概率论和统计学范文

时间:2023-12-08 04:37:56

概率论和统计学

概率论和统计学篇1

关键词:概率论与数理统计;微积分;应用

O21;O172

现代数学学科理论构成体系中的概略伦和数理统计理论内容,能够针对自然界中出现的随机事件的统计学规律展开严谨的数学运算处理。从数学学科理论体系中不同知识内容之间的相互关系角度展开具体分析,微积分理论不仅是概率论与数理统计理论的基础,而且概率论与数理统计理论,和高等数学中的微积分理论之间还具备着表征鲜明的相互关联和相互制约关系,在现代天文科学、生物科学、经济学、应用工程学、化学,以及物理力学快速有序发展的历史背景之下,微积分理论和概率论与数理统计理论之间的相互关系呈现了日渐紧密的发展变化特征,为一系列具体化随机问题的科学化解决创造和提供了坚实的支持条件。有鉴于此,本文将会围绕概率统计中微积分的应用问题展开简要阐释。

一、微积分理论和概率论与数理统计理论的基本概述

不难理解,概率论与数理统计理论,是在微积分基本理论基础上发展形成的现代数学理论分支,能够针对随机事件发展演化规律和外在表现特征的准确考量和描述,由于在具体开展概率论和梳理统计计算分析处理过程中,本身需要充分引入运用大量的微积分学数学运算知识呢运算技巧,因而导致微积分理论知识内容的掌握和运用质量,对于概率论和数理统计工作实际获取的文预期效果,具备深刻的影响和制约作用。

从具体涉及的知识内容角度展开分析,所谓概率论与数理统计数学理论,其实质就是针对自然界中存在的不确定现象和不确定事件,以及具备结果不确定特征的,或者是具备偶然性表现特征的现象,以及上述现象在实际出现和发展过程中所表现的集体性规律展开初始刻画描述,并在此基础上遵照概率论、以及梳理统计分析的数学处理方法,具体统计分析相关数据要素的规律性表现特征。

对于微积分学而言,其核心的理论内容,在于针对函数的微分以及积分,和函数相关概念以及应用问题展开详细的数理分析,其理论体系的建构基础要素在于实数、极限,以及函数等。微积分理论在建立处理过程中,将现代数论值具备观化表现特征的无穷小量视作其直接基础,因而在基本理论的发展路径层次具备鲜明的不稳固性。在数学家柯西、维尔斯特拉斯创立形成的极限数学理论,以及数学家康托尔创立形成的实数数学理论基础上,有效促进了现代微积分数学理论的基础内容不断发展严密。

从概率论与数理统计基本理论的历史发展路径角度展开具体分析,微积分理论中相关知识内容的不但发展成熟,为现代概率论与数理统计理论的成熟化和公理化发展,创造和提供了稳定为且坚实的实践支持条件,现代概率论与数理统计理论的系统化和科学化发展,c微积分理论的发展成熟,具备不容忽视的因果关系。

二、概率论与数理统计过程中微积分知识内容的具体应用

为清晰认识概率论与数理统计理论的基本内涵,以及微积分理论的基本内涵,同时清楚分析概率论与数理统计理论和微积分理论之间的相互关系,应当从一系列的实际案例出发,为有关知识内容认识水平的不断提升,以及有关数理计算分析方法掌握水平的不断提升,创造和提供坚实的支持条件,本文将试举几例展开简要揭示:

第一,已知有M个好朋友在一张圆形桌子的周围随机就坐,假若有两个朋友是必须要坐在相邻的作为之上的,则计算求解这一在随机性研究视野之下,这一事件的发生概率?、

第二,在针对书架上的书实施整理过程中,已知可以将编号为1、3,以及3的三本书在书架上以随机顺序实施排列,如果在所有的排列顺序中,至少保证有一本书的由左到右的空间排列顺序,与该书编号相同,求解这一事件的发生概率是多少?

第三,一批产品的次品率为5%,从中任取三件进行检查,每次取一件,检查后放回,求:(1)三件中恰有一件次品的概率;(2)三件都是正品的概率;(3)三件中次品不超过一件的概率;(4)至少有一件次品的概率。

三、微积分计算分析方法在求解概率论与数理统计问题中的实际应用

(一)级数求和方法

级数是现代高等数学基础性学科内容构成体系中的重要组成内容,是表述初等函数解析式的基本方法。在运用裂项相消求解函数级数过程中,其最为关键的实施环节,在于如何针对级数运算过程中涉及的通项结构实施针对性的拆开处理,并促使其形成可以实施前后相消计算处理的算术项,而通常运用的计算处理方法,往往涉及了分子有理化、分母有理化,以及三角恒等变换等数学处理应用方法,这些方法与微积分中的基本理论具备不容忽视的相互关联特征。

在针对三角函数形式的无穷级数实施求和处理过程中,需要应用微积分学的有关处理方法,针对基础的三角极级数公式实施展开处理,通过恰当的函数表达式形式转化手段,将其转化为两项不定式之间的差值,为后续开展级数求和过程创造支持条件。

(二)极限问题的求解

极限问题也是一种比较典型的概率问题,其本身作为现代微积分学理论的重要基础,对在微积分学基本理论发生发展的全过程中发挥了不容忽视的重要作用,在具体引用极限法求解数列和问题过程中,要运用微积分学基本理论,对数列通项公式展开针对性的变形处理,确保实际求解过程能够顺利取得预期效果。

四、结语:

针对概率统计中微积分的应用问题,本文具体选取微积分理论和概率论与数理统计理论的基本概述、概率论与数理统计过程中微积分知识内容的具体应用,以及微积分计算分析方法在求解概率论与数理统计问题中的实际应用三个具体方面展开了简要的论述分析,旨意为相关领域的研究人员提供借鉴。

参考文献:

[1]孙向涛.探讨概率统计中微积分的应用[J].科技创新导报,2014(06).

[2]刘鹏,徐厚宝.统计方法在研究微积分与后续课程相关性中的应用与实证分析[J].数学的实践与认识,2011(24).

[3]王婷.高中微积分教学探究[J].甘肃联合大学学报(自然科学版),2008(S1).

[4]张子颖,汪太月.概率论中微积分思想的应用[J].湖北理工学院学报,2016(04).

概率论和统计学篇2

关键词:数学概率统计;建模思想;教学方法

由于传统教学方法和实践让一些学生虽然系统地学习了概率论与数理统计知识,但是却不知道如何应用。为此,我们通过查找一些成功的教学实例,扩大了教学研究范围。国外一些大学的“概率统计”教学,注重统计思想的解释,注意数学软件与教学的结合,重视学生的实践教学环节。“概率统计”含有丰富和有趣的教材信息,与人们的日常生活密切相关。因此,综合提高“概率统计”课程建设的质量,将是新的应用程序问题和数学建模思想应用到概率论与数理统计的教学当中,解决学习与使用之间关系的不二法门,也是最有力的教学改革手段。

一、数学概率统计中融入建模思想的意义

教学传统的概率论与数学理论统计课程,可以简单概括为:数学知识+例子+测试+解决问题,这个模型可以使学生掌握基础知识,并且在一定程度上可以提高计算的能力,学生也学会了用知识来解决家庭作业和测试。但是也不难看到,采用这种方式的教学与实际脱节,学生学习书本知识,但并不知道实际当中结合这些专业知识的办法,这不仅与素质教育的目标之间的冲突加剧,也大大削弱了学生主动学习这门课程的自主性,从而影响了教学效果。数学建模的引导思想可以培养学生学习理论知识来解决实际问题的能力。新课标下的教学课程不仅是对学生进行教育的问题,还是当前素质教育和教学改革的需求。

