钢筋混凝土论文范文

时间:2023-02-28 15:36:44

钢筋混凝土论文

钢筋混凝土论文范文第1篇

论文摘要:现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。应从源头把关,注重各道工序管理,加大现场监督力度,发现问题及时补救处理,加强监督管理,防患于未然,以及加强质量检验等方面控制其质量。

现浇钢筋混凝土柱的质量控制,重在过程。当出现质量问题后,应查找原因,及时分析处理。现浇钢筋混凝土柱是房屋结构中重要的承重构件之一。框架结构中较多采用的是钢筋混凝土现浇柱,其质量直接关系到结构安全和使用。加强对现浇钢筋混凝土柱的质量控制,分源头把关、工序管理、质量保证体系、问题补救、监督管理、质量检验几方面控制。

一、从源头把关、控制质量

从源头把关控制质量非常重要。钢筋模板工程首先要控制钢筋进场,检查产品合格证、出厂试验报告,并按现行国家标准《钢筋混凝土用热轧带肋钢筋》GB1499的规定取样作力学性能检验,其质量必须符合规定。钢筋表面不得有裂纹、油污等,平直无损伤。施工中柱受力筋采用机械连接,按《钢筋机械连接通用技术规程》JGJ107规定,全程跟踪取样、送试验室试验、见证试验结果,符合规定者才允许采用。

二、注重各道工序管理

控制质量要注重各个工序管理。从受力筋与箍筋的绑扎开始,要求:6肢箍,30根纵筋,对称配筋,箍筋间距100。采用梅花形绑扎,铅丝拧紧,保证钢筋的正确位置。加强质量问题原因分析,针对问题个别处理。如出现:混凝土浇筑过程中,执棒人员的操作技能不熟练,责任心不强,下料、执棒未严格按要求实施,局部出现漏振现象,以及混凝土浇筑时,一次下料厚度过厚,振动棒的插入间距过大等问题均需及时纠偏。

三、加大现场监督力度

为保障防止质量保证体系运转,要求现场管理人员管理到位,加大监督力度。

在浇筑混凝土之前,对钢筋隐蔽工程验收,内容包括:(1)纵向受力筋的品种、规格、数量和位置;(2)钢筋的连接;(3)箍筋品种、规格、间距;(4)预埋件的规格、数量和位置。重视保护层厚度25±5。拆模后,由业主、监理、施工单位人员对外观质量和尺寸偏差进行检查,做记录,并根据具体情况,及时对缺陷进行处理。

四、发现问题及时补救处理

现浇柱外观质量缺陷有:露筋(柱内钢筋未被混凝土包裹而外露)、蜂窝(混凝土表面缺少水泥砂浆而形成石子外露)、孔洞(混凝土中孔穴深度和长度均超过保护层厚度)、夹渣(混凝土中夹有杂物且深度超过保护层厚度)、疏松(混凝土中局部不密实)、裂缝(缝隙从混凝土表面延伸至混凝土内部)、外形缺陷(缺棱掉角、棱角不直等)、外表缺陷(构件表面麻面、掉皮、起砂等)。尺寸允许偏差:轴线位置8;垂直度13,层高±13;截面尺寸+8,-5;表面平整度8;预埋件中心线位置10。发现轴柱混凝土浇筑后出现大面积孔洞、露筋现象,属严重缺陷出现了质量问题。针对此类问题应采取以下处理:先打掉出现问题,已浇筑的混凝土柱。同时编制具体施工处理方案措施,重新立模验收,合格后再进行混凝土浇筑。

五、加强监督管理、防患于未然

加强监督管理,主要作好以下工作:(1)做好混凝土浇筑安全技术交底工作,做好交底和混凝土浇筑过程中的施工记录。(2)重要特殊部位混凝土浇筑要编制针对性的施工方案,严格按方案施工。(3)加强混凝土浇筑过程控制:控制混凝土配合比,混凝土坍落度(混凝土坍落度以现场测试为准,根据现场需要可适当增大坍落度,但必须满足设计和规范要求);合理组织劳动力,严禁疲劳操作;混凝土浇筑高大柱子时,设门子洞。门子洞的留设要严格按要求做;配制混凝土时要注意石子合理级配。当柱混凝土浇筑出现质量问题,采用如下处理原则:本着既不改变结构受力状态,又不改变结构外形尺寸,以达到设计要求,满足使用功能为度。

六、加强质量检验

质量检验方法例:由工程质量检测中心试验人员,在现场于每根柱的缺陷处随机抽取两根芯样进行密实度观察,检查结果为:(1)有一柱缺陷深入表面50~60外,其余构件缺陷均集中于表面,内部未见离析、孔洞、蜂窝、裂缝等现象,密实度较好;(2)钻孔应及时修补,将孔壁凿毛,并清除孔内污物,采用C50细石混凝土进行浇筑;(3)混凝土强度28天龄期时进行回弹检测。经试验室做回弹试验,混凝土强度均达到设计要求C40。有关检测报告发送至设计院,并得到设计人员认可。现浇钢筋混凝土柱的质量控制,需严格执行质量检测规范规程的各项规定。

钢筋混凝土论文范文第2篇

对于钢筋混凝土构件,材料的非线性与几何非线性同时存在,试验方法存在一定的局限性,导致对钢筋混凝土构件的内部受力状态和破坏机理的研究不够深入。混凝土是由水泥、水、砂和石子及各种掺合料硬化而成,是成分复杂、性能多样的建筑材料。长期以来,人们用线弹性理论来分析钢筋混凝土结构的应力或内力,而以极限状态的设计方法确定构件的承载能力。这种方法往往是基于大量的试验数据基础上的经验公式,虽然能够反映钢筋混凝土构件的非弹性性能[1],但是在使用上存在局限性,也缺乏系统的理论性。随着计算机的发展,有限元法在工程领域得到了越来越广泛的应用。随着计算机的普及和完善,运用数值模拟方法检验和代替部分试验,具有节约成本、方便等有点。

2钢筋混凝土梁的模拟分析

2.1模型建立

以钢筋混凝土梁为例进行模拟分析:梁长6米,高取为500mm,截面宽度去为300mm,在跨中施加集中荷载20kN,梁左端施加可动铰支座约束,右端施加固定铰支座约束。

2.2位移图

受力前的图形为图2中的边框线,梁在集中力荷载作用下的位移图为图2.2中的实体。在集中荷载的作用下,以梁跨中间的位置向下弯曲最为明显,越到两端位移越小,直至为零,这与假设的边界约束条件相一致。

2.3应力图

从图中可以看出,梁受力后跨中截面部分的应力最大[2]。随着荷载的逐步加大跨中部分的应力变成红色,表明此处为梁的受力薄弱环节,在结构设计和施工中此处都应该加强措施以保证梁构件的安全。

3结语

数值模拟方法以其自身强大的优势,在一定程度可以起到辅助和代替部分试验的重要作用。在今后的发展研究中,随着数值模拟理论的不断进步,它必将会为工程实践提供准确的理论依据。

参考文献:

[1]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社,2005.

[2]TianhuHe,MingzhiGuan.FiniteElementMethodtoaGeneralizedTwo-dimensionalThermo-elasticProblemwithThermalRelaxation,ProceedingsoftheThirdInternationalConferenceonMechanicalEngineeringandMechanics,Vol1,Beijing,P.R.China,Oct.21-23:278-283.

摘要:本文借助于数值模拟方法研究了钢筋混凝土梁在集中荷载作用下的受力状态。通过分析得到的位移、应力图,清晰的反映了梁受力的全过程,并与实践吻合较好。

钢筋混凝土论文范文第3篇

关键词:地震强度延性地震力降低系数

地震灾害是人类面临的严重自然灾害之一。地震具有突发性的特点,至今可预报性仍然很低。强烈地震常造成人身和财产的巨大损失。我国属地震多发国家,需要考虑抗震设防的地域辽阔,因此研究结构的抗震性能在我国具有充分的必要性。

我国的现代抗震设计理论是从五十年代开始,在国际抗震理论的推动下发展起来的,并逐渐形成了自己的特色。在积累了相当的研究成果和实践经验的基础上,相继制定了74、78、89规范和新修订的2001抗震设计规范(GB5001122001)按2001年规范设计的建筑物的抗震能力较89规范可提高10%~15%,其技术含量达到国际先进水平。但由于受国家经济实力的限制,安全可靠度的设置仍低于美国等发达国家。

要想更好的执行规范就必须明确抗震规范制定的基本思想,明确抗震设计的基本原则。下面着重从以下几个方面做以阐述。

1在地震作用下,一味地追求结构的强度并不可取,结构的延性是非常重要的

地震分为小震、中震和大震。所谓小震指的是常遇地震,50年出现的概率大约为63%,重现期为50年。中震是指50年出现的概率约为10%,重现期为475年。而大震指的是罕遇地震,50年出现的概率为2%~3%,重现期为1641~2475年。对于偶然性和随机性很大的地震荷载,要想使结构强度一定大于结构反应,几乎是不可能的,而且是十分不经济的。受社会承受牺牲的能力和经济制约的因素,我们只能从概率的角度出发,使结构在一定的概率保证下能安全正常地发挥作用。这就决定了抗震设计的基本原则,在我国即通常所说的“小震不坏,中震可修,大震不倒”。

在“小震”作用下,要求结构不受损伤或不需修理仍可继续使用。从结构抗震分析角度来说,就是要求结构在“小震”作用下保持准弹性反应状态,而不进入使建筑物中断使用和产生非结构构件破坏的非弹性反应状态;同时结构的侧向变形应控制在合理的限制范围以内,目的是使结构具有足够的抗侧向力刚度。

中震大概相当于我们的设防烈度地震,当遭遇到中震作用时,结构可以有一定程度的损坏,经修复或不经修复仍可继续使用。从经济角度来说,维修费用不能太高。

对发生概率极小的罕遇大震(“大震”的烈度比设防烈度约高一度左右)。要求当结构在遭遇“大震”作用时,不应倒塌或发生危及生命的严重破坏。

这样一个抗震设防目标是非常经济合理的。因为地震的发生太偶然,倘使我们一味地追求结构的强度以保证中震甚至是大震作用下结构不坏,这将会使极大量的材料在绝大部分时间里,甚至在整个寿命期内都处于不能充分发挥作用的状态,这样做是不明智的。

