超声及微泡介导的基因载体的进展

时间:2022-09-13 10:43:49

超声及微泡介导的基因载体的进展

[摘要] 超声及微泡辅助基因传递正在迅速发展,其中,超声起着触发转染的“扳机点”作用,微泡作为能量的聚焦点亦不可或缺。基因转染成功的关键在于通过载体将基因安全高效地传递到靶器官。从最初超声辅助质粒转染发展到超声与脂质体-质粒联合介导转染,超声及微泡介导的基因载体经历了近三十年的发展。本文就超声及微泡介导的基因转染及基因载体的最新进展做一综述。

[关键词] 超声;微泡;基因载体;进展

[中图分类号] R540.4+5 [文献标识码] A [文章编号] 1673-7210(2016)04(c)-0036-04

[Abstract] Ultrasonic and microbubble assisted gene delivery is booming now. Ultrasound plays a role of the trigger point in triggering the transfection and microbubbles, as the focal point of energy, is also indispensable. The success of gene transfection depends on an efficient and safe carrier system that deliveries genetic material into target organ. From initial ultrasound assisted plasmid transfection to ultrasound associated liposome-plasmid mediated gene transfection, ultrasound and microbubble mediated gene carrier has been developed for nearly thirty years. This artical reviewed the recent advances in ultrasound and microbubble mediated gene transfection and gene carrier.

[Key words] Ultrasound; Microbubble; Gene carrier; Development

利用超声能量增强靶细胞的基因转染研究始于20世纪80年代[1]。超声及微泡介导的基因传递以其广阔应用前景正吸引着人们,因其要求具备丰富的医学物理学,细胞、分子生物学等知识,所以有关此技术的研究虽一直在进行,但发展缓慢,从体外发展到体内,现仍未进入临床试验[2],直到最近才出现加速发展[3-6]。本文就超声及微泡介导的基因转染和基因载体的进展做一综述。

1 超声联合质粒介导基因转染

作为最早的超声转染工具,超声辅助质粒转染培养的哺乳动物细胞作为纯机械方法被评估:将质粒加入体外培养细胞中,用20 kHz的实验室探头进行辐照[1],同时用共填充的FITC-右旋糖酐来标记超声辐照后的细胞,超声辐照基因转染的声压必须在短时间(20 s)内达到300~400 kPa的水平。与通过机械刮除使质粒从细胞凹面进入细胞内相比,此法基因转染效率在当时是合理的。同时,脂转染也获得了发展[7],以至于近年来在体外实验中变成了一种通用的基因传递工具,实验数量更是成倍增长[8]。

2 超声、微泡及质粒联合介导转染

当第一种商业化的微泡Albunex[9]进入临床时,研究者们就曾评估用它作为超声能量聚焦的靶点来增强基因的传递[10]。质粒同微泡共给药[11-12]后,通过超声波在靶区域辐照产生的空化效应(微泡持续振动的稳定空化效应或微泡快速扩张、压缩和破裂的惯性空化效应)进行基因转染。空化核(如微泡)的应用用更短的声脉冲(1 s)减少了达到基因成功转染所需的总透射声能量[11]。辐照导致组织中快速的压力变化,导致微泡快速的周期性压缩和扩张,声能在微泡表面聚焦,产生微流、空化和射流,如果发生在靶细胞附近,细胞膜就会形成基因转染所需的瞬间微孔[13]。为维持细胞的活性,十到数百纳米的微孔大多数开放时间不会超过一两分钟[14-16],所以大多数有效的基因转染须在超声辐照期间完成。但小分子(荧光素等)基因的胞内转染却在超声辐照后数小时才会起效[17-18]。

与病毒载体相比,核酸通过瞬间微孔弥散入细胞,转染效率比较低。但近年来在胶质母细胞瘤体外实验的研究中,超过70%的细胞通过空化效应被转染[19],这可能存在基因转染靶细胞的一些其他机制。通过超声辐照细胞表面微泡,一种依赖小窝蛋白和网格蛋白胞吞现象的增加,揭示了微孔形成的其他机制[20]。