二、数学概率统计学中建模思想融入应用

数理统计和概率论这门课程对于老师来讲,担负的责任是非常重的,教师将该课程教好是至关重要的,让学生通过学习这门课程可以达到掌握概率统计学习方法和现实应用能力的目的。

1.教学内容中建模思想的渗透

“概率统计”是一个实践和理论学科并重的重要学科,在日新月异的变革中已经成为数学学科的一个主要组成部分,并发挥着无可替代的作用。根据该课程的特点,结合现代科学做检查和组织,以便新鲜元素融入数学概率统计当中,或者一个有着有趣的应用标题的教学内容,结合科学的方法与相关技术与概率和统计知识相连接。学生结合“概率统计”以往所学知识能够构筑数学模型,同一时间对于“概率统计”的知识也产生了兴趣。此外,还可以促进学生学习习惯的改变,变被动为主动,从根本上提高学习效率。将数学建模思想融入于数学概率统计当中,没有摒除传统知识。通常,在学习研究的情况下,可以亲身体验使用概率和统计数学知识建模的全过程,以加深认识和理解概率论与数理统计的相关知识,促进学生学习兴趣的提升和良好学习习惯的养成。从另一个角度来看,学生努力学习数学概率统计知识的同时,能够真正实现用知识解决问题,因为学习数学概率统计是一个重要和复杂的过程,在不影响遵循教学大纲的情况下使用各种手段,可以提高学生数学建模的基本能力,从根本上反映了数学建模思想。

2.教学方法中建模思想的渗透

在教学中,教师的责任更多的在于指导学生能力的培养,也就是说引导学生用自身能力来解决问题。一路上,学生不仅可以严谨地学习理论知识,同时可以提高学生分析与解决问题的能力。教学当中,我们主要采用导学和精讲相互结合的学习方法,同时在课堂教学各个环节还可使用讨论式、启发式教学方法等类型,归纳类比。各种教学方法的使用应该充分重视学生的参与,在和学生的互动当中适当融入数学建模思想,并使其“表现”出来。

数学概率统计作为一个实际的学科,在数理统计方面,很多学生为了取得好成绩,对学习内容死记硬背,这样时间久了会导致学生的学习兴趣下降,不能从根本上促进学生创新能力和应用能力的提升。同时,数学建模思想的融入数学概率统计的实践和理论研究方面收获了非常明显的成效。此外,在概率论中融入数学建模思想和建模案例的情况下,在某种特殊程度上促进了概率论与数理统计课程的创新改革,是具有非常深远意义的。

参考文献:

概率论和统计学篇3

关键词:水文统计;教学内容;教学体系

作者简介:宋松柏(1965-),男,陕西永寿人,西北农林科技大学水利与建筑工程学院,教授;康艳(1976-),女,黑龙江佳木斯人,西北农林科技大学水利与建筑工程学院,讲师。(陕西 杨凌 712100)

基金项目:本文系西北农林科技大学2011年度教学改革研究项目(项目编号:JY1102059、JY1102056)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)05-0054-02

“水文统计”是应用概率论与数理统计原理研究和揭示水文现象统计规律的一门学科,是水利、交通和电力工程规划设计的核心基础理论。20世纪50年代,我国著名水文学家刘光文教授在河海大学(原华东水利学院)创建了我国第一个水文系,亲自开设了我国第一门结合水文专业特点的“应用数学”,主要介绍水文学中基本的统计理论和方法[1],1980年更名为“水文统计”。半个多世纪以来,随着我国水利、交通和电力发展战略的调整和发展,丛树铮、朱元、宋德敦、丁晶、郭生练、金光炎、吴正平、黄振平、张海伦、刘权授、梁忠民、华家鹏、谢平和陈元芳等学者先后在水文统计领域进行了大量的研究,取得了重要的研究进展,形成了今天“水文统计”课程的理论体系[2-16]。以“水文统计”课程为核心,出现了若干相关的分支课程,如“统计试验方法及应用”、“风险分析与决策”、“随机水文学”和“水文水资源随机分析”等,所有这些推动了我国“水文统计”教学和科学研究的发展[2-16]。20世纪90年代以来,国外在水文统计出现了一些新的理论与方法,这些方法不同程度地引进了许多院校“水文统计”的教学。但是,这些方法仍分散于一些外文文献和研究专著。根据现行“水文统计”课程教学内容和水利、交通和电力工程专业培养方案,鉴于大多数学校在“水文统计”课程开设之前已经讲授过概率论,因此,有必要压缩现行“水文统计”教材中的一些概率论篇幅,突出概率论在水文中的应用,增加一些实用的理论方法和水文统计新的理论与方法,补充和修改现行课程的教学内容。

一、国外“水文统计”课程教学内容

国外“水文统计”教学主要选用的教材有《Statistical Methods in Hydrology》、美国地质调查局培训教材《Statistical Methods in Water Resources》和《Statistical Methods in Hydrology and Meteorology》等[17-19]。

《Statistical Methods in Hydrology》经过第二版修订后,被广泛地用于教学中,是一本很好的教材。主要介绍概率和概率分布的基本概念,随机变量的特性,一些离散型概率分布及其应用,正态分布,连续分布,频率分析,置信区间和假设检验,线性回归分析,多元线性回归分析,相关分析,多变量分析,数据生成,水文时间序列分析,随机水文模型,不确定性、风险可靠性分析的概率方法和地统计分析等[17]。《Statistical Methods in Water Resources》主要介绍数据总结,数据的图形分析,不确定性描述,假设检验,总体的独立性分析,配对检验,几个独立总体比较,相关分析,线性回归分析,回归的交替分析法,多元线性回归分析,趋势分析,检测下限数据分析方法,离散关系,离散响应回归和图形展示等[18]。《Statistical Methods In Hydrology and Meteorology》强调随机变量间的关系,主要介绍概率计算的基本概念,随机事件的相互依赖性,随机变量的概率分布,随机现象的统计估计,统计假设检验和随机变量的相互依赖性等[19]。

上述教材的特点是突出了概率论与数理统计在水文中的应用,除此之外,在教学上,还讲授随机模型,地统计分析,风险分析理论,统计模拟,贝叶斯分析,不确定性分析,水文分布,极值理论与洪水、干旱评估,人工智能,区域分析等。区域分析主要有洪水指数法,频率分布的区域特性和区域洪水水位的描述等内容。