在上述设计原则指导下,就要求结构处于这样一种状况:当小震来临,应确保所有的结构构件在抵抗地震作用力时,具有足够的强度,使其基本上处于弹性状态。并通过验算小震作用下的弹性位移共同来保证结构不坏。处于这个阶段的结构构件不会发生明显的非线性变形,也不必需要采取特殊的构造措施。在中震作用下,结构的某些关键部位超过弹性强度,进入屈服,发生较大变形,达到非线形阶段,这时,我们就特别提出延性要求(延性指当地震迫使结构发生较大的非线性变形时,结构仍能维持其初始强度的能力,是结构超过弹性阶段的变形能力,它是结构抗震能力强弱的标志。它包括承受极大变形的能力和靠滞回特性吸收能量的能力,它是抗震设计当中一个非常重要的特性)。当中震来临的时候,因为结构具有非弹性特征,某些关键部位超过其弹

性强度,进入塑性状态。由于它有一定的延性,它的非线性能够承担塑性变形,使它在变形中能够耗费

和吸收地震能量。代价是可能导致较宽的裂缝,混凝土表皮起壳、脱落,可能有一定的残余变形,但不至于导致安全失效,以达到中震可修的设防目标。处于这个阶段的结构,对延性就会提出相应的要求,而延性就要靠精心设计的细部构造措施来保证。当大震来临的时候,结构的非线性变形非常大,也可能发生不可修复的破坏。处于这个阶段的结构就需要通过计算它的弹塑性变形来保证结构不致倒塌。

所以,通常我们只需要按小震作用效应和其它荷载效应的基本组合,验算构件截面抗震承载力及结构的弹性变形。而中震作用效应则需要结构靠一定的塑性变形能力(即延性)来抵抗。所以结构延性对建筑抗震是极其重要的。

2地震力降低系数的大小决定了设计地震力取值的大小,从而决定了对延性要求的大小

由上所述,用于承载力设计的地震作用可以取到小震水平,当更大的地震来临的时候,则靠结构的延性去抵抗。所以,我们并不取用设防烈度地震作用力来进行结构承载力设计,而需要把设防烈度地震力降低一个系数,称为地震力降低系数。

地震力降低系数取得越大,设计地震作用就取得越小;地震力降低系数取得越小,设计地震作用就取得越大。在同一个设防烈度下,地震力降低系数取得越大,地震作用就越小,那么按此小的地震作用设计出来的结构的屈服水准就越低,意味着结构在相应强烈程度地震下形成的非弹性变形就越大,这就要求结构具有较大的延性来保证它较大的非弹性变形的实现,因而对延性提出的要求就更高。这一延性等级的结构即为较低设计地震力取值2较高延性要求的“高延性等级”结构。地震力降低系数取得

越小,地震作用就越大,那么按此大的地震作用设计出来的结构的屈服水准就越高,意味着结构在相应强烈程度地震下形成的非弹性变形就越小,这就只需要要求结构具有较小的延性来保证它较小的非弹性变形的实现,因而对延性提出的要求就越低。这一延性等级的结构即为较高设计地震力取值2较低延性要求的“低延性等级”结构。同理,在同一个设防烈度下,地震力降低系数取为中等,地震作用也为中等,因而对延性提出的要求也为中等。这一延性等级的结构即为中等设计地震力取值2中等延性要求的“中等延性等级”结构。这样,地震力降低系数的大小实际上就决定了设计地震力取值的大小,从而决定了对延性要求的大小。

中国规范规定把设防烈度地震作用降低约3倍来进行承载力设计,即设防烈度地震作用反应谱除以地震承载力降低系数3,而得到设计所用的反应谱。并且中国规范按设防烈度从大到小对结构延性提出了从高到低的要求,具体是用抗震等级来表示,共分为一级、二级、三级、四级四个等级。

初步印象是:中国的地震力降低系数的取值偏低。这似乎说明中国的地震力取值较高,因而并不需要对结构提出高延性要求。其实不然,在对比了中国和西方国家的设防地震作用反应谱曲线之后,我们发现,在中长周期范围内,西方要比中国高,也就是说,中国在较低的反应谱水平下降低3倍,跟西方在较高的反应谱水平下降低5倍,甚至更多之后的作用水平是相差不多的,这就说明,中国对抗震结构应提出相当于西方地震力降低系数等于5,甚至高一档次的高延性要求。

3“能力设计法”已为各国普遍接受。通过能力设计法以选择性质不同的主要抗侧力构件,在地震作用影响产生大变形的情况下,能够形成较好的耗能机制

为了使钢筋混凝土结构在地震引起的动力反应过程中表现出必要的延性,就必须通过能力设计法,使塑性变形更多地集中在比较容易保证良好延性性能或者具有一定延性能力的构件上。能力设计法的具体思路有三步:

(1)第一步是选择一个可接受的塑性变形机构。所选机构的位移延性应该靠塑性铰处最小非线性转动来达到。一旦选定了合适的塑性变形机构,就可以精确地确定能量耗散部位。能力设计法在选择塑性变形机构的选择上存在两种不同的方案:

一种是“梁铰机构”。其具体措施是人为地较大幅度增加柱端的抗弯能力,使除底层柱底以外的各柱端在较强地震作用下,原则上不进入屈服后状态,即不出现塑性铰。由于柱端原则上不进入屈服,曲率较小,因此对除底层柱底的其它各层柱端不必提出严格的轴压比控制条件,即不必一定要把柱端的受力状态控制在离大、小偏心受压界限状态尚有一定距离的延性较好的大偏心受压状态。这种机构主要靠梁端出铰来耗散地震能量。

另一种是“梁柱铰机构”。其具体措施是只在一定程度上人为增大柱的抗弯能力,因此,从总体上说,柱端虽然与梁端相比相对较强,但在较强和很强地震作用下,柱端仍有可能进入屈服,只不过梁端出现塑性铰的机会较多、较早,塑性转动较大;柱端塑性铰则出现相对较迟,塑性转动相对较小。只要对柱的轴压比控制较严,使柱端不出现小偏心受压和离大、小偏压分界状态过近的大偏心受压情况,再通过加强对柱端塑性铰区的约束,就可以使柱端具有所需的、不十分苛刻的塑性转动能力(延性能力)且不致压溃。这种机构主要靠梁柱共同出铰来耗散地震能量。

对比以上两种方案,前者实际上是提高了柱的强度,加强了柱的弹性变形能力。在实际配筋当中,纵筋用量相对较多,箍筋用量相对较少。后者实际上是提高了柱的塑性变形能力,在实际配筋当中,纵筋用量相对较少,箍筋用量相对较多。

中国规范选择了第二个方案,即“梁柱铰机构”。这即是我们通常所说的“强柱弱梁”。为了实现能力设计方法中的强柱弱梁机构,我们通常的做法是对柱截面的组合弯矩乘以增大系数;也可以对由梁端实际配筋反算出梁端可抵抗弯矩,即实配弯矩乘以增大系数的方法来实现,并用增大后的弯矩值进行柱端控制截面的承载力设计。

(2)第二步是要通过人为增大各类构件的抗剪能力,使其不致在强烈地震作用下,在结构延性未发挥出来之前出现非延性的剪切破坏。这即是我们通常所说的强剪弱弯。通常的做法是用剪力增大系数增大梁端、柱端、剪力墙端、剪力墙洞口连梁端以及梁柱节点处的组合剪力值,并用增大后的剪力设计值进行受剪控制截面控制条件,进行验算和设计。具体措施也有两类。

一类是直接对一跨梁两端截面的顺时针或反时针方向的组合弯矩值乘以增大系数,再与梁上作用的竖向重力荷载代表值一起从平衡关系中求得梁端剪力。

另一类是沿顺时针或反时针方向求得一跨梁两端截面按实际配筋能够抵抗的弯矩,对其乘以增大系数,再与梁上作用的竖向重力荷载代表值一起从平衡关系中求得梁端剪力。

(3)第三步是通过相应的构造措施,保证可能出现塑性铰的部位具有所需的塑性转动能力和塑性耗能能力。通常通过箍筋加密,限制轴压比等措施来给予保证。

上述三个步骤所采取的措施是相互关联的。第二步措施是第一步措施实现的前提和保障;因为只有塑性铰区不致先期发生剪切失效,才能够有梁柱塑性铰区的塑性转动。第一步措施要求较严,则第三步则可相对较弱。反之,第一步的措施较松,则对第三步的要求就较严格。因为如果柱弯矩增强系数很大,大到能保证除底层以外的其它柱端都不出现塑性铰,则并不需要对轴压比和约束箍筋提出严格的限制,即并不需要使柱处于延性较好的大偏压状态和使柱具有很强的转动能力。这即是形成梁铰机构。而如果控制柱的弯矩增强系数,使梁端出铰较柱端出铰较早、较多、转动较大,柱端出铰则相对较迟、较少、转动较小。这即是“梁柱铰机构”。此时,就需要对柱轴压比提出一定的限制,使柱端的受力状态处于大偏压,同时,加强对塑性铰区箍筋的约束,以提高塑性铰的转动能力,这样就提高了柱端的延性能力,使之在所需要的塑性转动下不至于被压坏。所以,柱的弯矩增大系数越大,对轴压比的限制和箍筋的约束要求就越低;弯矩增大系数越小,对轴压比的限制和箍筋的约束要求就越高。

4几种基本抗震体系的性能

(1)框架结构体系:按上述的能力设计思路,通过合理设计,可以把框架结构做成延性框架。延性框架在大震作用下,通过先出现梁铰、后出现柱铰这样一种耗能机构耗散大量的地震能量,结构能够承受一定的侧向变形。所以纯框架结构是一种抗震性能很好的结构。但是我们同时也看到由于纯框架的抗侧刚度较小,造成的侧移值比较大,因此建造高度不宜太高。非结构构件比如填充墙在地震作用下,也可能出现裂缝和破坏。框架和填充墙之间的硬性联结造成的刚度增大效应也可能造成设计上未考虑到的增大的侧向力。倘若是半高的填充墙,还会导致形成短柱,刚度增大,承受很大的剪力,造成柱子的剪切破坏。

