分析氧化锌材料的研究与进展

时间:2022-09-19 09:36:59

分析氧化锌材料的研究与进展

摘要:ZnO可用于制作蓝光、蓝绿光、紫外光等多种发光器件,其禁带宽度对应紫外光波长。文章从制备、应用、性质等方面介绍了ZnO材料。

关键词:单晶;纳米;氧化锌;ZnO

中图分类号:TN304 文献标识码:A 文章编号:1009-2374(2013)21-0005-02

ZnO为两性氧化物,无毒、无臭,溶解于强碱和强酸,不溶于乙醇和水,为浅黄色或白色粉末或晶体,能在空气中吸收水和二氧化碳,俗称锌白。ZnO是一种宽禁带直接带隙半导体材料,为Ⅱ-Ⅵ族化合物,为六方晶系纤锌矿结构,室温下禁带宽度为3.37eV。ZnO,晶格常数为:c=0.52nm,a=0.325nm,每个Zn原子与4个O原子按四面体排布。ZnO的其他物理化学性质见表1。

ZnO的激子不易发生热力化,激子束缚比室温热离化能26meV高很多,能高达60meV。在室温下具有大束缚能的激子更容易实现光效率的激光发射,所以ZnO与ZnS(40meV)、ZnSe(22meV)、GaN(25meV)相比,在室温或者更高温度下,其是一种具有很大应用潜力的短波长发光材料。ZnO生长温度只有GaN生长温度的50%,具有更低的生长温度,在很大程度上这可以避免由于高温生长造成了衬底与膜之间的原子互扩散。另外,ZnO具有原料丰富、无毒、价格低廉等优点,具有良好的化学稳定性以及高热导率和熔点。

1 氧化锌的应用

1.1 压电方面的应用

ZnO薄膜是一种具有良好压电性质定高密度、定向生长的材料,能够用来制备压电转换器材料,如高频纤维声光器件以及声光调制器等。ZnO作为一种压电材料,可以在高速率、大容量光纤通信的反雷达动态测频、微型移动通信、光纤相位调制、并行光信息处理、电子侦听等军事和民用领域得到广泛的应用。

1.2 压敏方面的应用

ZnO压敏材料在受到外加电压时,存在一个阈值电压,当该值小于外加电压时,进入击穿区,这时电流会受到电压微小的变化而引起迅速增大。ZnO压敏材料由于具有这种特征,因此在各种电器设备的浪涌电压吸收、电压保护、稳压等方面有着非常重要的作用。

1.3 光电方面的应用

在适当的掺杂下,ZnO表现出很好的低阻特征,其具有优异的光电性能。ZnO由于具有这一性能,因此,比如说液晶元件电极、太阳能电池电极等,其成为了一种非常重要的电极材料。将Al掺入ZnO薄膜中具有较高的光透过率,可以让其禁带宽度明显增大。光透过率在可见光区可达到90%。大的禁带宽度和高的透过率,让其可以作为太阳能电池窗口材料、低损耗光波导器件、紫外光探测器等。ZnO是一种很好的平面显示器材料,因为其电子辐射具有稳定性和发光性质的特点,在发光器件领域(如激光器、紫外光二极管等)具有巨大的应用潜能。

1.4 纳米ZnO的应用

在物理学、敏感性、磁性、化学、光电学等方面,纳米ZnO粒子具有一般的ZnO产品所无法比拟的特殊性能和新用途,其是联系微观粒子及宏观物体的一座桥梁。纳米ZnO用作合成橡胶、胶乳、天然橡胶的补强剂、色剂及硫化活性剂,是必不可少的轮胎和橡胶工业的添加剂,在橡胶中运用纳米ZnO,其用量仅为普通ZnO的30%~50%,可以提高橡胶的性能,充分发挥硫化的促进作用。利用纳米ZnO制备出的陶瓷釉具有抗菌、除臭、防霉等功效,并且更光洁,还可以降低陶瓷和玻璃的烧结温度。在涂料的抗老化等方面纳米ZnO因其优异的紫外线屏蔽能力具有非常突出的特性,其表面高活性可以提高催化剂的催化效率和选择性能。ZnO在电子工业中,既是光学、磁性等材料的主要添加剂,也是压敏电阻的主原料。采用纳米ZnO制备压敏电阻,能够提高压敏电阻的非线性系数和流通能力等性能,它具有较低的烧结温度。在光学器件中纳米ZnO的应用将会随之不断深入对纳米ZnO光学性能的研究而取得更大的突破性进展

