功能,需要注意的是,要将传感器的温度保持在100℃以内[1]。通过将温度信号转换为电压信号,最终实现闭环控制。电气控制系统在企业的日常煤矿生产工作中扮演着关键角色,可以借助监控层与网络连接,从而实现对瓦斯含量的计算、通风情况的检测、采集数据的工作,动态的对单元过程、设备进行控制。而管理监控层的应用主要是利用组态,采集数据信息,实现优化处理相关信息数据的目的。

1.2PLC控制器

PLC控制器作为自动化的控制设备能够用于煤矿生产电气设备的控制工作。煤矿生产电气控制系统主要采用PLC(可编程控制器)支持煤矿生产电气设备的整体运作。一般来说,自动化煤矿生产电气设备的PLC可编程控制器主要由CPU主站单元、数字量输出模块、拟量输出模块、特殊通讯模块、数字量输入模块及模拟量输出模块六大部分组成。主站单元CPU处理器增加了输出点,从而方便系统直接对煤矿生产电气设备进行控制,另外,在转速、频率方面拟量输入模块都有很大进步,不但能够用于采集信号,还能保证操作员用于多线操作。此外,扩展单元将煤矿生产电气设备分为上下部分,配置16点数字输出模块,从而增强电气控制系统对电气设备损坏报警系统等部分的控制,增加数字信号的交换频率,在低成本的基础上实现高性能的煤矿生产设备电子控制系统构成,控制执行元件工作的时序,从而达到理想的煤矿生产效果[2]。

1.3信息采集系统

采集信息是PLC的主要功能,作用于煤矿电气自动化控制系统核心部分。通过通讯模块,将矿井下情况的信号以参数的形式传送至可编程控制器中,并根据煤矿生产的电气设备的实际运行的情况进行风险评估,以便在突况发生时及时反馈给相关技术人员。另一方面,能够通过主从站之间的信息交换,实现人机交互的工作状态,不断将运行信息以声光的方式发送,可以进行连锁保护,这是电控系统本身具有的一个重要功能[3]。1.4电磁阀在煤矿生产作业之中,所使用的电磁阀可以通过进气系统划分为两类,分别是耐腐型电磁阀及普通型电磁阀。由于煤矿作业的工作环境相对复杂,存在着大量腐蚀性物质,这些腐蚀性物质会影响煤矿生产电气设备的正常使用。如何提高煤矿生产电气设备的抗腐蚀性成为业内关注的焦点。耐腐型的电磁阀通常用四氟乙烯制成,具有成本低廉、抗腐蚀性强的特点,因此被广泛应用于煤矿生产作业的进气系统中。

2煤矿电气自动化控制系统构架的优化

2.1硬件部分的优化

电气自动化控制系统的硬件部分是煤矿电气自动化控制系统的核心部分,直接影响煤矿电气自动化控制系统的稳定性,与煤矿生产的效率息息相关,因此加强硬件部分的优化,对于煤矿电气自动化控制系统的构架具有十分重要的意义。在设计煤矿电气控制系统硬件时,应当从系统输入电路入手,考虑煤矿井下工作条件较为恶劣,而PLC供电的电源一般是交流电,在80V~240V之间,因此为保证电气自动化控制系统正确运行,需要选择宽幅、适用的输入电路。此外,考虑到煤矿井下工作对自动化控制系统的信号具有一定的干扰,因此为了保证电气自动化控制系统正常运行,要适当增强系统输入电路的抗干扰性能。采用隔离变压器能够增大变压器的初级线圈屏蔽层与刺激线圈屏蔽层的接触面积,有效减少矿井下面的脉冲干扰。调整输入电路的荷载量也是避免短路操作的重要手段,一般来说,如果系统输入电路存在过载的情况,会直接导致系统无法正常运行,影响煤矿电气自动控制系统正常工作。除了优化系统输入电路,还要优化系统输出电路,采用晶体管输出是输出电路的重要优化方面,一方面,采用晶体管进行输出能够适应高频动作,并且晶体管的抗干扰能力较强,能够保证电路不受其它信号的干扰。另一方面,以煤矿的水泵机房为例,使用晶体管进行输出能够有效简化输出动作,避免PLC芯片在使用过程中损毁。