(2)剪力墙结构体系:剪力墙结构的承载力及刚度都很大,侧移变形小,因此它的使用范围可以比纯框架结构更高。适用于框架结构构件的非线形抗震性能的原理总体上也可以用于剪力墙,也可以把剪力墙设计成为延性剪力墙,也可以以稳定的方式来耗散地震能量。但是,剪力墙中不论是墙肢还是连梁,它的截面的特点是短而高,这类构件对剪切变形相当敏感,容易出现裂缝,容易出现脆性的剪切破坏。因此需进行精心合理的设计,才能够使剪力墙具有良好的抗震性能和良好的延性能力。剪力墙的破坏形态与其剪跨比有很大关系,对剪跨比很小的矮墙,以剪切破坏形态为主,塑性变形能力很差,所以在抗震结构中应避免采用矮墙。对于悬臂墙的能量耗散,主要是通过墙底出铰来进行的。而对于联肢墙,经过合理地设计开洞位置,使它的能量耗散机理与具有强柱弱梁的梁铰机构相似,形成强墙弱梁,即连梁梁端出铰,墙底出铰,而墙体的其它地方,均不出现塑性铰。否则,倘若连梁强于墙肢,则会出现与柱铰机构一样的层变形机构。对于较长的悬臂墙,通常通过人为开洞使之变成联肢墙,因为悬臂墙作为静定结构,一旦有一个截面破坏失效,就会导致结构失效和倒塌,而联肢墙则可设计成强墙弱梁,出铰数目较多,耗能较大。同框架设计的强剪弱弯一样,连梁及墙肢也需要通过“强剪弱弯”来提高其抗剪承载能力,推迟剪切破坏,从而改善其延性。但是受其自身截面特点的影响,构件仍不能保证不发生剪切破坏,特别是连梁,一般情况下的普通配筋连梁很难实现高延性,设计时,必须专门采取措施改变其性能。

(3)框架2剪力墙结构体系:是把框架和剪力墙结合在一起共同抵抗竖向和水平荷载的一种体系,它利用剪力墙的高抗侧力刚度和承载力,弥补框架结构抗侧刚度差,变形较大的弱点。由于剪力墙与框架协同工作,改善了纯框架和纯剪力墙的变形性能,总变形减小,层间变形减小,而且上下趋于均匀,框架上下各层柱的受力也比较均匀。另外,在地震作用下,剪力墙承担了大部分剪力,框架只承担很小的一部分剪力,通常都是剪力墙先屈服,剪力墙屈服后将产生内力重分配,框架分配的剪力将会增大,如果地震作用继续增大,框架结构也会屈服,使之形成曲线分布吻合最好。

从办公楼非线性地震反应时程分析以及三种侧向力分布模式下的静力弹塑性分析的最后塑性铰分布图可以看出,办公楼满足强柱弱梁的抗震要求。时程分析(EL2CENTRO地震波输入下)以及三种侧向力分布模式下的静力弹塑性分析所得出的最大层间位移角分别为:1/70,1/143,1/117,1/118,均小于规范给出的钢筋混凝土框架结构弹塑性位移角限值[θp]=1/50,因此,该办公楼满足罕遇地震作用下的变形要求。

5结论

(1)与常规结构静力弹塑性分析方法相比,考虑土2结构相互作用的结构静力弹塑性分析方法有其特殊性,结构静力弹塑性分析中的侧向力分布模式、目标位移的确定方法需重新确定。

(2)对比较规则的高层框架结构进行考虑土2结构相互作用非线性抗震分析,既可以采用非线性地震反应时程分析法,也可以采用静力弹塑性分析方法,两种方法都能对结构进行抗震性能评估。

钢筋混凝土论文范文第4篇

关键词:结构设计抗震

一.抗震设计思路发展历程

随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。

最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。

由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。

二.现代抗震设计思路及关系

在当前抗震理论下形成的现代抗震设计思路,其主要内容是:

1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。

2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。

现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。

60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终不变的前提下,通过对不同周期,不同屈服水准的非弹性单自由度体系做动力分析,得到了有关弹塑性反应下最大位移的规律:对T大于1.0秒的体系适用“等位移法则”即非弹性反应下的最大位移总等于同一地面运动输入下的弹性反应最大位移。对于T在0.12-0.5秒之间的结构,适用“等能量法则”即非弹性反应下的弹塑性变形能等于同一地震地面运动输入下的弹性变形能。当“等能量原则”适用时,随着R的增大,位移延性需求的增长速度比“等位移原则”下按与R相同的比例增长更快。由以上规律我们可以看出,如果以结构弹性反应为准,把结构用来做承载能力设计的地震作用取的越低,即R越大,则结构在与弹性反应时相同的地震作用下达到的非弹性位移就越大,位移延性需求就越高。这意味着结构必须具有更高的塑性变形能力。规律初步揭示出不同弹性周期的结构,当其弹塑性屈服水准取值大小不同时,在同一地面运动输入下屈服水准与所达到的最大非弹性位移之间的关系。也揭示出了延性能力和塑性耗能能力是屈服水准不高的结构在较大地震引起的非弹性动力反应中不致发生严重损坏和倒塌的主要原因。让人们认识到延性在抗震设计中的重要性。

之所以存在上诉的规律,我们应该注意到钢筋混凝土结构的一些相关特性。首先,通过人为措施可以使结构具有一定的延性,即结构在外部作用下,可以发生足够的非线性变形,而又维持承载力的属性。这样就可以保证结构在进入较大非线性变形时,不会出现因强度急剧下降而导致的严重破坏和倒塌,从而使结构在非线性变形状态下耗能成为可能。其次,作为非线弹性材料的钢筋混凝土结构,在一定的外力作用下,结构将从弹性进入非弹性状态。在非弹性变形过程中,外力做功全部变为热能,并传入空气中耗散掉。我们可以进一步以单质点体系的无阻尼振动来分析,在弹性范围振动时,惯性力与弹性恢复力总处于动态平衡状态,体系能量在动能、势能间不停转换,但总量保持不变。如果某次振动过大,体系进入屈服后状态,则体系在平衡位置的动能将在最大位移处转化为弹性势能和塑性变形能两部分,其中,塑性变性能将耗散掉,从而减小了体系总的能量。由此我们可以想到,在地震往复作用下,结构在振动过程中,如果进入屈服后状态,将通过塑性变性能耗散掉部分地震输给结构的累积能量,从而减小地震反应。同时,实际结构存在的阻尼也会进一步耗散能量,减小地震反应。此外,结构进入非弹性状态后,其侧向刚度将明显小于弹性刚度,这将导致结构瞬时刚度的下降,自振周期加长,从而减小地震作用。

随着对规律认识的深入,这一规律已被各国规范所接受。在抗震设计时,对在同一烈度区的同一类结构,可以根据情况取用不同的R,也就是不同的用于强度设计的地震作用。当R取值较大,即用于设计的地震作用较小时,对结构的延性要求就越严;反之,当R取值较小,即用于设计的地震作用较大时,对结构的延性要求就可放松。

目前,国际上逐步形成了一套“多层次,多水准性态控制目标”的抗震理念。这一理念主要含义为:工程师应该选择合适的形态水准和地震荷载进行结构设计。建筑物的性态是由结构的性态,非结构构件和体系的性态以及建筑物内容物性态的组合。目前性态水准一般分为:损伤出现(damageonset)、正常运作(operational)、能继续居住(countinuedoccupancy)、可修复的(repairable)、生命安全(lifesafe)、倒塌(collapse)。性态目标指建筑物在一定程度的地震作用下对所期望的性态水准的表述。对建筑抗震设计应采用多重性态目标,比如美国的“面向2000基于性态工程的框架方案”曾对一般结构、必要结构、对安全起控制作用的结构分别建议了相应的性态目标――基本目标(常遇地震下完全正常运作,少遇地震下正常运作,罕遇地震下保证生命安全,极罕遇地震下接近倒塌)、必要目标(少于地震下完全正常运作,罕遇地震下正常运作,极罕遇地震下保证生命安全)、对安全其控制作用的目标(罕遇地震下完全正常运作,极罕遇地震下正常运作)。对重要性不同的建筑,如协助进行灾害恢复行动的医院等建筑,应该按较高的性态目标设计,此外,也可以针对甲方对建筑提出的不同抗震要求,选择不同的性态目标。

三.保证结构延性能力的抗震措施

合理选择了结构的屈服水准和延性要求后,就需要通过抗震措施来保证结构确实具有所需的延性能力,从而保证结构在中震、大震下实现抗震设防目标。系统的抗震措施包括以下几个方面内容:

1.“强柱弱梁”:人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在大震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大;而柱端塑性铰出现较晚,在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。

2.“强剪弱弯”:剪切破坏基本上没有延性,一旦某部位发生剪切破坏,该部位就将彻底退出结构抗震能力,对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值,使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。

3.抗震构造措施:通过抗震构造措施来保证形成塑性铰的部位具有足够的塑性变形能力和塑性耗能能力,同时保证结构的整体性。

这一系统的抗震措施理念已被世界各国所接受,但是对于耗能机构却出现了以新西兰和美国为代表的两种不完全相同的思路。首先,这两种思路都是以优先引导梁端出塑性铰为前提。

新西兰的抗震研究者认为耗能机构宜采用符合塑性力学中的“理想梁铰机构”,即梁端全部形成塑性铰,同时底层柱底也都形成塑性铰的“全结构塑性机构”。其具体做法是通过结构分析得到各构件组合内力值后,对梁端截面就按组合弯矩进行截面设计;而对除底层柱底以外的柱截面,则用人为增大了以后的组合弯矩和组合轴力进行设计;对底层柱底截面则用增大幅度较小的组合弯矩和组合轴力进行截面设计。通过这一做法实现在大震下的较大塑性变形中,梁端塑性铰形成的较为普遍,底层柱底塑性铰出现迟于梁端塑性铰,而其余所有的柱截面不出现塑性铰,最终形成“理想梁铰机构”。为此,这种方法就必须取足够大的柱端弯矩增强系数。

美国抗震界则认为新西兰取的柱弯矩增强系数过大,根据经验取了较小的柱弯矩增强系数,这一做法使结构在大震引起的非弹性变形过程中,梁端塑性铰形成较早,柱端塑性铰形成的相对较迟,梁端塑性铰形成的较普遍,柱端塑性铰形成的相对少一些,从而形成“梁柱塑性铰机构”。

新西兰抗震措施的好处在于“理想梁铰机构”完全利用了延性和塑性耗能能力较好的梁端塑性铰来实现框架延性和耗散地震能量,同时因为除底层柱底外的其它柱端不出现塑性铰,也就不必再对这些柱端加更多的箍筋。但是这种思路过于受塑性力学形成理想机构概念的制约,总认为底层柱底应该形成塑性铰,这样就对底层柱底提出了较严格的轴压比要求,同时还要用足够多的箍筋来使柱底截面具有所需的延性,此外,底层柱底如果延性不够发生破坏很容易导致结构整体倒塌。这些不利因素使该方法丧失了很大的优势。

