计算机仿真论文范文

时间:2023-03-20 08:41:27

计算机仿真论文

计算机仿真论文范文第1篇

研究团队、制药产业及医疗服务业已经认可生命科学仿真系统的作用。在化学工程师和计算机辅助过程工程专家的帮助下,生物工程师可以运用这些手段解决诸多生理学和医学问题。

2仿真技术的研究进展

系统生物学要使用定量分析来研究生命系统。起因于处理大量数据的需要。学者通过计算机仿真技术,利用定量分析来处理临床问题,产生了名叫系统医药学的新学科。化学工程师长期参与生物学和生物医学的定量分析。Peppas和Langer认为在20世纪60年代早期化学工程师就参与生物医药工程。Bailey和同事研究出一种控制新陈代谢的手段,这种手段不仅可用于生物制造技术,也可用于其他生物问题。2005年,Solis和Stephanopoulos指出了纳米级的系统工程需要解决的问题。2006年,Doyle和Stelling回顾了用计算机仿真技术去分析代谢网络的一些重要的成果。2009年,Eissing、Chaves和Allgower利用仿真模型来分析细胞死亡。近年来,有许多论文概述了计算机工程师和化学工程师在医疗系统中的作用。对化学工程师,尤其是工艺系统工程师来说,免疫系统是一个采用仿真技术的复杂系统,化学工程师能够研究免疫系统和病毒之间的相互作用。2004-2005年,Deem开发了一种运用计算机仿真技术研究了病毒和疫苗造成的免疫反应的定量模型。Chakraborty在2003年用仿真技术研究了免疫系统的细胞间的通信,以及免疫反应。2006年,Joly和Pinto认为HIV-1发病机理的数学模型优化了药物治疗的方法。这种方法会导致药物设计和配方设计的改进。Yin在2007年提议把病毒当作一种产品,研究病毒生长和传播时需要考虑时空的影响。可以预见,将来人们会用生理学模型和计算机技术设计出最佳药物配方。为了有效地进行仿真,需要根据生物具体的特性建立多种生理学计算模型。几年前,学者启动生理组计划(PhysiomeProject),旨在寻找人和其他真核生物的计算模型。迄今为止,该计划主要关注使用CellML标准的细胞电生理学的数学模型。CellML标准是一种使用细胞进程模型的生物物理学模型标准。另外SBML标准是一种能够辨识生物进程的计算机可读标准。最近,一个名为虚拟生理人的项目进一步促进了欧洲学者研究生物医学的建模和仿真。学者开发了一些数据库去存储生物模型。细胞模型系统和生物模型数据库是其中两个重要的数据库,两个数据库都建议使用CellML标准和SBML标准。学者可使用这两个数据库来探索复杂的生命系统。生物模型在药物的使用方面有重要作用,这不仅是一个通用手段,而且对癌症治疗和眼病治疗也有特殊的贡献。2002年,Cstete和Doyle提出一种生物反馈系统的逆向工程分析原理。2003年,Tyson、Chen和Novak回顾一些生物控制模块的设计原则。