超声、微泡及质粒联合介导基因转染具有简单、可定位、易转向临床应用的优点,但亦具潜在风险:通过静脉给药的微泡和基因转染的首要靶点是血管内皮细胞,但是在超声辐照期间,通过开窗或胞吞作用,内皮屏障功能可能会被改变,基因可能会被传递到内皮下层[2]。

3 超声、微泡及基因-载体络合物联合介导转染

无保护的质粒和寡核苷酸片段,在生物环境中会迅速降解[21]。因此核酸和保护性的传递载体络合后,与微泡共注射,能够提高传递效率。自脂转染研究始[7],已形成了基因传递的体系[22]:最初是质粒,最近用更短的寡核苷酸微粒,如干扰RNA、miRNA、mRNA[23]等,这些微粒能够被融合脂质体,小lipoplexes分子,polyplexes分子等络合。质粒与多聚物载体络合后联合微泡静脉共注射并超声靶向辐照在啮齿类动物骨骼肌模型中产生了显著增强的转染效率[24]。因此核酸载体的应用对于提高声孔转染效率是毋庸置疑的[2]。用转染增强微粒作为核酸载体可能会有潜在风险:非辐照组织内非特异性转染。但近来的研究没有报道此问题。

4 超声、微泡-质粒联合介导转染

微泡直接作为核酸载体在声孔效应中有显著优势:核酸近乎瞬间被定位在细胞表面并转染入胞内。瞬时微孔只为胞内基因转染提供了有限的时间[7],因此,通过静电作用将质粒或寡核苷酸锚在微泡的表面可提高转染效率。Unger等[25]首先报道了微泡表面放置正电荷的方法,他们成功改良了Definity微泡的制备,通过在较高相变温度下水溶性差的全氟丁烷气体在含水脂质混合物胶团内的超声弥散可提高微泡稳定性。微泡壳成分为DSTAP/二硬脂酰磷脂酰胆碱(DSPC)/聚乙二醇(PEG)硬脂酸盐[7]。每个微泡表面都能够锚定数千质粒分子[7],对于分子量较小的寡核苷酸片段,每个微泡所能结合的数量将比前者高出几个数量级[26]。微泡及核酸间的静电作用可以通过调节孵育媒介的离子强度来控制[2]。显然,微泡与被络合保护的核酸联合可显著增强转染效率。

Taylor等[27]的研究证实,将插入报告基因的病毒颗粒(逆转录病毒,慢病毒,腺病毒,腺相关病毒等)锚在微泡表面并超声辐照能够提供令人满意的转染效率。这种方法不仅能提高基因转染效率,而且能减低病毒本身的免疫源性风险[28],但其详细机制仍不清楚[29]。虽有寡聚核苷酸粘附到人白蛋白微泡表面的一些报道。但是微泡壳和核酸粘附的机制尚未完全清楚。

已证实,相比微泡质粒简单相加给药的形式,微泡-质粒络合物能显著提高转染效率[30]。因氟碳气体随呼吸排出,微泡在循环系统只能停留数分钟[2],因此氟碳气体并不会对人体造成伤害。但强烈的超声辐照会导致与微泡联合的质粒及少部分红细胞游出到血管外,适当利用声能可降低这些潜在风险。

5 超声、靶向微泡-质粒联合介导转染

通过携带编码eGFP的质粒和抗VCAM-1抗体的微泡向平滑肌细胞的选择性传递,Phillips[31]在体外验证了:微泡与质粒的结合并不影响靶向配体颗粒向感兴趣组织的选择性传递。与非靶向微泡相比,在200 kPa峰值负声压的条件下,转染效率增加了5.5倍。Aris等[7]在小鼠后肢缺血的动物模型中比较了选择性靶向与非靶向微泡携带报告转基因质粒的转染效率,发现0.6 MPa声强时,靶向转染的效率得到了显著的提高。因为靶向微泡能更好粘附表达疾病标志物的靶向细胞,靶向微粒的应用能够使非特异转染达到最小化。更重要的是,因微泡不会粘附到非靶区,将不再需要在图像引导下对感兴趣组织进行选择性超声辐照,超声探头“刷墙”式辐照就能达到靶组织的特异性转染。