2.2软件的优化设计

软件是整个系统运行的核心,因此加强软件的优化设计,能够有效提高煤矿电气自动化控制系统的运行效率。一般来说,煤矿电气自动化控制系统的软件优化设计可与硬件的优化设计同时进行,一方面,软件优化设计与硬件优化设计同时进行,能够保证煤矿电气自动化系统的同步性。另一方面,软件优化设计与硬件优化设计同步进行,还能有效避免设计中不兼容的情况发生,从而提高煤矿电气自动化控制系统的稳定性与合理性。煤矿电气自动化软件设计的核心在于将软件设计转化为梯形图,将软件设计分为软件结构的优化设计与软件程序的优化设计两个步骤。煤矿电气自动化控制系统的软件部分,与常规电气自动化控制系统别无二致,然而在模块化设计的过程中,煤矿电气自动化控制系统的软件部分与常规电气自动控制系统的软件设计就截然不同了。由于煤矿电气自动化控制系统的模块化设计是后续功能拓展的关键,因此初始设计时,要根据煤矿日常任务进行设计,在同一的系统下将任务分为多个子任务模块,然后再进行统一调试,最后将其组合成一个完整的程序。因此相关设计人员要深入调查煤矿作业的流程,并根据实际生产要求优化煤矿电气自动化控制系统软件部分的结构设计,提升煤矿电气自动化控制系统的日常运行效率。

2.3抗干扰优化设计

系统的抗干扰设计是煤矿电气自动化控制系统必须考虑的问题,由于煤矿工作环境较为复杂,井下作业工作环境十分恶劣,因此加强煤矿电气自动化控制系统抗干扰优化设计十分必要。电磁脉冲是系统芯片的天敌,一旦电磁脉冲超过可承受的范围,会引起系统崩溃。因此抗干扰优化设计主要针对防腐与防信号干扰两个方面来探讨。加强电气控制集装箱、配电箱的防腐处理,是防止电机出现故障、保证煤矿生产的电气设备正常运行的保障。可以通过防腐处理技术,将电气设备的转轴与外壳进行清理维护。此外,防腐涂料的应用也是加强电气控制技术的重要手段,相关工作人员需要针对容易生锈的控制集装箱的外壳进行防腐处理,从而保障煤矿生产的电气设备内部元件的稳定性。在电气基础设施与控制集装箱的安装工作中,要求相关工作人员考察安装地点的施工条件,从而按照有利于电气设备控制的方向进行整体布局,一定程度上能够提升电气设备对煤矿生产作业的整体调控能力。而采用隔离变压器抗干扰能够有效规避电磁脉冲对系统芯片的损坏,保证煤矿电气自动化控制系统的稳定性。此外,采用金属外壳也对电磁脉冲起到一定的屏蔽效果,可将PLC控制装置置于金属质地的工作柜中,能够屏蔽大多数电磁脉冲及空间辐射,保证煤矿电气自动化控制系统正常运行。

3结语

随着电子技术发展,电气自动化控制技术在煤矿生产中得到广泛应用,也促进煤矿生产效率的提高。然而,如何对煤矿电气自动化控制系统进行优化设计,还需要设计人员不懈努力,进行反复设计与实践。

参考文献:

[1]刘琴.煤矿电气自动化控制系统的优化设计[J].中小企业管理与科技(下旬刊),2013(11):281-282.

[2]刘晓军.浅谈煤矿电气自动化控制系统的设计[J].科技与企业,2014(9):124.

[3]王玉英,王文魁.单片机在煤矿电气自动化控制技术中的应用研究[J].电脑知识与技术,2011(32):8055-8057.