二、国内“水文统计”课程教学内容

自刘光文教授开设“应用数学”课程讲授水文学中的概率与统计理论方法后,金光炎先后编写了《水文统计的原理与方法》、《水文统计计算》和《实用水文统计法》等,结合应用实例,从实用的角度出发,介绍了概率论和数理统计的基本知识和水文频率计算的一般方法。丛树铮(1980)、王俊德(1992)分别编写了《水文学的概率统计基础》和《水文统计》,形成了“水文统计”课程内容体系。金光炎结合多年在水文频率计算的研究成果,先后于1993、2002、2003、2010年出版了《水文水资源随机分析》、《工程数据统计分析》、《水文水资源分析研究》和《水文水资源计算务实》研究专著,除介绍概率论与数理统计原理外,系统地总结作者在常用水文频率线性选择、参数估计和误差分析中的研究成果。2003年,黄振平出版了《水文统计》教材,经过河海大学教学团队的建设与改革,“水文统计”课程于2007年被评为国家级精品课程,也被许多高校选用为《水文统计》课程教材[1]。主要介绍事件与概率,随机变量及其分布,多元随机变量及其分布,数字特征与特殊函数,极限定理,抽样分布,估计理论,假设检验,相关分析,回归分析,误差分析和随机过程等。陈元芳(2000)出版了《统计试验方法及应用》,主要介绍水文随机变量、随机向量和随机过程的生成方法。张济世(2006)《统计水文学》汇集了利用数学原理解决水文问题的热点研究方法,扩展了传统统计学在水文统计中的应用,系统地介绍了灰色理论、模糊数学、神经网络、时频分析、小波分析、混沌和分形等新技术新方法在水文统计分析的应用,内容丰富,是拓展学生知识面的学习参考书。秦毅(2006)《水文水资源应用数理统计》强调多元分析在水文中的应用。丛树铮(2010)《水科学技术中的概率统计方法》系统地介绍了概率统计方法和及其在水文统计方面的研究成果。程根伟(2010)《水文风险分析的理论与方法》系统地介绍了水文风险分析原理,并附有实例计算过程。

综上所述,国内《水文统计》教材突出了概率论与数理统计的基本原理及其应用,形成了以河海大学“水文统计”课程为代表的教学内容,讲授事件与概率、随机变量及其分布、多元随机变量及其分布、数字特征与特征函数、极限定理、抽样分布、水文频率计算、假设检验、回归分析和误差分析等。而有些研究专著虽然包含了目前水文统计一些新的理论和方法,是学生学习课程时很好的教学参考书,但是难度较大,不便于讲授使用。

三、“水文统计”课程新的教学内容

根据水利、交通和电力行业的特点,结合国外水文统计教学与理论方法的最新发展,“水文统计”课程按以下原则设置教学内容:突出概率论与数理统计原理在水文中的应用;强调工程规划设计中的实用计算方法;吸收和反映国内外成熟的新理论与方法;内容力求系统、全面。根据上述原则,“水文统计”课程教学内容设置如下:

第1章:绪论。主要包括水文统计方法、应用与发展。第2章:水文事件概率与重现期计算。主要包括水文事件概率与条件概率计算;洪水与干旱特征变量提取;次重现期与年重现期。第3章:水文概率分布。主要包括正态分布类;指数分布类;Wakeby分布类;Pareto分布类;Logistic分布类和截取分布等。第4章:几种偏态分布的特性。主要包括偏态 Normal、t、Laplace、Logistic 分布、Uniform、Exponential Power、Bessel函数、Pearson Type II、Pearson Type Ⅶ、General t 分布等。第5章:常用的多维水文概率分布特性。主要包括二维 gamma分布;Gumbel 混合分布;Gumbel logistic分布;Nagao-Kadoya二维指数分布;多维正态、t 分布和对数正态分布。第6章:抽样分布。主要包括简单随机抽样;样本分布;抽样分布;几种统计量的分布;顺序统计量及其分布。第7章:估计理论。主要包括点估计;区间估计;估计量好坏的评选标准。第8章:假设检验。主要包括常用的参数检验和非参数假设检验。第9章:多元统计分析。主要包括一元线性与多元线性回归;非线性回归;逐步回归;线性递推回归;判别分析;聚类分析;主成分分析;对应分析;因子分析;典型相关分析。第10章:随机模型。主要包括随机过程的基本概念;自回归模型;滑动平均模型;自回归滑动平均模型;水文序列组成与模拟;非平稳随机模型及其应用;多变量随机模型及其应用。第11章:单变量水文序列频率计算。主要包括资料“三审”;水文序列频率分布的参数估计方法(矩法,极大似然法,概率权重矩法,线性矩法,最大熵原理法,交互熵法,贝叶斯法、Box-Cox 变换法,E-M算法,适线法,优化算法,核密度估计法;部分熵,部分交互熵,部分概率权重矩,部分线性矩法,LH矩法和LL矩法);水文序列频率最优线型评定与拟合度检验;单变量序列的经验频率计算。第12章:特殊水文序列频率计算。主要包括含零值水文序列频率计算;加入特大值后洪水序列频率计算;非一致性水文序列频率计算;截取水文序列频率计算(包含超定量洪水频率计算);梯级水库(电站)下游水文频率计算;区域洪水频率计算。第13章:多变量水文序列频率计算。主要包括copula函数的定义与特性;对称、非对称和Archimedean copulas;Meta-elliptical copulas;Plackette copula;Pair- copulas;混合copulas;经验copulas;变量相依性度量;copula函数参数估算和最优copulas函数评定;copulas模拟与拟合度检验;多变量序列经验频率计算;基于copula函数多变量联合概率分布计算。第14章:正交试验。主要包括正交试验方法;水平数不同的全因素试验;正交表的使用。第15章:风险分析。主要包括水文风险分析原理;减小风险的主要途径;水文风险分析举例。第16章:地统计分析。主要包括区域化变量;协方差函数;变异函数;克里格插值;应用实例。

四、结论

根据水利、交通和电力工程专业培养方案,回顾了我国“水文统计”课程教学体系的发展,分析了“水文统计”课程国内外代表性的教材、专著和教学内容,提出了相应的新的教学内容。与现有课程教学内容相比,压缩了概率论原理篇幅,增加了各类水文频率分布、水文频率计算新理论与方法、工程中几种特殊序列的频率计算、正交试验、风险分析、地统计分析等,其目的是增强学生毕业后从事水文分析与水利计算的工作能力,以期完善我国水利、交通和电力高等院校“水文统计”课程的教学体系。

参考文献:

[1]丛树铮.水文学的概率统计基础[M].北京:水利水电出版社,1980.

[2]王俊德.水文统计[M].北京:水利电力出版社,1992.

[3]黄振平.水文统计学[M].南京:河海大学出版社,2003.

[4]丛树铮.水科学技术中的概率统计方法[M].北京:科学出版社,2010.

[5]陈元芳.统计试验方法及应用[M].哈尔滨:黑龙江人民出版社,2000.

[6]秦毅,张德生.水文水资源应用数理统计[M].西安:陕西科学技术出版社,2006.

[7]金光炎.水文统计的原理与方法[M].北京:水利电力出版社,1958.

[8]金光炎.实用水文统计法[M].北京:水利电力出版社,1958.

[9]金光炎.水文统计计算[M].北京:水利电力出版社,1980.

[10]金光炎.水文水资源随机分析[M].北京:中国科学技术出版社,

1993.

[11]金光炎.工程数据统计分析[M].南京:东南大学出版社,2002.

[12]金光炎.水文水资源分析研究[M].南京:东南大学出版社,2003.

[13]金光炎.水文水资源计算务实[M].南京:东南大学出版社,2010.

[14]张济世,刘立昱,程中山,等.统计水文学[M].郑州:黄河水利出版社,2006.

[15]程根伟,黄振平.水文风险分析的理论与方法[M].北京:科学出版社,2010.

[16]Charles Thomas Haan.Statistical Methods in Hydrology(2 nd edition)[M].Iowa:Iowa State Press,2002.

[17]Helsel D.R.,Hirsch R.M.Statistical Methods in Water Resources[R].Techniques of Water-Resources Investigations of the United States Geological Survey,Book 4 Hydrologic Analysis and Interpretation,Chapter A3,2002.water.usgs.gov/pubs/twri/twri4a3/.