6 超声、脂质体纳米粒-质粒联合介导转染

bubble-liposome和eliposome是较有代表性的两种结构相似的脂质体纳米粒,bubble-liposome[32-33]内部包裹的是全氟丙烷纳米粒。在动物基因传递方面被广泛研究:质粒或者寡核苷酸被包埋进脂质体的水核心中[34],或靠阳性脂质的静电作用被粘附在脂质体外侧――此情况下用带正电荷的脂质构建脂质体[35-36]。对核酸与载体的偶联而言,后一种方法的优势是非常明显的,且使用方便,但缺点是因静电作用可能会非特异性粘附到非靶区域。将核酸添加到提前制备的bubble-liposome制成品中,在体内体外实验中核酸的传递均获成功,这种方法在癌症疫苗方面的应用亦有报道[37]。有观点[38]认为全氟丙烷纳米粒之所以被内包入脂质体是由于其60 nm的尺寸及其受到过度的拉普拉斯压力(可达到10个大气压),气体颗粒是不稳定的。另一截然相反的观点[39-40]是微泡脂质体内的全氟丙烷以液体的形式存在,在超声的触发作用下被脂质体包裹的液化过热的纳米液滴将极速地膨胀成大气泡,气泡的膨胀会进而触发脂质体内容物的释放,这就解释了脂质体微泡的稳定性和功能性。

比bubble liposomes制备更复杂的eliposome,其内包裹的不是全氟丙烷,而是在超声辐照时体温条件下即可膨胀为气体的液态全氟正戊烷气体前体[41]。此法优点是因外表面缺乏正静电荷,非靶细胞的非特异性黏合将会减少。为达到选择性黏合,可将配体锚在eliposome的外层[7].

脂质体本身具有易制备、靶专一性、低免疫原性、良好的重复性及基因保护的优点,亦有低转染效率和短时表达的缺点,但其与超声靶向微泡破坏技术的联合可克服以上缺点[34]。与气体填充的微泡相比脂质纳米粒的显著优势在于它们更高的转染以及它们较小的尺寸:外披PEG包衣,直径250 nm脂质体在循环血液中能停留数小时[42]。这样不但为超声辐照提供了足够时间而且可通过延长辐照时间来提高靶组织的转染效率。但内皮炎性变导致的血管内皮通透性增加,会造成较小的脂质体从疾病区的脉管系统外渗[43]。

7 小结和展望

不论是普通的超声治疗仪,超声诊断设备,还是先进的MRI导引超声成像设备均可作为超声辐照源。超声具有触发基因转染的绝佳能力,亦有其他许多优点,然而声孔效应在辐照区的基因转染效率还不够完美,而且对肺脏等器官亦未表现出明显的优势。超声、微泡与病毒联合近几年可能就会进入临床实验。超声与脂质体纳米粒-基因联合,因结构及制备复杂,须更长时间才能进入临床。随着基因及载体制备技术的进步及在众多实验中的应用,超声和其他基因载体联合的方法,在不久亦将进入临床试验。总而言之,随着技术的进步,超声及微泡介导的基因载体的发展将会为临床带来更大的益处。

[参考文献]

[1] Fechheimer M,Boylan JF,Parker S,et al. Transfection of mammalian cells with plasmid DNA by scrape loading and sonication loading [J]. Proc Natl Acad Sci USA,1987,84(23):8463-8467.

[2] Rychak JJ,Klibanov AL. Nucleic acid delivery with microbubbles and ultrasound [J]. Adv Drug Deliv Rev,2014, 72:82-93.

[3] Xie A,Belcik T,Qi Y,et al. Ultrasound-mediated vascular gene transfection by cavitation of endothelial-targeted cationic microbubbles [J]. JACC Cardiovasc Imaging,2012, 5(12):1253-1262.

[4] Carson AR,McTiernan CF,Lavery L,et al. Ultrasound-targeted microbubble destruction to deliver siRNA cancer therapy [J]. Cancer Res,2012,72(23):6191-6199.