煤矿自动化控制范文第8篇

【关键词】 自动化控制 煤矿通风系统 DCS技术

随着现代化进程的不断加深,科学技术,尤其是计算机、网络技术的不断发展,对劳动生产效率的要求越来越高,这就导致了自动化控制技术在研究领域中的不断深入发展。当今世界,自动化控制技术已经在各行各业中得到了越来越多地应用。

一、煤矿通风系统的重要性

当代中国的经济正处于高速发展的阶段,工业化的中期,对矿产资源的需求强度将进入高峰期,矿产资源的供求矛盾将更为突出,尤其对于煤矿来说,这个问题会更明显。我国是煤炭消耗大国,也是煤炭生产大国,近些年来,在众多大大小小的煤矿中,煤矿瓦斯爆炸事故时有发生,轻则伤亡几人,重则伤亡几十人、上百人,据统计数据表明,瓦斯灾害事故是煤矿企业中经济损失最大、死亡比例最高的重大事故之一,也是造成社会影响最大的重特大事故,给国家财产和人民的生命安全造成了极大的损失。对于长期以来工作在一线的采矿工人,国家制定了一系列的规章条例,不但要求在生命安全上的保障,对矿井内部,采掘工作面的环境要求也越来越严格。温度、湿度、有毒有害气体浓度,空气中的粉尘率等等指标,都反映出要确保井下工人工作环境的舒适度要求。对矿山工人的身体健康状况以及近年来对煤矿瓦斯爆炸事故的调查研究,都反映出事故发生的直接或间接原因都涉及到矿山通风系统的不合理。

煤矿通风系统是煤矿生产系统的不可缺少的组成部分,其合理与否对全矿井的安全生产及经济效益具有长期而重要的影响。矿井通风系统的正规合理、可靠稳定是确保煤矿在发生瓦斯、火灾事故时抗灾、减小事故扩大范围的重要保障,也是保证井下用风地点有良好的空气、安全、卫生条件的基本手段之一。正常的地面空气进入矿井后,当其成分与地面空气成分相同或相差不大时,称为矿内新鲜空气。由于井下生产过程,产生了各种有毒有害的物质,使矿内空气成分发生了一系列变化,如含氧量降低、二氧化碳量增高、混入了矿尘和有毒有害气体(如CO、NO2、H2S、SO2……),空气的温度、湿度和压力发生了变化等。矿山生产的各个环节,如凿岩、爆破、放矿、装运、破碎等还会产生大量的粉尘。

伴随时代的主流,紧跟科技的步伐,煤矿行业也正努力做出相应的技术变革,煤矿通风自动化控制技术的引进,掀开了矿井通风技术发展的新篇章。国外煤矿通风的自动控制技术起步较早,尤其是在欧美等科学技术发达国家,工业化的发展超前与我国,自动控制技术对功能、可靠性、成本、体积、功耗的严格要求,大幅度提高了煤矿通风系统的效率,还能提高井下的安全系数。

二、自动化控制技术的发展

自动化控制系统是通过通信网络(如光纤等)把众多的带有通信接口的控制设备、执行器件、检测元件与主计算机连接起来。再由计算机进行智能化管理。实现集中数据处理、集中监控、集中分析和集中调度的现代化生产程控制管理系统。它广泛应用于现代工业、农业与交通、科学研究和信息化军工业中。20世纪90年代控制系统已进入智能化的时代,自动控制技术继续迅速发展,作为自动化技术的各种设备与控制装置也获得迅猛的发展。自动化控制的发展与信息化、数字化、智能化、网络化的技术潮流息息相关,与微电子技术、控制技术、计算机技术、网络与通信技术的发展也密切相关,互相补充,相互促进。

三:DCS技术在煤矿通风系统中的应用

DCS应用于煤矿通风设备领域的设计实际上采用是一种多级分层的计算机控制系统实现的。其设计思想是控制分散、危险分散、操作与管理集中。结构特点是分级递阶的分布式结构,灵活,易变更,易扩展;各级之间的信息通过高速数据总线交换。过程控制级以实现对过程的平稳操作为目标;而优化控制管理级以达到协调管理,优化工作点,包括预测控制,模式控制,神经网络控制和专家系统等软件。