因此很多研究者认为不需要被塑性力学的机构概念所限制,只要能在大震下实现以下的塑性耗能机构,就能保证抗震设计的基本要求:

1.以梁端塑性铰耗能为主;

2.不限制柱端塑性铰出现(包括底层柱底),但是通过适当增强柱端抗弯能力的方法使它在大震下的塑性转动离其塑性转动能力有足够裕量;

3.同层各柱上下端不同时处于塑性变形状态。

我国的抗震措施中对耗能机构的考虑也基本遵循了这一思路,采用了“梁柱塑性铰机构”模式,而放弃了新西兰的基于塑性力学的“理想梁铰机构”模式。

抗震设计中我们为了避免没有延性的剪切破坏的发生,采取了“强剪弱弯”的措施来处理构件受弯能力与受剪能力的关系问题。值得注意的是,与非抗震抗剪破坏相比,地震作用下的剪切破坏是不同的。以梁构件为例,在较大地震作用下,梁端形成交叉斜裂缝区,该区混凝土受斜裂缝分割,形成若干个菱形块体,而且破碎会随着延性增长而加剧。由于交叉斜裂缝与塑性铰区基本重合,垂直和斜裂缝宽度都会随延性而增大。抗震下根据梁端的受力特征,正剪力总是大于负剪力,正剪力作用下的剪压区一般位于梁下部,但由于地震的往复作用,梁底的混凝土保护层可能已经剥落,从而削弱了混凝土剪压区的抗剪能力;交叉斜裂缝宽度比非抗震情况大,以及斜裂缝反复开闭,混凝土破碎更严重,从而使斜裂缝界面中的骨料咬合效应退化;混凝土保护层剥落和裂缝的加宽又会使纵筋的销栓作用有一定退化。可见,地震作用下,混凝土抗剪能力严重退化,但是试验发现箍筋的抗剪能力仍可以维持。当地震作用越来越小时,梁端可能不出现双向斜裂缝,而出现单向斜裂缝,裂缝宽度发育也从大于非抗震情况到接近非抗震情况,抗剪环境越来越有利。此外,抗震抗剪要求结构构件应在大震下预计达到的非弹性变形状态之前不发生剪切破坏。因为框架剪切破坏总是发生在梁端塑性铰区,这就不仅要求在梁端形成塑性铰前不发生剪切破坏,而且抗剪能力还要维持到塑性铰的塑性转动达到大震所要求的程度,这就需要更多的箍筋。同时,在梁端塑性变形过程中作用剪力并没有明显增大,也进一步说明这里增加的箍筋不是用来增大抗剪强度,而是为了提高构件在发生剪切破坏时所达的延性。

综上所述,与非抗震抗剪相比,抗震抗剪性能是不同的,其性能与剪力作用环境,塑性区延性要求大小有关。我们可以采取以下公式来考虑抗震抗剪的强度公式:

其中为混凝土抗剪能力,为箍筋抗剪能力,为由于地震作用导致的混凝土抗剪能力下降的折减系数,且随着剪力作用环境、延性要求而改变。我国的抗震抗剪强度公式也以上面公式为基础的,但是为设计方便,不同的烈度区取用了相同的公式,均取为0.6,与上面提到的混凝土抗剪能力随地震作用变化而不同的规律不一致,较为粗略。

延性对抗震来说是极其重要的一个性质,我们要想通过抗震措施来保证结构的延性,那么就必须清楚影响延性的因素。对于梁柱等构件,延性的影响因素最终可归纳为最根本的两点:混凝土极限压应变,破坏时的受压区高度。影响延性的其他因素实质都是这两个根本因素的延伸。如受拉钢筋配筋率越大,混凝土受压区高度就越大,延性越差;受压钢筋越多,混凝土受压区高度越小,延性越好;混凝土强度越高,受压区高度越低,延性越好(但如果混凝土强度过高可能会减小混凝土极限压应变从而降低延性);对柱子这类偏压构件,轴压力的存在会增大混凝土受压区高度,减小延性;箍筋可以提高混凝土极限压应变,从而提高延性,但对于高强度混凝土,受压时,其横向变形系数较一般混凝土明显偏小,箍筋的约束作用不能充分发挥,所以对于高强度混凝土,不适于用加箍筋的方法来改善其延性。此外,箍筋还有约束纵向钢筋,避免其发生局部压屈失稳,提高构件抗剪能力的作用,因此箍筋对提高结构抗震性能具有相当重要的作用。根据以上规律,在抗震设计中为保证结构的延性,常常采用以下措施:控制受拉钢筋配筋率,保证一定数量受压钢筋,通过加箍筋保证纵筋不局部压屈失稳以及约束受压混凝土,对柱子限制轴压比等。

四.我国抗震设计思路中的部分不足

我国在学习借鉴世界其他国家抗震研究成果的基础上,逐渐形成了自己的一套较为先进的抗震设计思路。其中大部分内容都符合现代抗震设计理念,但是也有许多考虑欠妥的地方,需要我们今后加以完善。

其中,最值得我们注意的是,与国外规范相比,我国抗震规范在对关系的认识上还存在一定的差距。欧洲和新西兰规范按地震作用降低系数(“中震”的地面运动加速度与“小震”的地面运动加速度之比)来划分延性等级,“小震”取值越高,延性要求越低,“小震”取值越低,延性要求越高。美国UBC规范按同样原则来划分延性等级,但在高烈度区推荐使用高延性等级,在低烈度区推荐使用低延性等级。这几种抗震思路都是符合规律的。而目前我国将地震作用降低系数统一取为2.86,而且还把用于结构截面承载能力设计和变形验算的小震赋予一个固定的统计意义。对延性要求则并未按关系来取对应的,而是按抗震等级来划分,抗震等级实质又主要是由烈度分区来决定的。这就导致同一个R对应了不同的,从而制定了不同的抗震措施,这与关系是不一致的。这种思路造成低烈度区的结构延性要求可能偏低的结果。

另外,我国规定的“小震不坏,中震可修,大震不倒”的三水准抗震设防目标也存在一定的问题。该设防目标对甲类、乙类、丙类这三类重要性不同的建筑来说,并不都是恰当的。这种笼统的设防目标也不符合当今国际上的“多层次,多水准性态控制目标”思想,这种多性态目标思想提倡在建筑抗震设计中应灵活采用多重性态目标。甲类建筑指重大建筑工程和地震时可能发生严重此生灾害的建筑,乙类建筑指地震时使用不能中断或需要尽快修复的建筑,由于不同类别建筑的不同重要性,不宜再笼统的使用以上同一个性态目标(设防目标),此外,还应该考虑建筑所有者的不同要求,选择不同的设防目标,从而做到在性态目标的选择上更加灵活。

五.常用抗震分析方法

伴随着抗震理论的发展,各种抗震分析方法也不断出现在研究和设计领域。

在结构设计中,我们需要确定用来进行内力组合及截面设计的地震作用值。通常采用底部剪力法,振型分解反应谱法,弹性时程分析方法来计算该地震作用值,这三种方法都是弹性分析方法。其中,底部剪力法最简便,适用于质量、刚度沿高度分布较均匀的结构。它的大致思路是通过估计结构的第一振型周期来确定地震影响系数,再结合结构的重力荷载来确定总的水平地震作用,然后按一定方式分配至各层进行结构设计。对较复杂的结构体系则宜采用振型分解反应谱法进行抗震计算,它的思路是根据振型叠加原理,将多自由度体系化为一系列单自由度体系的叠加,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。而对于特别不规则和特别重要的结构,常常需要进行弹性时程分析,该方法为直接动力分析方法。以上方法主要针对结构在地震作用下的弹性阶段,保证结构具有一定的屈服水准。

对结构抗震性能进行分析是抗震研究的一项重要内容,非线性时程分析,非线性静力分析是目前常用的几种抗震分析方法。其中针对结构非线性反应的非线性时程分析法(非线性动力反应分析),从建立在层模型或单列梁柱模型上的方法到建立在截面多弹簧模型上的方法,再到目前正在研究发展的建立在截面纤维滞回本构规律的纤维模型法,模拟的准确程度正在不断提高。其基本思路是通过一系列数值方法建立和求解动力方程从而得到结构各个时刻的反应量。但由于对地震特点和结构特性所做的假设,其结果存在不确定性,其主要价值是用来考察地震作用下普遍的而非特定的反应规律,以及对抗震设计后的结构进行校核分析,评估其抗震性能。非线性静力分析法(pushover)是近年来得到广泛应用的一种结构抗震能力评估的新方法。这种方法从本质上说是一种静力非线性计算方法,但它将反应谱引入了计算过程和结果。其根本特征是用静力荷载描述地震作用,在地震作用下考虑结构的弹塑性性质。它的基本原理和步骤是先以某种方法得到结构在可能遭遇地震作用下所对应的目标位移,然后对结构施加竖向荷载的同时,将表征地震作用的一组水平静力荷载以单调递增的形式作用到结构上,在达到目标位移时停止荷载递增,最后在荷载中止状态对结构进行抗震性能评估,判断是否可以保证结构在该水平地震作用下满足功能需求。

钢筋混凝土论文范文第5篇

东一时区1号-6号楼包含两栋22层的高层楼、两栋多层框架楼、部分商业裙楼及地下两层。总建筑面积150300m2.该工程的基础为一整体平板式筏基,长185m,宽95m,基础埋深12.5m.然而,各个区域基础的厚度各不相同,裙楼处0.8m,A区、C区主楼1.5m,B区主楼2.5m,再通过宽0.8m、1.2m的后浇带将整体平板式筏基分成6块。基础混凝土强度等级为C30、S8自防水混凝土。周围外墙的施工缝位于筏板上表面200mm处。全部筏基混凝土浇筑量为28000m3,其中B区的混凝土浇筑量为17000m3.