[18]Kaczmarek,Z.Statistical Methods In Hydrology and Meteorology[M].US Department of Commerce,Springfield,Virginia,USA,1977.

概率论和统计学篇4

一、调整教学内容

教学内容应该改变以往“重概率、轻统计”和“重运算技巧、轻数学思想”的传统教学思想,删减其中一些复杂的计算,加强统计中基本理论和基本数学方法的教学。减少概率论课时,加大统计内容,增加统计课时。

1.概率方面,古典概型概率、期望与方差等

内容在中学接触过,学生接受较快故可以弱化;减少概率论课时,将重点放在条件概率、乘积公式、全概率公式与贝叶斯公式上,加强随机变量的内容。

2.统计方面,突出“厚基础”“重应用”的特色,增加统计课时,强调假设检验和回归分析等原理的分析与实际应用,着重培养学生应用统计中的基本原理去解决实际问题的能力。

二、改进教学方法

概率论与数理统计是一门在解决实际问题的过程中发展起来的学科,概率论与数理统计的思想方法、原理、公式的引入,最能激发学生的兴趣,并印象深刻的是从贴近生活的问题及案例引入。教师在授课过程中可从每个概念的直观背景入手,精心选择一些跟我们的生活密切相关而又有趣的实例,从而激发学生的兴趣.调动他们学习的积极性和主动性。

1.概率论部分的教学。(1)概率论内容的学习中,学生一般不能很好地理解全概率公式与贝叶斯公式的原理。举例:某大学学生对概率论与数理统计课程的兴趣程度可分为四个层次:很感兴趣,较感兴趣,一般,没有兴趣。最近的一项调研统计表明此四个层次的学生数之比为:1∶3∶4∶2。而这在四类同学中该课程一次性能通过的可能性分别为:0.98,0.88,0.50,0.20。1)考试在即,在即将参加此门课程考试的学生中任抓一学生考察,试问该生此次考试该门课程一次性通过的可能性为多大?2)考试结束,阅卷老师发现某名学生顺利通过此次考试,试问该生对此课程兴趣层次是属于一般的可能性有多大?身边的例子激起了学生的兴趣,通过1)的解答很快让学生理解全概率公式,通过2)的分析让学生理解贝叶斯公式的原理。(2)大数定理的教学。大数定理是概率论中非常重要的定理,在教学中如果仅仅将定理的内容告诉学生,很多学生不能理解。讲课时举例子:在装有7白球与3黑球的盒子里任意抽取一个记下结果再放回去,当抽取白球时计1,抽到黑球时计0,不停地重复下去,就得到一组由1、0构成的数字,如一人抽取得到:10010111010111000101111111100000001010010111011000从数据中你看不出任何特征与规律,换一个人来重复这一试验,他也会得到这样一串由1、0构成的数据,同样杂乱无章,但结果与第一人的结果不同。虽然如此,当做的试验次数越来越多时,这一串串杂乱的数中1所占的比例随做的试验次数的增加愈来愈稳定到一个值上,这个值就是盒子内白球的比率7/10。比率的稳定性只有在数串长度足够大(实验的次数足够多)时才能表现出来,这就是大数定理这个名称的由来。历史上概率论方面重要的学者雅各布?伯努利证明了在一定条件下“当试验次数愈来愈大时,频率愈来愈接近于概率”,这个结论称为伯努利大数定理。此定理的意义在于对经验规律的合理性给出了一个理论上的解释。在现实生活中,很难甚至于不可能达到伯努利大数定理中的理想化条件,但大部分的情况下与之非常接近,因此伯努利证明的结论“基本上”能适应。

2.统计部分的教学。学生经常觉得统计部分的参数估计、假设检验、回归分析等内容杂、头绪乱。在教学过程中,可以引入案例,对每一个案例进行分析:(1)要解决什么问题?(2)有些什么方法,而这些方法的基本思想是什么?合理性?(3)运用这些方法解决问题的基本步骤是什么?(4)如何将这些方法运用于实际问题中?这样能使学生理清思路,从整体上把握统计的基本思想,如假设检验可以用食品生产线上的产品质量检验的案例分析;回归分析可以用资源评估的案例来分析等。

3.加强与其他学科的联系,提高学生运用能力。在教学中,通过一些实际案例将教学内容与学生所学的专业相结合,让他们运用统计方法解决一些专业上的统计分析问题,如对生物、食品专业的学生可以让他们将自己做的实验数据以统计的方法处理,对于海洋专业的学生可以让他们进行海洋环境数据分析;对于金融专业的学生,可以让他们了解一些基于概率论与数理统计的经济与管理模型。让学生真正感到学有所用,不仅可以提高学生的学习兴趣,又可以在实际应用中掌握概率论与数理统计基础知识,学会运用这些知识解决实际问题,一改“授之以鱼”为“授之以渔”。

4.开设上机实验课,培养学生应用数学软件来解决问题的能力。许多学生完成概率论与数理统计的学习后,在专业课程中,面对大量数据,需要运用统计思想方法分析时往往出现无从下手的现象,造成这种现象的原因有两方面:(1)缺乏灵活运用所学知识解决实际问题的能力;(2)数据量大,计算过于繁,手工难以实现。对于第一种情况我们通过案例将教学内容与学生所学的专业相结合来提高学生的运用能力。针对于第二种情况开设上机实验课,让学生掌握相关的计算机统计分析软件,训练学生应用数学软件来解决问题。这不仅提高了学生的学习兴趣,也加强了学生运用概率论与数理统计原理解决实际问题的能力。

概率论和统计学篇5

现在国家硕士研究生培养门类中列于数学大类之下属于概率论与数理统计大方向的有概率论与数理统计学术型硕士,应用统计专业学位硕士两类。两类硕士生的来源均是四年制本科生,学术性硕士生源的一般要求是数学或统计学专业毕业,应用统计专业学位硕士则只要求是理工科及相关专业即可,二者差别较大,专业知识的起点高度有差距。

在培养目标上,两类硕士差距就更加明显了。学术型硕士要求可以进行基本的专业理论研究,有继续进行高等理论研究的素质和潜力,其中的一部分人可以继续攻读本专业及相关金融、管理、经济等相关专业的博士学位,学术性的硕士生更强调理论学习和理论基础的训练。专业学位硕士则要求较好的专业知识实用能力,了解掌握常用统计方法的思想和软件应用,实践能力强,具有分析解决带复杂数据分析背景的实际问题的潜力,强调的是学生对实际问题的处理能力,各种统计方法的综合运用及实战能力。在国外发达国家,目前均有应用统计专业学位博士,就是说将来在我们国家,优秀的应用统计专业学位硕士可以进一步攻读专业学位博士,这类博士应该对实际问题有敏锐的眼光,对各种实用的统计方法有全面的了解,知晓其长处与不足,可以解决复杂的实际数据分析问题,因此应用统计专业学位硕士的概率理论基础训练应更加倾向于实际,倾向于在统计学中大量用到的概率论知识。这就决定了对两类硕士在概率论基础知识要求方面有很大不同。在概率论基础方面,由于两类生源的本科知识体系中都是以《概率论与数理统计》课程为起点,概率论部分基本相同,内容是:概率基础及公式,随机变量及分布,随机向量及分布,数字特征及计算。在硕士生阶段应在此基础上考虑两类硕士的培养目标的差异,分别在概率基础课程中安排不一样的教学内容和重点。