3简单系统的建模

2001年,Hangos和Cameron强调明确建立模型的目的,模型是在对现象总结的基础上,用计算机能够接受的方式反映规律,建模是下一步仿真计算的基础。对复杂系统来说建模十分必要。复杂系统不可能设计出含所有现象的实验,因为部分量不可测量,并且几个现象间很难找到相互关系。尽管学者已经在测量基因与代谢领域取得巨大进展,但仍有许多生物量无法测量,即便能够测量出一些,测量的准确性也不够高。下面的例子是伦敦大学研究得到的一种模型,该模型模拟了血流改变时动脉壁内皮细胞的反应。血流改变刺激细胞产生化学信号,而这些化学信号拉长了内皮细胞,在某些条件下,巨噬细胞在动脉壁上增加了,最后导致动脉粥样硬化。动脉粥样硬化斑块的位置与血流改变的区域息息相关。并造成影响。学者研究出两个模型来探索这种影响。模型一是细胞表面的血液模型,首先把细胞表面分解成许多不同的小三角形区域(0.4um),这个模型可以看成一个斯托克斯公式的边界积分表达式,通过该模型可以研究在血流作用下细胞的受力情况。模型二研究了力对细胞骨架的影响,细胞骨架保持细胞形状,可以使用开尔文体模型研究这个问题,它是由1个缓冲器和2个平行的弹簧构成的黏性弹性系统,开尔文体代表一种将机械力转化成生化信号的细胞成分,这种生化信号会导致Src激酶的活化,Src激酶会调节Rho激酶和GTP酶(Rac和Rho),而Rho激酶和GTP酶可以控制细胞结构和形态。简单的展示了该过程。此模型可以解释很多现象,但仍然有一些问题解释不了,例如当涉及体内细胞间的通信时,该模型不适用。研究人员建立复杂的仿真模型,这些模型涉及化学和机械领域,可以使用这些模型来进一步研究各种生理学和临床医学现象。

4复杂系统的建模

生命系统具有很强的鲁棒性,生命系统和多反馈的鲁棒性系统相似。建模时要识别模型中的薄弱区域,在该薄弱区域模型可能不够准确,需要用模型进行预测,这要求修改模型。在复杂模型中,特别要注意内部参数不能测量的区域,当处理涉及复杂生理问题时,这些区域变得很重要。原料中包括必要成分A,A和其它成分一起加到反应器。在该反应器上,一些原料反应生成副产物B。在这个过程中,在一定范围内控制成分A的数量很重要。在反应器上,A在催化剂C的催化下生成B,B在催化剂D的催化下生成A。A的数量决定CSTR产生C或者D的数量。如果A加入很多,将会产生C催化正反应。如果A加入的很少,将产生D催化逆反应。与此同时,膜反应器过滤掉废物。这个简单的工艺流程初步反映了血液中葡萄糖调节机制。葡萄糖由肠道进入血液,并供给其它所有的器官。葡萄糖维持在一定浓度很重要,因为维持在一定浓度可以确保人类各种机能的良好反应,这种调节过程称为葡萄糖稳态。如果葡萄糖糖浓度高,胰腺产生胰岛素,指示肝脏把葡萄糖转化成糖原,如果血液中的葡萄糖浓度低,胰腺产生胰高血糖素,将糖原转化回葡萄糖。肝细胞还将血液中废品送入胆汁,并通过胆管过滤并排泄。这是一个涉及多个器官的复杂系统,探索该系统需要考虑许多器官间的联系,葡萄糖稳态系统可以用7个模型表示。

1).胰高血糖素受体模型

通过胰高血糖素模拟肝细胞表面受体的活化,受体活化产生三磷酸肌醇。该模型由5个微分方程构成,分别描述受体的各种状态、G蛋白的活化和三磷酸肌醇的产生。

2).钙模型

模拟由三磷酸肌醇活化产生的钙信号通路。该模型由2个微分方程构成,分别涉及细胞质和内质网中钙浓度。钙模型的前提是Hill方程。

3).环磷酸腺苷模型

模拟受体的活化和环磷酸腺苷的产生。该模型由5个微分方程构成,分别关于环磷酸腺苷的浓度、S-腺苷甲硫氨酸(SAM)的浓度、受体的比例、不活动的比例以及核定位蛋白激酶A的比例。模型遵守Hill方程。

4).胰岛素模型

模拟肝脏对于胰岛素的反应,该模型由1个描述糖原合成酶激酶(GSK)活化的微分方程构成。

5).血液模型

模拟葡萄糖在血液、肝脏和胰腺之间的运输,该模型由1个描述血液中葡萄糖浓度的微分方程构成。

6).糖原分解模型

模拟控制糖原分解与合成的4个因素,葡萄糖及6磷酸葡萄糖的控制、钙离子的控制、环磷酸腺苷的控制、胰岛素的控制。该模型是一个模糊逻辑模型,该模型描述糖原合成酶(Sta,控制糖原合成速率)及糖原磷酸化酶(Pho,控制糖原分解速率)的活性水平。该模型由4个微分方程构成,分别关于糖原磷酸化酶(Pho)、糖原合成酶(Sta)、糖原和细胞内的葡萄糖。