[5] Carson AR,McTiernan CF,Lavery L,et al. Gene therapy of carcinoma using ultrasound-targeted microbubble destruction [J]. Ultrasound Med Biol,2011,37(3):393-402.

[6] Wang DS,Panje C,Pysz MA,et al. Cationic versus neutral microbubbles for ultrasound-mediated gene delivery in cancer [J]. Radiology,2012,264(3):721-732.

[7] Felgner PL,Gadek TR,Holm M,et al. Lipofection:a highly efficient,lipid-mediated DNA-transfection procedure [J]. Proc Natl Acad Sci USA,1987,84(21):7413-7417.

[8] Ginn SL,Alexander IE,Edelstein ML,et al. Gene therapy clinical trials worldwide to 2012 - an update [J]. Gene Med, 2013,15(2):65-77.

[9] Stride E. Physical principles of microbubbles for ultrasound imaging and therapy [J]. Front Neurol Neurosci,2015, 36:11-22.

[10] Blomley M. Which US microbubble contrast agent is best for gene therapy [J]. Radiology,2003,229(2):297-298.

[11] Greenleaf WJ,Bolander ME,Sarkar G,et al. Artificial cavitation nuclei significantly enhance acoustically induced cell transfection [J]. Ultrasound Med Biol,1998,24(4):587-595.

[12] Pislaru SV,Pislaru C,Kinnick RR,et al. Optimization of ultrasound-mediated gene transfer: comparison of contrast agents and ultrasound modalities [J]. Eur Heart J,2003,24(18):1690-1698.

[13] Christiansen JP,French BA,Klibanov AL,et al. Targeted tissue transfection with ultrasound destruction of plasmid-bearing cationic microbubbles [J]. Ultrasound Med Biol,2003,29(12):1759-1767.

[14] Schlicher RK,Radhakrishna H,Tolentino TP,et al. Mechanism of intracellular delivery by acoustic cavitation [J]. Ultrasound Med Biol,2006,32(6):915-924.

[15] Deng CX,Sieling F,Pan H,et al. Ultrasound-induced cell membrane porosity [J]. Ultrasound Med Biol,2004, 30(4):519-526.

[16] Van Wamel A,Kooiman K,Harteveld M,et al. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation [J]. Control Release,2006,112(2):149-155.

[17] Yudina A,Lepetit-Coiffé M,Moonen CT. Evaluation of the temporal window for drug delivery following ultrasound-mediated membrane permeability enhancement [J]. Mol Imaging Biol,2011,13(2):239-249.

[18] Yudina A,De Smet M,Lepetit-Coiffé M,et al. Ultrasound-mediated intracellular drug delivery using microbubbles and temperature-sensitive liposomes [J]. Control Release,2011,155(3):442-448.

[19] Escoffre JM,Novell A,Piron J,et al. Microbubble attenuation and destruction:are they involved in sonoporation efficiency [J]. IEEE Trans Ultrason Ferroelectr Freq Control,2013,60(1):46-52.

[20] Meijering BD,Juffermans LJ,Van Wamel A,et al. Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation [J]. Circ Res,2009,104(5):679-687.

[21] Houk BE,Martin R,Hochhaus G,et al. Pharmacokinetics of plasmid DNA in the rat [J]. Pharm Res,2001,18(1):67-74.

[22] Fenske DB,Cullis PR. Liposomal nanomedicines [J]. Expert Opin Drug Deliv,2008,5(1):25-44.

[23] De Temmerman ML,Dewitte H,Vandenbroucke RE,et al. mRNA-Lipoplex loaded microbubble contrast agents for ultrasound-assisted transfection of dendritic cells [J]. Biomaterials,2011,32(34):9128-9135.

[24] Burke CW,Suk JS,Kim AJ,et al. Markedly enhanced skeletal muscle transfection achieved by the ultrasound-targeted delivery of non-viral gene nanocarriers with microbubbles [J]. Control Release,2012,162(2):414-421.

[25] Unger EC,McCreery TP,Sweitzer RH. Ultrasound enhances gene expression of liposomal transfection [J]. Invest Radiol,1997,32(12):723-727.