大体积钢筋混凝土施工裂缝控制

大体积钢筋混凝土施工的关键是控制裂缝的产生,而裂缝控制涉及到施工、设计、环境等多方面因素。首先是控制材料的质量和混凝土配比,而重点是控制施工各阶段的温度。为了验算由温差和混凝土收缩所产生的温度应力,是否超过当时的基础混凝土的极限抗拉强度,我们进行了防裂的理论计算,以便制定有效防裂措施。假设选取平面尺寸及厚度较大的B2区进行验算,其短边长54.78m,厚度2.5m,2.5/54.78=0.048﹤0.2,符合均匀收缩的假定。

1.计算绝热温升值及各龄期的降温温差:

Tmax=WQ/CV=335×334720/(993.7×2400)=47℃

龄期3d时水化热最大,其绝热温升值:

T3=0.65×Tmax=0.65×47=30.6℃

各龄期混凝土的降温温差如下:

T(3-6)=1.41℃;T(6-9)=2.35℃;T(9-12)=4.23℃;

T(12-15)=4.7℃;T(15-18)=4.23℃;T(18-21)=2.8℃;

T(21-24)=1.9℃;T(24-27)=1.41℃;T(27-30)=0.47℃;

2.各龄期混凝土的收缩当量温差

按照:Ty(t)=εy(t)/α

εy(t)=εy(1-e-0.01t)。M1.M2.…。Mn

计算得:Ty(3-6)=1.35℃;Ty(6-9)=1.31℃;Ty(9-12)=1.37℃;

Ty(12-15)=1.26℃;Ty(15-18)=1.28℃;Ty(18-21)=1.18℃;

Ty(21-24)=1.15℃;Ty(24-27)=2.31℃;Ty(27-30)=1.10℃;

3.各龄期混凝土的综合温差

由各龄期的降温温差和收缩当量温差相加而得。如:T(3-6)=1.41+1.35=2.76℃

4.各龄期混凝土弹性模量

按公式E(T)=Ec(1-e-0.09t)计算得:

E(3)=0.26×105(1-e-0.09t)=0.0616×105N/mm2

E(6)=0.108×105N/mm2;E(9)=0.1443×105N/mm2;

E(12)=0.1716×105N/mm2;E(15)=0.1924×105N/mm2;

E(18)=0.2080×105N/mm2;E(21)=0.2210×105N/mm2;

E(24)=0.2370×105N/mm2;E(27)=0.2371×105N/mm2;

E(30)=0.2430×105N/mm2.

5.计算最大温度应力

综上所述,混凝土30d龄期抗拉强度为1.75N/mm2,抗拉安全系数为1.76/1.493=l.172﹥1.15,能够满足要求,但富余量不大,虽然设计中钢筋布置较密,且配有抗裂筋,但还是应该采取防裂措施。底板混凝土内部的最高温度为:3d后的实际温度30.6℃+混凝土入模温度30℃=60.6℃;混凝土表面温度可达到30℃-40℃。基于北京夏季日平均温度在25℃-28℃,因此这表明混凝土整体浇筑后不会产生表面裂缝。

大体积钢筋混凝土施工措施

1.混凝土的配制

混凝土选用低热值的矿渣水泥或普通硅酸盐425号水泥,用量在356kg/m3以内,掺入10%的粉煤灰,以减少水化热,增加可泵性。粗骨料要求选用含泥量﹤1%,针片状颗粒﹤15%的碎石,细骨料为细度模数﹥2.3,含泥量﹤3%的粗中砂,水灰比控制为0.5,坍落度180mm-200mm.另外,按水泥用量的14%掺入UEA膨胀剂,能有效防止龟裂,提高防水性能。掺入0.7%EP-T型缓凝减水剂,对水泥的水化热有延时、延峰的作用(试验复试可缓凝18h),大大提高了混凝土结构的抗裂性能。

2.主要施工措施

(1)钢筋:在垫层上量出顶层及底层筋的位置,按照量线排放钢筋,顶层和底层钢筋架立采用架立柱,架立柱由6φ25二级钢筋作立筋,φ10@200箍筋绑焊构成,间距1500mm.

(2)浇筑:由远到近、自下而上逐层沿混凝土的流淌方向连续浇筑,在前一层混凝土初凝之前将后一层混凝土浇灌完毕,并沿混凝土推移方向逐段拆卸泵管。

(3)振捣:在出料口布置两台振捣棒,解决上部振捣;在流淌坡角处布置两台振捣棒,确保混凝土密实。为了防止混凝土集中堆积,应该先振捣出料口处,形成自然流淌坡度;然后全面振捣,振捣时间15s-30s为宜,并以砂浆上浮,石子下沉不出气泡为止,插捧间距400mm-500mm为宜。

(4)表面处理:泵送混凝土表面水泥砂浆较厚,振捣后用长度3m的刮尺刮平、搓压、整平、检查标高,待至初凝阶段将一种矿物骨料耐磨损地面材料均匀地撒于表面,用磨光机磨光,使耐磨材料与混凝土形成一个整体,成为高致密性的耐磨地面,满足地下车库地面的要求。实践证明这种地面处理方法,能减少混凝土水分蒸发,防止筏基表面出现沉裂现象,增强抗裂能力,并能在8h内转入下道工序。

(5)养护:耐磨地面处理完后立即洒水,严密覆盖一层塑料布和一层岩棉被,减少内外温差。

(6)接缝施工。一方面由于筏板基础的顶底中有三层水平钢筋,支设和拆除侧面模板相当困难,因此后浇带采用小网眼钢板作为侧面模板,同时穿过钢筋固定,浇筑完混凝土后小网眼钢板也不必取出。小网眼钢板内贴一层钢丝窗纱,既减少了漏浆,也增强了竖向抗裂性能。另一方面,外墙施工缝设置两道止水带,一道钢板止水带置于外墙正中,另一道橡胶止水带置于外墙外皮处,这样可有效防止外墙施工缝处渗漏。

(7)测温:因为底板表面系数大,只能在不同部位代表性地布孔测温,测温管采用了φ40钢管,底部焊上底板,用温度计测温,测温时间间隔为前三天2h一次,此后4h一次,要求密切注意观测混凝土内部温度变化。测温时若发现内外温差﹥25℃,就需要及时加盖岩棉被。

(8)为了控制入模温度在30℃以下,可采用的方法是:

①用岩棉被覆盖砂石,减少阳光直晒;

②泵管上包裹隔热材料,并洒水降温;

③气温超过35℃时,搅拌混凝土并加入冰水。

大体积钢筋混凝土施工体会

东一时区1号-6号楼工程基础施工完成后,经过一冬一夏的观察均未发现任何裂缝,总结其原因在于:

①适度的配筋率是抗裂的基本保证;

②加入高效缓凝剂,推迟水化热峰值的出现,相应地提高该时刻的混凝土抗拉强度;

③钢筋架林柱将顶层和底层的钢筋连为整体,后浇带侧面设小网眼钢板和密目钢板网作为固定模板,对约束混凝土裂缝能起到一定作用;

钢筋混凝土论文范文第6篇

【关键词】现浇钢筋混凝土;楼板裂缝;产生原因;防治措施

前言

随着城市住宅建设步伐的加快,不少住宅小区相继建成,许多住户陆续搬进新居,他们对住房的质量要求越来越高,尤其对一些现浇钢筋混凝土楼板出现的裂缝情况非常关注,担心这些裂缝最终会引发不安全事故。因此,分析现浇钢筋混凝土楼板裂缝的原因及探索裂缝的防治措施具有极强的现实意义。

一、住宅现浇钢筋混凝土楼板裂缝产生的原因

混凝土的收缩变形是混凝土的固有特性,主要表现形式为浇筑初期(终凝前)的凝缩变形、硬化过程中的干缩变形、在恒温绝湿条件下由凝胶材料的水化作用引起的自生收缩变形和温度下降引起的冷缩变形。影响混凝土收缩的因素主要有水泥品种、骨料品种和含泥量、混凝土配合比、外加剂种类及掺量、介质湿度和养护条件等。混凝土的相对收缩量主要取决于水泥品种、水泥用量和水灰比,绝对收缩量除与这些因素有关外,还与构件施工时最大连续边长成正比。当现浇钢筋混凝土楼板收缩受到其支承结构的约束,板内拉应力超过混凝土的极限抗拉强度时,就会产生裂缝。

(一)浇筑初期(终凝前)的凝缩变形

凝缩变形产生的裂缝发生在混凝土结硬前最初几小时内,通常浇后24h即可观察到。这种裂缝有两类:一类是由于塑性混凝土下沉产生的裂缝,在梁、板中都有可能产生;另一类是塑性收缩裂缝,常出现在板中,裂缝逞不规则的鸡爪状或地图状。凝缩变形产生的裂缝多与混凝土的泌水现象有关。

新浇筑的混凝土经压实后,由于重力作用,重的固体颗粒向下沉,迫使轻的水向上移,即所谓“泌水”。当固体颗粒彼此支撑不再下沉,或水泥结硬阻碍了它的下沉,泌水即停止。如混凝土中固体颗粒能不受阻碍地自由下沉,则仅使结硬后混凝土的体积减少,并不会产生裂缝。

塑性收缩裂缝并不受混凝土中钢筋的影响,影响塑性收缩裂缝的主要因素是混凝土表面的干燥速度,当水分蒸发速度超过了泌水速度时,就会产生这种裂缝。因此凡是能加速蒸发速度的因素(如气温高、相对湿度低、风速大以及混凝土中温度高于周围空气温度)都会促使塑性收缩裂缝的发生。塑性收缩裂缝的表面宽度有的可达1~2mm。这种裂缝在自由支承板的四角处则很少出现,因为角部的干缩不受约束;相反,如板的边缘受到约束(砖墙等),则将出现与板边呈45°的一系列平行裂缝。

(二)硬化过程中的干缩和水化作用引起的自身收缩

自身收缩与干缩一样,在浇筑后相当长的时间约1~2a才会出现,它是由于水的迁移而引起的。但它不是由于水向外蒸发散失,而是因为水泥水化时消耗水分造成凝胶孔的液面下降,形成弯月面,产生所谓自干燥作用,使混凝土体的相对湿度降低和体积减少;水灰比的变化对干燥收缩和自身收缩的影响正相反,即当混凝土的水灰比降低时干燥收缩减少,而自身收缩增大。如当水灰比大于0.5时,其自身干燥作用和自身收缩与干缩相比可以忽略不计;但是当水灰比减少到0.35时,混凝土内相对湿度会很快降低到80%以下,自身收缩与干缩则相接近。在硬化混凝土收缩受约束的条件下,收缩应变将导致弹性拉应力,拉应力可被近似看作弹性模量与应变的乘积;当拉应力超过混凝土的抗拉强度时,材料出现开裂。但是由于混凝土的粘弹性(徐变),部分应力释放,徐变产生的应力松驰后的残余应力才是决定混凝土是否开裂的关键。

