化学软件论文范文

时间:2023-02-26 19:44:18

化学软件论文

化学软件论文范文第1篇

ChemOffice全称CambridgeSoftChemOffice是由美国剑桥软件公司研究和开发的一款化学专业应用软件。变得更加便捷。化学应用处理软件ChemOffice由ChemDraw、ChemFinder和Chem3D三个模块组成。ChemDraw模块是化学结构绘图软件,也是现在各论文期刊指定的格式;Chem3D模块是分子模拟分析绘图模块,通常用它来计算分子轨道的形状、分子表面积、显示分子轨道,描绘化合物的结构;ChemFinder模块是化学信息搜寻整合系统,用来建立化学数据库、储存数据及搜索化学数据库。ChemOffice软件是针对专业化学绘图设计,可以绘制各式各样的化学键、环、轨道等,可以与软件中的数据库链接,可以查出结构式;也可以将化合物名称直接转为结构图,省去绘图的繁琐;还可以对已知结构的化合物命名,给出正确的化合物名称。也可以利用此软件所提供的样板功能,大幅缩短制作文件所需的时间。

二、ChemOffice软件有助于化学教学

(一)化学教学的主要辅助手段

随着计算机多媒体技术的普及和现代化学应用软件的开发,现在化学教育的授课方式已经告别了一盒粉笔、一块黑板的传统教学,现代化的教学辅助手段使越来越多的老师都体会到了用化学工具软件来制作课件辅助教学的优越性。ChemOffice软件在化学教学中可以优化教学设计,使原本枯燥的课堂变得生动起来。主要体现在以下几点:

1.直观、可视性

在化学教学中,关于化合物结构的讲解一直是授课的一个重点,也是学生理解的一个难点。ChemOffice软件不仅可以绘图,还可以将化合物的结构立体化。这样教师在备课的过程中不但不用准备模型,而且在授课过程中还可以根据需要随时将平面图和立体图进行转换,提高教学效率,能取得良好的教学效果。例如苯乙烯的结构式如图1。利用ChemDraw模块建立分子结构式后,再利用Chem3D模块可以将转化为三维图形如图2。三维图形可以动态旋转向学生展示不同方向的立体构象,便于学生直观的理解。对于结构复杂的有机大分子,比如葡萄糖、纤维素、环糊精等,都可以采用ChemOffice软件进行模拟展示,一看便知,易于理解。

2.有助于探究式教学

如何做好探究式教学,从20世纪中期开始就一直是国内外教育科学领域中的一个研究重点课题。探究式教学使学生不再被动地接受知识,提高学生的学习兴趣和主动性。化学应用软件ChemOffice有助于探究式教学的开展。例如有机化合物命名的学习。在学习过程中,部分学生对于命名规则还是理解不透彻。ChemOffice软件的命名功能,可以帮助学生理解深入。利用ChemOffice化学工具软件中的ChemDraw模块在课堂上演示,绘制出化学结构式,单击结构(Structure)菜单中的结构式转化为名称(ConvertStructuretoName),可以实现对结构式进行自动命名。同时,ChemOffice可以将化合物的系统名称直接转为化学结构式,输入名称转化为结构式(ConvertNametoStructure)的命令后,输入化学名称,系统会找到对应的结构置于绘图中。通过这两个功能,学生能扎实的理解掌握结构复杂的化合物命名规则。对于陌生名称也能查到结构式,理解能更深入彻底。利用ChemOffice软件还可以锻炼学生的波谱解析能力,例如,利用ChemDraw模块可预测一些化合物的1H-NMR和13C-NMR谱。原理是以选取的分子基本结构为基础,利用加和性原则来计算氢原子和碳原子的化学位移。在课堂上教师也可以通过图谱模拟功能,直接演示各种化学物质的氢谱和碳谱,省去具体实验的繁琐。

3.使复杂计算简单化,适用于高等教育

ChemOffice软件不仅可以应用于初高中、大学本科的化学课程教学中,对于高等学校的硕博士研究生的研究型教育也非常适用。例如,ChemOffice软件中的Chem3D模块具备强大的计算功能。计算范围包括键长、键角、二面角、分子间距离、分子所在空间的基本计算。还能结合MM2、MOPAC、Gaussian等程序进行分子力学和量子力学的计算,甚至对分子进行动力学模拟、化合物构象分析和过渡态能量优化。例如,可以通过ComputeProperties计算的出复杂反应,中间过渡态产物的一系列性质,从计算结果中可以得到偶极、动能、势能、极化率、总能等一系列性质参数。ChemOffice软件对于培养研究型的高等化学人才有着重要的意义。

(二)增强学生学习主动性和师生间的互动

课堂教学的过程是老师和学生互动的过程,但在很多情况下,学生由于缺乏学习的主动性,导致学生学习的积极主动性降低,学习兴趣下降。ChemOffice化学应用软件可以创设情景教学,有助于培养学生的学习兴趣,教学效果事半功倍。例如,可以利用ChemOf-fice软件中的ChemDraw模块,模拟化学实验,自主设计实验方案、实验过程,根据实验流程要求,让学生自己动手,根据实验要求找出需要的化学仪器(例如图3),进行拼接,绘制实验反应装置图(例如图4),教师只给予适当的指导和提示,学生的积极参与,加强了师生交流,活跃了课堂气氛。学生体会到学会的知识是自己发现出来的,不是别人硬塞进来的。这种可以通过自己的探索和思考而获得知识的教学手段,有利于学生思维的开发,学生在探索中学习体会到乐趣和成果后,将会更主动的学习,同时也能减轻教师负担,提高教学效率。

(三)有助于促进计算机和化学专业外语的学习

对于高校的学生,采用ChemOffice软件进行教学是实践开展双语教学模式最为理想的教学材料。ChemOffice软件是由美国剑桥公司开发的外文软件,各个模块中所有的命令、模块说明等都是使用纯正、地道的英文。学生在使用这款软件的过程,也是学习相关计算机和化学专业地道英语的一个过程。通过计算机演示等有关化学教学内容的渗透,传授相关化学知识,利用软件进行动态演示解决化学问题,揭示化学机理等,或是利用化学工具软件进行自主学习。

三、结语

ChemOffice软件功能强大,可以进行化学分析、化学计算、创建化学数据库等,不仅应用于化学教学中,在波谱研究、医药等其他研究领域也有很广泛应用。在教学活动中,教师利用先进的计算机技术和丰富的网络资源,通过ChemOffice软件,制作课件形象的演示动画,使学生易于掌握抽象的学习内容,激发学生学习的兴趣。通过模拟实验、建立分子模型等功能指导学生进行自主学习,锻炼学生独立尝试解决化学问题的能力。当然ChemOffice软件也并不是完美的,例如,对于某些化合物的氢谱模拟不准确、峰形不易观察判断等,只有充分了解该软件的功能和不足,才能在实践教学中,扬长避短,运用自如,取得良好的教学效果。

化学软件论文范文第2篇

学工程与工艺实验不同于普通的化学实验只重视一个原理的求证,它的目的是为了解决工业中的化工问题,其特点主要有实验时间长、实验规模大和实验数据处理繁杂等。在整个化学工程与工艺实验里数据处理是必不可少的阶段,也是印证化学实验成果是否行之有效的必要手段,但是由于实验数据过于庞大,实验当中相关的参数关系大多是非线性的,单单依靠传统的手工计算不仅速度慢,还容易出现计算失误的情况,根本无法满足实际的需求,因此,将MATLAB软件融入实验数据的处理中刻不容缓,它能有效地将繁琐的计算步骤化解成简单的计算,提高工作效率,让实验数据的准确性达到最高值,避免误差的产生。以下通过研究两个化学工程与工艺实验,分析MATLAB软件在处理实验数据时与传统的手工计算有什么优势和便利。

二化学工程与工艺实验数据处理设计

1数据处理的程序框架

因为每一个化学工程与工艺实验的目的都不相同,因此其处理的步骤以及涉及的化学公式也不尽相同,不可能以一个程序来概括,但是经过大量的实验研究和总结,发现不同的化工实验中都会有其相似之处。

2数据处理的程序编制

2.1数据输入

化学工程与工艺实验的数据输入主要依靠提示的函数input实现,比如以温度为例子,则其输入函数为:t=input(‘请输入实验的温度(摄氏度):’),其中输入函数大多是以矩阵的输入形式为主。

2.2处理和作图

化学工程与工艺实验中得到的数据时常会存在离散的情况,必须经由多种拟合的方法将它们结合成一条或多条连合的曲线,而其中最常用的拟合方式是最小二乘法,因此本实验设计中的拟合方式也采用最小二乘法的方式。设实验的离散数据(x1,y1)通过最小二乘法将其拟合成因变量y,自变量x,输入的函数关系为y=f(x),函数关系的主要思路是让离散数据中的x1的残差平方以及Σ(f(x1)-y1)2达到最小值。因为在得出化工实验数据中多少会因为外界的因素存在着一些误差,因此最小二乘法可以无需使输入函数y=f(x)必须经过全部的离散数据(x1,y1),但是残差平方和必须达到最小值。根据最小二乘法的拟合方法可知,最小二乘法可以满足化工实验数据处理中的拟合应用需求。在化学工程与工艺实验中会涉及到流体的流动阻力研究,研究主要是通过测试流体的流动阻力,在经过特定的计算之后得出摩擦系数(λ)和雷诺准数(Re)的离散数据,再同理,经过最小二乘法拟合出连续的曲线,并根据其画出相对应的图形。因为摩擦系数(λ)和雷诺准数(Re)属于成双对数函数。