对学术型硕士生,通常开设《高等概率论》课程,以测度论为起点,具有一定的抽象度和深刻性,讲授一般观点下的积分、可测变换,随机变量及向量,概率理论、基本公式独立性,不等式和极限定理,数字特征与相依关系,讲述高度抽象的测度控制理论、拉冬一尼古丁定理、抽象的条件期望理论,训练学生的思考能力和论证基本功。对应用统计专业学位硕士,开设《概率论基础课程》,不涉及测度论等抽象内容,但是要把在实际应用中所有数据类型所对应的概率密度形式及演算作为重点加以训练,内容应该集中在常见随机变量的回顾,特殊类型的随机变量(既不是离散的也不是连续的)的引入和背景,条件概率演算一特别是连续变量对离散变量、离散变量对连续变量的条件概率计算,复杂情况下随机变量数字特征的计算等等,强调学生的动手推演能力和问题归类能力,例如要求学生会计算贝叶斯理论中常用的二项变量与贝塔变量的联合分布,通过这个联合分布来来计算相应的广义条件概率密度及条件数学期望。另一个例子就是给学生们详细介绍对连续型随机变量进行截断以后得到的截断随机变量的分布推演过程,讲述清楚该类型随机变量所对应的广义密度函数与原来的连续型随机变量的密度函数之间的关系,这类随机变量既不是连续性的也不是离散型的,使二者的结合体,在生物统计、工程试验的数据集合中经常会出现。

实际上,站在较高的专业角度来看,两种内容的知识建构是共同的,差别是一个为用抽象描述来讲授,另一个是通过具体刻画结合例子来讲授。分别按不同侧重点来进行教学可以得到更好的专业训练效果。

概率论和统计学篇6

1、学生基础知识层次差异性大

民族高校教育的目的就是为民族地区服务和培养少数民族人才。由于民族高校招收学生的生源大多是我国少数民族聚居区域的民族生或者是发达地区的少数民族学生,由于教育资源和教育整体水平的不均衡,使得民族高校学生的基础知识掌握程度上有较大的差异,同时进入大学后,由于概率统计课程特点,它对学生的数学知识基础有着较高的要求,故在知识的延续和递进中使得学生在这门课程的学习效果上有着明显差异,在课堂教学中最明显的特征就是由于学习基础的差异,学生在知识的掌握上层次差异性明显较大。

2、课程教学方式单一

目前在民族高校的概率统计课程的教学方式大部分还是使用黑板讲授加电子讲稿、教学内容比较传统,比较注重数学原理的推证、数学计算方法的讲授,即使有个别学校在概率统计课堂教学中有融入实验教学内容,但也仅仅限于数据分析软件的使用,并没有将实际经济问题案例与数学知识、数据分析软件结合起来综合应用,概率统计知识的综合应用性并没有体现出来。教学方式还是以教师为主导,教师布置问题和作业,学生完成作业的传统被动方式。

3、教学内容与学时的矛盾

概率统计课程作为经管类专业学生必修的一门经济数学课程,它有着数学课程的典型特点,非常注重逻辑的严密性、知识的递进性,推导证明的完整性,因此在课堂教学中要把本科教学内容中所有内容都要设计到,还要保证大部分学生都能把知识点理解和掌握,又存在学时的限制。

4、实验教学体系缺乏

虽然实验教学在我国一些重点高校教育中已引入,但整体都还是实践阶段,目前关于大学数学课程实验的教材也有一些,大学数学实验课程也产生了良好的教学效果,但在民族高校中,经管类专业的数学课程的实验教学环节缺乏,还没有形成实验教学体系。

二、民族高校经管类专业概率统计课程引进实验教学的意义

概率论与数理统计课程是经济数学课程中实践性最强的一门课程,是经济管理类本科专业学生在后续经济、管理类专业课程中保障性最强的一门课程,是进行后续经济研究的必备工具。目前国外数学课程中引入实验教学法已经取得了良好的成效,国内重点高校的部分院校经管类专业的数学课程也在通过探索实验教学的内容和方法,也取得了良好的成效。我国民族高校经管类专业的概率统计课程教学中也可逐步引入经济数学实验教学方式和教学内容,可以有以下作用:

1、增强经管类学生学习概率统计的兴趣和积极性,提高该课程的学习效果和数学知识的应用能力;

2、介绍常用的试验工具和软件,深化学生使用计算机数据分析软件的程度,丰富和优化了概率统计课程的教学内容;

3、借助数据分析软件、数学软件,增强学生利用所学的概率统计知识对经济现象、经济规律的理解和应用能力,尤其是在学年论文、毕业论文写作过程实证分析能力的提高有着明显的促进作用;

4、引入经济实验教学方式,弥补了传统概率论与数理统计课程理论性强而实践环节较弱的状况。

5、这种经济数学实验教学方式和传统讲授方式相结合的教学模式的探索和实践,不仅可以逐步改善民族高校经管类专业经济数学课程在学习中的“不好学、不善用”的现象,还可以丰富该课程的教学内容和教学方式,并且对于微积分、线性代数课程的教学方式和教学内容的改革也有很强的启示性。对深化课程的教学内容和教学方式改革,促进高校精品课建设和质量工程的发展,提高专业的优势竞争力具有着重要的意义。

三、民族高校经管类专业概率统计课程实验教学的思考与探索

1、概率统计课程实验教学方式的思考

针对目前民族高校经管类专业在概率统计课程学习中呈现的情形:(1)概率统计课程教学显现出的教学内容传统、教学方式单一呆板、轻经济应用;(2)经管类学生不知概率统计知识学了何用,学了不用、学了不知怎么用。本文探索和尝试在经济数学课程之一——概率论与数理统计课程的教学中引入经济数学实验教学方式和实验教学内容,结合传统讲授方式,探索多元化的经济数学教学方式,丰富概率统计课程的教学内容,增加概率论与数理统计课程的实践性和演示性,提高经济管理类学生学习经济数学的兴趣,学生使用经济数学知识解决实际经济问题的能力。通过调查,在民族高校经管类专业的“概率统计”课程大多是周3课时以内,本门课程所修的总课时数为48课时以内,在目前的教学内容和教学方式下,受专业培养方案的限制,并且也无成熟的适合经管类专业的概率统计实验教材,无法设立单独的概率统计实验课程。因此,可在目前的概率统计教学内容中融入实验教学内容和方式,在课程内容的部分章节中结合经济、金融、管理实际问题,形成概率统计课程综合案例,在课堂教学中融入综合案例,介绍它的解决思路,培养学生数学思维品质,数学方法的应用,在掌握数学方法和原理的基础上结合数据分析软件,简化处理过程,锻炼和培养经管类专业学生让其能够知其何用,知其怎么用。经济数学的其它课程总,在内容、方法比较成熟的条件下,可以再单独设立适合民族院校的经济数学实验课程。