(三)温度下降引起的冷缩变形

由于建筑物各部位在各季节所受温度变形不协调,从而导致裂缝。当结构周围温度变化时,梁、板、墙体均要产生变形,降温时梁的温度变化滞后于板,特别在急冷降温时更为明显,板的收缩大于梁,梁相对于板而言为外约束,由于板的收缩变形受到梁的约束,故在板上产生拉应力,这种应力是产生裂缝的主要原因,这种裂缝在板上常为贯通裂缝。

(四)现浇板上过早施工而加荷引起的裂缝

《混凝土结构施工质量验收规范》规定,混凝土强度达到1.2kg/mm2前,不得在其上踩踏或安装模板及支架。但开发商为了抢时间,赶进度,在刚浇好的现浇板上或混凝土尚处在初凝阶段,就任意踩踏,搬运材料,集中堆放砖块、砂浆、模板等。过早的加荷人为地造成了现浇板裂缝。

二、防治措施

(一)设计方面

在设计方面应该注意以下几点:

1.现浇板结构设计中除考虑强度要求外,还应进行挠度及裂缝验算,考虑施工不均匀性及混凝土本身的收缩因素,适当增加板厚,增强板的刚度。

2.宜采用较小直径密度分布的方式进行布筋,为防止温度及收缩引起的应力影响,应适当提高配筋率,这样可提高混凝土体的极限拉伸应变及混凝土抵抗干缩变形的能力,防止因混凝土自身收缩出现大量的应力集中点,使局部出现塑性变形产生裂缝。另外混凝土标号设计强度不宜太高。

3.应在楼板上每隔20m左右处设置一后浇带,并在楼板中间墙体支座处设一条伸缩缝,使其释放内应力。

4.楼板因四周嵌固于墙体内,应在四角部位按要求配置双向钢筋,伸出长度应小于1/3L(L为短向边长),且不小于1.2m为宜。

5.在抗震非设防地区,也应适当增设混凝土构造柱,提高房屋整体抗震强度。

(二)施工方面

1.应严格按配合比进行计量投料,控制搅拌时间及水灰比,并根据现场砂含水量变化及原砂中含粒径5cm以上的砾石筛选调整施工配合比,保持混凝土强度及坍落度一致,防止因水及水泥用量过多而增加混凝土中多余的水分及空气,从而产生较大的内应力,导致产生收缩裂缝。

2.混凝土中骨料的用量占体积的70%左右,必须注意粗骨料的质量,宜用粒径15~20mm的石子进行合理级配,含泥量<1%;砂子应用中、粗砂,含泥量<3%,砂率控制为40%左右,坍落度控制为14~20cm;水泥应选用非早强度型、水化热低和质量稳定的普通硅酸盐水泥,减少混凝土自身收缩。

3.严格控制板面负筋保护层厚度。现浇板负筋按设计要求都放在板上面,有梁通过或隔断时,一般放置在梁钢筋上面或与梁钢筋绑扎在一起。为了控制好负筋保护层厚度,必须采用Φ10~14的钢筋马凳,纵横间距为800mm左右来固定负筋的位置,并用电焊把马凳与负筋焊牢,使马凳在混凝土浇筑过程中不移位,保证负筋不下沉,从而有效控制负筋保护层的厚度,不使板负筋保护层过厚而产生裂缝。模板中线管铺设密集处的上部及下部铺放一层18号钢丝网,宽度每边应大于管区100mm为宜。

4.现浇板上不要过早上人、堆料和施加荷载,因混凝土浇筑后要有一个硬化过程,才会有强度;在这个过程中,应对混凝土加以保养,不能对混凝土施加任何外力。必须做到在混凝土强度达到1.2kg/mm2后,才允许在其上踩踏或安装模板及支架。

5.现浇混凝土楼板必须采用平板振捣器振捣,水平和垂直方向各一遍,每次振捣相互重叠1/3的振捣宽度,不留施工缝。

6.在初凝后和终凝前应用木抹子赶平压实及用铁抹子赶压三遍,减少收缩裂缝的出现。

7.混凝土浇筑完毕12h内,及时进行合理养护,保证规定的养护时间,一般情况下不少于7d,对掺有外加剂或抗渗混凝土养护不少于14d,提高混凝土自身拉伸应变能力,防止干缩变形出现裂缝。

8.发展纤维混凝土,在普通混凝土中掺入少量的抗裂合成纤维,其掺量为0.6~1.8kg/m3,可以控制混凝土的早期裂缝。

三、结语

现浇钢筋混凝土楼板裂缝是工程常见的质量通病,大量工程实践说明,只有在设计和施工过程中针对各影响因素考虑全面、细致,严格遵守设计和施工规范,弄清裂缝出现的原因,再加以正确的处理措施,裂缝是可以得到控制和预防的。

【参考文献】

[1]罗先兵.现浇钢筋混凝土楼板裂缝产生的原因及防治措施[J].西部探矿工程,2006,(1).

钢筋混凝土论文范文第7篇

(1)自然条件。工程基本风压0.40kN/m2、地面粗糙度C类、抗震设防烈度8度、设计地震分组第一组、设计基本地震加速度0.20g、特征周期0.35s、建设场地类别为II类、场地黄土湿陷类型为I级的非自重湿陷性黄土。

(2)主构件混凝土强度标准。工程基础、人防地下室梁与板、5~13层墙与柱、1~13层梁与板混凝土强度等级为C35;人防地下室墙与柱、设备层地下室墙与柱、1~4层墙与柱混凝土强度等级为C40;基础垫层混凝土强度等级为C15;13层以上墙与柱、13层以上梁板、女儿墙、阳台栏杆、其余混凝土构件混凝土强度等级为C30。

(3)均布活荷载。厅、卧室、厨房、上人屋面、暖井活荷载2.0kN/m2;卫生间活荷载4.0kN/m2;挑出阳台活荷载2.5kN/m2;楼梯及门厅活荷载3.5kN/m2;电梯机房活荷载7.0kN/m2;室外地面活荷载10.0kN/m2;不上人屋面活荷载0.5kN/m2。

2案例高层剪力墙住宅钢筋混凝土施工技术的应用建议

2.1框架节点核芯区柱箍施工技术

本工程梁、板钢筋绑扎期间,需事前检查、验证和鉴定核心箍的情况,以免遗留工程隐患,具体做法借助钢筋探测仪,于外露柱角侧立面上下缓慢移动,测出核心箍的间距、位置,以及是否受到钢筋的约束干扰。本工程边柱和角柱解剖检查有内箍的正常情况。框架节点核芯区柱箍绑扎的规范化,是施工的难点所在。在施工时,由于施工现场未能第一时间提供数量足够的钢管脚手架,而是采用木支柱和小桁架支模代替,不仅费工费时,而且要求梁底模、侧模、板模独立安装,这种施工方式不适用于本工程,并且存在一定的危险性。笔者建议将本工程的核心箍,制作成双向交叉X型配筋,而且配筋的所有箍,做成双肢л形状,施工时将л形箍向下斜侧面梁底标高位置,就能够将配筋有效锚固在箍筋加密区域,有效约束斜裂缝的出现。本工程使用X型核心箍内外箍,需要紧靠主次梁上下纵筋的上皮与下皮,同时焊接笼子形状,在绑扎梁筋的时候,将其套之其上,其中笼子的规格,主要根据截面积的大小,选用合适的钢筋,而且需控制好节点实际配箍量,原则上大于加密区,借此就能够解决核心箍绑扎的难题。除此之外,л型筋在向下锚固时,容易影响柱下2/3位置的混凝土强度,以致梁下局部范围内,出现不同程度的水平收缩裂纹。针对该问题,需控制好柱混凝土浇筑的时间,以及检查浇筑时是否受到支梁、楼板、梁钢筋等的扰动,在绑扎梁筋后,再进行混凝土浇筑,同时,必要时在预留混凝土施工缝标高位置,插入箍筋辅助浇筑。通过以上施工,本工程框架节点核芯区柱箍基本达标,但其中存在的施工细节性问题,还需要结合工程施工现场的实际情况,进行因地制宜的调整。

2.2钢筋连接技术

(1)微松动问题解决举措。本工程钢筋连接,借助直螺纹机械连接,要求控制好连接安装的扭矩,否则无法顶紧钢筋连接对头位置,以及确保符合主体结构的受力要求。为此,在连接钢筋对头位置两个断面时,应该在丝扣加工之后,检查安装表面是否平整,实际施工时,发现加工的钢筋连接丝头,其表面过于粗糙,而无法拧紧,尤其是在构件反复受拉和受压后,微松动的现象更为明显,需要适量增长拧入套筒内的长度,将其增长大约20mm左右。

(2)防腐问题解决举措。钢筋连接的螺纹热轧加工,表面会形成“烤蓝”层,从而降低了钢筋表面部分抗氧化能力,另外等边三角形牙型的粗牙螺纹,螺距为2.5mm,安装之后,螺纹与钢筋、连接套筒会产生径向间距,从而影响了防腐的敏感度。针对该问题,一方面在加工螺纹的时候,应适当加长螺纹的高度和提高加工的精度水平,缩小螺纹与钢筋、连接套筒的径向间距,另一方面连接部位混凝土保护层的增厚,大约增加一个套筒大小的厚度,控制混凝土对钢筋环向接触面的突变影响。除此之外,在连接钢筋之前,包括套筒、丝扣等在内,都可适量涂抹防潮、耐高温的结构胶,如果发现钢筋连接松动,亦可将结构胶填充满松动缝隙。

2.3混凝土施工技术

目前大多数建筑工程应用商品混凝土,收缩裂缝成为混凝土施工的主要问题。其中商品混凝土中骨料级配、水泥安定性、水泥用量,以及使用时的坍落度和振捣程度等,均是导致混凝土裂缝的主要原因。基于此,本工程将采用以下方法进行混凝土施工,旨在提高混凝土施工的质量水平。

(1)混凝土质量把控。混凝土的骨料级配、水泥安定性、水泥用量等,与混凝土本身的质量息息相关,本工程选用的骨料级配,要求密切关注石子的级配,尤其是不同顺序装车的石子,要严格控制级配的差异性,在此建议选用5~31.5mm连续级配的石子,同时根据石子的级配,因地制宜地调整砂子的用量;水泥的安定性,重点兼顾水泥的收缩性,选择水泥供应商时,应考虑到供应商水泥的供应能力,严禁使用陈化期尚未结束的水泥,同时在使用水泥时,实验检查水泥的安定性;混凝土强度等级的提高,不能单一地增加水泥用量,应根据水泥砂浆的比例,同时使用适量的石子、砂子等,以此缩小混凝土的收缩量。