2.3建立数据库

因为经过上述的设计,化学工程与工艺实验数据处理只能得知在特定的温度下(比如10℃、20℃以及30℃等)实验的物性数据,但是在实际的生产中,工业生产所涉及的温度多变,不单单只停留在设计好的温度当中,因此,这就需要我们在数据中选择最相近的数据,假设它们属于线性的关系,再利用内插或者外推的方式计算出实验的物性数据常数。在本文的化工实验中,编写的程序已经将实验温度和密度以及实验的温度与黏度进行多次的实验拟合,建立出了一个相对完整的数据库,在工作中只需将温度输入进系统,则程序可以自动跳出在特定温度下的物性数据,提高数据处理效率。

3程序的运行

在编制完成化学工程与工艺实验的数据处理程序,且建立数据库之后,便应该输入数据以验证程序是否能有效地处理实验数据。在化学工程与工艺实验的数据处理中,MATLAB软件的应用是十分重要的,经过实验可知,在化工实验当中会出现大量的离散数据,必须经过拟合的方式进行处理,其处理过程中不仅工作量大,而且十分繁琐,一旦出现差错则必须重新重来,浪费大量的人力物力资源,而且在处理好实验数据之后,在查看实验当中还要将化工实验数据重新计算一次,看结果是否与原先的计算结果相同,工作量十分重,但是如果运用MATLAB软件则大大降低了数据处理难度,只要在MATLAB软件中输入相应的化工实验数据,就可以得到结果,节省了时间,提高了工作效率。

三结语

在实际的应用中,化学工程与工艺实验所要处理的数据十分庞大,而且涉及的计算公式也十分多,甚至很多时候为了将数据的计算公式导出来还要建立复杂的模型,一旦有一个步骤出现差错则会直接影响到实验的成果,如果使用传统的手工计算方式,为了避免差错则必须对每一个数据处理环节进行反复计算,降低了工作效率,因此MATLAB软件的应用对于化学工程与工艺实验的数据处理十分重要,它不仅将复杂的计算变得简单,也让事后的实验验证效率得到提高,促进了化工实验的发展。

化学软件论文范文第3篇

关键词 化学软件基础 教学探讨 化学化工专业

中图分类号:G424 文献标识码:A DOI:10.16400/ki.kjdks.2015.05.066

Discussion on Chemical Software Foundation Teaching

BIAN Xihui, DAI Zhao, ZHAO Shihuai, JI Yanyan

(School of Environmental and Chemical Engineering, Tianjin Polytechnic University, Tianjin 300387)

Abstract Master the basic chemistry software has become Chemical Engineering and related professional students the necessary skills, the paper briefly describes the importance of the creation of "chemical software foundation" courses and programs aim to open, open time, teaching methods, teaching content and study methods were discussed.

Key words chemical software foundation; teaching discussion; chemistry and chemical professional

计算机技术高速迅猛地发展,已广泛应用到各行各业。在化学化工以及相关领域,一方面,目前开发了大量用于化学化工领域中的专业软件,使得化学教学、科技论文写作等更为便利。另一方面,海量化学数据的出现、化学反应或作用机理的微观性、高水平论文对图文质量的要求、化学化工管理过程的自动化等,要求高校化学化工以及相关专业的大学生不论是将来继续深造,还是走向工作岗位,都必须掌握一些基本的化学软件。①化学软件是化学化工以及相关专业人员利用计算机解决化学化工问题的基本工具。本文就化学软件基础课程的开设宗旨,开设时间,讲授内容,讲授方式以及考察方式进行初步的探讨。

1 化学软件基础课程开设宗旨

如今计算机发展突飞猛进,各式各样的化学软件不断涌现,在有限的课堂时间内讲述完所有化学软件是不可能的。并且,化学软件总是不断往前发展变化,而课堂上教授的只能是已有的软件。所以,大学课堂不仅要教给学生知识,更重要的要教会学生解决问题的能力。因此,课程开设的宗旨有三点。第一:培养学生利用计算机技术来写作、报告、画图、编程及模拟的能力。第二:培养学生遇到问题时懂得利用相关化学软件达到理想效果的能力。第三:培养学生先做后学,边做边学的自学能力。

2 化学软件基础课程开设时间

目前化学类大学生的课程体系基本是大一学高等数学、大学英语、大学物理、计算机基础等基础课程。大二开学无机化学、有机化学、分析化学、物理化学等基础化学课程,大三学专业化学课程,大四实习和毕业设计阶段。而化学软件基础是以数学、计算机和化学作为基础的课程,而毕业论文设计恰好可以综合运动所学的软件知识。因此,在大学生基本学完主要化学课程、毕业设计开始前的大三下学期开设化学软件基础课程尤为合适。学生掌握了化学人员常用的计算机软件,可以为毕业论文、后续的工作或继续深造研究打下良好的基础。

3 化学软件基础课程讲授内容

3.1 科技论文撰写及相关软件介绍

科技论文包括期刊上发表的学术论文以及学位论文等,科技论文的写作是大学生毕业时应具备的基本技能。随着计算机的普及,很多出版机构都要求作者按照一定的版面以及格式编辑排版后直接发送电子版到出版机构。不同的期刊、杂志以及会议论文对所接受的投稿都会提出明确的格式要求。各高等学校、研究院所也对本科生、研究生的学位论出了严格的格式规定。因此,本部分将以应用最广泛的文字处理器Microsoft Word为工具,讲解与科技论文写作密切相关的编辑排版中的基本操作、英文字符操作、表格的制作和图的制作及图文混排等内容。同时,将比较Microsoft、WPS、永中、红旗等办公软件下的文字处理工具。

3.2 多媒体演示及相关软件介绍

不论毕业论文答辩还是工作汇报,都需要采用多媒体手段演示。本部分将以最常用的Microsoft PPT软件为主,讲述如何做好多媒体演示。首先结合实例介绍PPT的一些制作技巧,包括幻灯片母版设计、模版修改、图片制作以及动画设置。然后从内容安排、模版选择、色彩搭配、字体字号、图形构思、演讲者形象等角度讲如何做好PPT。除了PPT外,目前还有绘声绘影、iebook等很多优秀的图、文、声并茂的演示软件,鼓励学生掌握1种PPT外的演示软件,能达到与众不同的演示效果。

3.3 绘图及相关软件介绍

化学化工经常遇到各种图形的绘制,比如分子结构演示、实验装置绘制、实验数据作图、化工设计、科技论文写作等。图形绘制是本课程的重点内容,除了讲解每款软件的基本操作外,重在教会学生使用这些软件。课前让学生安装好软件,课堂上学生即学即练。本部分着重介绍线形图、平面图和立体图的五款绘图软件。第一款软件是线性绘图软件Origin,教会学生使用该软件工作表、绘图以及数据拟合功能,其中图形包括单线图、多线图、多子图、母子图、双坐标图的制作。第二款是化学绘图软件ChemOffice,该软件由化学结构绘图ChemDraw、分子模拟分析绘图Chem3D以及化学信息搜索ChemFinder三大模块组成。着重给学生介绍绘制化学结构的ChemDraw,教会学生使用该工具绘制化学结构式、化学反应式、生物分子、简单的化学反应设备等功能。第三款是化工绘图软件AutoCAD,教会学生使用该软件绘制化工工艺图、设备布置图、管道布置图、化工审图等。第四款是平面图形处理软件Photoshop,着重介绍该软件特有的图层、通道和蒙版功能,能使用该软件绘制图形、美化图形。第五款是立体绘图软件3dsMax,该软件主要进行三维动画渲染和制作,功能十分强大,受于时间限制,课上主要介绍如何使用该软件绘制科技论文中形象生动的三维示意图。

3.4 编程及相关软件介绍

化学是一门经常与数据打交道的学科,离不开方程的求解、数据的分析等,②因此有必要让学生掌握一门编程语言以解决复杂的化学问题。Matlab编程语言因其能功强大、简单易学、编程效率高而广泛应用于工程计算及数值分析领域。课程从Matlab软件简介、Matlab矩阵数学运算、Matlab图形绘制、Matlab符号运算、Matlab程序设计、可视化界面编写以及Matlab在化学化工领域中的应用实例七个方面来介绍Matlab编程软件。同时简要介绍一下C语言、R语言等编程语言在化学化工领域的应用。

3.5 分子模拟及相关软件介绍

分子模拟是指利用理论方法与计算技术,模拟或仿真分子运动的微观行为,已广泛应用于物理、化学、生物、材料等领域。③分子模拟方法有量子力学、分子力学与分子动力学等手段。本部分将简要这三种方法的基本原理,研究内容,研究过程,应用范围;介绍两款分子模拟软件:量化模拟软件Gaussian以及分子动力学模拟软件NAMD,并演示如何使用这两款软件进行简单的模拟过程。