7).胰腺模型

模拟胰高血糖素或胰岛素的释放。该模型由2个微分方程构成,分别关于胰岛素和胰高血糖素的血液浓度。每一个微分方程都要遵循Hill方程。上述7个模型共同构成葡萄糖的调控模型,需要软件管理系统来协调它们。Saffrey等人在2007年描述一种模型管理系统。该管理系统用来存储模型和数据。在该系统中,上述的7个模型互相联系,共同模拟出葡萄糖稳态系统。Hetherington等人详细描述这个葡萄糖稳态系统的模型。

5完善和应用模型

建立模型以后,需要进一步完善。可以选择各种不同的实验者,将实验者分成多个小组,分别观察和记录他们的数据,根据这些数据完善和调整模型,甚至改变模型,最终确定适合不同人的具体的模型。通过这些具体的模型可以预测未来的变化情况,为了达到某些目的也可以设计一些干预措施。在其他领域中,学者已经充分研究了基于模型工程的设计方法,利用这些设计方法可以达到一些想要的结果,虽然这些设计方法还不成熟,需要进一步完善,但值得借鉴。在生命科学中,要特别注意干预措施也可能会导致一些危害。这些干预措施包括环境干预、药理学干预或基因干预。环境干预通过物理或化学因素,药理学干预主要通过临床干预。在上一部分描述的复合模型中,广泛的使用了计算机辅助过程工程技术,和优化技术寻找最佳解决方案,如糖尿病患者的最佳胰岛素剂量;使用随机技术寻找高敏感度模型的解决方案;使用区间方法确定能够接受的最坏情况。上述方法和模型已经被用来预防一些疾病。如糖尿病患者很可能患非酒精性脂肪肝(NAFLD),利用上述方法可以提出一些措施,有效地避免Ⅱ型糖尿病患者患非酒精性脂肪肝(NAFLD)。基于模型的方法(例如优化、随机分析、间隔方法)将促进生物学和医学的发展,并且随着生物学和医学的发展,这些方法将更完善。要在生物学和医学领域中很好地使用这些方法和模型,必须要掌握生命科学的知识和计算机的知识,单个的研究者常常不具有这两个领域的知识,因此合作很重要。那些希望从事相关研究工作的学者必须合作,例如通过短期或长期项目,建立一个促进合作的机制。

6结论

本文展示了生理学和临床医学中一些可以用计算机辅助技术解决的问题。这些问题涉及化工厂(或者身体内)的化学和物理变化,并且常常涉及到复杂多尺度系统。虽然生命科学发展很成熟,但是在不能测量的领域,我们仍需使用计算机仿真和建模技术去解决问题。只有通过使用系统模型,某些复杂问题才可能解决,最终才有可能设计出合适的干预措施。最大难题是如何建立出好的模型,只有使用足够精确的模型才可以预测生理学系统的行为。在医疗领域的模型只有到很高的精确度时才可以用。模型的临床推广仍然有很长一段路要走。通过新的系统生物学和系统医药学手段,将会使用于临床的这种方法加速运用。