1.5 气敏方面的应用

随着表面吸附气体的不同种类和不同浓度,ZnO的电阻率会发生相应的变化,其是一种气体敏感材料。对氧化性气体、还原性气体未掺杂的ZnO具有敏感性,经过某些元素的掺杂后,对有机蒸汽、可燃气体、有害气体等具有良好的敏感性,ZnO因此可被用于制作各种气敏传感器。

2 氧化锌制备

2.1 ZnO薄膜的制备

ZnO薄膜具有优异的压电性质,能够在不同衬底上沿[0001]方向高度择优取向生长,在生光器件中因此得到了广泛应用。当前,在蓝宝石衬底上生长的ZnO薄膜拥有最好的质量,电子空穴、自由激子发光等离子态发光现象,我们甚至都能够观察到。

2.2 ZnO体单晶的制备

对于器件和材料科学的应用,高质量、生长面积大的ZnO都具有非常重要的意义。蓝宝石尽管一直用作ZnO薄膜生长的衬底,不过两者之前有着较大的晶格失配,这会造成器件性能退化,导致ZnO外延层的位错密度较高。对于紫外及蓝光发射器件的制作,由于同质外延潜在的优势,ZnO体单晶的大尺寸和高质量是极为有利的。ZnO同质外延在很多方面都具有很大的发展潜力,其具有完整的晶格匹配,能够实现容易控制材料的极性、实现无应变、没有高缺陷的衬底、低的缺陷密度等。除了用于同质外延,ZnO体单晶还可以用来做GaN的异质外延衬底。ZnO具有较小的晶格失配,因为其与GaN具备相同的原子排列次序。

助溶剂法、气相法、水热法是目前主要生长ZnO体单晶的三种方法。助溶剂法在恒定温度下通过蒸发溶剂或缓慢冷却,使熔体过饱和而结晶的方法,其是利用助熔剂使晶体形成温度较低的饱和熔体,对于生长熔点高的晶体非常合适。通过控制生长条件和寻找合适的助溶剂,用该方法有希望生长出尺寸更大的ZnO体单晶。不过该方法会给晶体带入助熔剂杂质,生长过程中容易产生应力,这对于为了适应电子材料而必须控制好化学计量比和杂质含量来说是极为不利的。此外,采用该方法生长ZnO单晶的另一个不利因素就是在溶解中ZnO容易挥发。

利用蒸汽压较大的材料,气相法在适当的条件下,可以使蒸汽凝结成晶体,比较适用于生长板状晶体。该方法气相沉积法生长的晶体与其他两种方法相比纯度更高,但是生长却难以控制。

依靠容器内的溶液维持温差对流形成过饱和状态就是我们所说的水热法,当前较为成熟的一种生长ZnO体单晶的方法就是水热法,是生长ZnO体单晶的一种非常重要的方法。水热法需要控制好生长区和溶解区的温度差、合理的元素掺杂、籽晶的腐蚀、碱溶液浓度、营养料的尺寸、生长区的预饱和、升温程序等工艺。该方法存在危险性高、生长周期长、易使ZnO晶体中引入金属杂质等缺点。

除了以上介绍的这三种比较常见的方法以外,还有坩埚下降法、氟化锌空气反应法、直接高温升华金属锌和氧反应法等一些生长ZnO单晶不太常用的方法。

3 结语

氧化锌作为宽禁带半导体材料,其在军事、生活、工业等领域以其优异的性能发挥着重要的作用。目前对ZnO国内外都展开了深入而又广泛的研究,因此,我们有理由相信,各个方面对ZnO材料的需求在不久的将来一定会得到满足。

参考文献

[1] 李秀梅.纳米氧化锌的性质和用途[J].通化师范学院学报,2004,(4).

[2] 李建,白素杰,通拉嘎.稀土Nd掺杂纳米ZnO薄膜气敏特性[J].传感器技术,2004,(5).

[3] 宋词,杭寅,张昌龙.水热法ZnO晶体特征研究[J].人工晶体学报,2005,(6).

作者简介:李梦婷(1993-),女,陕西咸阳人,长安大学材料学院本科学生。

上一篇:转输天然气管网用气负荷研究与预测分析 下一篇:中国企业立身、持续发展之道探讨