铸造工艺论文范文

时间:2023-09-20 07:42:32

铸造工艺论文

铸造工艺论文篇1

[关键词]消失模铸造工艺 缺陷 处理

中图分类号:TG249.5 文献标识码:A 文章编号:1009-914X(2016)27-0052-01

前言:消失模铸造工艺本身具备着无需取模、无分型面、无砂芯的特点,这一特点就使得其本身生产的铸件没有飞边、毛刺和拔模斜度,但我国消失模铸造工艺也存在着废品率较高的问题,为了解决这一问题推动我国消失模铸造工艺的发展,正是本文就消失模铸造工艺进行研究的目的所在。

1. 常见的消失模铸造工艺缺陷

1.1 铸型损坏

在消失模铸造工艺中,铸型损坏是较为常见的消失模铸造工艺缺陷,这一缺陷主要存在着铸型上部崩塌、型腔内局部产生空洞而致铸型损坏、浇注系统设置不当而致的铸型损坏等三种缺陷形式。具体来说,铸型上部崩塌主要源于铸型上部崩塌或金属液的浮力损坏;而在型腔内局部产生空洞而致铸型损坏则主要源于金属液置换消失模的过程不顺畅,空洞处的铸型因受金属液的热作用而损坏所致;而浇注系统设置不当而致的铸型损坏则主要源于内浇道太短与砂层太薄的影响[1]。

1.2 浇注不足

除了铸型损坏,浇注不足也是较为常见的消失模铸造工艺缺陷,这一缺陷的出现主要是受温度低合金金属液流动性较低所致。此外,薄壁铸件的生产也较为容易出现浇筑不足的问题。

1.3 粘砂

在消失模铸造工艺中,粘砂也是较为常见的铸造缺陷,而浇注温度过高、型砂充填紧实度不够等都能够引起这一缺陷。具体来说,浇注温度过高所引起的消失模铸造工艺粘砂缺陷,主要源于高温下涂料附着力差,强度低,耐火性差;而型砂充填紧实度不够引起的消失模铸造工艺粘砂缺陷,则主要来自于一次向砂箱中投入全部型砂后再振实存在的填砂不紧[2]。

1.4 铸钢件表面增碳

在消失模铸造工艺铸造不锈钢或低碳钢铸件时,表面增碳的问题较为常见,这也属于消失模铸造工艺存在的缺陷之一。之所以会出现表面增碳的问题,主要是由于钢液含碳量较低所致,含碳量高的钢(如高锰钢)增碳不明显就能够较好的证明这一结论。

2.处理消失模铸造工艺缺陷的方法

2.1 铸型损坏工艺缺陷的处理

在铸型上部崩塌这一铸型损坏工艺缺陷的处理中,我们只要设法保证铸型上部有足够的吃砂量就能够较好的避免这一缺陷的出现;而在型腔内局部产生空洞而致的铸型损坏缺陷中,建议进行浇注方案的改进,以此实现液流前端持续、不停顿地流动;而在浇注系统设置不当而致的铸型损坏缺陷中,为了较好的根除这一缺陷,建议适当拉长内浇道长度,以此实现铸件与横浇道之间的砂层的增厚,这样就能够有效避免薄砂层损坏的缺陷出现[3]。

2.2 浇注不足工艺缺陷的处理

在浇注不足工艺缺陷的处理中,当面对受温度低合金金属液流动性较低所致的浇筑不足缺陷时,我们可以采用适当提高温度并增加砂箱中的减压程度的方式解决这一缺陷;而对于薄壁铸件生产的浇筑缺陷来说,我们可以采用降低发泡模密度解决这一缺陷。

2.3 粘砂工艺缺陷的处理

在处理因浇注温度过高引起的粘砂工艺缺陷时,我们可以采用适当提高浇注温度的方式,这种方式在解决粘砂缺陷的同时还能够在一定程度上提高消失模铸造的质量。例如,在进行小型铸铁件时,我们就可以将浇注的温度提高到1380~ 1400℃,这样就能够较好的避免粘砂缺陷的出现并提高小型铸铁件的浇注质量;而在型砂充填紧实度不够的缺陷处理中,建议使用分批加砂方式进行该缺陷的处理,并同时辅以手工辅助填砂,这样最终完成的砂箱填砂、振实,就能够较好的避免型砂充填紧实度不够所引发的粘砂工艺缺陷出现[4]。

2.4 铸钢件表面增碳工艺缺陷的处理

在铸钢件表面增碳工艺缺陷的处理中,我国当下存在着通过砂箱减压可缩短浇注时间、用EPMMA珠粒代替EPS珠粒两种处理方式,不过前者只能够减轻增碳情况,并不能彻底根除这一缺陷,推荐使用EPMMA珠粒代替EPS珠粒,以此根除铸钢件表面增碳缺陷的方式。

3.消失模铸造的工艺要点

3.1 消失模摸料的选择

为了能够较好的完成消失模铸造,提高铸件质量,我们就需要合理的选择消失模摸料。在我国当下,EPS是应用最早而且最为广泛使用在消失模铸造上的摸样材料,其本身具备着价格便宜、易于采购的优点。

3.2 造型材料的要求

上文中我们提到的原砂就是消失模铸造中使用的造型材料,一般来说原砂需要满足Si O2的质量分数在90%~95%区间。想要铸造较为高质量的消失模铸件,我们就必须为其准备透气性良好的型砂。对于原砂来说,我们还需要控制其洁净度与粒度,以此保证其流动性与紧实性能够满足消失模铸造的需求。一般来说,原砂在使用时其温度应控制在60℃以下,当其温度到达60℃时,我们就必须对其进行降温,并在降温后继续使用,这是为了避免泡沫模样软化问题的出现,保证消失模铸造质量的必然过程[5]。

3.3 工艺过程及控制措施

在铸钢件消失模铸造时涂料的配制中,这一涂料需要具备高的耐火度、防止粘砂、高的强度、良好的透气性、优良的涂挂性能、较强的附着力等优点;而在填砂造型环节中,需要依次进行放底砂、放模、填砂造型、覆膜并放浇杯的工艺流程,其中放底砂需要在砂箱内防治100mm左右的底砂,而放模操作则需要将砂箱底部刮平,并保证模型与砂箱四周距离控制在80mm~100mm,这样就能够有效避免钢水泄漏问题的出现,而在填砂造型的操作中,我们需要采用采用往复n次向模样内外腔落砂的方式进行填砂,而在覆膜并放浇杯操作中,我们需要保证塑料膜的完好与大小适中,并在塑料膜上盖一层厚约30mm保护砂,这样就能够有效避免口杯位移或掉入砂粒、杂物的问题出现,并以此较好的保证消失模铸造的质量。

结论:作为一个系统工程,消失模铸造本身对于企业来说有着较高的难度,这也就是的其在铸造过程中难免出现一些工业方面的缺陷,而由于这种缺陷是其他造型工业所不具备的,这就加大了企业解决相关缺陷的效率与质量。本文对消失模铸造工艺中较为常见的缺陷进行了分析,希望这一分析能够在一定程度上推动我国消失模铸造工业的相关发展。

参考文献:

[1]郭鹏,叶升平.发动机缸体消失模铸造工艺[J].现代铸铁,2012,01:43-45.

[2]李旭升,胡玉昆,王海燕,米国发.连接筒的消失模铸造工艺设计及数值模拟[J].热加工工艺,2012,11:43-46.

[3]符坚,龙枚青,符寒光.球铁管件真空消失模壳型复合铸造工艺的研究[J].现代铸铁,2012,05:22-27.

[4]吕克华,李立新,李增民,吴丽娟.消失模铸造工艺CAD的开发[J].铸造技术,2012,09:1081-1083.