在煤矿通风的自动化应用中,通过在巷道和工作面的检测,传感设备进行实时监测,测定空气中的瓦斯浓度、风速、压力、有毒有害气体含量,粉尘含量并将其转化为数字信号,利用光纤网络将数字信号传输到DCS系统的数据采集站,可编程的智能系统对数字信号进行分析处理,得出的结果与设置的可行性最优范围参数进行比对,如果工作面出现瓦斯突出或别的各项指标上升,超出正常范围,智能系统则会发出警报,并发出相应的指令,通过电机控制集成电路系统控制主风机或者辅助通风设备,加大总体或局部的供风量,以达到降低各项指标的目的。当各项指标达到正常范围时,控制系统调节各通风设备,适当减小风量,以减少通风耗能,节约开采成本。

总结

自动化控制技术是科技发展、时代进步的产物,在煤矿通风领域有十分广阔的应用前景,煤矿通风系统是煤矿生产系统的重要组成部分,它服务于生产系统,同时又制约着生产系统。煤矿通风系统的优劣好坏,直接影响着煤矿的安全生产、灾害防治和经济效益。矿井通风系统的检测、维护与系统的设计同样重要,在实际生产中,往往由于煤矿通风系统的不合理,影响了煤矿的正常生产和煤矿的抗灾能力。为确保煤矿安全生产、稳产和高产,提高煤矿的抗灾能力,最终提高煤矿的经济效益,通风系统必须保持最佳运行状态。自动化控制技术的应用在一定程度上解决了煤矿通风系统的各项难题,建立完善、合理的煤矿自动化控制通风系统将给煤矿安全生产,提高效益提供有力的保证。

参考文献

[1] 对矿井通风问题的思考.张照宇,山西焦煤科技,煤矿安全,2005.6

[2] 关于矿井通风若干问题的探讨.邱继发,煤炭技术,2008.8

煤矿自动化控制范文第9篇

关键词:煤矿;电气自动化;控制系统;应用;策略

1煤矿电气自动化控制系统的应用结构概述

在实际的煤矿工程运行过程中,要实现整体结构的完整建立,就要针对相应的结构进行集中的控制。整体自动化控制结构是对采煤系统中的相应项目进行集中的监控和操作,从而进行相应数据和信息的收集汇总。主要利用的就是电气系统自身的特质,对整体采煤作业进行实时的控制,并且在实际项目运行中,利用必要的手段保证整体采煤操作的规范化发展,以确保整体采煤工艺流程的准确性以及可靠性。另外,相关人员要对基础煤矿的通风和排水系统进行集中的管控,利用相应的技术手段实现安全指标的达成。对于电气自动化控制系统来说,只有保证在供电系统中进行集中的监测监控,才能规避相应的供电风险,保证整体煤矿供电结构的完整,以及供电系统项目的优化运行。相关管理人员要在经济运行的基础上,实现整体结构的优化配置,利用相应的分配机制,进行资源的科学化分割,从实际落实节约用电的煤矿工程运行理念[1]。除此之外,相关管理人员也要针对相应的工程机械进行集中的项目管理,保证基础机械在安全使用范围内,有效的规避由于器械造成的工程事故,要根据实际的项目运行情况,选择适宜的煤矿工作器械,以实现整体煤矿作业的安全运行。

2煤矿电气自动化控制系统的优化策略分析

在实际煤矿系统升级的过程中,要对相应项目进行集中化的升级,其中包括基础的工程软件以及硬件。

2.1优化基础煤矿作业的硬件

在实际的煤矿电气自动化控制系统中,硬件设施的运行能保证整体作业的稳定。只有实现基础硬件设计的优化,才能实现实际的安全控制结构。其中包括防干扰设计、输入电路设计以及输出电路设计。第一,针对防干扰设计。在煤矿基础作业过程中,要针对电气自动化控制系统的硬件进行集中的防干扰设计,才能实现整体运行环境的优化,保证外界环境不会影响基础作业进度。主要的措施在于利用优化设计的硬件布线,集中区分干扰线路,适当的添加外部屏蔽电缆,从而从根本上消除临近线路的不良干扰,并且提升整体线路运行的稳定性以及可靠性。另外,集中落实优化的隔离设计,集中关注变压器的隔离设计,减少干扰风险的同时,提高整体运行环境。也要对硬件的电磁屏蔽进行集中的优化设计,利用外壳接地、防静电处理等措施实现整体抗干扰能力的优化升级[2]。第二,针对输入电路设计。相关管理人员要针对相应的操作项目,进行应用项目的升级,优化基础输入电路的设计,保证严格控制整体电气回路的输入模式,强化基础操作行为的优化。不仅要对基础电路的负荷能力进行集中的监控,也要做好防短路、防脉冲干扰等问题的处理,有效的避免输入电路的外力破坏。第三,针对输出电路设计。对于煤矿电气自动化控制系统来说,基础的输出电路设计具有非常关键的作用,因此,在基础设计过程中,要符合基础项目的实际情况,并且按照相应的技术指标进行集中化的管理,保证输出电路的优化设计,能进行集中的项目控制。另外,要保证输出电路在高效率运行节奏中,能实现最佳的抗干扰能力以及电荷负载。