4 化学软件基础课程讲授方式

课程将采取模块化的教学方式,以功能而不是具体的软件作为模块。在模块介绍前,先给出一些丰富的应用实例,使学生对其产生浓厚的学习兴趣。具体介绍每个模块时,先总体介绍该模块的相关知识以及实现该模块功能的相关软件,再从中挑选出一款最为广泛使用的软件进行详细讲解。讲解具体软件时,采用PPT和软件现场演示有机结合的方式。针对每款软件介绍的知识点穿插2-4个课堂练习,加深学生的学习印象。

在课堂讲授过程中首先不断给学生强化一种观点,即要实现某一功能,会有很多解决办法。比如,要作一个图,PPT、origin、photoshop、3Dmax都可以实现该功能。如果不会3Dmax没关系,熟练使用PPT依然可以画出完美的图来。其次,在讲授中不断灌输学生自学以及先做后学、边做边学的能力。遇到老师没讲过的软件,先把软件下载、安装并打开,试着操作,某个功能不会,可以通过谷歌、百度、请教老师或同学解决。如果软件不先安装上,只能纸上谈兵,无法真正学会软件的使用。

5 化学软件基础课程考察方式

化学软件基础是一门注重实际应用的课程,关键是掌握如何利用所学软件解决问题的能力。因此,不采取考试形式,而是采取课堂实践、小作业加大作业的形式进行考察。

课程的第一个考察方式是课堂实践,把最后两堂课留给学生,让学生走上讲台介绍一款老师未讲到的化学软件(或者某个化学软件的某个功能)。一方面化学软件的丰富性以及老师知识的有限性,靠有限的课堂时间难以讲解全面所有的化学软件。另一方面,三人行,必有我师,现在的学生从小就接触计算机,不乏计算机强手。由学生来介绍新的化学软件,学生必然会经历一个自学并展示的过程,可以促进学习的积极主动性,提高学生的自学能力,锻炼演讲口才。教师通过观察学生讲解效果,可以吸取借鉴学生的优点,对自己后续讲课内容,讲课方式不断进行改进。

课程的第二个考察方式是每堂课后布置的小作业。虽然每款软件课堂上会教学生练习2~4个例子,但是毕竟不是由学生自己独立完成的。为了巩固学生课堂所学软件操作要点,每款软件讲完后,布置1道练习题,督促学生安装软件并进行练习。针对学生上交作业的情况,再对软件的内容进行补充。

课程的第三个考察方式是课程结束后的大作业。针对课堂讲解的模块,每个模块出1道大题。每道题只给出问题,而不指定用什么软件来做。综合考察学生化学软件的学习情况,以及分析问题、解决问题的能力。

基金项目:天津工业大学“师生合作”教学资源建设(2013-SZH-008)和教育教学改革研究(2013-2-09)经费资助项目

注释

① 黄允中.“计算机在化学中的应用”课程建设的思考与实践[J].中国理科教育,2007.1:28-31.

② 刘清芝,杨爱萍,杨登峰.计算机在化学中的应用课程教学探讨[J].大学化学,2011.26(3):27-29.

化学软件论文范文第4篇

[关键词] 研究机构 文献计量 可视化分析 citespace软件

在全球化知识经济环境下,作为支撑一流科技创新的院所文献情报系统,不仅要面对未来不断创新的数字科研、e-learning环境和学科领域的交叉与飞速发展,满足科研用户对e-science学术信息利用环境不断提高的需求,而且要有快速收集有效的文献数据信息,利用文献情报分析工具,发掘隐藏在数据背后知识内涵和情报的能力,以满足战略决策者对研究机构的科研产出和发展态势情报的需求。

信息可视化(informaiton visualization,InfoVis或Iv)是近年来出现的数据挖掘方法之一,它能很好地利用人类对可视化形式下的模型和结构的获取能力,解决科技文献数据量过大、无法快速和有效交流的问题,同时可视化数据挖掘可观察、筛选、发现和理解信息,发现隐藏在数据和信息背后的含意[1]。

本文以开展基础研究为主,有重点地开展国家急需的、有重大战略需求的高技术创新研究,并与高新技术应用和转化工作相协调发展的多学科、综合性研究所――中国科学院化学所(以下简称化学所)作为研究机构的实例,以化学所近5年(2004-2008年)被科学引文索引数据库(SCIE)收录的国际论文为科研产出指标,利用SCIE分析功能,结合近年出现的信息可视化数据挖掘软件――citespace,对收录的科学文献全纪录数据进行统计和可视化分析。在传统的对相关信息文献计量分析的基础上,更加注重利用citespace软件对论文题目、摘要、关键词、标示符等数据提取词集,从引文数量、共现和共引的频次多方面进行聚类计算,发现隐藏在可视化数据背后的有价值情报。

1 方法与数据源

1.1 方法

采用美国Drexe1大学陈超美博士开发的基于JAVA平台的citespace在线可视化软件,该软件是一种适于多元、分时、动态的复杂网络分析的新一代信息可视化技术。使用citespace 的一般步骤:①确定一个研究领域或研究机构,收集尽可能多的文献;②收集数据, 包括题目、摘要、被引文献等信息的文献全纪录信息;③参数选择:确定总的时间段范围和时间分区;选择分析的节点类型;引文数量、共被引频次和共被引系数三个层次上分别设定阈值;选择算法精简和合并网络;④显示可视化图谱;确定关键点。

citespace可用于进行科学文献全记录数据共引网络分析,通过对文献信息的可视化,能够较为直观地识别研究机构科研产出发展态势的情报[2]。

1.2 数据源

选择美国科学情报研究所ISI(International for Scientific Information)创建的SCIE数据库为数据源,检索策略为:地址= inst chem* same (chin* aca* or acta*) same beijing),出版年=2004-2008,检索结果命中记录4 065条,引文数据138 586条,总被因频次为38 053次。将2004-2008年间化学所发表的4 065篇论文的作者、题目、主题词、关键词、文献的引文等全纪录信息导入citeSpace软件,采用SCIE的分析功能和citespace软件 ( 2009年3月20日2.2. R1 Webstart版本[3])进行年代分布、合作者、学科领域、合作机构、合作国家、期刊共引、作者共引信息分析,绘制网络可视化图谱。

2 化学所情况分析

2.1 年代分布

SCIE收录的2004-2008年间化学所的数量和论文被引频次分布结果如图1所示:

在2004-2008年5年间,化学所论文数量保持平稳增长,年均数量约800篇;但是5年间的被引频次从2004年的186次,猛增到2008年的12 805次,呈逐年大幅度增长的趋势,被引频次的提高表明化学所的质量有了显著的提高。通过SCIE引证检索结果的数据:化学所论文年平均被引频次达到6 604.67,篇平均被引频次为9.36,h指数为66,进一步反映化学所2004-008年5年在国际科学研究领域的影响力显著加强。

2.2 化学所论文合著者分布(co-authors network)

利用citespace软件对2004-2008年间化学所的合著者网络图谱进行分析,选择使用关键路径(pathfinder)算法,网络节点确定为作者,时间区选择为1年,阈值为(6,6,40),(8,8,40),(10,10,40)。图谱中不同大小和不同颜色的圆环组成的作者年轮来表示合著者频次(freq)和合著年份[4]。如图2、表1所示:

从图2、表1中可以清晰地看出,2004-2008年化学所的论文合著者中合著频次高于100次的有7人,其中,合著频次位于前5位的分别是:Zhu DB院士、Jiang L研究员、Han BX研究员、Liu YQ研究员和Li YL研究员。对论文合著者进行聚类分析,可以看出图谱可以聚为6大类,6大类中合著频次最高的作者分别是由Zhu DB院士、Jiang L研究员、Han BX研究员、Wan LJ所长、Wan LJ研究员和Li YF研究员,因此通过化学所论文合著者的网络图谱分析,可以清楚地了解化学所研究领域的学科带头人及其研究团队的分布。

2.3 化学所论文学科领域分布(co-occurring subject category )

利用citespace软件对1995-2008年化学所共现学科领域进行分析,选择使用关键路径算法,网络节点确定为学科领域,时间区选择为1年,阈值为(2,2,5),(3,3,5),(3,3,20)。图谱中不同大小和不同颜色的圆环组成的学科领域年轮表示学科领域的共现频次和共现年份,用不同颜色的连线来表示学科领域间共现的年代。如图3、表2所示:

从图3、表2中可以看出,在化学所论文共现学科领域中,共现频次大于20次的学科领域有16个,其中化学、聚合物科学、物理、材料科学、纳米科学及纳米技术位于与化学所共现学科领域的前5位。

2.4 与化学所共作者的机构分布(network of co-authors institutes)

利用citespace软件对2004-2008年与化学所共作者的机构网络图谱进行分析,选择使用关键路径算法,网络节点确定为机构,时间区选择为1年,阈值为(2,2,5),(3,3,5),(3,3,20)。图谱中不同大小和不同颜色的圆环组成的机构年轮来表示机构与化学所共作者频次和共作者年份。如图4、表3所示:

从图4、表3中可以看出,在与化学所共作者的机构中,中科院的节点(freq=3 718)远远大于其他机构,说明化学所与中科院内的共作者者频次最高。还可以看出共作者频次大于30次的机构有14个,其中北京大学、武汉大学、山东大学、清华大学、吉林大学位于与化学所国内共作者的前5位,值得注意的是德国Max Planck Inst Colloids & Interfaces的合作位居第10位,说明化学所与该机构的合作十分紧密。