铸造工艺论文篇2

[关键词]变形铝合金 熔铸工艺 工艺分析

中图分类号:TG27 文献标识码:A 文章编号:1009-914X(2014)29-0022-01

引言

铝加工业的发展使铝材的应用更加广泛,尤其是在目前的航空航天工业、轨道交通业、乘用车辆制造业、军工材料及民用产品的开发行业中,铝材应用的市场被开拓发展成为了十分广阔的大市场,因此就对铝材的质量也提出了更高更严的要求。而铝材的熔铸是铝材生产的第一道工序,其目的主要是是为铝材轧制、锻造、挤压生产提供优质锭坯。锭坯的冶金质量的高低,是在后续的工序中再难以进行更改的。因此,控制好锭坯的生产与质量是发挥铝材的潜力的重要前提。要以先进的工艺技术和最低的成本获得高性能、高质量的铝合金铸锭使之满足后续工序及最终成品的需要是现代化铝材应用所追求的。

一、变形铝合金熔铸

铝熔铸是利用电解铝液、返回废料、中间合金为主要入炉原料,经熔化、保温、精炼、铸造成锭,铸锭经锯切、铣面处理成压延车间需要的合格扁锭,或者铸轧/连铸连轧成板带坯。其主要的工艺过程为熔炼、熔体处理、铸造。铝熔铸的这三个主要工序过程是紧密衔接、相互制约、密切配合才能完成熔铸过程。在此过程中,如何发挥设备寿命期内的能力,提高生产力,节能降耗,降低生产成本越来越受到铝加工行业的关注。

二、变形铝合金熔炼

熔炼过程为了使熔体内部成分、温度均匀,需要采用适当的搅拌技术,建议采用电磁搅拌。电磁搅拌的主要优点是:减少炉内各部位熔体的温度差;熔体成分均匀;由于提高了热的传输,能耗下降;炉渣下降。

铝熔体处理一般指对熔体进行合金化、净化与细化。合金化的目的是为了提高强度,此外,还应该考虑改善加工性、抗蚀性、耐磨性、硬度、液态金属的流动性、表面性能以及其他特殊性能等。净化处理或精炼是采取措施使铝熔体中不希望存在的气体与固体物质降到所允许的范围以内,以确保材料的性能符合标准或某些特殊要求。铝熔体的净化处理主要是将氢及氧化铝降到所要求的水平或更低一些。为了获得铸锭均匀细小的最佳晶粒组织,主要途径有控制凝固时的温度制度,细化处理。

三、变形铝合金铸造

铝合金铸造是将经检验合格的铝熔体浇注到带有水冷却设施的结晶器中,使熔体在重力场或外力场的作用下充型、冷却、凝固成铝锭坯的工艺过程。变形铝合金铸造主要有半连续铸造、铸轧、连铸连轧三种铸造工艺。半连续铸造属于静模铸造,铸轧和连铸连轧属于动模铸造。对于变形铝合金铸造来说,作者认为动模铸造是发展的方向,它可以实现液体金属一次加工成材,达到节能、降耗、提高生产效率的目的。动模铸造可分为四类:其一是辊间铸造,液体金属从供流嘴流到一对相向转动的轧辊之间冷凝成形并被压延成板材,典型的辊间铸造是连续铸轧技术;其二是轮间铸造,用带定型槽沟的环形轮和钢带组成结晶器,金属液进入结晶腔内,随铸轮同步运行,在铸轮与钢带分离处,熔体凝结成坯并以与铸轮周边相同的线速度拉出锭坯;其三是带间铸造,结晶器由两条相互平行的履带式类型的钢板模或钢带组成;其四是无接触铸造,气化层铸造以及电磁铸造属此类的铸造方式。对于变形铝合金板带的成型,选用铸轧和连铸连轧的优势明显。

(一)半连续铸造坯锭

目前应用最多的是直接水冷立式半连续铸造机,它可以生产各种铝合金牌号和规格的扁锭以及实心和空心圆铸锭。铸造过程中铝液重量基本压在引锭座上,对结晶器壁的侧压力较小、凝壳与结晶器壁之间的摩擦阻力较小,且比较均匀。牵引力稳定可保持铸造速度稳定,铸锭的冷却均匀且容易控制。其中尤以液压铸造机的应用最为普遍,特别是内导式铸造机的优点更为明显。

(二)铸轧

铝熔体从净化处理装置流出后,进入可以控制液面高度的前箱内。通过前箱底侧的横浇道流入由保温材料制成的供料嘴中,液体金属靠静压力由供料嘴直接进入一对相反方向旋转的铸轧辊中间。铸轧辊使液体金属快速结晶。随着铸轧辊的转动,铝熔体的热量不断通过凝固壳被铸轧辊带走,结晶前沿温度持续下降,结晶面不断向熔体内部推进,当上下两个结晶层增厚并相遇时,即完成铸造过程而进入轧制区,经轧制变形成为铸轧带坯。铝带坯连续铸轧技术代替了通常铸锭热轧工艺生产带坯所需的铸造、锯切、铣面、加热、热轧等全部工序。

(三)连铸连轧

连铸连轧工艺是一种工艺设备紧凑,在连续铸造机后面紧接着配置热连轧轧机组的紧凑生产线,是从液体到板带材一次性完成的连续生产线。显然,连铸连轧不同于连续铸轧,后者是在旋转的铸轧辊中,铝熔体同时完成凝固及轧制变形两个过程。但是两种方法的共同点均是将熔炼、铸造、轧制集中在一条生产线,从而实现从铝液到铝板带坯连续性生产,比常规的间断式生产流程少了多道工序。

在连铸连轧工艺中,铝熔体通过铸造前箱及铸嘴进入运动的双钢带水冷模腔。前箱安放在铸机的进口处,进入前箱铝液的流量大小由流槽上的浮漂式控制器来控制,控制信号大小由铸造速度传感器反馈。铸嘴上开有小孔,在小孔中通入低压惰性气体等,均匀地分布在钢带和铝液之间,起到铝液和钢带间的热传递,使进入钢带口的铝液凝固均匀,不会使钢带间产生急速的热胀冷缩,引起钢带变形,影响铝板带表面的平整度。在钢带的下部安装有钕-铁-硼强磁体支撑辊,产生的强磁力对钢带有极强的吸引力,使钢带限制在铸机规定的范围内运动,铸造出来的铸坯截面是矩形的。

结语

综上所述,在变形铝合金板带材生产的工艺选择上,连铸连轧具有相当明显的优势,对于铝熔铸的工艺配置应该是针对企业对产品定位方面的考虑,单就产能及基本投资而言,从产品产能的灵活性以及生产产品的多样性考虑,首选的应该是普通热轧工艺流程。但是对于刚刚起步或初涉猎铝加工的企业来说,选择成熟的铸轧工艺也不失为一种少投入、快见效、迅速回收成本、产能虽小不会被套牢的工艺。

参考文献

[1] 刁莉萍,梁岩.铝合金熔铸配料工序的工作原则和依据[J].轻合金加工技术,2006,03:11-14.

[2] 吴树文.提高铝合金熔铸质量的技术措施[J].青海科技,2008,03:83-85.

[3] 谢晓会,冀中年,李素娟.变形铝合金熔铸工艺综合分析[J].轻合金加工技术,2013,08:22-25+50.

[4] 何家金.铝合金熔铸生产过程的爆炸分析[A].中国有色金属加工工业协会轻金属分会.2011全国铝及镁合金熔铸技术交流会论文集[C].中国有色金属加工工业协会轻金属分会:,2011:5.

铸造工艺论文篇3

材料成型工艺基础是机械设计制造及其自动化专业的一门专业方向模块限定选修课,包括铸造、锻造、冲压、焊接、非金属材料成型、成型工艺选择等内容,集成型理论与工艺于一体,涉及面宽,应用性广,实践性强。在传统教学中,采用“满堂灌”、“填鸭式”教学方法,只能对理论知识进行简单讲解和局部应用,学生缺乏实际工程能力的系统练习;另外,由于课堂教学时间短、学时少等限制,老师对知识的传授只是蜻蜓点水或一个个散乱的知识点,内容连接性、系统性不强,学生普遍感觉知识杂乱、枯燥、难学、不会应用,学习热情不高,学习效果较差。因此,根据我校地方性、应用型的办学定位,为使学生掌握基础理论,加强应用练习,提升工程实践能力,在材料成型工艺基础课程的教学过程中进行了问题探究式教学法的探索。

一问题探究式教学法在材料成型工艺基础课程中的应用

1寻找、选取问题

寻找问题既要以课程教学大纲主要知识点为依据,又要结合我校应用型本科毕业生面向地方企业、面向生产第一线的目标定位,选取企业实际生产中难易程度合适的具体问题,使问题具有很强的实用性、具体性和可操作性。

问题可以是短时间内解决的,如仅需要一次课或几次课时间能够解决的单一问题、单一学科的问题,例如针对铸造内容,从企业寻找、选取了不同材料、不同结构、不同用途的多品种铸造零件,既有防爆电机上的中小型灰铁铸件,又有汽车、摩托车上的薄壁、复杂的铝镁合金、铝硅合金铸件,还有高压电器开关上使用的厚壁、较简单的铝硅合金铸件等。然后提出问题:这些零件选用什么方法成型、生产过程如何、工艺参数如何选择、毛坯图如何绘制、结构工艺性好坏等。从这些问题的逐个解决,将整个铸造部分的知识贯穿起来,形成系统性、连续性、完整性的知识链。问题还可以是需要花费多个学期去解决的多学科的问题,例如针对上述铸造零件,可以继续提出问题,成型中使用的模具如何设计、如何制造。为保证装配精度要求如何进行机械加工和装配等,这些问题可通过后续课程模具设计、机械制造技术、特种加工等解决,这样就将本课程与机械工程材料、材料成型工艺基础、互换性与技术测量、模具设计、机械制造技术、特种加工等多门课程有机的联系在一起,激发学生学习后续课程的好奇和兴趣。