计算机仿真论文范文第2篇

1.1计算机仿真软件

制造业是我国当前的主力发展领域,是我国经济的支柱产业,这其中就涵盖着机械制造以及各种型材的制造等。制造业在当前所面临的是产品的竞争,所以要在具体的指标上要能够得到满足,要求产品的价格是最低的,以及以短时间完成从概念设计到产品上市这一过程,要能够对客户的需求的到满足,对产品所提供的服务要是最好的。为此我国在计算机仿真软件的使用上就显得非常必要,这几个软件主要是一体化制造系统仿真软件,这一软件主要是在车间设计和分析的建模以及仿真软件,在具体的功能上主要有自动生成离散事件仿真模型,并能够对这一模型进行仿真。另外就是在制造车间的生产计划和工艺路径可以通过表格的形式进行输入,既能够通过手工进行输入同时也能够通过工艺规划的模块进行读入。再者就是加工过程仿真器,为能够有效的价格产品设计和开发周期得到有效缩短,在CIMS当中尤其是强调计算机辅助设计和计算机辅助制造的集成,也就是要求从CAD输出产品设计信息可以直接通过网络传送到计算机辅助加工工艺规划系统,并使其产生刀位轨迹文件。为能够有效确保加工工艺的合理性及NC代码正确,要对真实零件切削加工前进行一次试切削。在这一过程中主要就是通过木模进行替代真实的零件,这显然会对开发的周期有着延长,并在成本上也会比较高。针对加工过程仿真器可以为CAM/CAD集成,尤其是检验NC代码正确性和减少加工过程的碰撞干涉提供支持,所以在这一软件的应用下能够起到部分的代替试切的作用。

1.2计算机仿真在轧钢工艺中的实际应用

现场生产中,小规格的圆钢在冷床上的运动方式和一般圆钢有着很大区别,故此要对冷床的基本结构及原理等进行研究,在计算机上根据建立运动模型进行仿真试验后,结果表明当前生产的最小规格圆钢能够利用现有冷床进行生产。研究当中涉及到的冷床是步进回转式冷床,具有两种齿板,分别是V型齿板及U型齿板,借助它们相互错动使得圆钢一方面做步进运动,而另一方面绕其自身轴进行旋转。针对这一结构可能出现的问题进行仿真机现场实验,要能够从理论的角度进行分析,在半径小的圆钢方面可能在翻过V形的齿轮的第二个齿峰的过程中,不能和第二个V形齿的左壁相接触,这也是其中的一个重要问题,属于冷床翻钢的极限。主要就是造成翻钢的过程中会有不稳定的情况发生,这样就造成了冷却不均。根据这一图示就能看出,在V形齿的第二齿峰和小圆钢那样相交或是相切的过程中,U形齿会向下向前,而V形齿则是向上向后,这样就会出现翻钢的情况,这只是必要的条件。然后根据磨损的情况和具体的规格进行仿真实验,针对不同型号的圆钢进行建模和仿真,正常情况下对90号钢进行分析,从实际的仿真计算以及表现情况能够看出小圆钢在冷床上运动的比较稳定冷却效果较好。而75号钢的仿真系统当中的数字模拟仿真,冷床上运动稳定冷却效果佳,但在稳定性方面相对较差。

2结语

总而言之,当前我国的计算机技术有了很大程度的发展,相关的技术已经在诸多领域得到了广泛应用,其中在轧钢工艺当中的应用就发挥了很大作用,促进其工艺质量的提升。通过对计算机仿真技术在轧钢工艺当中的应用分析,能够在一定程度上加强理论的科学性,由于篇幅限制不能进一步深化研究,希望能够起到抛砖引玉的作用以待佳作。

计算机仿真论文范文第3篇

1.1梯形图指令解释实现

在特殊指令解释时,需要将起始和终止共两次的扫描状态进行对比,来最大限度地保证其正确性。具体操作时可选用两个虚拟内存条,并引入“备用堆栈”和“备用结果寄存器”来保存起始扫描的计算结果,以及“堆栈”和“结果寄存器”来保存结束扫描的算结果,以下进行具体说明:(1)常开(及常闭)触点的实现流程。取出触点内存地址将结果寄存器中的现有数据放入堆栈将地址值(常闭触点则取反)放入结果寄存器;(2)线圈作用的实现。将结果寄存器中的值输出至分别起输出、辅助、保持作用的“继电器”内存地址中。