2.5 与化学所共作者的国家分布(network of co-authors countries)

利用citespace软件对2004-2008年与化学所共作者的国家网络图谱进行分析,选择使用关键路径算法,网络节点确定为国家,时间区选择为1年,阈值为(2,2,3),(2,2,3),(3,3,5)。图谱中不同大小和不同颜色的圆环组成的国家年轮来表示国家与化学所的共作者频次和共作者年份。如图5、表4所示:

从图5、表4中可以看出,在与化学所共作者的国家中,中国的节点(freq=3 931)远远大于其他国家,说明化学所与国内共作者的频次最高。还可以看出与化学所共作者的频次大于10次的国家有9个,其中美国、德国、日本、加拿大、英国位于与化学所合作的前5位。

2.6化学所期刊共引分析(journal co-citation network)

利用citespace软件对2004-2008年化学所期刊共引进行分析,选择使用关键路径算法,网络节点确定为期刊,时间区选择为1年,阈值为(30,30,30),(30,30,30),(30,30,40)。图谱中不同大小和不同颜色的圆环组成的期刊年轮来表示期刊的共引频次和共引年份,用不同颜色的连线来表示期刊间共引的年代。如图6、表5和表6所示:

从图6、表5、表6中可以清晰地看出,目前化学所使用的核心期刊中有9种期刊的共引频次高于1 000,其中,期刊共引频次位于前5位的分别是:《科学》、《自然》、《物理化学杂志B》、《先进材料》、《化学评论》。尤其值得注意的是SCIE数据库中化学所发文量位于前5位的期刊分别是:《物理化学杂志B》、《应用聚合物科学》、《聚合物》、《大分子》、《兰格缪尔》,与期刊共引频次排在前5位的有所不同,因此,在关注学科领域核心期刊的时候,来源期刊发文量和共引频次排名居前列的期刊都应该是重点关注的期刊。通过化学所期刊共引网络图谱中期刊共引频次的分析,能够更快速、直观地了解化学所的核心期刊分布。

2.7 共词分析(network of co-occuring phrases)

利用citespace软件对2004-2008年化学所文献共词和突现词进行分析,选择使用关键路径算法,网络节点确定为关键词,时间区选择为1年,阈值为(10,10,20),(10,10,20),(10,10,20)。图谱中不同大小和不同颜色的圆环组成的年轮来表示关键词的共现频次和共现年份,用不同颜色的连线来表示关键词间共现的年代。最外层紫色圈突出显示表示共词中心性(centrality),即在整体网络中所起连接作用大小。软件还会根据某段时间内关键词共现频次,将变化率高的词从大量的主题词中探测出来,称为突现词,用红色字显示。如图7、表7所示:

从图7、表7中可以清晰地看出,化学所论文共现词,频次高于100的关键词有21个,其中被引频次位于前5位的分别是:聚合物(polymers)、形态学(morphology)、纳米粒子(nanoparticles)、膜(films)和衍生物(derivatives)。通过高频出现的关键词在共词网络图谱中展示的共现频次,在一定程度上揭示了化学所的热点研究方向。

3 小 结

本文通过绘制化学所的合作者、学科领域、合作机构、合作国家、期刊共引和文献共词的可视化图谱,以图谱方式揭示了化学所近5年发展过程中起关键作用的学科带头人、重点学科、核心期刊、研究热点等信息情报。目的在于通过研究机构文献计量的可视化分析方法,探索深度挖掘研究机构内部的重点学科领域分布、合作团队及学科领军人物、研究机构外部的合作研究机构及合作国家的分布以及研究机构的热点研究方向等情报的方法,在满足科研用户学术信息查找利用需求的同时,为研究所制定战略规划、提升国际竞争能力提供有价值的情报,从而进一步提升学科馆员融入研究所科研一线的知识化服务能力。

参考文献:

[1] Chaomei C.Searching for intellectual turning points:Progressive knowledge domain visualization.Proceedings of the National Academy of Sciences of the United States of America,Washington:US National Academy of Sciences,2004,101(Supp1.1):5303-5301.

[2] 刘则渊. 科学知识图谱:方法与应用. 北京:人民出版社,2008.

[3] CiteSpace. [2009-12-20]. cluster.cis.drexel.edu/~cchen/citespace/.

[4] 齐艳霞,刘则源, 赵玉鹏,等.信息可视化视野下的工程伦理前沿. 伦理学研究,2008,37(5):49-54

化学软件论文范文第5篇

关键词:AutoCAD;化工;统计分析

0前言

在信息时代的背景下,各学科领域与计算机技术的结合愈发紧密,人类社会的发展对计算机的依赖程度也越来越高,化学工程的发展也不例外。当前,计算机技术在化学工程中的应用已经深入到流程模拟、图形绘制、化工计算等多方面。无论是通用型软件,还是化学相关专业的专用软件,多样的计算机软件使化学工程从教学到应用[1],都更加便捷。在图形绘制方面,电脑绘图软件众多。当前全球使用最广泛的是美国Autodesk公司开发的自动计算机辅助设计软件———AutoCAD,市场占有率位居全球第一[2]。本文以我国对化工CAD的探索历程为主要研究对象,以中国知网收录的1985~2017年间的相关文献为数据来源,通过综合运用文献计量、词频分析等多种学科及理论,系统分析CNKI检出文献的总体结构,对文献发表数量、发文机构、发表年限等进行统计,分别展开分析。此次检索以“Auto-CAD”为检索词,在全文范围内搜索并含“化工”的文献,结果显示相关文献的起止年限为1985~2017年。

1文献统计

1.1文献来源

将检索结果中的14558篇论文按来源数据库分类,得到文献类型分布如下:期刊文献5135篇(中国学术期刊网络出版总库4962篇、特色期刊173篇)、博士硕士论文9129篇(中国博士学位论文全文数据库841篇、中国优秀硕士学位论文全文数据库8288篇)、会议文献189篇(中国重要会议论文全文数据库161篇、国际会议论文全文数据库28篇)和报纸文献105篇(中国重要报纸全文数据库)。

1.2发表年度

利用中国知网的分组浏览功能,将搜索结果按年份分布,并将检索的结果整理成表1并绘制成折线图.

1.3研究层次

中国知网用户可以通过研究层次分组查到相关的国家政策研究,工程技术应用成果,行业技术指导等,实现对整个学科领域全局的了解[3]。

1.4基金

根据中国知网分组功能,统计获得科研基金资助的相关文献为1327篇,仅占论文总数的9.1%。

1.5关键词词频

为了使选取的关键词能反映知识管理研究热点,且数量适中,经过适当的排序整理,以及同义词的合并,词表中总共收录词频[4]不低于70的关键词24个。

1.6主要科研机构与团队

基于CNKI数据库的检索结果表明,中国从事AutoCAD在化工方面的研究的机构非常多,除大连理工大学、浙江大学外,还有重庆大学、天津大学、华中科技大学等。排名靠前的多为国内综合性高校。

2结果讨论

2.1多样化的文献类型提示需要多途径、多渠道获取计算机辅助教学资源

从14549篇化工AutoCAD论文的文献类型分布来看,博硕士论文以9126篇居第一,占论文总数的63%,期刊论文以5132篇位居第二,占论文总数的35%。而会议文献、报纸文献合计仅占2%,说明博硕士论文和期刊论文是获取化工CAD相关资源的首选,会议文献和网络资源是获取相关资料的重要补充。其中会议文献往往是经过筛选、质量较高,代表了科学技术中的新发现、新成果、新成就以及学科发展趋势的重要情报源。文献的数量说明了相关学术会议不多,相比本科论文而言,博硕士学位论文的作者大多都跟随导师参与过自身学科与专业领域中较为前沿和重要的课题,在论文写作过程中也有更为丰富的基础知识和文献阅读量。因此这类论文的分布情况更能反映学科的发展动向,在本文中,我国化工AutoCAD博硕士论文的选题方向因此能够基本反映出当前化工AutoCAD高层次研究的某种偏向。

2.2AutoCAD在化工中的应用经历了三个阶段

根据所得论文数量与时间(排除2017年)的曲线图分析,从1985年国内发表第一篇关于AutoCAD(化工方面)的论文开始的25年间,处于我国化工CAD研究与应用快速发展阶段,这一阶段期间相关数量逐年增长,于2009年达到顶峰,论文产出1141篇。说明在AutoCAD与化工行业结合进行应用的早期,广大学者积极开展计算机辅助设计的理论与实践研究,科研成果丰硕.数量攀升迅速,极大的促进了计算机辅助设计在化学工程中的应用。紧接着的6年(2009~2013年),每年论文产出呈现波动态势,但幅度不大,波动范围在1101~1249篇之间。此后以2013年为起点,数量逐年减少,该阶段化工AutoCAD的研究出现滑坡,说明开展计算机辅助设计的研究可能由于创新程度不高而遭遇了发展瓶颈。也许正如某些作者所言,AutoCAD在化学工程中的发展方向在于网络化、智能化和多媒体化,这可能也是AutoCAD应用发展的重要途径和思路,我们将拭目以待。上世纪90年代至21世纪初,改革开放在我国取得全球瞩目的光辉成果,这一时期各行各业都有了长足的发展,这辉煌的15年时间,也是化工行业成长最快的时期。计算机技术的飞速发展,特别是计算机网络技术的出现和应用,革新了设计手段和方式,达到一个前所未有的新阶段:不再需要图版,设计更加灵活机动,减少大量重复劳动。这样既节省了时间,工作效率也得到显著提高。起初无论是电脑技术还是AutoCAD软件的使用,都只有少数专业人员才有机会使用和掌握。现在计算机技术已经被广泛应用于AutoCAD,基本实现了设计手段的现代化。结合上述这一具备中国特色的发展历程来看,也从侧面印证了前文从时间总结而来的AutoCAD软件在我国化工业的发展规律。