2布置问题

将设置好的问题按组分配给学生,根据问题难易程度规定每一组学生的人数。然后提出明确的短期目标和较长期目标:按照企业规范,根据零件的材料、结构、生产批量等要求完成成型方法选择(需要一次课能解决问题)、铸造工艺参数选取、工艺设计(需要一次课+课余时间查阅资料、收集、分析、讨论能解决问题)、毛坯图绘制、结构工艺性分析(需要课堂+课余时间+成果汇报等完成)等。

3组内分工

学生根据自己的兴趣选择问题,具有共同兴趣、脾气相投的同学组成问题探究小组。每个小组对问题进行初步探讨并进行任务分工,例如一些同学测绘零件图,一些同学分析材料、确定牌号、了解成份组成,一些同学查找材料力学性能及工艺性能,一些同学绘制毛坯图,一些同学利用PPT制作汇报材料,对于涉及课程知识的成型方法选择、铸造工艺参数选取、铸造工艺图绘制、结构工艺性分析等内容,则要求每个同学都要自己做,使每个学生明确要探讨研究的重点问题以及与组内其他同学的合作关系。

4教师引导、串讲各个知识点

根据企业实际解决问题的步骤及每步所需的理论支撑知识顺序,运用展示图片、播放生产录像、动画等多媒体教学手段,结合现场教学,简要、系统、直观的讲授解决问题所需的理论知识,打破了以往按照教材顺序讲授知识点的习惯。例如传统教学方法讲授铸造时,按照教材“铸造工艺基础砂型铸造工艺过程铸造工艺设计铸件的结构工艺性特种铸造”的顺序讲解,一章讲完布置一次作业;采用问题探究式教学法后,调整课程顺序为“铸造概念、特点、分类砂型铸造、压力铸造、金属型铸造、低压铸造等工艺过程学生根据给定零件选择成型工艺方法、讨论铸造工艺性能铸件的结构工艺性给定零件的结构工艺性分析铸造工艺设计给定零件的铸造工艺参数选择、铸造工艺图设计汇报、点评”。

5文献检索

教师指出解决问题所需要查阅的相关技术资料、国家标准和获取相关信息资源的渠道,鼓励、诱导学生利用课余时间到图书馆或网络上独立地进行相关技术资料和国家标准的查询、收集、分析、整理、探索,在此基础上对所布置的问题进行初步分析。

6初步探究

学生根据查阅的相关技术资料,对所布置问题的解决方法进行探索、研究,提出解决问题的初步方案和建议。

7集中讨论

每组学生将各自探究的结果汇总,采取小组集中讨论的方式,让每位学生重点阐述自己对问题的探究结果,以获得同学的认可和批评,同时对同学的探究结果自由地发表自己的意见,例如铸造分型面选择位置、脱模斜度选择方向、铸造圆角位置、收缩率大小等工艺参数,每人结果都不一样。经小组交流、辩论、讨论后,形成尽可能合理的小组意见,并在老师指导下找出不足或需要补充的内容。

8深入研究

学生根据小组讨论交流的意见,分头继续对各自分工的问题进行深入探究、补充和完善,时刻保持与教师的互动、沟通和与同学的讨论,最终形成小组的探究成果,并制作成PPT文件。

9课堂交流、汇报

在教师主持下,各组选出代表在多媒体教室用PPT文件将本组的探究成果进行汇报。利用PPT汇报的过程,可以清楚的反应学生查阅资料的过程,查阅了哪些资料,对资料、理论知识的综合应用情况,解决实际问题的能力,绘制图纸的规范性、工艺正确性等,例如图形表达不完整,脱模斜度、铸造圆角表达不正确、展示的CAD图粗细实线不分、用彩色显示导致的图形不清、标注不按新标准等问题一目了然。一人汇报后,组内其他学生可以补充,同时要求各个小组对其他小组交流的内容批判性地提出自己的不同意见,从而形成组内合作、组间竞争的局面。这时学生不甘落后的心理将充分调动他们投入学习的积极性,且有利于小组间的相互比较、借鉴和学习,加深学生对知识的理解和重复应用,达到事半功倍的效果。

10教师点评

教师根据课堂上学生的现场汇报,对各组解决问题的思路和方案、结果进行一一点评,就共性问题及时进行现场评讲和纠正,加深学生对问题的理解,同时肯定成绩、指出不足、提出希望。

与传统教学方法相比,材料成形工艺基础课程在进行问题探究式教学法探索、实践后,发现学生在学习主动性、理论知识掌握程度、工程实践能力的培养、真实工作岗位体验、成就感和成功感的体验、交流沟通和协调能力的培养、自学能力培养等方面有了明显提高,效果比较详见表1所示[2]。

二问题探究式教学法在实施中存在的问题

1教师工程实践能力的欠缺削弱了实施效果

问题探究式教学是以源于企业的实际问题为驱动,以寻找解决问题的方法获取知识和培养工程实践能力的新型教学方法,实际问题的解决方案和结果,都没有标准答案,更没有唯一答案,也找不到现成的答案,因此对于教师的工程实践经历和能力提出了较高的要求,教师自身工程实践能力的欠缺削弱了新型教学方法的实施效果。

另外,由于材料成型方法种类繁多,每一种方法有其各自特点和独立环境,即使有企业工作经历的老师通常只是擅长、精通其中的一种,没有哪位教师具有铸造、锻造、冲压、焊接等全部的企业经历,因此制约了新型教学方法在全部课程中的探索实施,削弱了新型教学方法的实施效果。因此对于过去具有工程经历的教师,也要定期到企业轮训,以更新工程知识、掌握新的实践技能、丰富工程实践经验,不断强化工程实践能力,以便提高实施效果。

2课后占用时间较多,学生负担较重

由于材料成型工艺基础课程的学时(24学时)较少,分配到铸造、锻造、冲压、焊接各部分的学时更少,仅为6学时左右,因此学生文献检索、资料查询、收集、加工、处理信息、独立思考探索、讨论交流、绘图等活动大多需要利用课余时间完成,这些事务又需耗费一定的时间,因此学生感觉负担相对较重。

总之,问题探究式教学法以源于企业的实际问题为载体,教师围绕问题进行讲解、指导、点评,学生围绕问题进行文献检索、资料查询、收集、加工、处理信息、独立思考探索、讨论交流、汇报等活动,找出解决问题的方法和步骤,得出问题结论,获取新知识的一种新型教学方法。通过在成型工艺基础课程中的探索实践,发现教师由传统的知识传授者、讲解者变为问题的创设者、学法的指导者、讨论的组织者,学生由知识的被动接收者、灌输对象转变为信息加工的主体、获取知识的主动构建者。这种教学方法,加强了学生自觉学习、独立学习、学会学习的主体地位和自主能力,培养了学生解决实际问题的工程能力,提升了学生人际交往、团队协作方面的综合素质,达到了较好的教学效果。

参考文献

[1]林健.卓越工程师培养―――工程教育系统性改革研究[M].北京:清华大学出版社,2013:195-197.

[2]金彩善.项目教学法在“模具设计与制造”课程教学中的应用[J].青岛职业技术学院学报,2010(6):4851.

铸造工艺论文篇4

关键词:ca精密铸造计算机辅助工程

1引言:

精密铸造是用可溶(熔)性一次模型使铸件成型的 方法 。精密铸造的最大优点是表面光洁,尺寸精确,而缺点是工艺过程复杂,生产周期长, 影响 铸件质量的因素多,生产中对材料和工艺要求很严[1]。在生产过程中,模具设计和制造占很长的周期。一个复杂薄壁件模具的设计和制造可能需一年或更长的时间。随着世界 工业 的进步和人们生活水平的提高,产品的研发周期越来越短,设计要求响应时间短。特别是结构设计需做些修改时,前期的模具制造费用和制造工期都白白地浪费了。因而模具设计和制造成为新产品开发的瓶颈。计算机辅助工程的 发展 ,使得传统产业与新技术的融合成为可能。三维cad可以把设计从画图板中解放出来,大大简化了设计者的设计过程,减少出错的几率。并且随着快速成型(rp)技术,特别是激光选区烧结工艺(sls)的发展[2,3,4],三维模型可以通过rp设备,快速转变成精密铸造所需的原型,打破了模具设计的瓶颈。另外在传统铸造中,开发一个新的铸件,工艺定型需通过多次试验,反复摸索,最后根据多种试验方案的浇铸结果,选择出能够满足设计要求的铸造工艺方案。多次的试铸要花费很多的人力、物力和财力。采用凝固过程数值模拟,可以指导浇注工艺参数优化,预测缺陷数量及位置,有效地提高铸件成品率。ca精密铸造技术就是将计算机辅助工程应用到精密铸造过程中,并结合其他先进的铸造技术,以高质量、低成本、短周期来完成复杂产品的研发和试制。 目前 ,利用ca精铸技术,已完成多种航天、航空、兵器等关键部件的试制,取得满意的效果。

2材料与实验方法

ca精铸可应用于不锈钢、耐热钢、高温合金、铝合金等多种合金,ca精铸工艺流程见图1。三维模型可采用ideas、ugii、proe等三维设计软件进行设计,工艺结构和模型转换采用magicrp进行处理和修复,在afsmz320自动成型系统上进行原型制作,采用熔体浸润进行原型表面处理,凝固过程数值模拟采用procast和有限差分软件进行计算。