1.2梯形图程序运行实现

仿真系统通过梯形图程序的运行并根据其转化后的指令语句,即可实现对真实PLC控制系统的模拟。各输入点的状态被依次扫描,并由系统软件中用户编制的程序进行逻辑解算进一步转化成指令进行执行,指令的执行结果可以被后续待扫描的指令所利用,然后依次对应向各输出点发出控制信号。梯形图程序运行的流程为:在梯形图编辑器中,用户点击“运行”按钮触发系统定时器系统初始化内存地址(常开触点置零,常闭触点的定时器及计数器清空)逐一扫描各元器件并同时进行其指令解释直至该条指令结束自动进入下一条指令的扫描直至用户点击“停止”按钮。

2电路搭建部分仿真实现

在仿真系统中,本文通过在软件中设置元素来模拟元器件,这里以设置通用继电器的模拟元件为例来进行分析。在元器件编辑器中,用户可以在两个菜单中分别选择元器件(如继电器、开关按钮、接触器、熔断器、电磁阀、限位开关、电铃、传感器以及声光指示装置)以及对应的元器件元素(如线圈、接线柱、触头、连接线以及保险丝等)。在通用继电器设计初始,用户须通过定义边框确定元器件大小,然后设置线圈及接线柱并用连接线连接,并设置一动一静两个触头以及若干开关,设置完成后即可点击生成一个通用继电器。在对电路进行仿真之前,还需要对电子元器件进行解释,这里仍以通用继电器为例来说明解释的原理和过程,由于电路解释时需要即时刷新,这会导致电路中元件的动作之间产生相互影响,本文这里引入“树”的概念来解释电路,通过将电路中的元器件作为单个节点加入到“树”中,用户在设置时,可首先新建“树”,接着清空“树节点(元器件)”的状态,然后对各节点进行循环检查,当发现控制电路不通时停止循环,最后遍历节点并给出各元器件输出值。

3应用实例分析

3.1实例情况说明

基于以上论述,本文这里选择水塔水位控制系统作为仿真实例,对仿真系统的建立过程进行说明,并通过在仿真环境中进行测试来论证仿真系统的实用性。水塔水位控制系统是通过PLC自动控制来实现水塔自动进、出水,系统中主要的元器件包括液面传感器、电磁阀、PLC控制器以及电动机。图4所示为水塔水位自动控制系统示意图,其动作流程为:当水池水位低于水池低水界时,液面传感器使S3开关接合(ON),YV电磁阀门打开,水池开始蓄水。水位高于低水位界时,S3开关断开(OFF)。当水位升高到高于水池高水位界时,液面传感器使开关S4开关接合(ON),YV阀门关闭,水池停止蓄水。水塔水位低于水塔低水位界,液面传感器使S2开关接合(ON),若此时S3为断开状态,则电动机M运转,驱动水泵抽水。水塔水位上升到高于水塔高水界时,液面传感器使S1开关接合(ON),电动机M停转,水泵停止工作。

3.2系统仿真实现

从以上分析可见该控制系统的工作原理,可以看出系统可通过相关元器件实现水塔和水池上、下限水位调节和水塔放水等功能。基于此,本以下仿真设计:

(1)将实例控制系统的PLC程序设计并下载到仿真电路设计的PLC中。

(2)以实时水位、水位上限及水位下限作为变量,根据上节所述的系统工作原理对应编制液位上升和下降函数,以模拟真实的水池和水塔液位变化。

(3)在仿真系统中设置6个可供用户自行定义和更改的控制单位,并将它们分别与水塔和水池的高、低液位传感器以及电动机和电磁阀的开关共6个元器件相对应。在仿真系统的对话框中,首先设置水塔和水池的水位标识,可分别用“L”、“M”、“H”对应表示实时水位“低于低液位传感器”、“高于低液位且低于高液位的传感器”、“高于高液位传感器”的三种状态,在另外一个对话框中,用户可在输入框中点击选择已经在电路编辑器中编辑好的输入、输出量与真实控制系统中的6个实际元器件相对应。在完成所有的设置之后,既可以运行仿真系统并通过观察模拟结果判断PLC的程序正确与否以及电路是否搭建正确。经过观察,在仿真系统运行期间各环节控制动作正确,基本能够实现水池水塔自动控制系统的实际功能。