2.3对实际生产的研究比重大,理论基础研究较少,且缺乏创新

论文研究层次统计表明,相关研究主要集中在工程技术(自科)和基础与应用基础研究(自科),分别占比67.5%、17.5%,合计占论文总数的85%。其中工程技术也叫生产技术,顾名思义是应用于实际工业生产的技术。人们为了改造自然,将科学知识和技术发展的研究成果应用到工业生产中,在这一过程中所使用的方法或手段即为工程技术。而手段与方法的差异,以及造成结果的不同,将工程技术衍生出各种不同的形态。而应用基础研究包含于应用研究,属于其中的一种理论性研究工作。应用基础研究有明确的研究方向,在其基础上可在短时间内获得工业技术的突破[5]。也就是说对化工AutoCAD的研究最主要的一方面是针对工业实际生产技术方面的研究,尤其是对设备、工艺的研究,而化工AutoCAD软件正是研究设备与工艺必不可少的现代绘制工具。而应用基础研究层面,从上述解释中可以看到,这方面的研究主要是在已有研究成果基础上的“改造”和“突破”。就是说当前化工AutoCAD的理论研究难有创新突破,大多研究仍追寻着前人的研究成果。

2.4基金资助强度和范围不大,基金论文比偏低

由于AutoCAD技术对于工程技术而言,只是一种辅助工具。并且作为一款计算机软件,经过几十年的发展,已经达到一个较为完备的程度,在实际生产的应用中难以有创新性的突破。而作为学术科研的研究对象,化工CAD这一课题更显单薄。仅就调差问卷的结果来看,其相关课程在化学工程与工艺专业中,也并未得到足够的重视。从统计结果来看,也仅有9.1%的论文获得基金资助,还有许多研究成果并未获得基金支持。这一现象从某种程度上表明了,“AutoCAD在化学工程中的应用”这一研究主题,在研究水平和质量方面,有待提高。

2.5科研贡献主要来自国内综合性高校

排名前20的研究机构多为国内985、211综合性高等院校,是目前我国化工CAD研究的主要贡献力量。但AutoCAD作为更具实际应用性能的工具软件,在成产前线的科研人员应当更多的投入对该课题的研究,在理论与实践中找到平衡。

2.6教学是研究的敲门砖,教学研究还需加强

从整个关键词词频的分布来看,AutoCAD技术的研究重点仍在软件本身的优化设计上,尤其是AutoCAD的二次开发。对AutoCAD教学的研究相对较少。而AutoCAD作为化工专业的一门课程,实际上对于学生毕业后从事工作是一项非常有帮助技能。尽管AutoCAD有简单易学的优点,适合使用者自学钻研。但在校期间若能更好的获得指导性学习,对今后掌握该软件,进行更深层次的应用和研究将大有裨益,对教学研究的投入将对未来该研究方向的发展起到促进作用。

3小结

传统CAD软件主要应用在产品的详细设计阶段,作为一个实体造型工具,在化工产品生产中发挥了巨大作用。但通过研究,我发现市场的需求越来越广泛,用户需求越来越趋向于个性化。未来AutoCAD在化学工程中的应用趋势在于该软件的二次开发,利用二次开发工具或数据接口功能,将各类行业特殊技术研制成AutoCAD系统的各类设计程序,使设计更具针对性,从而提高生产效率,缩短化工车间的投产周期。另外由于本文使用的文献计量法虽然是一种定量方法,但其数据收集基于不同的数据库,有时候甚至需要人工录入。本文借助中国知网本身的数据分组功能,但中国知网并不是文献计量法搜集数据的唯一渠道,借用不同的数据库,得到的数据结果一定会不同。并且仅就中国知网这一数据库而言,在不同时间使用相同的搜索条件,搜索结果也会有细微的差别。因此本文仅试图借助这一较为新颖的方法,粗略的探讨国内化工AutoCAD的研究趋势和发展,以期能为广大学者提供新的思路,促进该研究领域的创新能力和科研效率。

参考文献:

[1]黄国波.《化工制图》与AutoCAD组合教学模式探讨[J].广州化工,2011,39(20):146~146.

[2]张波.基于AutoCAD的客船撤离计算辅助工具的设计与实现[D].上海:上海交通大学硕士学位论文,2014.

[3]张黎,王立克.高校图书馆基于CNKI的科技查新研究[J].科技风,2010,(17):251~260.

[4]马费成,张勤.国内外知识热点研究———基于词频的统计分析[J].情报学报,2006,(4):163~171.

[5]吴曼.基于科学计量的知识生产与技术开发时间关联分析[D].北京:中国科学技术信息研究所硕士学位论文,2013.

化学软件论文范文第6篇

关键词:化学教学;信息技术;统计分析

文章编号:1005-6629(2008)03-0076-03中图分类号:G633.8 文献标识码:B

1引言

1998年,全国中小学计算机教育研究中心的有关研究人员从西方发达国家引入“课程整合”的概念,并于1998年6月开始设立“计算机与各学科课程整合”课题组,并将其列入“九五”重点课题的子课题进行立项。2000年10月25日,在“全国中小学信息技术教育工作会议”上,教育部部长陈至立第一次从政府的角度提出了“课程整合”的概念。从此信息技术与学科课程的整合就成为教育领域中的一个热点话题。如今,信息技术与课程整合的概念提出整整十年了。本文通过文献研究法,回顾了十年来信息技术与化学学科整合的历程,并对整合中存在的问题、发展的趋势进行了探讨。

《化学教学》是我国影响力较大的中等教育类期刊,其发表的论文具有一定的权威性,能代表着中等化学教育研究的前沿水平。本文对《化学教学》1998年―2007年十年来合计发表的158篇有关信息技术与课程整合的研究文献进行统计分析,了解信息技术与基础化学学科整合的研究的现状、地区分布等问题,从另一个侧面看到整合的不足及趋势,以便更好地促进信息技术与化学课程的整合。

2论文的统计分析

2001年以前,《化学教学》中有关信息技术与化学教学的文章都出现在“教师论坛”“教学资料”等栏目中。从2001年开始至今,该杂志专门开设了“计算机在化学中的应用”这一栏目,本统计的文献主要来自于该栏目,但还有少部分文章分布于其他栏目。

2.1论文年代分布

论文量的多少,在一定程度上可反映该方面研究的水平和发展速度。1998年―2007年有关信息技术在化学教学中的应用的研究论文的年代分布情况如表1。

表1 信息技术与化学整合研究论文年代分布

由表1可知。该刊从1998年―2007年十年间共发表有关信息技术与化学课程整合的文章158篇,年均15.8篇。虽然每年论文数量有些波动,但从总体上看,论文数量呈增长的趋势。2000年,教育部做出“从2001年起用5到10年左右时间,在全国中小学基本普及信息技术教育,全面实施校校通工程,以信息化带动教育的现代化,努力实现基础教育的跨越式发展”的决定,该决定一定程度上使得01年和02年论文数量有较突出的增长。从表中我们还发现,从1998年到2003年,中学教师发表的文章数远多于大学教师发表的文章数,但从2004年开始,高校教师发的文章数超出了中学教师。总体上看,中学教师发的论文数量要多于高校,但中学教师的后劲不足。

2.2论文内容分布

根据信息技术与化学课程整合的几个层面[2]和该类论文的特点, 从五个大方面对论文进行分类。论文内容的统计分析如表2。

表2 论文内容的统计

《化学教学》期刊上发表的关于信息技术与化学课程整合的研究论文基本涵盖了信息技术与课程整合研究的各个方面,也涉及到了信息技术与课程整合研究的前沿领域,如“数字化学习资源建设”,“信息技术与探索性学习”,“利用网络资源的合作学习”“Webquest”等,又有自己的学科特色,如“化学工具软件”和“手持技术”。但文献统计的数据也反映出了课程整合中存在的一些问题。从表2可看出,在五大类论文中,有关多媒体教学的论文合计为70篇,占论文总数的44.3%,居首位。这与实际教学情况是吻合的。笔者在统计论文过程中发现,很多关于教学设计的论文中都涉及到了多媒体的应用,其实多媒体教学已逐渐融入到我们的教学实践当中。然而,信息技术与课程整合并不等于多媒体教学,整合更应涉及到教学理念、教学模式和教学结构的变革[3]。表2中的数据反映出的值得我们反思的一些问题有:(1)期刊中介绍化学工具软件的文章占到了23.4%,此外,有关素材编辑的文章也属于软件介绍的范畴(Flash,Photoshop等素材处理软件),总的来说介绍软件的文章占到38.6%以上,而关于信息技术与化学课程整合的理论研究的论文仅为9.3%,相对来说偏少;(2)多媒体教学还停留在CAI阶段,涉及到CAL和积件的论文仅有3篇,这也是我国信息技术与课程整合中普遍存在的问题;(3)网络技术为研究性学习、自主学习和协作学习提供资源支撑和交流平台,利用网络技术进行教学具有广阔的发展前景,但目前利用网络进行化学教学的实践还很少,相关论文为7篇,占论文总数的4.4%。