3ca精密铸造工艺的关键 问题 及相关技术讨论

近年来,与ca精铸技术相关的三维cad设计、反求工程、快速成型、浇注系统cad、铸造过程数值模拟(cps)以及特种铸造等单体技术取得了长足的进步,这些成就的取得为集成化的ca精铸技术的形成奠定了基础,促进了ca精铸技术的迅猛发展和应用。为了使各单体技术成功地用于ca精铸,必须消除彼此之间的界面,将这些技术有机地结合起来。从而在产品开发中做到真正意义上的先进设计+先进材料+先进制造。

3.1三维模型的生成与 电子 文档交换

如何得到部件精确的电子数据模型,是ca精铸至关重要的第一步。随着三维cad软件、逆向工程等技术的发展,这项工作变得简单而且迅捷。在此主要介绍利用ideas进行实体建模和数据转换的过程。ideas9集成了三维建模与逆向工程建模模块。通过mastermodeler模块可以得到复杂模型(见图2),既可以进行全几何约束的参数化设计,又可进行任意几何与工程约束的自由创新设计;曲面设计提供了包括变量扫掠、边界曲面等多种自由曲面的造型功能。逆向工程freeform可将数字化仪采集的点云信息进行处理,创建出曲线和曲面,进行设计,曲面生成后可直接生成rpm用文件,也可传回主建模模块进行处理(见图4)。实体文件生成后需转变成stl文件(见图3)以作为rp设备的输入。转换过程应注意选择成型设备名称,通常选用sla500,三角片输出精度在0.005~0.01之间。采用magicrp处理时应注意乘上25.4,得到实际设计尺寸。

3.2凝固过程的数值模拟

3.2.1凝固过程的数值模拟原理

铸造是一个液态金属充填型腔、并在其中凝固和冷却的过程,其中包含了许多对铸件质量产生 影响 的复杂现象。实际生产中往往靠经验评价一个工艺是否可行。对一个铸件而言,工艺定型需通过多次试验,反复摸索,最后根据多种试验方案的浇铸结果,选择出能够满足设计要求的铸造工艺方案。多次的试铸要花费很多的人力、物力和财力。

铸造过程虽然很复杂,偶然因素很多,但仍遵循基本 科学 理论 ,如流体力学、传热学、金属凝固、固体力学等。这样,铸造过程可以抽象成求解液态金属流动、凝固及温度变化的 问题 ,就是要在给定的初始条件和边界条件下,求解付立叶热传导方程、弹塑性方程。 计算 机技术的 发展 ,使得求解物理过程的数值解成为可能。 应用 计算机数值模拟,可对极其复杂的铸造过程进行定量的描述。

通过数学物理 方法 抽象,铸造过程可表征成几类方程的耦合:

1热能守恒方程: 2连续性方程: 3动量方程: 常用的数值模拟方法主要是有限差分法、有限元法。有限元差分法数学模型简单,推导简单易于理解,占用内存较少。但计算精度一般,当铸件具有复杂边界形状时,误差较大,应力 分析 时需将差分网格转换成有限元网格进行计算。有限元法技术根据变分原理对单元进行计算,然后进行单元总体合成,模拟精度高,可解决形状复杂的铸件问题。无论采用什么数值方法,铸造过程的数值模拟软件应包括三个部分:前处理、中间计算和后处理。前处理主要为中间计算提供铸件、型壳的几何信息;铸件和型壳的各种物理参数和铸造工艺信息。中间计算主要根据铸造过程设计的物理场,为数值计算提供计算模型,并根据铸件质量或缺陷与物理场的关系预测铸件质量。后处理是指把计算所得结果直观地以图形方式表达出来。图5是铸造过程的数值模拟系统组成。

铸造过程流场、温度场 计算 的主要目的时就是对铸件中可能产生的缩孔缩松进行预测,优化工艺设计,控制铸件内部质量。

通过在计算机上进行铸造过程的模拟,可以得到各个阶段铸件温度场、流场、应力场的分布,预测缺陷的产生和位置。对多种工艺方案实施对比,选择最优工艺,能大幅提高产品质量,提高产品成品率。

3.2.2铸造过程数值模拟软件[5]

经过多年的 研究 和开发,世界上已有一大批商品化的铸造过程数值模拟软件,表明这项技术已经趋于成熟。这些软件大都可以对砂型铸造、金属型铸造、精密铸造和压力铸造等工艺进行温度场、应力场和流场的数值模拟,可预测铸件的缩孔、疏松、裂纹、变形等缺陷和铸件各部位的纤维组织、并且与cad实体模型有数据转换接口,可将实体文件用于有限元 分析 。

procast是 目前 应用 比较成功的铸造过程模拟软件。在研制和生产复杂、薄壁铸件和近净型铸件中尤能发挥其作用。是目前唯一能对铸造过程进行传热-流动-应力耦合分析的系统。该软件主要由八大模块组成:有限元网格剖分,传热分析及前后处理,流动分析,应力分析,热辐射分析,显微组织分析,电磁感应分析,反向求解等。

它能够模拟铸造过程中绝大多数 问题 和物理现象。在对技术充型过程的分析方面,能提供考虑气体、过滤、高压、旋转等对铸件充型的 影响 ,能构模拟出消失模铸造、低压铸造、离心铸造等几乎所有铸造工艺的充型过程,并对注塑、压蜡模和压制粉末材料等的充型过程进行模拟。procast能对热传导、对流和热辐射三类传热问题进行求解,尤其通过“灰体净辐射法”模型,使得它更擅长解决精铸尤其是单晶铸造问题。应力方面采用弹塑性和粘塑性模型,使其具有分析铸件应力、变形的能力。

对铸件进行分析时,简单的模型网格可以直接在procast生成。复杂模型可以由ideas等软件生成,划分网格后输出*.unv通用交换文件,该文件应带有节点和单元信息。meshcast模块读入网格文件后输出四面体单元用于前处理。precast对模型进行材料、界面传热、边界条件、浇注速度等参量进行定义,最后由procast模块完成计算。

应用ideas与procast,我们对某发动机部件进行了凝固过程模拟。该部件由于有一个方向尺寸较薄,浇注过程中极易发生裂纹与变形,通过模拟,对浇注系统结构进行了优化,减少应力集中,防止变形和开裂,取得明显的效果。

结论:

1.计算机辅助工程与精密铸造结合而成的ca精密铸造技术具有很强的通用性,可以缩短研制周期,节约开发成本;

2.ideas与rpocast的配合,可以对复杂件进行铸造过程数值模拟;

铸造工艺论文篇5

关键词:铸造礼器;汉语言文学;传播

商代(约公元前1600-约公元前1046年),青铜器的铸造技术逐渐成熟。铸造礼器的制作工艺水平为当时铸造技术最高,而商代铸造礼器上遗留的文字,成为我们解读商文化的入口。因此,笔者从汉语言文学传播角度,探索商文化在铸造礼器上的传播和传承。

一、铸造礼器的发展和工艺

礼器的制作在中国古代铸造史上具有非常重要的地位,成为国家权力的象征,也是中国古代文化的典型和标志。

(一)铸造礼器的起源与发展

礼器是专门为贵族打造的,是其举行祭祀、丧葬、出征、筵席等活动时的重要用品。中国的铸造有几千年的历史,古代铸造工艺绝大部分体现了礼器铸造上。而好的铸造技术、铸造工匠、铸造材料等,大都集中在大城市并且主要为贵族服务。在人类社会发展的早些时候,铸造的物品主要是生活用品,例如:鼎、斛等,都是为了吃饭、饮酒而准备的。随着铸造技术的成熟,工艺难度也愈来愈低,铸造的物品也越来越成为礼仪活动的器物,开始从实用物品延伸到具有象征意义的文化用品。到了商代,铸造技术更加炉火纯青,达到全盛时期,铸造礼器包括用于祭祀的鼎、炉等,也包括筵席上用到的斛、觥、勺等,以及音乐文艺活动中的编钟等,铸造礼器成为古代社会经济发展繁荣的标志,也是时代文明的象征。

(二)铸造礼器的制作工艺

包括礼器在内,铸造物品的工艺大致一致。其原理流程为熔炼之后将液体浇注于相应模具中,待溶液冷却固化后便可得到相应形状,再经过精细加工,成为生活用品或者礼器。铸造礼器的制作工艺大体需要三个环节:首先,是模具的制作。主要是根据礼器的需要,由砂、陶等特殊材料制作成模具。模具的好处是可以反复使用,而且制造出来的成品在形状、大小、细节上趋于一致,适用于大量、标准化的礼器的制作和铸造。其次是溶液的浇注。将需要铸成礼器的材料加热成液态,在具有充分流动的性能下,浇注进模具中,待冷却后就变成了想要的器皿形状。在商代,用于铸造的原材料主要是铜元素、铁元素和锡元素等,其优点是在自然界中来源广泛、开采容易、成本低廉,热熔的技术要求比较低。最后,就是从模具浇注出的作品的加工和打磨处理。将冷却凝固后的礼器从模具中取出,进行细节的打磨和处理,使其表面光滑、美观。虽然原理和制作工艺大体一致。但是具体到商代的铸造礼器上的生产流程的各个技术环节,以及某些技术难度在当时是怎么克服的,至今我们不清楚、不明确,还有许多的步骤和细节需要我们不断地去探索和挖掘。