2、概率统计课程实验教学方式的实践

可结合相关章节内容特点,周期性的给学生布置概率统计的验证性的实验项目和综合案例实验报告,小组形式完成验证性的实验报告分析和经济实例的实验报告分析。让学生在问题情境下体验概率统计数学知识的理论、计算机技术的使用及应用概率统计知识和解决简单经济实际问题能力。在有限的学时下,课堂教学中补充了实验教学内容,会使的教学内容课时较紧张,因此,建议概率统计的知识点的讲授上可以忽略一部分非重点的知识的逻辑推证,转为数据分析软件和经济实例数学化思想的讲解,如在概率统计随机变量的分布特征这一章结合均值和方差的概念计算知识点,可以补充金融学、寿险精算课程中简单金融实例;在讲协方差和相关系数时可以结合管理学、金融风险中的实例,让学生理解实际问题如何数学化,如何将数学知识、数学结果反馈到实际问题中去,在大数定律这一章,可以结合寿险精算中保费的计算案例及精算起源特点的综合案例让学生深入思考大数定律的结论,从而把抽象理论具体化、应用化。通过这样的实验教学环节的补充和实践,让学生进入实际问题情景,引导学生思考、分析实际问题如何数学化,数学知识是怎么用,大大激发了学生的学习兴趣,可以较好地体现了在课堂教学中以学生为主体的教学方式,逐步转化传统教学方式。通过笔者近两年在教学过程中的实践,在概率统计课程中融入实验教学内容,需要做到以下几点:(1)结合概率统计内容及与经济问题的联系性选择概率统计实验教学的内容及案例。(2)结合已有资料,与信息技术老师、实验室老师沟通在实验室里配备合适的数据软件如Matlab及Excel数据分析软件包、Spss数据分析软件。在这一步可结合各民族学校学生的整体层次进行选择,由于课时的限制,对经管类学生使用软件以熟练应用数据分析软件解决实际问题能力为主,使用计算软件为辅。因此笔者在实验教学中选择了Matlab和Excel数据分析软件包。学生反映效果也较好。(3)讲授理论教学时也建议在多媒体教室中,理论教学中可以融入一部分计算机数据分析的实现过程,让学生直观的认识数学知识的应用。

四、民族高校经管类专业概率统计课程实验教学的瓶颈

1、部分学生不注重理论知识的学习,过分依赖数据分析软件

在概率统计教学中引入了实验教学的内容,激发一大部分同学的学习数学的积极性,学习效果也比较明显,通过数据分析软件的使用,提高了学习的效率,使得数学知识的应用性较强。但在实验教学中也发现一部分学生在学习中产生了依赖思想,认为反正有软件,对概率统计知识的具体的计算方法和原理很忽视,以后会不会都可以靠数据分析软件求出结果来。因此也伴生了这种不注重数学理论、数学计算知识的学习,过分依赖数据分析软件的现象了。

2、实验教学师资队伍缺乏

在概率统计教学中融入实验教学的内容,这就使得承担概率统计课程的老师不仅要熟练掌握数学原理和方法、数学的体系框架,还要具备熟悉操作多种数据分析软件的能力,不仅如此,在课堂教学中结合综合经济案例来给学生引导,还需具备一定的经济、金融、管理专业的相关知识,这就对承担概率统计课程的教师提出更高的要求,需要数学老师必须向复合型的专业数学老师转变。而目前在民族院校中承担这一基础课程的老师普遍教学任务较重,师资紧张,典型现象就是教师忙于代课,对专业知识和计算机软件操作的提高和学习上缺乏时间和精力,复合型的课程实验教学人才和师资紧缺。

3、教学内容和实验内容的取舍

在现有的培养方案和教学内容既定的情况下,要想在有限课时中完成教学内容和实验教学补充的内容,只能将已有的教学内容中的部分知识点简化了,如何合理安排概率统计课程的数学原理、数学方法的讲授、实验教学内容的补充,需要在教学实践中适当的取舍,这也是目前制约概率统计课程教学方式探索和实践的一个重要因素。

五、民族高校经管类专业概率统计课程实施实验教学的建议

以上的教学方法的探索,已经在实践中有了一定的效果,对于培养学生的创新意识、动手能力、激发学生学习概率统计知识、数学思维品质的养成、数学知识的应用有着重要的作用和意义。

1、加大对概率统计课程复合型师资队伍的培训和建设

在概率统计课程教学方式多元化的探索过程中,要求老师具备以下:数学知识的积淀、计算机操作水平的适时变化、经济类及相关专业知识的积累及数学化能力,这都对概率统计课程的老师提出了更高的要求。因此要想加快民族高校经管类专业概率统计实验教学的进程,必须要加大对课程复合型师资人才的培养、培训和队伍的建设。

2、课程考核方式多元化

由于在课程内容中充实了实验教学内容,所以学生的概率统计作业不仅仅是传统的数学习题的计算及推证,还需要学生通过小组的形式完成一些验证型实验报告、综合型经济实例报告的分析。对概率统计课程的考核方式也应该随之改变,加大小组报告成绩、平时考核比重,通过多元化的考核方式全面考察学生的数学学习的能力、创新素质的具备、数学知识应用性的能力。

3、依据专业特点,适时调整教学内容,充实实验教学案例

对于经管类专业的学生,由于概率统计课程大多是在大二开设,专业课程也已开设了一些,可依据专业课程内容,适时补充经济问题实例,充实实验教学案例,丰富概率统计课程的教学内容。

概率论和统计学篇7

【关键词】课程教学 概率论与数理统计 数学实验

【中图分类号】O21 【文献标识码】A 【文章编号】2095-3089(2013)07-0140-01

一、引言

概率论与数理统计是高等院校理工科重要的数学基础课程之一。该课程所涉及的随机数学的内容和方法,对大学生数学素质和解决问题能力的培养有着极其重要的意义。课程内容主要包含[1]:随机事件及其概率,随机变量及其分布,随机变量的数字特征,数理统计的基本知识,参数估计,假设检验,方差分析与回归分析等。

数理统计是以概率论为基础,根据实验或观测到的数据来研究随机现象,对随机现象的性质和统计规律做出合理的估计和推断的一个数学分支。MATLAB软件可以进行矩阵运算(矩阵分解、范数、矩阵函数等)[2]、绘制函数和数据、实现算法、创建用户界面等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB统计工具箱[3]中有求解参数估计、假设检验和多元线性回归等统计推断问题的命令,对学习这些内容和解决相关实际问题具有很大的帮助。

二、“概率论与数理统计”课程教学中存在的主要问题

目前, 重理论、轻实践是许多高等院校概率论与数理统计课程教学的主要特点。这一教学理念, 有其固有的优势。该教学模式偏重基本的概念和理论, 系统性强, 有利于学生全面了解概率论与数理统计的结构框架。 但在实际教学中,这种教学方法存在一些弊端[4,5]。

(1)学生的学习兴趣不浓

在实际教学中概率论与数理统计课程开设在第三学期,其中数学公式较多而复杂,教学过程中我们发现,灌输式教学容易使学生对学习产生抵触情绪,不利于学生充分的发挥主观能动性,学生的学习比较被动。

(2)基础知识薄弱

在课程讲解,尤其是在多维随机变量及其分布内容的讲解中,我们发现学生对高等数学中的积分上限函数以及重积分的计算方法掌握的不好,导致连续型随机变量的分布的概率密度和边缘概率密度计算错误。

(3)理论联系实际不够

由于概率论与数理统计课程安排的课时比较少,一般着重讲述课本前面的概率论部分的内容,对于数理统计部分的内容讲得相对较快,涉及到的内容也不是很深入,导致整门课程讲完后,学生对于数理统计没有完全建立起完整的统计思想。对于实际问题中得到的统计数据,不知道如何处理,与课本上的知识联系不起来。