[26] Porter TR,Xie F,Knapp D,et al. Targeted vascular delivery of antisense molecules using intravenous microbubbles [J]. Cardiovasc Revasc Med,2006,7(1):25-33.

[27] Taylor SL,Rahim AA,Bush NL,et al. Targeted retroviral gene delivery using ultrasound [J]. Gene Med,2007,9(2):77-87.

[28] Delalande A,Postema M,Mignet N,et al. Ultrasound and microbubble-assisted gene delivery: recent advances and ongoing challenges [J]. Ther Deliv,2012,3(10):1199-1215.

[29] Chen ZY,Yang F,Lin Y,et al. New development and application of ultrasound targeted microbubble destruction in gene therapy and drug delivery [J]. Curr Gene Ther,2013,13(4):250-274.

[30] Panje CM,Wang DS,Pysz MA,et al. Ultrasound-mediated gene delivery with cationic versus neutral microbubbles:effect of DNA and microbubble dose on in vivo transfection efficiency [J]. Theranostics,2012,2(11):1078-1091.

[31] Phillips LC,Klibanov AL,Wamhoff BR,et al. Intravascular ultrasound detection and delivery of molecularly targeted microbubbles for gene delivery [J]. IEEE Trans Ultrason Ferroelectr Freq Control,2012,59(7):1596-1601.

[32] Negishi Y,Endo Y,Fukuyama T,et al. Delivery of siRNA into the cytoplasm by liposomal bubbles and ultrasound [J]. Control Release,2008,132(2):124-130.

[33] Suzuki R,Takizawa T,Negishi Y,et al. Effective gene delivery with novel liposomal bubbles and ultrasonic destruction technology [J]. Int J Pharm,2008,354(1-2):49-55.

[34] Suzuki R,Maruyama K. Effective in vitro and in vivo gene delivery by the combination of liposomal bubbles (bubble liposomes) and ultrasound exposure [J]. Methods Mol Biol,2010,605:473-486.

[35] Endo-Takahashi Y,Negishi Y,Nakamura A,et al. pDNA-loaded Bubble liposomes as potential ultrasound imaging and gene delivery agents [J]. Biomaterials,2013,34(11):2807-2813.

[36] Endo-Takahashi Y,Negishi Y,Kato Y,et al. Efficient siRNA delivery using novel siRNA-loaded Bubble liposomes and ultrasound [J]. Int J Pharm,2012,422(1-2):504-509.

[37] Un K,Kawakami S,Suzuki R,et al. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy [J]. Biomaterials,2010,31(30):7813-7826.

[38] Pitt WG, Husseini GA. On bubbles and liposomes (June 11, 2007) [J]. Control Release,2008,125(2):174-175;discussion 175-177.

[39] Matsunaga TO,Sheeran PS,Luois S,et al. Phase-change nanoparticles using highly volatile perfluorocarbons: toward a platform for extravascular ultrasound imaging [J]. Theranostics,2012,2(12):1185-1198.

[40] Sheeran PS,Luois SH,Mullin LB,et al. Design of ultrasonically-activatable nanoparticles using low boiling point perfluorocarbons [J]. Biomaterials,2012,33(11):3262-3269.

[41] Javadi M,Pitt WG,Tracy CM,et al. Ultrasonic gene and drug delivery using eLiposomes [J]. Control Release,2013,167(1):92-100.

[42] Klibanov AL,Maruyama K,Beckerleg AM,et al. Activity of amphipathic poly(ethylene glycol) 5000 to prolong the circulation time of liposomes depends on the liposome size and is unfavorable for immunoliposome binding to target [J]. Biochim Biophys Acta,1991,1062(2):142-148.

[43] Rodrigues SF,Granger DN. Role of blood cells in ischaemia-reperfusion induced endothelial barrier failure [J]. Cardiovasc Res,2010,87(2):291-299.

(收稿日期:2016-01-01 本文编辑:赵鲁枫)

上一篇:马钱苷抑制人恶性黑色素瘤细胞的作用及机制研... 下一篇:饮食指导对糖尿病高危足患者血清维生素A和维生...