(三)铸造礼器的历史意义

中国历史上有不少礼器出土,通过对礼器的解读,成为我们了解一段历史的主要载体。因此,铸造礼器具有十分重要的历史意义。主要表现在以下三个方面。1.实用意义古代生产技术单一,许多的生产生活资料都非常匮乏。木材、陶器等相对轻巧,但是不经久耐用,易磨损和结构性破坏。铸造器皿的出现,使人们在饮酒、吃饭的过程中能够获得更加精美的器物,同时也增加了用品的使用寿命。因此,铸造礼器在当时来讲具有重要的实用价值。2.艺术意义无论是铸造礼器的造型,还是礼器上的花纹和图案,都体现了当时的社会主流艺术的取向和审美。也体现了当时铸造工匠的精湛的艺术造诣,成为古代社会艺术水平的杰出代表。这为我们审视古人的思想、审美、工艺以及社会文化都提供了重要的依据。3.文化意义铸造礼器代表了当时的社会生产力的发展水平,也代表了当时社会文化的主流意识。同时,礼器铸造对当时的社会来说,具有特殊的文化内涵。也是中华民族人类文明的重要组成部分。如:大禹所铸的鼎,即代表了国家的权力。商代的司母戊鼎,就是华夏文明的杰出代表作。

二、商文化在铸造礼器上的传播

铸造礼器除了本身就有的使用价值和象征意义,还为文化传播提供了媒介作用,特别是以商文化传播为典型。

(一)商文化的主要内容

商代起源于商汤,止于商纣王,前后历经大约5个世纪,是中国历史上第二个王朝。作为古代奴隶制社会的代表,商文化为后世留下了宝贵的文化遗产,是中国历史上具有开先河作用的重要历史朝代,从目前出土的商代遗址和文物来看,虽然还不能完全解读商代文化,但是对我们了解奴隶制社会的情况提供了弥足珍贵的史料。1.狭义的商文化从狭义的角度来看,商文化主要包括商代的服装、音乐、艺术、宗教等方面的内容。服装方面,“上衣下裳”的基本服饰风格形成,对后世影响深远;在音乐方面,由于铸造技术的成熟,有编钟等,丰富了商代的音乐器材;在艺术方面,除了有壁画、岩画等还出现了彩色图案,以及各种样式、色彩的陶制艺术品;图腾文化方面,继续呈现了敬重鬼神,敬重祖先的现象。2.广义上的商文化从广义的角度来看,商代在政治、经济、军事等方面都表现了明显的时代特色。政治上,由于商代处于古代的奴隶制社会全盛时期,土地、奴隶的归属具有明显的阶级特征,统治阶层之间、统治阶层与奴隶之间均有严格的等级体系;经济上,生产力的不断提升,导致富余的劳动产品逐渐出现,贸易也逐步兴起,以致后人对从事贸易的人均称之为“商人”;军事上,商代不仅有完备的军队体制、征兵体制,而且还有成熟的人马车的战斗编队。这些都是广义商文化的体现。

(二)商文化在礼器上的传播形式

文化在铸造礼器上可以通过各种方式表现出来。但商文化在铸造礼器上主要有三种传播形式:形状、图形和铭文。1.形状的传播铸造礼器的形状可以直接反映其在当时的作用。例如:鼎的造型呈现槽型,是人们早期吃饭的器皿,后来逐渐成为祭祀以及国家政权的象征。这在一定程度上反映了古代“民以食为天”的特点,象征着国家权力的基础。当然,也有些鼎、觥、斛器皿是三只脚支撑,所谓的“三足鼎立”表明了商代社会时期,人们已经发现了三角形的结构,并且知道三角形具有稳定性的特征。时到今日,已经演化成为一种文化的内涵。2.图形的传播形式在铸造礼器上,各式各样的图形反映出商文化的包容,尤其是图像被广泛应用。例如:为了表示对鬼神和祖先的敬重,祭祀的铸造礼器上添加鬼神的形象,这些形象通常都是凶神恶煞,面目狰狞的形象,以起到神秘、严肃的效果;再比如:在铸造礼器表面铸造出动物的形象,描绘出当时农耕社会的特征,反应当时社会对牲畜的重视和驯养文化。最著名的青铜四羊方尊,代表了古代青铜铸造礼器的最高水平,也代表了当时羊对人们生活的重要性。这些都是商文化通过铸造礼器上的、图案和花纹进行的抽象性表达。3.铭文的传播形式铭文即铸造礼器上的文字,因为礼器大多是由铜、铁、锡等金属铸造,因此也被称为是“金文”。在铸造礼器上的铭文主要包括铸造前期的铸字和在礼器制作完成后的刻字。商代的铭文主要是铸字。铭文可以直接记叙当时发生的事情,如帝王言语或者国家大事的最直观的文字记录,这也成为反映商代文化最直接、最有力的表达方式。

三、商文化在铸造礼器上的汉语应用

商文化可以在铸造礼器上通过多种形式表现出来,但是通过研究铸造礼器上的文字,结合中国汉语言文字的表达方式、特点等,是最有发掘潜力的地方。1.汉语言的表达特点中国地域广阔,汉语言的表达历史悠久。分析其特点,需要分区域、分阶段来梳理。具体到商代语言的表达方式,通常包括口头语言表达和书面语言表达两种方式。而中国古代的口头语言无从可考,但书面语言却有众多实物作为支持。因此,研究商代文化,可以从研究商代铸造礼器上的铭文的表达方式入手。商代是中国文字的起源和完善阶段,使用最广泛的是象形文字。象形文字由图形演变而来,保留了一定的图像,也被赋予了一定的象征意义。综上可知:商代语言的表达的特点主要包括:从表达的内容来看,记叙内容为主,以记载日常发生的事件为主要功能;从表达的方式来看:由于字形不多,往往一字多用,而且只能通过字形来辅助阐明事件;从表达的效果来看,同样由于字的总量有限,文字的表达言简意赅。2.铸造礼器上汉语表达的主要内容出于在礼器上铸造文字的工艺复杂程度,铸造礼器上的铭文通常不多,长铭文尤其罕见。在商代早期,文字记载的通常是铸造者的信息,或者是铸造礼器拥有者的家族的姓名。到了商代晚期,铸造礼器铭文通常记载的是当时礼仪场合的重要事件,例如:帝王祭祀的场景,将士出征的情况等等。3.铸造礼器上汉语言的应用对商文化的传播作用铸造礼器上铭文对汉语言的应用使商文化得以保留、传播,对当时的社会以及后世产生的影响深远。在殷商时期,铸造礼器上的铭文在当时社会中具有重要的作用。首先就是标记作用。标记礼器的名称、用途以及所有者或者制造者。其次,是记录作用。当时社会没有书写方便的成熟现代汉字,只能通过简要的表达,在铸造礼器上记录人物言论和事件。最后,是统治的需要。古代奴隶社会,统治者会利用一切东西方便自己执政。语言文字也不例外。经过统治者的美化,铸造在礼器上的铭文在表达方式上会倾向于统治阶层,目的是来宣扬制度、礼仪等,这有利于维护统治。而铸造礼器上的铭文,可以使商文化较为直观地保留下来,供后世解读。由于商代的文字不多,研究字形、字义以及语言表达方式和特点,就能够为了解中国古代问题提供思路,有利于建立完整的历史体系,使中国古代的文化得以延续和发扬。同时,铭文还记录了中国汉语言文字的变迁,我们可以从不同的角度研究中国语言的变化。

四、结语

中国商代由于历史久远,出土的文物也极其罕有,文化的断层较为严重,但当下我们对商代文化的研究还不深入,不细致。许多商代的文化细节还有待发现挖掘以及考证。而历史悠久的铸造技术和古老汉语言文字的应用,则为研究古代的历史文化提供了最为直接和准确的探索方式。研究商代铸造礼器传播商文化的方式,尤其是通过铭文的传播方式,能够部分了解当时的社会的政治、经济、军事等文化组成部分。而从汉语言的表达的角度,则更有利于帮助人们深入了解当时的社会背景,以及铸造礼器本身所被赋予的文化意义。

参考文献:

[1]李雪山,郭胜强.殷商文化的繁荣与中国文明的进程[J].中原文化研究,2013,(03):54-55.

[2]刘熠.殷墟青铜礼器铸造工艺研究宗论[J].考古文物研究,2009,(01):109-110.