2.2优化基础煤矿作业的软件

在我国,煤矿作业技术的升级正在逐渐强化的过程中,并且开始使用PLC软件技术,能对整体结构和程序进行优化的升级。一方面是基础软件结构的优化设计,主要是针对自动化控制系统的框架设计,保证了整体设计符合基础作业的要求,并且能利用有效的模块设计促进整体软件功能的拓展,也能依据实际的煤矿工程特点,进行及时的项目调整,只有保证基础技术的升级,才能真正实现整体运行目标的达成。相关管理人员要依据煤矿作业的实际状态进行电气自动化系统的模块划分,针对相应的模块制定相应的规范化运行目标,保证标准化的运行,并且利用基础子任务系统,促进整体软件结构的优化运行。另外,相关人员也要对控制程序进行集中的设计,并且主动调试基础运行结构,利用软件的维护手段,促进整体系统的完整运行,并且规避不良的结构漏洞,有目的的调整整体系统结构,实现软件和煤矿作业的同步。另一方面,要对基础软件的程序进行集中的优化设计。在设计基础程序的过程中,主要的核心机制就是I/O分配,只有实现了基础分配方式的优化,才能保证软件运行水平的提升。相关设计人员要在升级的过程中,充分考虑PLC技术的项目融合,以实现整体软件控制的优化[3]。

3结束语

总而言之,对于煤矿运营项目来说,基础的电气自动化控制系统具有非常重要的价值,能真正促进整体项目的优化发展,只有运行集中的管控机制,才能保证系统和项目的双向发展。相关管理人员要集中力度提升基础技术水平,促进煤矿运营工作的顺利推进。

参考文献:

[1]廉忠平.关于电气工程自动化控制系统应用的研究[J].黑龙江科技信息,2014,17(15):92-92.

[2]方毅.集中控制与自动化系统在中铁芒来露天煤矿地面储装系统应用[J].中国信息化,2013,41(14):136-136,137.

[3]杨世华.综采自动化工作面液压支架端头控制器集中控制系统开发[D].太原理工大学,2014.

煤矿自动化控制范文第10篇

关键词:自动化控制;煤矿;皮带传输

1煤矿井下皮带运输自动化控制的必要性

目前,我国煤炭行业正处于发展瓶颈期,很多煤炭企业面临着巨大的生存压力,前景不容乐观。若要让传统煤炭工业保持充足的动力,就必须采用高新技术对传统生产模式进行改造,以此来提升生产效率、质量,并降低整体运营成本,从而提升利润空间,创造新的发展出路。皮带传输装置是煤矿生产过程中不可缺少的设备之一。传统皮带运输设备传动效率较低,启动时电流较大,存在功率不平衡、无环流损失大等问题,并且设备容易老化[1]。这不仅会增加煤矿企业运营成本,还可能受设备老化影响导致安全事故出现。显然传统井下皮带传输设备已经无法满足当前煤矿企业发展的需求。采取自动化控制技术对井下皮带运输设备进行改造,能够实现皮带运输设备智能化、动态化控制,从而提升煤矿开采作业效率及安全性,有利于提升整体效能。