(2)拌合温度控制。由于本工程不使用商品混凝土,采用现场搅拌混凝土的施工方法,在搅拌混凝土的时候,必须严格控制混凝土的拌合温度。其中以表示混凝土拌合温度,基本单位℃,通过公式,进行拌合温度的计算,其中表示材料的总重量,单位kg;表示材料质量比热,单位kj/kg.k;表示材料初始温度,单位℃;表示总热容量,单位kj/k;表示总热量,单位kj。工程的材料包括水泥、砂子、石子、粉煤灰、拌合水,这些材料配制而成的混凝土。

(3)设置脚踏架。为便于混凝土的振捣施工,工程现场利用φ10-φ16的钢筋,焊接若干个长1500mm、宽500mm、高度200mm的钢筋脚踏架。混凝土振捣施工时,将脚踏架放置在负弯矩筋之上,在初步振实和找平混凝土之后,再将脚踏架移走。施工实践证明,在浇筑混凝土的时候,保护层厚度一般控制在20mm左右,如果使用脚踏架,进行混凝土的振实和找平,保护层的厚度可明显增厚2~3mm,如果发现混凝土存在较大的坍落度,可站在脚踏架上,利用撬杠等工具连片提出负弯矩筋,再缓慢放下,负弯矩筋自动沉入的深度会更深,这对于混凝土坍落度的控制,起到很好的效果。

(4)结构问题应急措施。在混凝土施工完毕后,如果发现混凝土结构存在质量问题,可灵活选择包钢法加固梁、粘钢法加固梁、叠层法加固板、粘钢带法加固板、格构柱法加固柱、增加截面法加固柱、挂网加固墙体,具体施工方法,根据施工现场情况而定。

3结束语

文章通过研究,基本明确了案例高层剪力墙住宅钢筋混凝土施工的方法,但鉴于不同剪力墙住宅钢筋混凝土施工条件和要求的差异性,以上方法在其他工程中使用时,需要结合具体工程施工现场的主客观条件,予以灵活地参考借鉴,以保证这些施工方法的适用性。

钢筋混凝土论文范文第8篇

(一)建筑材料质量控制不严

1.砂、石子:①含泥量控制不严。②石子表面特征及颗粒形状不符合要求。

2.水泥:①水泥品种与标号未按工程性质及所处环境进行选择。②对进场水泥不复试。③不同品种、不同标号的水泥混用,导致质量事故。

(二)模板部分

1.底层支撑的地基夯实不够,混凝上浇筑时,立底模的垂直支撑常在混凝土浇筑时,被水淋湿,地基软化,使受力的支撑随之沉降,造成梁、板弯曲变形或裂纹等缺陷。

2.支撑系统失稳,使钢筋混凝土出现塌落。

3.不进行模板设计,导致模板强度、刚度不足。

4.模板安装不符合要求,导致钢筋混凝土构件尺寸超差。有的模板接缝不平顺,甚至大缝隙、孔洞也不修补就浇灌混凝土,因跑浆而出现蜂窝、麻面等缺陷。

(三)钢筋部分

1.进入现场的钢筋材质与实验单不符;施工时钢筋绑扎不牢固,出现松动和位移,绑扎间距及保护层不符合要求;还有钢筋接头的形式不符合规定,搭接长度小于规定值等。

2.焊接的质量差,使用的焊条品种、规格和质量不符合设计要求和规范规定;施工管理不善,粗心大意。有的操作人员不懂结构,盲目施工。

(四)混凝土部分

1.支模时,由于底层支撑的地基土夯的不密实,浇注混凝土就使受力的支撑发生沉降,造成结构件弯曲变形而产生裂缝。支模时的几何尺寸掌握的不好,造成梁、板的尺寸不符合设计要求,支的模板缝隙过大、孔洞不修补,振捣不密实、骨料配合比不准等原因,使混凝土出现蜂窝、麻面、露筋、孔洞等缺陷。

2.混凝土配合比不准、搅拌不均匀、模板内杂物清理不干净、木模板不浇水湿润,造成混凝土强度不足,拌制混凝土前不试配,搅拌混凝土不计量,使用的外加剂不经试验。

3.混凝土浇注后,没有进行很好的养护,致使混凝土受冻或水分蒸发过快,造成混凝土的强度不足或出现裂缝。

二、控制好钢筋混凝土质量的要点

(一)加强工程监控

1.人的质量意识及组织机构的控制,所有施工管理人员以及施工人员,首先要学习、掌握好国家有关的规范规定,牢固树立“百年大计、质量第一”的思想,建立健全的各种质量责任制,使其自觉的执行有关质量要求的及规定,确保施工的各个环节都能满足质量要求。

2.在建筑工程中全面推进质量管理,建立与健全质量保证体系,加强质量教育,提高各级领导和施工管理人员、操作人员的质量意识,落实质量保证措施,消除质量隐患,在施工企业中开展自检、互检活动,奖优罚劣。

(二)原材料的质量控制

1.钢筋在进料之前,应根据设计要求的钢筋规格和厂家提供的出厂质量证明书或试验单,在准备购进的钢筋中,按不同级别、规格的钢筋分别抽样的作试验。在同一批钢筋中任意抽样,分别在每根截取拉伸、冷弯、化学分析试件各一根,每组拉伸、冷弯、化学分析试件各两根,送至国家认可的实验室去检验,钢筋抽样检验合格后,方可购进钢筋,以免不合格的材料入场。

2.所有材料进入现场后,监理工程师应根据材料报验单上填写的不同级别、规格、数量的钢筋进行验收。现场监督人员也要认真检查和核对,对各种材料的试验单及合格证是否合格,各种指标是否符合要求,材料和试验单是否相符等,在确人无误后方可使用。

(三)施工过程中的质量控制

1.在支模板前,做好板模设计,使其所支的模板具有足够的强度、刚度和稳定性,可靠的承受浇注混凝土的重量侧压力以及施工过程中所产生的其它荷载。

2.在支模板时要做到接缝严密、不得跑浆、漏浆,同时要保证各种结构构件的形状,几何尺寸及相互位置的正确。

3.正确留设和处理施工缝。《规范》CB50204—92规定,施工缝的位置宜留在结构受剪力较小且便于施工的部位。柱应留水平缝;梁、板、墙应留垂直缝。在施工缝处继续浇筑混凝土时,应待已浇筑的混凝土达1.2N/mm2强度后,清除施工缝表面水泥薄膜和松动石子或软弱混凝土层;经湿润、冲洗干净,再抹水泥浆或与混凝土成份相同的水泥沙浆一层,然后浇筑混凝土,细致捣实,使新旧混凝土结合紧密。

4.钢筋在下料加工之前,首先应该计算锚固定长度,以免下料返工,浪费工料。在制作的过程中,要检查其符合规范要求之后,再下料加工。在钢筋绑扎的过程中,要严格按照国家的有关规范执行,做到材质、根数、直径、间距、接头、绑扎位置、焊接等符合设计要求和规范规定。

5.做好成品保护工作,做到认真检查,防止在施工的过程中人为踩踏,改变钢筋的正确位置。

6.严格按设计要求的混凝土标号配合比执行,搅拌时准确控制各种材料的用量误差在规定的允许范围内。混凝土的搅拌时间要达到要求,保证混凝土的和易性和塌落度符合要求。浇注前将模板内的所有杂物清理干净,木模板要浇水湿润,浇注时要设专人振捣,严禁漏振防止蜂窝、麻面、露筋等现象出现。正确留置和处理施工缝使其留设的位置,接搓的处理符合有关规定。

7.混凝土浇注完毕后,必须按规定进行养护,保持必要的湿度,冬季施工按照规定掺加防冻剂,做好保温措施,保证水泥水化正常进行,防止发生干缩裂缝。

总之,建筑过程中的钢筋混凝土质量必须控制好,只有这样才能保证建筑工程的安全,保证千家万户的安全。

参考文献:

[1]蒋晓燕,贾锦龙.浅析钢筋混凝土工程质量低劣的原因[J].河南建材,2005,(1).

[2]姜作杰.钢筋混凝土结构常见质量事故分析及处理[J].呼伦贝尔学院学报;2005,(2).

[摘要]钢筋混凝土的质量控制是建筑工程质量管理的重中之重。文章分析了钢筋混凝土出现质量问题的主要原因,探讨了控制好钢筋混凝土质量的要点。

钢筋混凝土论文范文第9篇

1)建筑抗震设防分类:抗震设防类别为丙类。2)本工程建筑结构的安全等级为二级,设计使用年限为50年。3)本地区抗震设防烈度为8度,设计基本地震加速度值为0.2g,设计地震分组为第一组。4)地基基础设计等级:丙级。5)按照《湿陷性黄土地区建筑规范》确定建筑物分类:丙类。6)防火等级为:一级。4荷载作用取值1)自然条件:基本风压:0.40kN/m2;基本雪压:0.35kN/m2.2)楼(屋)面使用荷载:教室:2.0kN/m2;活动室:4.0kN/m2;盥洗室,卫生间(有蹲坑):2.0(8.0)kN/m2;楼梯、走廊、阳台:3.5kN/m2;上人屋面:2.0kN/m2;不上人屋面:0.5kN/m2;档案室:5kN/m2;库房:5kN/m2。

2地基处理

根据参考地质报告,本场地属于非自重湿陷性场地,地基湿陷等级为Ⅱ类,采用强夯法,消除湿陷提高承载力。计算分析选用中国建筑科学研究院编制的《基础工程计算机辅助设计软件》JCCAD2010版。基础采用钢筋混凝土筏板基础或条形基础及独立柱基。