铸造工艺论文篇6

【关键词】铸渗材料铸渗工艺问题

前言

近年来.我国铸造业获得了飞跃式的发展,从2000年至2003年.中国铸件产量跃居世界首位.从2003年至今中国铸件产量依旧保持持续增长。这种趋势在近期内有可能将继续保持并保证中国铸造业的持续繁荣。但在铸造业繁荣的背后。也存在着形势严峻的一面。能源环境的制约以及国际铸造科技竞争加剧和知识产权的保护强化已成为我国铸造业发展的瓶颈,发展节约环保型、科技创新型铸造之路刻不容缓。

一、 铸渗材料的发展

(1)表面合金化

表面合金化是铸造技术与表面冶金强化技术的结合.是利用铸造时液态金属的热量将待渗元素熔化、分解、扩散,从而在铸件表面形成特殊性能的合金层。起到表面强化作用。铸造表面合金化的基本原理铸造表面合金化又称铸渗,首先将要铸渗的合金粉末或陶瓷颗粒等增强相预先同定(通过涂料或以膏块形式粘贴)在型壁的特定位置上,然后浇注金属液。让金属液通过孔隙渗透到合金涂层内,包围合金颗粒,在熔剂和其它添加剂的共同作用下。通过一系列高温冶金物化反应在原涂层所在位置形成合金化层。

(2)外加强化相表面材料复合

最常用的是加入陶瓷颗粒,陶瓷颗粒按稳定性从小到大依次为:碳化物、氮化物和氧化物,一般碳化物、氮化物用于常温磨损工况,而高温磨损工况最好采用氧化物。WC是使用最多的一种铸渗剂,与钢铁材料相比,WC具有高硬度和高红硬性,同时它的抗压强度、导热和杨氏模量比钢铁材料高2~4倍,更重要的是WC与钢铁熔体润湿性好,易形成铸渗层,也是经常使用的强化相,但由于其与钢铁溶体的润湿差,不适用于铸渗工艺;通过表面技术对AI:0进行Ni涂层和TiN涂层处理,改善了其与钢铁溶体的润湿性,并发现经Ni涂层AI0,颗粒增强的表面复合材料具有高的界面结合强度,表现极高的高温耐磨性。

(3)内生强化相表面材料复合

借助于材料合成的最新发展,把反应合成引入铸渗的技术,通过粉末之间的反应原位形成增强相。可以解决钢铁液对陶瓷相润湿性差的问题,如WC可作为增强相,是因为钢铁液对WC润湿,可通过铸渗形成铸渗层;相反,钢铁液对大多数陶瓷增强相不润湿,如与SiC、A1:O,的润湿角大于90。,无法形成铸渗层,这时通过反应铸渗,形成含有这些陶瓷相的铸渗层。采用铝粉、氧化铜粉、钨粉和碳粉,通过氧化铜和铝的放热反应诱发反应w+C=WC,在铸渗层中获得原位的WC陶瓷相。刮采用含强碳化物形成元素合金粉末等进行反应铸渗,分别得到Fe―TiC、Fe.VC、Fe.VC-石墨等表面复合材料。严有为、纪朝辉分别采用Fe、C、Ti元素粉末,同样通过反应铸渗得到Fe.TiC表面复合材料。

二、铸渗工艺的发展

(1)普通铸造工艺

将增强粉末与粘接剂、溶剂等混制的涂料、膏剂或预制块覆在型腔表面需强化的部位,待铸型干燥后浇注。由于涂料中的无机物和有机物在铸件形成的过程中产生的夹渣和气体也极易残留在铸渗层内,且预制块、膏块放置和固定困难,仅适用于小批量的二次性试验,难以实现大规模行业生产。

(2)V法铸渗工艺

工艺原理简介:

真空密封造型铸造亦称 V法铸造 。其基本原理:在带抽气室的砂箱内填入单一千砂,稍加微震紧实,然后对型面和砂箱背面覆有塑料薄膜的砂型抽真空刑用砂箱内外的压力差使铸型定型,然后起模、合箱,在保持真空状态下浇注金属液。其工艺程序见下图 。

面膜烘烤覆面膜安放浇冒口喷涂料放砂箱加砂微震

模样抽真空真空罐 模样卸真空、砂箱抽真空

卸压开箱浇注冷却合箱下芯起模铸型覆背膜

铸件清整

V法铸造工艺程序简图

V法铸造原则

v法铸造通常采用水平分型,浇注时要求金属液 快速平稳充型。为了保证型腔内液面平稳上升及防止金属液对型腔面膜的喷射冲刷,特别是浇注大平面时要倾斜浇注,以免金属液大面积烘烤型腔面,应尽量缩短浇注时间。最好采用底注式或中注( 侧注 )式,避免顶注,浇口按半封闭式设计,其浇道截面尺寸比例为:F内:F措:F直=1:(1.5~2):(1~1.3) ,注意浇冒口位置要避开砂箱加强筋。浇注时必须满浇注不断流 。

(3)V- EPC铸渗工艺

V.EPC铸渗工艺,即实型负压铸渗工艺,是采用聚苯乙烯泡沫塑料(EPS)制备试样模型,埋入干砂的塑料模型经振实后,在负压下定型和浇注,将增强粉末塑料覆于模型的表面。同样,负压可及时排除EPS和粘胶剂气化产物,较好地避免了铸渗层的气孔和夹渣等缺陷。此外,由于不需分型、不需下芯和起膜,涂层膏块的放置方便,非常适合于铸渗工艺,具有很好的工业应用前景。近年米,采用V―EPC铸渗研究有较多报道,如张冉阳、李祖来等对铸铁进行了WC表面复合材料的铸渗研究¨

(4)离心铸渗

金属基复合材料已有许多种制造技术,其中渗透铸造是比较有效和廉价的技术之一。渗透铸造又有压力渗铸、离心渗铸和无压渗铸等。在离心渗铸工艺中,金属熔液依靠离心力使得其在多孔预制体内进行渗流,只有当离心压力大于临界渗透压力时,渗铸过程才能进行,而铝熔液的质量、预制件的孔隙率和模具的角速度等工艺参数对渗透压力有着非常重要的影响。在实际生产中,迫切需要确定最小临界参数的理论依据,以便掌握操作过程,而目前国内外有关于这方面的文献资料还很欠缺。

离心铸渗在旋转体的犁腔内壁放置预制块粉末涂层,浇入的金属液在离心力作用下渗入粉末涂层,由于涂覆层产生的气体和夹渣物在离心力场下迅速上浮,可完全消除铸造缺陷。利用离心铸渗使铁液渗入Sic粒子预制块内,获Sic颗粒强化铸铁慕表面复合材料。

(5)SHS-casting工艺

自蔓延高温合成( Self―propagating High temperature Synthesis 简称SHS )是20世纪6 O年代由前苏联学者Merzhanov、Brovinkaya和Shriko在发现“固态火焰”的基础上提出来的一种材料合成新方法I t j。它是基于放热化学反应的基本原理.利用外部能量诱发局部化学反应(点燃),形成化学反应前沿(燃烧波),此后化学反应在自身放出热量的支持下继续进行,表现为燃烧波蔓延至整个反应体系,最后合成所需材料。SH熔铸法是熔铸技术结合SHS技术发展起来制备金属基复合材料的一种新方法。传统的金属基复合材料是陶瓷相外加到熔融金属基体中, 因而 颗粒表面污染及氧化问题是不可避免的。而 S HS熔铸法则可解决这个问题。就At/Ti B2复合材料而言,其具体过程是将 A1、Ti 、B三种元素粉末按化学计量比均匀混合,在装置中,经S HS 过程合成 T i 岛 陶瓷增强相,随后在A 1 熔点上的温度下使其均匀地分散到熔融金属AI中.从而制得AI/T i B 2复合材料。T 陶瓷相为原位生长,没有暴露于空气中,从而克服了颗粒表面污染及氧化等问题。这个过程的技术关键是相组成控制及反应与熔融参数的匹配问题。

三、铸渗法存在的问题及展望

目前尽管金属铸渗技术在国内外已得到了很大一部分的应用和发展,但仍然存在不少的问题需委解决。主要表现在:①铸渗层质量不高。如铸渗层中经常会形成气泡、夹渣和粘砂等缺陷。此外,铸渗层深度不均匀、表面粗糙度高和不易进行机加等诸多问题也与铸渗层的质量有一定联系。②表面合金化效果对工艺参数的变化较敏感。由于这些原凶,在金属铸渗时,要想获得质量稳定可靠的表面合金化效果,必须有良好的设备条件和严格的生产工艺措施,这会使成本增加、操作复杂。③金属铸渗过程的数值模拟研究还有待深入展开,由于金属铸渗过程中影响铸渗层质量的工艺参数较多,而且许多工艺参数还彼此关联,对这样一个复杂过程,如果采用实验的方法来研究工艺因素变化对铸渗层质量的影响,则难度大、费用高,且有一定盲目性,而数值模拟方法可以很好地解决这一问题。虽然国内外在金属铸渗过程的数值模拟方面进行了一些研究,建立一些简单的数学模型,但由于假设条件太多,模拟以计算的可靠性难以保证。这些问题的存在,极大地制约了金属铸渗技术的推广和使用。此外,在理论上缺乏深入的研究和探讨也阻碍了该技术的进一步发展。因此,采用更有效的手段,加大在铸渗机理、铸渗工艺以及铸渗过程的数值模拟等方面的研究力度,以克服在铸渗层形成机理、具体铸渗工艺制定和数学问题就显得尤其重要了。

结论

铸造表面合金化技术,能够把金属材料的强韧性与强化成分的高硬度、高刚度结合起来,使零件的整体性能得到改善,且其工艺简单、成本低廉,不仅可以在航天航空工业上应用,也可以在汽车、矿山机械制造等民用工业上应用。可以相信,表面合金化技术在耐磨、耐蚀、耐热复合材料制品生产方面将具有极广阔的前景。

参考文献

【1】 张立波,葛晨光,田世江.关于我国铸造业走自主创新道路的思考【J 1,铸造2 0 0 6,5 (55) ;429 ―432 .