2煤矿井下皮带运输自动化控制特点分析

煤矿井下皮带运输自动化控制系统主要是利用电力电子技术对设备相关参数进行控制,进而实现动态化调节。自动控制系统可通过分布在传送带上的载荷传感器对负荷信号进行采集,并将其传递至中枢系统进行分析,然后再将动作指令向调速电机传递,以此来控制皮带运行速度。这种控制方式能够动态性地匹配实际负载,可有效降低能耗,并延长传动部件使用寿命,能够大幅度提升设备运行的稳定性与安全性。煤矿井下皮带运输自动化控制系统主要由计算机及多种传感器构成,计算机可以是单片机、PLC控制器或嵌入式计算机[2]。利用传感器可对皮带运输设备相关参数进行连续监控,再通过计算机调控,可实现对设备的保护,相关显示控件能够将实际参数状态反映给使用者。同时,系统具备了网络通信功能。计算机具备了通信端口或通信模块,可与其他设备相连,可实现信息远程传输、分享,由此来实现远程控制。各类传感器可准确捕捉设备信号,包括皮带传输速度、荷载等,并为中央处理器提供对应的数据流,以此来精确控制电机运行动作。

3PLC自动化控制系统在煤矿井下皮带运输中的应用

PLC自动化控制系统是煤矿井下皮带运输当中最为常见的自动化控制系统类型之一,其主要作用在于保护及控制,具体如下:

3.1保护运输过程

利用PLC自动化控制系统能对皮带运输设备进行有效保护。通常情况下,长距离皮带运输受井下环境因素影响,可能会出现部分故障。PLC自动化控制系统当中除了会设置传感器外,还会设置一定量的保护开关。采取故障地址识别技术,便能够对保护开关动作如闭锁、跑偏等进行识别,相关信息会被反馈至控制中心,控制中心会根据故障信息数据做出及时处理。皮带运输过程中,温度问题也是较为常见的问题之一。运输机长时间运载负荷,会产生较大的热量,电机温度会逐渐升高。如果电机温度超过某临界值,会影响到传输系统正常工作状态。在PLC系统当中,电机内部会被置入一个热电阻装置。借助该热电阻装置电流信号能够被转变为温度信号,即可实现温度监控。当电机出现局部温度过高时,控制中心会立即自动停车,避免电机因持续高温工作而受损。此外,PLC系统当中置入了若干电流变速器,能够反映出电机电流信号。若实际电流超出额定电流,控制中心获得对应的信息后会及时停车,对电机进行保护[3]。

3.2控制运输过程

PLC自动化控制系统对煤矿井下皮带运输的控制主要包括手动控制及自动控制。当煤矿井下皮带运输设备处于正常运行状态时,相关工作人员仅需手动启动电控开关,PLC自动化控制系统便能够按照预设程序来操控皮带运输设备,由控制中心进行全局控制,即可实现自动化操控。如果皮带运输设备运行过程中出现问题或故障,传感器会将相应的信息传递至PLC控制系统,控制器对相关信息进行分析后,会发出反馈指令,停止设备运行。相关故障信息也将传递至控制中心。当设备故障排除后,控制器会对设备重新发出运转指令,由此可避免设备在故障状态下运行,能够有效防范安全事故。

4结语

自动化控制技术的不断成熟为煤矿井下皮带运输及生产作业提供了有力的技术支持。传感器的大量应用取代了人工监测,借助各类传感器能够对皮带传输系统工况做出更为准确的判断,有利于提升整体生产效率。同时,也能够减少设备维护、检修人员数量,可有效降低人力资源成本。未来煤矿井下皮带运输系统数据将呈现多接口的发展趋势,传感器将具备更高的精度与灵敏度,可保证数据的全面性与准确性,自动化控制系统性能将得到大幅度提升,从而为井下生产作业创造一个安全、稳定的环境。

参考文献:

[1]冯志强.煤矿井下自动化控制在皮带运输中应用探究[J].中国高新技术企业,2013(12):130-131.

[2]马元青,陈丕军.浅谈煤矿井下皮带运输中PLC的应用[J].机械管理开发,2015(09):86-87.

[3]郝富春.PLC在煤矿井下皮带运输中的应用[J].煤炭技术,2013(09):53-54.

上一篇:高速公路养护范文 下一篇:公路绿化范文

友情链接