三、合理使用数学软件促进课程教学

在实际应用中的概率统计问题,往往涉及大量甚至是海量的数据,单纯依靠手算远远不能满足实际问题的需要,迫切需要将概率论与数理统计与MATLAB、 SAS、SPSS等软件包相结合,即在概率统计的教学中引入数学实验。此外,针对上述教学中存在的主要问题,也需要进行教学改革。

(1)理论联系实际, 激发学生学习兴趣

在教学过程中, 教师可以根据学生的专业和兴趣, 提出相关实例, 通过引用大量与经济、医药、化工、电子等各方面相关的实例,利用启发式教学引导学生用概率论与数理统计的知识去解决这些问题, 让学生主动地去运用知识。在教学中只要让学生明白掌握这些知识可以用来解决哪些生活实际问题,那么就可以提高他们学习的兴趣。因此,在教学过程中有必要突出一些知识点的实际应用背景。

(2)有针对性的巩固相关基础知识

在讲解多维随机变量及其分布的内容之前,布置复习高等数学课本中关于积分上限函数、反常积分以及重积分计算的内容和方法。在课堂上首先举重积分的算例,复习重积分转化为二次积分,并通过变量替换计算结果,然后再讲授多维随机变量及其分布的理论内容。这样,在学生掌握了概率论与数理统计的思想后,能够通过公式准确的计算出相应的结果。在这部分内容讲解中,可以简单介绍MATLAB软件中计算积分的相关命令,比如:int为符号积分,quad为变步长数值积分,quad8为高精度数值积分等等,这样方便学生以后有效解决实际问题。

(3)合理安排数学实验课程中的相关内容

在讲授概率论与数理统计课程内容的同时开设数学实验课,引导学生应用数学软件解决实际问题。在讲授了样本均值、中位数、方差、协方差、相关系数等基本的统计量的理论内容之后,要求学生必须掌握MATLAB软件中相关的命令,并给学生介绍统计分析工具箱stats中的丰富的统计分析函数命令,包括:随机数的产生、概率分布、参数估计、假设检验、线性和非线性模型、试验设计等。

对上述“学生的身高、体重与体育成绩问题”,我们可以在MATLAB软件中使用了 hist命令画直方图,可以看出学生数据基本可认为服从正态分布;使用 mean 命令计算身高、体重、成绩的均值;用 std 命令计算标准差;用 normfit 命令可以求得身高估计值,置信区间,体重估计值,体重95%置信区间;用 corrcoef 命令计算相关系数;最后用 regress 命令建立线性回归模型。

在上机实验课最后阶段教师还可以引进更复杂的生活实际应用例子,提供生活实际数据让学生通过MATLAB软件中统计工具箱对数据进行处理。通过实验可以加深学生对基础理论的理解,提高对概率论与数理统计课程学习的兴趣以及分析问题、解决问题的能力。

四、结束语

随着现代科学技术的发展,概率论与数理统计这一数学分支应用越来越广泛, 学好该课程有助于培养学生的逻辑思维能力、数据的分析与处理能力。使用数学实验配合课程讲授必将激发学生解决实际问题的兴趣, 进一步提高学生解决实际问题的能力。

参考文献:

[1]李延忠,孙艳,成丽波,施三支,马文联,概率论与数理统计[M],北京:高等教育出版社,2011。

[2]李延忠,姜志侠,孟品超,矩阵论[M].长春:吉林出版集团有限责任公司,2011。

[3]胡良剑,丁晓东,孙晓君,数学实验:使用MATLAB[M],上海:上海科学技术出版社,2001。

[4]施三支,马文联,工科“概率论与数理统计”课程改革的几点建议[J],长春理工大学学报(社会科学版),2009。

概率论和统计学篇8

关键词:数学建模;大学数学;基础理论教学;能力培养

作者简介:于林(1965-),男,山东滨州人,三峡大学理学院,教授。(湖北 宜昌 443002)

基金项目:本文系三峡大学教学研究项目(项目编号:J2010057)的研究成果。

中图分类号:G642.1 文献标识码:A 文章编号:1007-0079(2013)32-0124-02

大学生数学建模竞赛和数学建模活动在对大学生创新能力培养和数学技术应用能力培养中的重要作用已经是一个不争的事实,而在大学数学课程教学中融入数学建模思想的理念也被广大的数学教师所公认,并且取得了许多宝贵的实践经验。但是,在众多关于此问题的教学研究文献中,基本上都是仅仅就高等数学课程中那些本身就具有很强的应用性的数学方法和数学技术介绍了其在数学建模中的一些应用实例,而难得见到有关如何将原始的数学概念和抽象的数学定理的教学与数学建模相互联系的研究和分析。本文旨在通过对概率统计中两个最原始的概念(概率空间与统计结构)和高等数学中一个最抽象的定理(Weierstrass定理)的教学中如何融入数学建模思想的分析,揭示了在大学数学核心课程的教学中,数学建模与深化学生对基本概念的理解以及加强对抽象数学理论的实际应用能力的培养之间的关系。目的在于进一步探讨如何借助数学建模来激发学生对数学课程的学习兴趣,深化学生对抽象理论的理解。

一、最原始的概念,最基本的模型

众所周知,概率论和数理统计理论中有两个最原始的基本概念,一个是概率空间,另一个是统计结构(或者统计模型)。通常在“概率论与数理统计”课程教学中一般总是这样进行的,在给定了概率空间(Ω、F、P)之后,研究定义在其上的随机变量及其分布等性质;在给定了统计结构(或者统计模型) 之后,研究其上的样本、抽样分布及其由此而建立起来的统计推断问题。例如,一般的课本上几乎都是主要介绍建立在“正态分布总体”这样一种统计结构上的统计推断理论的。但是,只要稍微仔细思考一下,就会发现一个被忽略的问题:这种作为研究起点的所谓“概率空间”和“统计结构”是怎么来的?这一问题一般情况下被教师和学生所忽略,因为同学们只需要会做课后的习题就够了,而在每一个习题里这些所谓的“起点”早就被题目的设计者给设计好了。于是,时间久了,同学们也就习惯了,很容易由此而造成一种假象,似乎这些作为“起点”的东西是天生的,或者是自然就有的,很容易对这一课程中最基本的两个概念缺乏必要的理解。

然而,如果将这一问题与数学建模结合起来则情况就大不一样了。对于数学建模,任务不再是求解那种被人设计好的习题,而是面对的各类实际问题。运用概率分析的方法或者统计分析的方法对这些实际问题进行研究,但是概率分析理论、统计分析理论都不能直接作用于任何实际问题,这就需要首先确定这一实际问题所对应的“概率空间”或者“统计结构”是什么。事实上,“概率空间”就是架设在实际问题和概率分析理论之间的一座桥梁,而“统计结构”即是贯通在实际问题和统计分析理论之间的一条隧道。随机数学建模或者统计分析建模从对“概率空间”和“统计结构”的建立就已经开始了。

1.概率空间

(1)随机现象与随机试验。数学建模的研究对象都是一些实际的问题,如果这一实际问题表现为具有某种随机性的时候则被认为是一种随机现象,因此准备运用概率分析的方法进行研究。但是,概率理论直接的研究对象并不是随机现象,而是为研究随机现象所作的随机试验(Random Experiment)。为简单计,今后凡是在概率论中的随机试验皆简称为试验,并记之以英文字母E。对于数学建模者需要指出的是:对于同一随机现象,根据研究者的研究目的和研究方法的不同可以设计不同的随机试验。