1.3 论文第一作者地区分布

《化学教学》近十年来信息技术与化学课程整合研究论文作者所在区域分布如表3。

表3 作者所在地区分布

表3表明,十年来,全国20个省、直辖市在《化学教学》上发表了有关信息技术在化学教学中应用的论文,作者覆盖我国62.5%的地区,其中江苏、广东、上海、浙江和安徽5个地区论文总数为104篇,占论文总数的65.8%,说明这些地区的教师利用信息技术教学的积极性很高。但也看得出,东西部和南北的发展是极不平衡的,这也与地区的经济发展密切相关,因为利用信息技术教学是需要硬件设备支撑的,这也说明国家在实施“校校通”工程时应加大对西部的资金投入,加强对西部中小学教师的信息技术培训。

2.4 论文作者单位的分布机构类型

论文作者所在系统单位的分布见表4。

表4 论文作者单位分布

由表4可以看出,信息技术与化学课程整合研究的作者主要是普通中学和师范院校老师,作者人数分别占总人数的42.4%和44.6%,这是由于《化学教学》本身就是面向广大中学教师、师范院校师生的,另外从事信息技术与化学课程整合研究的群体也主要是中学化学教师和师范院校的化学教师。

2.5作者合作情况统计分析

表5 论文作者合作情况统计

从表4、表5的数据可以得出,论文总计158篇,作者总人次231人,其中57篇为合作完成。表中有两点需引起我们的注意:(1)高校教师合作情况远好于中学教师合作情况,中学教师独立完成论文73篇,而仅有14篇是由两人合作完成;(2)在158篇论文中,有6篇是由高校老师和中学老师合作完成,高校和中学老师间合作研究也是我们所大力倡导的。

3 综合评价与建议

在信息技术与课程整合概念提出十周年之际,通过文献研究法我们分析了十年来信息技术与化学课程整合的情况。总的来说,十年来取得的成绩有:(1)信息技术逐渐融入到我们的化学课堂教学之中,信息技术与化学课程整合的研究越来越得到广大化学教育工作者的重视;(2)研究不仅涉及信息技术与课程整合的一般领域,还涉及到“化学专业工具软件”,“手持技术”这些具有化学学科特色的领域;(3)一些研究已经涉及到了信息技术与课程整合研究的前沿领域。但不足的地方也有很多:(1)由于技术水平的限制,广大中学一线教师研究的后劲不足;(2)信息技术与化学课程整合的理论研究和实践程度不够深,广大化学教师对信息技术的利用基本还停留在多媒体辅助教学阶段;(3)发展及不平衡,东西差距和南北差距较大。

针对以上问题,我们提出几点建议:(1)通过培训等措施提高中学化学教师信息技术水平;(2)吸收国内外信息技术与课程整合的最新研究成果,加强化学数字化资源建设(如主题资源网站建设)和研究基于网络的研究性学习、协作学习和自主学习等学习模式在化学教学中的应用;(3)加强中学校内信息技术教师与化学教师,化学教师与化学教师之间的合作。(4)抓紧实施“校校通”工程,“东部抓资源,西部抓工程”,通过网络实现东西部教育资源共享,促进东西部发展平衡,从而实现教育公平。

参考文献:

[1]化学教学,1998-2007.

[2]钱扬义,王祖浩,陈建斌等.信息技术与化学课程整合研究[J],课程・教材・教法,2004,24(7):63-67.

化学软件论文范文第7篇

关键字: 计算机软件 化学教学 多媒体技术

随着中国计算机水平的不断提高,计算机各种常用软件已经普及到化学相关学科,主要原因是化学本科生或者研究生都需要做大量实验、写论文,其中会涉及大量数据处理,比如,化学反应式、二维和三维结构图、各种实验光谱(如红外,紫外-可见,X衍射和核磁等)及化学反应示意图和工艺流程图等。但是根据我们以往的经验,学生在写毕业论文或者处理实验数据时,往往不知该如何操作,有的文档编辑得一塌糊涂,有的化学反应式或者实验装置示意图不合理等,甚至连参考文献引用及论文脚注和页码都不会插入,这些都无形中给评阅教师带来更多不便,而且不利于学生毕业以后的工作学习。

对于化学相关学科,我们提供了各种常用软件,如Word、PowerPoint、Excel、Chemoffice、ChemSketch、Origin等。这些软件可以相互补充、各取所长地为学生服务,让他们在实验数据处理及论文纂写中更方便自如。

一、软件内容及用途

常用软件涉及的主要内容有:Word、PowerPoint、Excel、Chemoffice、ChemSketch、Origin等。Word在化学论文及文献书写中的应用,如文字图形、公式编辑、排版、三线制表格、声音、动画及用于毕业论文写作和格式排版等,能够满足用户的各种文档处理要求;Excel可以极大地提高数据处理的工作效率,并轻松地完成数据的各类数学运算;PowerPoint进行产品展示和毕业答辩;Chemoffice画各种二维和三维分子的结构式;ChemSketch除了可以绘制实验装置和画结构式之外,还可以预测分子的物化性质;Origin软件进行大量数据处理分析,其涉及图像处理、光谱峰值分析和曲线拟合等各种完善的数学分析功能。

二、教与学

这些软件的教学必须以多媒体教学为主,这样一方面教师通过课堂讲授,并和学生讨论、提问等形式进行,使学生充分融入课堂教学气氛中,并在学习过程中融会贯通。另一方面通过多媒体技术的现场教学,学生直接接触各种常用化学软件的操作和使用过程,并在教学中提出疑问,方便学生和教师的直接交流,以期增强学生学习效果。此教学一般会采取16学时的多媒体教学环节,并设置16学时的上机实践性教学环节,从而丰富教学内容,培养学生的动手能力和操作技能,为今后在化学相关的计算机处理工作中打下坚实基础。

三、教学实例示意图

1.ChemOffice三维结构建模

ChemOffice软件旗下有Chem3D和Chemdraw两个模块,其中Chem3D提供了多种多样的3D模型建立方法。如可以利用单键、双键或三键工具直接绘制3D模型,可以将分子式转换成3D模型,也可以用Chem3D提供的子结构或模板建立模型。

(1)单击垂直工具栏上的单键按钮。

(2)将椎鼠标移动至模型窗口,按住鼠标左键拖出一条直线,放开鼠标即成乙烷(C2H6)立体模型。

(3)将鼠标移至C(1)原子上,向外拖出一条直线,放开鼠标即成丙烷(C3H8)立体模型。

(4)将鼠标移至C(2)原子上,向外拖出一条直线,放开鼠标即成丁烷(C4H10)立体模型,如图1所示。

图1 三维结构(a)和拟合直线(b)

2.Origin回归拟合参数设置

所谓回归(regression)分析,简单地说,就是一种处理变量与变量之间相互关系的数理统计方法。用这种数学方法可以从大量观测的散点数据中寻找到能反映事物内部的一些统计规律,并按数学模型形式表达出来,故称它为回归方程。

例如在自由落体运动中,物体下落的距离S与所需时间t之间,有如下关系:

S=gt

变量S的值随t而定(其他项是常数),这就是说,如果t有确定值,那么S的值就完全确定了。这种关系就是所谓的函数关系或确定性关系。

回归(Regression)也可以称为拟合(Fitting),回归是要找到一个有效的关系,拟合则要找到一个最佳匹配方程,二者基本是一个意思。

根据回归关系可分:线性回归(linear regression)和非线性回归(nonlinear regression)。其中非线性回归处理的情况要比线性回归复杂得多,需要进行更大量的尝试。因此除了依赖计算进行反复运算逼近外,用户自己对参数的取值范围和估算也很重要。

四、学习效果

在每节课的教学环节后可通过设置不同练习题让学生熟悉如何操作,再通过学生的学习和掌握情况,进行反复例题练习。

五、例题案例

例题的设置必须合理,有针对性。办公软件的Word模块,通过设置如下例题,让学生掌握几个文档的知识要点:插入脚注、标题设置、公式编辑器使用、文本及声音批注和超级链接。

图2 练习题模板

六、结语

常用计算机化学软件作为一门实践性课程,对化学学生的毕业论文创作有非常重要的作用。教师通过实例教学,充分选择合适的教学案例,灵活使用现代多媒体技术,并结合学生的上机操作,培养学生的操作技能,为今后化学相关的计算机处理工作打下坚实基础。

参考文献:

[1]彭智,陈悦.化学化工常用软件实例教程[M].北京:化学工业出版社,2014.

[2]李谦,毛立群,房晓敏.计算机在化学化工中的应用[M].北京:化学工业出版社,2015.