【2】刘耀辉,于思荣,任露泉,赵玉谦.金属基耐磨铸造表面复合材料的现状及其今后研究工作的主攻方向[J].摩擦学学报, 1994, 14 1 : 89~95 .

【3】鲍崇高,王恩泽,高义民.等.A1203颗彬耐热钢复合材料的制

备及高温磨料磨损性能[J].复合材料学报,2001,21(1):56-60

【4】张冉阳,陈跃,张永振,等.消失模铸渗成形工艺研究及应用[J].

铸造技术,2005,26(10):95l-953

【5】戴绪绮,冀守勋。王文清.铸造工艺中的冷芯盒法_ 研究与开发,1989.

铸造工艺论文篇7

关键词:压铸;计算机模拟;软件

中图分类号:TP319文献标识码:A文章编号:1672-7800(2013)001-0117-02

0引言

压铸成型过程是在高压下,将熔融态合金以较高的速度充填到模具型腔,并在压力作用下结晶凝固以获得铸件。了解并控制成型过程对获得良好铸件质量至关重要。长期以来对这个复杂过程的认知是建立在大量实验基础上的经验准则。随着计算机及相关科学的发展,计算机模拟技术在压铸生产中的应用越来越受到关注。

压铸理论的研究途径不外乎传统的试错法等试验研究法和计算机模拟仿真法。相比之下,计算机模拟不但可以帮助人们掌握铸造缺陷的形成机理,优化铸造工艺参数,确保铸件的质量,而且能缩短试制周期,降低生产成本。近年来,计算机模拟有了长足发展,其在压铸技术方面的应用越来越受到人们的关注,在模拟软件的开发及其应用方面也有较多的研究。

1模拟软件

铸造模拟软件作为一个系统分析软件,在铸造成型技术方面有广阔的应用前景。开发此类软件的国家主要有美国、德国、法国、日本等工业国家,近10年来,我国在这方面的研究也取得了一定成果。

美国流体科学公司研发的FLOW3D是一款三维流体动力学和传热学分析软件,主要分析充型过程中金属流体的速度场、压力场、温度场、自由表面变化以及铸型的温度场;精确描述凝固过程、计算冷却或加热通道的位置以及加热冒口的适应,给出用宏观变量温度梯度、凝固速度和凝固时间表达的微观缩松准则函数,预测可能发生缩松、缩孔缺陷的主要位置。该软件能分析多种金属的多种铸造过程,已有用于镁合金压铸生产的例子。法国ESI公司开发的ProCAST铸造过程模拟软件,除了能进行流场、温度场的模拟外,还能进行热应力模拟、微观结构模拟,通过设置不同的参数,可以模拟多种铸造工艺,包括砂型铸造、金属型铸造、精密铸造、低压铸造、压力铸造等。德国MAGMA公司研究开发的MAGMASOFT软件能分析压铸过程的传热和流体的物理行为,凝固过程中的应力及应变,微观组织的形成,可以准确地预测铸件缺陷。该软件可以模拟多种金属的常见铸造工艺过程,并能模拟压铸过程的应力应变。此外还有法国的SIMULOR、芬兰的CASTCAE、西班牙的FORCAST、瑞典NOVACAST、日本的CASTEM和JSCAST、韩国的AnyCAST等软件。从功能上看,这些软件可以对压铸等多种工艺进行温度场、流场、应力场的数值模拟,也可以预测铸件的缩孔、缩松、裂纹等缺陷以及铸件各部位的组织。

在国内,北京中铸创业科技有限公司的HZCAE/InteCAST软件,以充型过程、凝固过程数值模拟技术为核心,对铸件进行铸造工艺分析,主要分析冷却凝固过程、流动充型过程、充型换热耦合过程;能预测夹渣、卷气、冷隔、浇不足、缩孔、缩松等缺陷。可用来分析铸钢、球铁、灰铁、铸铝、铸铜、铸镁等各种铸造合金的金属型、精铸、低压铸造、压铸等。北京北方恒力科技发展有限公司开发的CASTsoft/CAE软件集三维造型文件接口、有限差分网络自动剖分、铸造过程仿真、铸造缺陷预测、热应力计算、工艺优化及结果显示为一体,对铸件形成过程中的流场、温度场、热应力场进行模拟,预测铸造缺陷。该软件用于铸钢、铸铁和有色金属的差压铸造、低压铸造、金属型铸造和精密铸造等。华中科技大学研究开发的“华铸CAE”铸造工艺分析软件,以铸件充型、凝固过程数值模拟技术为核心,对铸件的成型过程进行工艺分析和质量预测,适用多种铸造合金和铸造方法。国内软件在镁合金压力铸造方面应用较少,这与国内镁合金及镁合金压铸技术起步晚有一定关系。

2模拟数学物理模型

常用的数值模拟算法有有限差分法(FDM)、直接差分法(DFDM)、控制体积法(VEM)、有限元法(FEM)和边界元法(BEM)等,目前涌现出了无单元法(EFM)、并行计算技术等。这些算法中,以有限差分法和有限元法应用较多。

铸造充型模拟过程中,将金属液看作不可压缩的流体,其流动服从质量和动量守恒,其数学形式是连续性方程和Navierstocks方程,压铸件充型过程中金属液的流动通常是紊流流动,常用涡粘性模式中的kε双方程模型来描述充型过程的紊流现象。凝固过程包括热量传递、动量传输、质量传输和相变等一系列过程的耦合,由于压铸生产的时间短,一般只计算温度场。在温度场计算中对结晶潜热有不同的处理方法,常用的有温度回升法、等效比热和热焓法,Procast软件采用的是热焓法。

3数值模拟研究方向

目前,对压铸过程的数值模拟研究主要有:模具与压铸件的温度场、型腔充型过程的流场、模具与压铸件应力场,凝固过程微观组织等,这些模拟对优化工艺参数,合理设计浇注和排溢系统,预测铸件缺陷,提高压铸件力学性能有一定的指导意义。但未形成有普遍指导意义的规律或准则;另外,针对特种合金的新压铸技术模拟研究的报告较少,可以开展这方面的工作以促进镁合金新压铸技术的发展。

4结语

计算机模拟为直观了解压铸过程的规律和理论提供了便利,随着计算机和信息技术的发展,产品设计、性能分析、制造和生产管理等的关系越来越密切,这对软件的集成化要求越发显得重要。因此,软件开发既可以走大集成化的路子,也可以走小集成化多接口的路子;模拟镁合金压铸成型并得到有普遍意义的结论对镁合金压铸成型的研究有重要价值。

参考文献:

[1]杨亚杰.铸造模拟软件PROCAST[J].CAD/CAM与制造信息,2004(6).

[2]柳百成,荆涛.铸造工程的模拟仿真与质量控制[M].北京:机械工业出版社,2000.

[3]李世宁.大型薄壁件充型过程数值模拟[D].哈尔滨:哈尔滨工业大学,2002.

[4]YCHENYIM.Threedimensionalfiniteelementanalysiswithphasechangebytemperaturerecoverymethod[J].InternationalJournalofmachinetoolsmanufacturing,1991(1).

[5]陈海青.铸件凝固过程数值模拟[M].重庆:重庆大学出版社,1991.

[6]FJBRADLEY.Astereologicalformulationforthesourceterminmicromodelsofequiaxedeutecticsolidification.

[7]谭建荣,吴培宁,张树有.压铸件铸造缺陷的计算机模拟[J].中国机械工程,2003(5).

[8]于彦东,马秋,徐云龙.镁合金压铸件凝固过程计算机模拟[J].热加工技术,2005(12).

[9]李朝霞,刘文辉,熊守美.镁合金压铸用模具的应力场和变形数值模拟[J].铸造,2004(6).

[10]李朝霞,刘文辉,熊守美.镁合金压铸用模具温度场分布的研究[J].铸造,2003(6).