3上部结构设计

1)A,B,C区采用钢筋混凝土框架剪力墙结构,D,E,F区采用钢筋混凝土框架结构。2)结构设计。地震作用按8度0.2g进行计算,抗震措施按8度0.2g进行设计,A,B,C建筑框架的抗震等级为三级,剪力墙抗震等级为二级;D,E,F区框架等级为二级。抗震计算采用振型分解反应谱法,结构整体分析选用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析软件》SATWE2010版。采用总刚分析方法,计算结果如下:A区:周期,地震力与振型分析见表1~表3。结构位移:地震力作用下的X方向最大值层间位移角:1/1033;地震力作用下的Y方向最大值层间位移角:1/1213。B区:结构位移:地震力作用下的X方向最大值层间位移角:1/1030;地震力作用下的Y方向最大值层间位移角:1/1212。C区:周期,地震力与振型分析见表7~表9。结构位移:地震力作用下的X方向最大值层间位移角:1/1044;地震力作用下的Y方向最大值层间位移角:1/1045。D区:振动周期见表10。结构位移:地震力作用下的X方向最大值层间位移角:1/710;地震力作用下的Y方向最大值层间位移角:1/605。E区:振动周期见表11。结构位移:地震力作用下的X方向最大值层间位移角:1/551;地震力作用下的Y方向最大值层间位移角:1/601。F区:振动周期见表12。结构位移:地震力作用下的X方向最大值层间位移角:1/628;地震力作用下的Y方向最大值层间位移角:1/623。各项指标均满足规范相应要求。3)最外层钢筋的混凝土保护层(mm):a.基础梁及地下室底板:下部钢筋:有垫层40;无垫层70,上部钢筋40;b.地下室外墙:外侧50,内侧20;c.柱:地下与土壤接触面:防水混凝土50,其余部位25;且不小于纵筋直径;d.梁:室外露天环境35,室内潮湿环境25,其余部位20;且不小于纵筋直径;e.在一类环境下各层楼板、楼梯板为15,梁为20;在二a类环境下各层楼板、楼梯板为20,梁为25;在二b类环境下各层楼板、楼梯板为25,梁为35;f.梁板中预埋管的混凝土保护层厚度应大于30。4)本工程各部分之间设置抗震缝,主体长度超过规范要求时相应部位设置后浇带,减少混凝土收缩影响。5)材料。混凝土:A,B,C区柱、墙:1层~2层顶为C40;3层~4层顶为C35;5层~6层顶为C30;D,E,F区柱:C30。梁、板:C30。基础:C30。楼梯、女儿墙、雨篷、挑檐、构架等露天构件:C30。圈梁、构造柱:C25。填充墙:±0.000以下采用MU10页岩烧结砖,M10水泥砂浆砌筑,±0.000及以上采用A3.5加气混凝土砌块(容重不大于6kN/m3),M5混合砂浆砌筑。钢筋:采用HPB300级,HRB335级和HRB400级钢筋。

4结语

通过对工程实际与计算结果的阐述,简要分析了山西交通职业技术学院新校区教学楼结构设计。虽然不同的结构设计由于建筑场地、设计方案等的不同会存在很大的差异,但只要搞清概念、抓住重点、掌握原理、注重理论联系实际,就能使结构设计更加经济、合理、人性化。

钢筋混凝土论文范文第10篇

关键词:裂缝种类;成因;分析;预防

混凝土是脆性材料,而钢筋却是韧性材料,它们两者在一起工作,弹性模量相差很大,而且两者的强度差别就更大,因此两种材料在一起共同发挥作用,要使钢筋参加工作,比较多的承受力,混凝土势必开裂。大量的工程和理论分析表明钢筋混凝土构件基本上都是带裂缝工作的。裂缝一般分成不可见裂缝和可见裂缝。可见裂缝又分为无害裂缝和有害裂缝。有害裂缝在使用荷载或外界物理及化学作用下不断产生和发展,引起混凝土碳化,保护层剥落及钢筋锈蚀,直至影响结构的安全性和使用寿命,必须加以控制。

一、混凝土桥梁设计原理

我国现行的公路桥涵规范规定:桥梁应根据所在公路的使用任务、性质和将来的发展需要,按照适用、经济、安全和美观的原则进行设计,这些要求基本上包含了人们关心的所有重要问题。混凝土桥梁具体的设计过程是按承载能力和正常使用两种极限状态来进行的。按承载能力极限状态是控制结构在丧失服务能力临界状态时的承载能力,其设计的基本原则是要求荷载效应不利组合的设计值要小于结构抗力的设计值。同时利用荷载安全系数、材料安全系数及工作条件系数来考虑不确定因素作用下的结构总体的安全储备,是一种极限状态设计法。按正常使用极限状态是控制结构在正常使用状态时应力,裂缝和变形小于一个限定值,即使用容许裂缝宽度来控制混凝土构件的结构设计。有关规范规定:在一般正常大气条件下,钢筋混凝土受弯构件在荷载组合Ⅰ的作用下,计算得到的最大裂缝宽度不应超过0.2mm;在荷载组合Ⅱ和Ⅲ作用下,不应超过0.25mm;处于严重暴露情况(有侵蚀性气体或海洋大气)下的钢筋混凝土构件,容许裂缝宽度不应超过0.1mm。

混凝土构件容许裂缝的存在,是由混凝土抗拉能力差,容易开裂的缺点决定的。通过对大量的工程实例的研究发现,几乎所有的混凝土构件都是带裂缝工作的,只是有些裂缝很细,一般对结构和使用无大的影响,可允许其存在;有些裂缝在使用荷载或外界物理、化学因素的作用下,不断产生和扩展,引起混凝土明显的病害,如保护层剥落、钢筋腐蚀,从而导致混凝土的强度和刚度受到削弱,耐久性降低,严重时甚至发生垮塌事故,危害结构的正常使用。

二、混凝土桥梁裂缝的成因分析及预防措施

随着桥梁使用年龄的增加,车辆的超载现象不断增加,会使细微裂缝不断的扩大,甚至会断裂,此时困扰桥梁工程师的最大问题是对裂缝的形成原因以及对钢筋的腐蚀作用的进一步深入认识,并且作出全面分析,以避免和克服因为裂缝引起的对桥梁使用性能的影响。经过对现在此方面的研究成果和工程实例的分析,混凝土桥梁的裂缝形成原因可大致梳理为以下几个方面:

(一)混凝土用料选用不当引起的裂缝

1、水泥品种、标号及用量。矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高;普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。此外,水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,并且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。

2、骨料品种。骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩、角闪岩等吸水率较大、收缩性较高。此外,骨料粒径大收缩小,含水量大收缩越大。

3、水灰比。用水量越大,水灰比越高,混凝土收缩越大。

4、外掺剂。外掺剂保水性越好,则混凝土收缩越小。

(二)设计和施工不合理产生的裂缝

此类裂缝是我们在工程实例中发现最多的裂缝形式,许多桥梁设计人员往往只满足于规范对结构强度计算上的安全度需要,而忽视从结构体系、结构构造、结构材料、结构维护、结构耐久性以及从设计、施工到使用全过程中经常出现的人为错误等方面去加强和保证结构的安全性。有的结构整体性和延性不足,冗余性小;有的计算图式和受力路线不明确,造成局部受力过大;有的混凝土强度等级过低、保护层厚度过小、钢筋直径过细、构件截面过薄。这些都削弱了结构安全性,会严重影响结构的使用。不少桥梁,虽然满足了桥梁设计规范的强度要求,仅用了5~10年就因为出了问题影响结构安全。例如我们发现在混凝土桥梁竖向有截面突变的地方(箱梁、T梁的腹板与顶底板交接处)很容易产生裂缝,研究分析结果显示:混凝土在浇筑后发生水化反应、泌水和大量水分蒸发,混凝土因失水而收缩,而骨料因重力影响向下沉降,但此时混凝土的强度和硬度都不高,骨料下沉时受到钢筋的阻挡,便产生了沿钢筋方向的裂缝。为避免此类裂缝的产生,在设计阶段要尽量避免截面突变的存在,不能避免时要做特殊的处理,可将突变截面做成渐变截面,同时适量的增加钢筋数量;在施工时要注意振捣,最好是在变截面处分层浇筑。

(三)自然环境的影响产生的裂缝

自然环境的影响主要是温差引起了混凝土的温度梯度呈非线性分布,而混凝土构件的位移又受到约束,导致局部应力过大,从而出现了裂缝。一般失火、太阳曝晒、骤然降温以及冬季施工均可能导致此类裂缝的发生。预防措施是在设计时重视温度应力,一些大跨径的桥梁,温度应力往往是可以超过活载应力的,另外就是杜绝冬季施工,因为此时施工混凝土在初凝时受冻,成龄后混凝土强度损失可达30%~50%。

(四)荷载引起的裂缝

此类裂缝是混凝土桥梁在常规动、静荷载及次应力作用下产生的,桥梁结构所承受的车辆荷载和风荷载都是动荷载,会在结构内产生循环变化的应力,不但会引起结构的振动,还会引起结构的累积疲劳损伤。由于桥梁所采用的材料并非是均匀和连续的,实际上存在许多微小的缺陷,在循环荷载作用下,这些微缺陷会逐渐发展、合并形成损伤,并逐步在材料中形成宏观裂纹。如果宏观裂纹不得到有效控制,极有可能会引起材料、结构的脆性断裂。早期疲劳损伤往往不易被检测到,但其带来的后果往往是灾难性的。

工程实例中此类裂缝多出现在受拉区、受剪区或振动严重部位,且裂缝特征如下:

1、受拉。裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。

2、受压。沿构件出现平行于受力方向的短而密的平行裂缝。

3、受弯。弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。

4、受剪。当箍筋太密时发生斜压破坏,沿梁端腹部出现大于45°方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45°方向相互平行的斜裂缝。

5、受扭。构件一侧腹部先出现多条约45°方向斜裂缝,并向相邻面以螺旋方向展开。

从大量的工程实例分析来看,此类裂缝产生的直接原因是内力与配筋计算或构造设计不当,施工阶段不按照图纸施工,擅自更改结构施工顺序,导致结构受力状态的改变,从而导致结构的承载力超出使用极限。另外大量的超载车辆过桥也是主要原因之一。预防措施是加强设计的合理性和安全系数以及施工的合理性,并严格控制严重超载车辆。

三、结束语

混凝土桥梁产生裂缝的产生原因较为复杂,工程实例中也是允许微小裂缝产生的,保证不出现裂缝是较难实现的,但是我们是能够尽量减少因为设计疏漏、施工低劣、监理不力、运营管理不力等诸多人为因素所产生的裂缝扩展,从而保证桥梁不会因为裂缝扩展导致钢筋腐蚀、脆性断裂等病害发生。

参考文献:

[1]赵国藩,李树瑶,廖婉卿.钢筋混凝土结构的裂缝控制[M].北京:海洋出版社

[2]王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1998.

上一篇:英语课堂论文范文 下一篇:动漫专业论文范文