化学软件论文范文第8篇

【关键词】化学软件;课程教学;改革;教学模式

随着现在科技进步和计算机技术在专业和科研中的逐步应用和推广,专业软件成为科研、生产和教学中必不可少的素养之一[1],在化学与化工专业领域,Chemoffice和Origin成为最基础也是最重要的专业软件,而且目前用人单位也非常看重学生的计算机应用水平,但是大量研究生进入课题后,他们在撰写科技论文与毕业论文时,无法熟练使用这两款软件,这限制了论文的整体水平。随着计算机技术的发展,各门学科内已经广泛使用各种专业软件,众所周知,图形化的描述要比文字等表达方式更为直接、详细和准确,因此计算机辅助绘图技术已经成为化学、化工、医学等领域的重要表达方式,在科技论文的撰写与数据处理方面非常重要。随着生物信息学领域的进展,大数据与计算机模拟计算技术已经成为计算化学领域的重要基础。本文作者累积了数年的国内化学软件类课程教学经历与国外留学经历,本文拟就此类课程的教学模式进行深入探讨。

1 传统教学的模式

目前,传统的软件类课程教学与普通课程并无太大差别,教师使用ppt等演示文稿首先进行课堂教学,在每章结束或者全部课程结束后,安排学生上机教学。这种教学方式的优点是课时较容易掌握,整体课时量较大[2]。缺点是每款软件都是从菜单功能讲起,然后进入某个模块,讲解某个简单实例后,进入下一个功能,讲述过程十分凌乱,学生学习过于碎片化,课堂教学后,所能记忆的信息有限,且都是碎片化的信息,不利于对软件整体的理解。虽然在每章结束后,学生可以通过上机对教师的讲述内容进行复习和强化,但是教学与上机的相隔时间过长,学生上机时对内容依然非常陌生。

2 传统教学的课时安排

2012年我系面向化学工程与技术硕士研究生开设了《化学软件基础》课程,共计32课时,共讲述办公软件(office),绘图软件(Chemoffice,AutoCAD,Origin,Photoshop和3Dmax),编程软件(Matlab),分子模拟软件(Gaussian)共计8款软件,平均每款软件讲授课时为4课时[2]。由于国内众多兄弟院校均在本科生阶段开设类似课程,因此2013年,我系将《化学软件基础》课程开设为三年级本科生的选修课程,讲述内容依然为上述8款软件,课时压缩为16课时。从目前课程的运行情况来看,本门课程主要面临两个主要问题:(1)讲述软件较多,讲述较为宽泛,平均每款软件只能讲述2个课时,教学效果较差,每款软件只能讲述最基础的内容。(2)讲述内容单调,目前的讲述内容均为如何使用软件,但学生对目前这些软件在科研与生产实际中有哪些使用实例并不清楚。后续学生每个软件4学时的上机课时并不能掌握课堂讲述内容。

3 课堂教学模式与课时改革

以32课时为例,在讲述内容方面,削减软件数量,共讲述ChemOffice,Photoshop,Origin,Matlab等4款软件。其中,Microsoft Office属于目前最流行的办公软件,大部分学生对于该软件的使用已经非常熟悉,因此可不列为教学内容。Chemoffice是Cambridgesoft公司的一款专门针对化学专业使用的软件包,其中ChemDraw,Chem3D,ChemFinder,ChemInfo是最常用的模块。Chemdraw的主要功能是用于绘制反应方程式和流程图,包含各种常用化学键、分子式等模板可供使用,是目前绘制方程式和流程图最常用的软件,并且可以根据所绘制的分子式生成该化合物的模拟核磁共振谱图,对于化学研究和工业生成有巨大的帮助。而Chem3D的最重要功能是可将所绘制的二维分子式转化为3D视图。ChemFinder是该软件的一个数据管理模块,可以用于检索化合物的结构,分子式等信息。ChemInfo是一个化学数据库,包含数十万种化合物的化学结构,分子式,物性常数等信息。因此,整个ChemOffice软件自身构成了一个庞大的化学系统,整合了大多数使用者所需的功能。

Origin是OriginLab公司推出的数据分析和绘图软件,现在的最高版本为2015版,它的主要功能包括:数据分析(排序、调整、计算、统计、频谱变换、曲线拟合),绘图,与编程。其特点是使用简单,采用直观的、图形化的、面向对象的窗口菜单和工具栏操作,全面支持鼠标右键、支持拖方式绘图等。目前绝大多数的科学期刊都要求使用Origin软件进行图形的绘制,它是目前在全世界被广泛使用,被公认为是最快、最灵活、使用最容易的工程绘图软件。具有强大的数据分析功能,包括线性回归,非线性拟合,插值,频谱分析,3D绘图等。因此也成为化学专业学生必须掌握的软件之一。

Matlab软件是目前数据分析领域功能完备、使用较为简单的数学与计算分析软件,可以用于化学领域中的数据计算、结果处理、微分方程的数值解析等方面,且可以与Origin软件进行编程。

因此,本专业的主要课时用于最基础的Chemoffice,Origin,Matlab这三款软件上,其中最复杂的Origin和Matlab两款软件的课时均为10课时,达到深入讲述这两款软件的目的。

化学软件的使用主要是用来解决科研与生产中的数据统计,示意图,反应方程式,总结报告等方面,因此,在教学模式上,改革以往课堂教学与上机教学分开的模式,要求学生必须携带笔记本电脑上课;改变碎片化教学从菜单和功能讲起的传统模式,以现代高水平科技论文中所使用的化学软件为实际例子,结合实验设计、绘图、数据分析等方面,全方位分析高水平科技论文中的软件使用技巧,绘图布局,数据分析以提高讲述效果,在课堂讲述时,要求学生必须通过个人的笔记本电脑模拟教师的操作,并完成全部绘图。

4 改革效果

目前上述改革已经实施一年,虽然总体上没有了单独的上机教学,从总课时量上减少了课时,但是教学效果避免了碎片化,学生至上课伊始就直接接触软件的使用,教学与学习效果有了极大的提高。

【参考文献】

[1]徐顺,张勇,赵晓洋,刘宏民.常用化学软件多媒体教学软件的开发研究[J].计算机与应用化学,2005,22(12):1142-1145.

[2]窦立岩,汪丽梅.《高分子材料计算机应用基础》课程改革和探索[J].科技信息, 2011,(23):454-455.

化学软件论文范文第9篇

关键词:ChemDraw 绘图 化学

中图分类号:G633 文献标识码:A 文章编号:1672-3791(2016)09(a)-0173-02

1 ChemDraw软件简介

每个从事化学方面学习和工作的人,经常会遇到需要绘制化学结构式和输入反应式的情况,手工绘制不仅耗时耗力,而且结果往往不尽人意。这个时候,就需要一些工具软件的帮助,而ChemDraw就是这样一款软件。ChemDraw是全球领先的科学绘图工具,它不仅使用简便、输出质量高,并且结合了强大的化学智能技术,集成ChemOffice套件和许多第三方产品,为化学工作者提供一套完整易用的绘图解决方案。

ChemDraw功能强大,可以预测化合物属性、光谱数据、IUPAC命名以及计算反应计量,包括绘制化学结构及反应式,获得相应的属性数据、系统命名及光谱数据等,由于它兼容性好,成为了各种论文、出版物等绘制化学分子结构图的标准。

ChemDraw在兼容方面完美融合了Office软件和Chem3D等软件,利用ChemDraw绘制的各种化学结构式,可以像传统office软件里的操作一样,进行编辑、翻转等操作。将绘制好的化学方程式复制到Office软件中,双击即可打开,这样就可以在Office中进行修改,也可以复制到Chem3D进行相关的操作。

2 ChemDraw的基本功能

(1)可以绘制、编辑各种化学式、方程式、立体图形。绘制操作简单、智能化,绘制时会自动形成相应键角,化学式的下标也会自动形成,自带的模版非常丰富,数据库的查阅也很方便。

(2)可以预测化合物属性、光谱数据、IUPAC命名以及计算反应计量,节省研究时间的同时提高数据准确性。能够预先识别可能具有所需属性的化合物,再进行实际合成,从而达到节省时间和降低成本的目的。

(3)可以处理化学分子结构查询类型(例如:可变附着点、R基团、环/链大小、原子/键/环类型和通用原子),实现数据库快速检索。

3 ChemDraw的绘制实例

3.1 箭头的绘制

在化工流程图、有机中间体等绘制过程中,往往需要绘制各种箭头,可以使用箭头工具和钢笔工具进行绘制,其中钢笔工具可实现特殊形状的箭头绘制。

(1)选择钢笔工具,执行菜单命令[曲线]/[结尾处箭头],在箭头起始位置各单击一下,按ESC键退出。

(2)鼠标选中绘制的箭头,再把鼠标移动到箭头起点处,当鼠标出现手形时拖动箭头的起始点,调整位置和弧度。

(3)再把鼠标移动到箭头终点处,同样方法调整终点位置和弧度(如图1)。

3.2 绘制有机纽曼式结构

(1)选择实键工具绘制。

(2)水平复制结构。选择蓬罩工具罩住目标, 按住Ctrl键+被选结构, 再按住Shift键+被选结构,水平移动到需要位置放开。

(3)水平翻转结构。选择蓬罩工具罩住目标,执行菜单命令【对象】/【flip vertical】。

(4)选择轨道工具中工具,定位。

(5)调整前后顺序。选择蓬罩工具罩住右边结构,移动到中心,执行菜单命令【对象】/【bring to front】。

(6)键的连接。选择蓬罩工具罩住全部结构,执行菜单命令【对象】/【join】。

3.3 绘制有机锯架式结构

(1)选择实键工具绘制。

(2)复制对象。选择蓬罩工具罩住目标, 按住Ctrl键+被选结构复制到相应位置。

(3)选择实键工具按住左键不放绘制连线。

(4)ChemDraw是一款强大的绘图软件,用它进行论文的撰写,会节省大量时间,同时提高了论文的质量,给化学工作者提供了很大的便利。

参考文献

[1] 马纪伟,张伟.ChemDraw Ultra在化学文档中的应用[J].卫生职业教育,2005(23):44-45.