[11]马秋,于彦东,赵康培.镁合金压铸件充型过程的数值模拟技术研究[J].哈尔滨理工大学学报,2004(4).

[12]王武,袁森,熊爱华.镁合金半固态成形技术的研究现状及发展[J].铸造技术,2004(6).

[13]赵康培,于彦东.镁合金通讯件压铸模浇注系统的设计与充型模拟[J].哈尔滨理工大学学报,2003(6).

[14]庄一强,马晓春.基于数值模拟的镁合金仪表盖浇注系统的设计与优化[J].特种铸造及有色合金,2010(10).

[15]徐绍勇,龙思远,廖慧敏.压铸镁合金摩托车轮毂缺陷分析及工艺改进措施[J].热加工工艺,2010(2).

[16]常青梅,龙思远,曹韩学.压铸镁合金轮状产品的结构优化设计[J].特种铸造及有色合金,2010(3).

[17]何毅,曹文炅,周照耀,等.薄板镁合金压铸件热变形数值模拟及工艺对比[J].热加工工艺,2010(2).

[18]郑金星,王成勇,刘全坤.基于准固相区多场仿真的镁合金压铸件热裂成因分析[J].特种铸造及有色合金,2010(9).

[19]黄昕,闫洪.镁基复合材料流变压铸数值模拟[J].铸造,2010(10).

[20]常庆明,栗晨星,王涛.半固态镁合金压铸充型过程的数值模拟研究[J].武汉科技大学学报,2010(5).

铸造工艺论文篇8

关键词:快速成型;铸造;石膏型;覆膜砂;冷冻铸造

一、快速成型技术简介

快速成型技术(RP,Rapid Prototyping)是 20 世纪 80 年代末期发展起来的先进制造技术的重要组成部分,它的最大特点就在于其制造的高柔性,即无需任何专用工具,由零件的CAD 模型,直接驱动设备完成零件或零件原型的成形制造;只需改变零件的CAD模型,就能很方便的获得相应的零件或原型[1]。

目前快速成型技术在“分层制造”思想的基础上,己出现了几十种工艺。现今比较成熟并已经投入商品化生产的工艺主要有以下几种:

① 固化成型(SLA-stereo Litho-rapid Apparatus)工艺,基于液态光敏树脂的光聚合原理工作,它是以热固性光敏树脂等为材料的薄板实体制造。

② 叠层实体制造(LOM-Laminated Object Manufacturing)工艺,又称薄型材料选择性切割工艺,是以纸、金属箔、塑料等为材料的薄板实体制造。

③ 选择性激光烧结(SLS-Selected Laser Sintering),是利用红外线激光来提供热量,熔化热塑性材料以形成三维零件。

④ 熔积成型(FDM-Fused Deposition Modeling),又称丝状材料选择性熔覆,是以石蜡、塑料、低熔点金属为材料的熔丝堆积造型。

⑤ 固体基础固化(SGC-Solid Ground Goring)是利用 UV 射线(紫外线),通过玻璃罩照射在树脂表面,使零件截面形状固化的造型。

二、快速成型技术在工艺品铸造中的应用

工艺品铸造是最重要的制造生产金属工艺品的技术之一,传统金属工艺品的制作方法一般是熔模铸造,这种工艺方法过程复杂,而且只适用单件生产,而且制作成本比较高,所以要铸造出一件完美的工艺品件,也不是一件容易的事。将快速成型技术与铸造技术结合起来,采用快速成型技术直接或间接完成铸型的制造,将大大提高铸件的柔性,使铸造技术在制造柔性方面发生巨大的变化和明显提高。

采用快速原型的离散-堆积成形原理与工艺完成铸型制造的技术与方法称为RP铸型制造。RP铸型制造又可分为间接RP铸型制造和直接RP铸型制造,前者运用RP技术所完成的仅是铸型的原型,需进一步地翻制和转换才能获得用于浇注的铸型,如硅胶型、石膏型和陶瓷型等,故称为间接RP铸型制造;后者运用RP技术直接完成可供浇注的铸型,如裹覆砂型、树脂砂型等,称为直接RP铸型制造。下面分别介绍几种用于铸造的快速成型技术:

(一)基于快速成型方法的石膏型精密铸造方法

快速成型技术与精密铸造技术相结合,为铸造模具快速设计与制造提供了新途径,并大大提高铸造生产的柔性,其中将RP原型运用到石膏精密铸造技术中就是新发展之一。

快速成型技术与石膏型精密铸造相结合主要有两种途径:一种是采用LOM、FDM、SLS 或SLA工艺制造的原型作为母模或硅橡胶中间转化模,进行石膏型拔模精密铸造来获得所需的工艺品。由于最终的得到零件或模具是RP原型翻制模,即RP原型与生产出的铸件互为铸件、铸型关系,结构正好相反,因而被称为间接RP-石膏型制造工艺[2];另一种是采用RP原型作为主模型,翻制硅橡胶,采用硅橡胶翻制蜡型或直接采用LOM等工艺制造的原型,进行石膏型熔模精密铸造,铸造最终产物与RP原型尺寸、结构完全相同,是RP原型不同材质的翻版,因而称为直接RP-石膏型制造工艺[3]。

(二)基于覆膜砂激光快速成型方法的铸造方法

覆膜砂具有加热固化的特点,其固化温度一般为200~280℃。当激光扫描覆膜砂时,表面的覆膜砂吸收的光能转化成热能并向深层的覆膜砂传播,使固化温度范围内的砂粒发生固结。

利用覆膜砂过热炭化失效的特点,可以产生一种基于激光束轮廓线扫描直接获得覆膜砂铸型的方法。首先利用CAD软件,在计算机中建立要加工零件的三维立体模型,并用分层切片软件对其进行处理,得到不同高度上每一截面层的平面几何信息。CAD/CAM系统根据截面信息生成x-y激光束在各层粉末上的数控运动指令。在计算机的控制下,按照截面轮廓的信息,在粉末上扫描出截面形状,激光的功率要足够大,使得轮廓边界处的粉末完全炭化而失去固化作用,逐层扫描直至堆积出零件的三维曲面结构的分型面。按照覆膜砂固化工艺条件的要求对砂箱内型砂进行加热固化,使固化后的覆膜砂沿着分型面分型,就可得到目标铸型[4],其后铸型即可用来浇注金属而得到所需的工艺品。

(三)基于快速成型方法的冷冻铸造方法

冷冻铸造技术在国内外都尚处于起步阶段,有资料报道的只有美国的 Duramax 公司在 1991年开始致力于冷冻铸造工艺 (Freeze Casting Process)的研究,并申请了美国专利。另外, 近些年有些研究者将快速成型技术(RP) 和冷冻铸造技术结合起来,形成了快速冷冻工艺(Rapid Freeze Prototyping) 并取得了一定的进展,具有代表性的是美国的密苏里大学和中国的清华大学。

用 RFP 技术制作冰模的工艺流程与FDM( 熔丝沉积) 类似,只是成形材料为水,并且要在冷冻环境下成形[5]。首先在计算机中用RFP成形机可接受的软件系统对冰模进行三维造型,然后用切片软件将三维图形离散成二维图形,根据成型件的二维几何模型的层片信息,在计算机精确控制下用特种喷头喷射出水滴,再在冷冻状态下逐层堆积得到冰模。RFP系统包括运动系统、喷射系统、控制系统和低温成形室。由于水是一种粘度低、流动性好的液体,为得到尺寸精度高、表面光洁的冰模,喷头必须能够喷射出足够细微的水滴。

冷冻冰模可以用于陶瓷型和熔模铸造,而这两者都可用来生产金属工艺品。用冷冻冰模翻制铸型与传统的陶瓷型和熔模铸造工艺的主要区别是:一些工序必须在低温环境中进行。造型材料必须为适应低温环境作出相应调整或重新选择。目前,较多的研究集中在熔模铸造中。

三、总结

本文在介绍了快速成型的基本原理和工艺方法的基础上,论述了几种用于工艺品铸造上的快速成型方法。在当今技术创新、技术融合的大背景下,将快速成型方法引入传统工艺品铸造生产中,必然会产生出更加适应现代经济社会发展的新型铸造工艺,也将对传统铸造工艺的升级提高起到良好的助力作用,从而使得铸造行业获得科学发展、可持续发展。

参考文献:

[1]吴志超,叶升平,等.快速成型技术及其在铸造中的应用(二)[J].中国铸造装备与技术,2002,(3):23-25.

[2]张丽桃.基于RT技术的石膏型快速金属模具的研制[J].华北航天工业院学报,2005,(15):13-15.

[3]苗红顺,王高潮,等.基于选域激光烧结技术的石膏型精密铸造工艺研究[J].热加工工艺,2006,(35):55-57.

[4]姚山,陈宝庆,曾锋等.覆膜砂选择性激光烧结过程的建模研究[J].铸造,2005,54(6):545-54.5.

上一篇:商业广告设计论文范文 下一篇:公益广告论文范文