例如,某同学打篮球投篮,这当然是一个随机现象,因为他可能投中也可能投不中,也就是说他每次投篮是否能投中具有随机性。假设现在要考察该同学投篮的命中率,可以设计如下两种不同的随机试验。试验E1是让该同学先后投篮10次,看他其中能投中几次;试验E2是请该同学连续投篮直到投中为止,看该同学共需要投几次才能投中。由于所设计的随机试验不同,因而所产生概率空间就不同,以后所运用的概率分析方法也就不一样。

(2)样本空间。当确定了随机试验E之后,称试验E的每一个可能结果为样本点(Sample Point),并称由全体样本点的集合为试验E的样本空间(Sample Space),并分别用希腊字母ω和Ω表示样本点和样本空间。

例如,对于上述的两个试验,试验E1的样本空间可以表示为,其中表示该同学在该次试验中共投中k个球;试验E2的样本空间可以表示为,其中表示该同学在该次试验中总共的投篮次数。注意,是一个有限样本空间,而则是一个无限样本空间。

(3)几何概率模型的实例。几何概率在现代概率概念的发展中起到了非常重大的作用。在19世纪,人们一度认为任何概率问题都有唯一的解答,然而Joseph Bertrand在1888年提出的一个问题改变了人们的想法,这就是贝特朗奇论(Bertrand’s paradox)。

Bertrand奇论:在一半径为1的园内“任意”作一弦,试求此弦长度l大于园内接正三角形的边长的概率P。

解法1:由于对称性,可预先固定弦的一端。仅当弦与过此端点的切线的交角在60°~120°之间,其长才合乎要求。所有方向是等可能的,则所求概率为1/3。

解法2:由于对称性,可预先指定弦的方向。作垂直于此方向的直径,只有交直径于1/4 点与 3/4 点间的弦,其长才大于内接正三角形边长。所有交点是等可能的,则所求概率为1/2。

解法3:弦被其中点位置唯一确定。只有当弦的中点落在半径缩小了一半的同心圆内,其长才合乎要求。中点位置都是等可能的,则所求概率为1/4。

于是得到了三个不同的答案,原因是什么呢?这是因为三种解法中使用了三个不同的随机试验,从而得到三种不同的概率空间。解法1 的样本空间Ω1是全圆周;解法2的样本空间Ω2是直径上点的全体;解法3的样本空间Ω3是二维区域C。这一例子说明,对于同一个问题,由于构造了不同的概率空间而可以得到不同的结论。相对于各自的概率空间,每一种解法都是正确的,而概率空间即是最基本的数学模型。

2.统计结构

(1)对统计总体的认识。正如“概率空间”是概率研究的起点一样,“统计结构”(或称统计模型)则是统计分析的起点。数理统计学就是这样一门学科:它使用概率论和数学的方法,研究怎样收集(通过试验或者观察)带有随机误差的数据,并在设定的统计结构(或称统计模型)之下,对这种数据进行分析(称为统计分析),以对所研究的问题做出推断(称为统计推断)。

面对应用中遇到的实际问题,统计结构是如何得来的呢?首先,来看一下如何认识统计的总体。所谓统计总体是指具有某种分布的随机变量(或随机向量)。所以,通常总体记为随机变量ξ,它服从某分布(族)P。

(2)统计结构(统计模型)。统计总体的随机变量量ξ及其服从的分布P统称为统计结构(或统计总体),P代表的实际上是一族分布函数。如果已经知道P的分布类型,即已知分布函数的类型,只是对其中的某个或者某几个参数θ未知,则问题就归结为根据样本值推断参数θ究竟取何值为好。此类统计模型就是参数模型,涉及的统计问题就是参数统计问题。如果连分布函数的类型也知道得很少,以至于不能给出参数模型,那么问题就成为非参数统计问题。

以对某物理量的测量问题为例:假设有某物理量μ,采取多次测量的方式以求得到该物理量真实值μ的估计。如何建立统计模型呢?

模型一:设总体随机变量,其中,所以

该研究者认为:测量仪器工作状态稳定,可以认为测量结果只存在随机误差。根据误差分析理论,此时有理由认为误差服从正态分布,由此总体随机变量。其中均值μ和方差都未知。所以该模型是一个含有两个未知参数的正态分布函数族。

现在再设想,假如该项测量工作是由一个非常专业的测量团队来完成的,因此事前可以假设测量的精确程度是已知的,即可以假设上述的方差已知,且取值为,于是又有如下模型。

模型二:设总体随机变量,其中,所以

当然,与建立模型二时相反,建模者可能十分悲观,或者事实上也是如此,这就是事前对该总体的信息收集实在太少。研究者只能肯定的是测量者既不会有意把数据夸大,也不会有意缩小,也就是测量所得的随机变量关于真实值应该是左右对称的,除此之外没有其它信息了。这样就只能设置模型如下:

模型三:设总体随机变量{对称分布}。

模型三得到的只是一个非参数统计模型,因此决定了首先必须运用非参数统计进行分析和研究,这较之前两种模型要复杂得多。

二、最抽象的定理,最直接的应用

1.Weierstrass定理

有界闭区间上连续函数的性质表现为一系列十分抽象的定理,Weierstrass定理是其中的一个。一方面,从理论上讲,它们在微积分理论体系中具有非常重要的地位;而另一方面,它们在形式上十分抽象。因此,一般情况下,学生们会认为其没有实用价值。其实正好相反,在数学建模中Weierstrass定理就经常被用到。该定理说:如果是上的一个连续复函数,那么便有多项式的序列,使得在上一致地成立。如果是实函数,则是实多项式。

2.在数学建模中的一个应用

土豆施肥效果分析:在土豆生长期间,施用不同量的氮(N)和钾(K)肥,土豆产量结果见附表1,求土豆产量与施肥量之间的关系。

首先,为了计算方便,对数据作中心标准化处理,即令:

如果说,施肥量x1、x2与土豆产量y有很密切的关系,则应该有,其中可能是线性函数,也可能是非线性函数,探求的具体形式是本题的目的,需要用回归分析方法。

(1)失败的线性回归模型。通常情况下,同学们首先想到的是线性模型:。根据最小二乘法计算得回归方程:。但是这个模型的效果究竟如何呢?计算多重判定系数得。显然,该线性模型对所给数据的拟合效果很差,由对数据的直观观察亦可以看出,用线性模型去拟合所给数据是不合适的。

(2)有效的多项式回归模型。显然,所求的函数关系肯定不是线性函数,而一定是一个非线性函数。然而,非线性函数有无数种,最有可能是哪一种呢?此时,Weierstrass定理帮了大忙。其实,无论是什么样的非线性函数,总可以用多项式去逼近。因此,可以考虑为多项式函数,且不妨从最低阶的二次多项式开始。

设模型为:,

同样根据最小二乘法计算得回归方程:。经计算多重判定系数为:。由此可知该模型拟合效果非常好,问题得到圆满解决。

三、结论

由上述实例分析可见,恰当地将数学建模融入大学数学课程教学,不仅有利于对学生数学应用能力的培养,而且更重要的是还可以帮助学生对抽象的基本概念和理论的理解。因此,对于更多的抽象概念和定理,如何引入适当的数学模型是一个非常值得进一步详细探讨的问题。

参考文献:

[1]李大潜.中国大学生数学建模竞赛[M].第四版.北京:高等教育出版社,2008.

[2]李大潜.将数学建模思想融入数学类主干课程[J].中国大学教学,2006,(1):5-10.

上一篇:采购管理系统的特点范文 下一篇:统计学研究对象范文