[2] 曾建明,何敬.ChemDraw软件在化学教学中的应用[J].实验教学与仪器,2015(1):44,47.

[3] 许妙琼.分子结构绘制软件-ChemDraw[J].科技资讯,2007(3):174,176.

化学软件论文范文第10篇

关键词 化学计算软件 Origin Chemoffice 自主学习

中图分类号:G424 文献标识码:A

Develop Student's Self-learning Ability in the Teaching

of Chemical Computational Software

GUO Yan, LI Jun

(College of Environmental Science and Engineering,

Nanjing University of Information Science & Technology, Nanjing, Jiangsu 21044)

Abstract With the widely increasing application of computing software in chemistry, introducing such chemical computational software into the teaching of senior undergraduate is receiving more and more attention. These courses can not only allow students to understand the progress of chemistry and useful research tool, but also lay a good foundation for students to engage in the corresponding experimental and research work. In this course, we use the question-teaching to stimulate the interest of students' self-learning. Class exercise is closely linked with the actual experiment result, to create a self-learning space. At the same time, using the examine ways of small issues or papers to develop students' self-learning ability.

Key words chemical computational software; Origin; Chemoffice; self-learning

随着计算机科学技术的飞速发展,硬件和软件日新月异的更新,传统的学科教学及科研已经离不开计算机辅助的影子。当前化学学科的研究已达到分子设计的水平,计算机在化学中的应用也是与日俱增,特别是在深入研究化学基本理论方面显示出了强大的作用。化学化工专业的学生只学习一般的计算机技术知识显然不足以跟上科技进步的脚步,近年来国内化工院校或专业都或多或少开设了计算机在化学化工中应用方面的课程。①②

国内以往的一些介绍计算机在化学或化工方面应用的书籍,以介绍化工算法的居多,对非计算机专业的学生已经不太适用。因而我们在化学专业高年级的课程中开设了化学类计算软件课程,旨在给学生们介绍当今计算软件在化学化工中的应用,并要求学生们能掌握具体软件的操作要求。

在化学专业中引入计算机软件的教学,不仅可以让学生了解化学学科的前沿进展和科研工具,而且有助于提高学生自主学习的能力。

1 教学中采用提问式教学,激发学生自主学习的兴趣

化学专业的基础课和专业课的讲授方式一般以讲授为主,要分析原理、推导公式、并辅以一些习题。化学类计算软件这门课程不同于这些传统的专业课程,这门课程以软件应用为主,本质为实践性教学课程,从教学内容上通常分为理论讲述和上机实习两个环节。在设置这一课程时,出于鼓励学生在实践中开展自主性、协作性和研究性学习的目的,将理论讲述的部分调整至总学时的1/4,剩下的学时用于上机实习。③

在计算机化学的理论授课中,重点讲解化学计算中常遇到的数学问题,如最小二乘法,线性方程组的求解,函数插值及拟合算法等;简述化学学科中常用的数据处理或绘图软件,如Origin,ChemOffice,Matlab等。接下来学生们通过大量的上机实习,来熟悉软件的基本操作,并能熟练应用软件。

授课中,我们改变以往的阐述型教学方式,以提问式教学为主。以Chemoffice为例,这是一款强大的化学绘图软件,能过绘制各种复杂的分子式、化学方程式、二维空间结构、分子的构象结构以及三维空间模型等。授课中,首先给学生们浏览教师自己绘制的,或从文献中看到的一些代表性的化学结构或反应流程图片。接下来,提出问题,如何绘制出自己需要的结构式或反应方程式,如何做出与文献上看到相一致的模型图片。高年级的本科生大部分已经进入实验室进行相应的课题研究或协助导师开展辅研究,也触及到文献及论文写作方面的内容,由于讲课及提问内容和学生自己的论文内容的关联性,激发了学生们自己探求软件的兴趣。

上机实习由提问式讲解和任务练习两部分组成。我们以提问的讲授方式介绍计算机知识和化学学科内容的结合,教会学生一些基本的操作命令。接下来提出问题,如如何绘制葡萄糖的分子结构式,让学生们当堂完成。在整个上机实习中,我们的提问由易至难,层层递进,逐步引导,激发学生们自主学习的兴趣。还是以ChemOffice的教学为例,我们从简单分子结构式的绘制开始,过渡到立体结构式的绘制,接下来生物分子结构式的绘制,进一步学习核磁共振谱图的模拟,最后完成漂亮的三维结构式的绘制。

2 课堂练习紧密联系实际实验结果,创造自主学习的空间

上机练习中,我们提出的问题,布置的任务将紧密联系实际实验数据。上机练习过程已经不仅仅是学生们在计算机上完成一个或多个布置的任务,而是这些任务与学生自己的毕业课题或科研课题相结合。学生在完成这些问题及任务的过程中,首先逐步建构起计算化学软件应用的整体认知性,接下来应用在自身的实验或数据结果中,能够起到很好的练习效果。在整个上机实习的过程中,打破了由教师教授内容给学生的传统方式,而是将教学内容隐含在任务的背后,让一项项的任务成为带领学生了解、熟悉内容的引线。④让学生感到所练习任务内容的新颖性和实用性,激发学习热情。在这样的上机实习过程中,教师从讲授者、灌输者变为引导者、组织者,从讲台上讲解转变为走下来与学生交流讨论,共同学习,为学生创造自主学习的空间。

Origin软件为一个多文档界面的应用程序,利用该软件可以绘制散点图、点线图、柱状图、三维图等,还可以对图表进行个性化设置,既有科学的准确性又兼具审美性。⑤因而,该软件也是化学学科中常用的绘图软件。在Origin软件的课堂练习中,我们首先将Origin软件的界面与基本操作演示给学生,引导学生自己进行探求,如,探索如何调整坐标轴、怎么加入文字及图例说明,如何在简单的单层图的基础上绘制多层图,最后激发学生去尝试绘制三维图形。在学生自己探求的时候,以他们自己的实验数据为主,学生对于将自己得到的数据处理成规律性的图形具有积极的主观能动性。对于一些没有获得实验数据或还没有进实验室的学生,我们则提供以往实验课堂上的数据,如酸碱滴定实验中滴定剂与pH的数据,蔗糖燃烧热的实验数据等。学生们因为都做过相应的实验,手绘过相应的实验数据图,对于用Origin软件处理出来的数据不陌生,但又有新鲜感,能够起到很好的上机实习效果。

3 以小课题或小论文的考察方式,锻炼学生自主学习的能力

良好的课堂效果离不开编排合理的课堂练习以及恰如其分的考查方式。我们摒弃了传统的考试这一考查方式,以结合学生自己课题或感想的小课题或小论文的方式对该门课程进行考查。化学类计算软件的课程性质,是以老师教授为辅,学生自己探索,自主学习为主。这种计算软件的学习应用,突破了传统意义上课堂上时间和空间的限制。并且,学生们可以在实际的学习或科研中灵活应用,有较为丰富的应用背景。最主要的,学生们可以根据自己的水平和需要自主选择不同层次的软件应用。因而以公式、问答等传统的考核方式并不适用于这门课程。我们会给定课题范围,比如Origin软件的基本知识介绍和其在三角相图绘制中的应用;以fullerene分子三维图形绘制为基础的Chemoffice软件在化学结构绘制中的应用;以三维等高线图为例介绍Matlab绘制三维图形的处理。这些小论文题目的给出,不仅与化学学科中的基本原理和基本应用紧密联系,同时,能够让学生们在熟悉软件的基础上去探索软件的一些高级应用模式。

我们的考核也不仅仅局限于给出的课题范围,更加鼓励学生以自己的科研数据为主,举例介绍这些软件在他们归纳总结数据时起到的作用。这种不划定界限,不给定课题的方式,更能鼓动学生们,尤其是已经进入实验室研究的学生们对于软件学习的热情,达到自己的学习目标,进而提高自身自主学习的能力。

4 结语

计算机软件对化学学科的影响已经是举足轻重,因而很有必要在本科高年级阶段引入该类课程。这类课程的设置不仅可以让学生了解化学学科的前沿进展和科研工具,为学生从事实验及科研工作打下良好的基础,而且在课程的教授与考核中,有的放矢,帮助学生培养自主学习的能力。

注释

① 张荣国,雷家珩,陈永.计算机辅助化学教学研究.武汉理工大学学报,2004.26:93-95.

② 黄正国,徐梅芳.对计算化学的涵义与课程开设情况的调查.计算机与应用化学,2009.26:661-664.

③ 李建平.《计算机化学》课程教学方法改革的探索.湖北大学成人教育学院学报,2005.24:65-74.

④ 何基生.大学生自主学习能力的内涵、构成及培养.湖南科技学院学报,2012.33:75-78.

上一篇:水资源管理学论文范文 下一篇:哲学语境论文范文

友情链接