4结语

为减少PLC产品的研发周期及成本,本文在对PLC的工作原理及流程进行分析的基础上,设计了PLC系统的计算机仿真平台软件。通过对PLC控制系统的工作原理进行分析,掌握了其各组成部分的特性以及仿真需注意的要点,并以此为基础对PLC的计算机仿真系统进行了总体布置,并分别确定了其各部分的组成及功能。文章以一个水塔水位自动控制系统为例进行了仿真分析,并以仿真所得结果论证了仿真系统的有效性。由于篇幅等各方面的原因,本文仅对PLC及其仿真系统中的几个重要环节进行了分析,在今后的研究中还需要进一步完善对PLC的功能仿真,并进一步实现仿真系统和真实系统的联接。

计算机仿真论文范文第4篇

1.竞争全球化视野下创新型人才培养面临巨大挑战

长期以来,我国高等教育受前苏联模式的影响,以及人才匮乏、教学资源紧缺的现实,存在着偏重理论知识的传授而忽视学生独立动手能力、综合分析问题和解决问题能力的问题,统一培养口径、重“学”轻“术”、偏重课堂教学、忽视实践锻炼等做法,使得我们培养出的人才实践能力严重不足,创新能力严重欠缺。当今世界,各主要国家无不把竞争与创新上升到国家战略高度。美国从2004年推出了创新型人才培养的国家战略,强调将仿真作为核心技术手段,推动国家技术进步。也是从2004年起,我国政府把自主创新从一般性号召提升到国家战略高度,也非常重视仿真技术的研究与应用,创立了若干与仿真有关的部级实验室与工程技术中心,以响应科技发展需求。以创新型国家战略目标为衡量标准,就必须关注高校教育的创新问题[1]。

2.CDIO理念成为教育创新的最佳模式

CDIO(Conceive-Design-Implement-Operate,构思—设计—实现—运行)是一个新型的工程教育模式,它由美国麻省理工学院、瑞典查尔姆斯技术学院、瑞典林克平大学、瑞典皇家技术学院等4所工程大学发起,全球23所大学参与,合作开发的一个国际工程教育合作项目。CDIO在当前得到了国际高等工程教育的共识,这种人才培养模式的理念主要体现在以下4个方面:具有国际先进性、具有实践可操作性、具有全面系统性及具有普遍适应性。

二、基于CDIO理念的仿真新概念的提出

1.仿真的基本定义

1961年,G.W.Morgenthater首次将“仿真”定义为“在实际系统尚不存在的情况下对于系统或活动本质的实现”。这一定义忽略了实际系统存在时仍然需要做仿真的情形,对此,Korn在其1978年出版的著作《连续系统仿真》中,将“仿真”定义修正为“用能代表所研究的系统的模型做实验”。这一概念从研究角度强调了仿真是一种类型的实验。Spriet认为模型是仿真的基础,于1982年将“仿真”定义为“所有支持模型建立与模型分析的活动即为仿真活动”。考虑到仿真已广泛应用于产品开发与技能培训等众多方面,Oren于1984年建立了仿真的基本概念框架“建模-实验-分析”,并在此基础上定义“仿真是一种基于模型的活动”,并从此开创了现代仿真技术。但是,如果将所有基于模型的活动都定义为仿真,而不对“活动”加以界定,则难免忽略了仿真过程的完整性,比如,不能认为“基于模型的评估活动”为仿真,那只是仿真过程中的一个阶段。

2.仿真新概念的提出

我国教育工作者引入CDIO以来,取得了诸多成果。本文作者参照CDIO“构思-设计-实现-运行”这一主线,认为仿真首先要“构思”目的、手段、步骤及结果的分析等,然后有针对性地“设计”某项活动,并按照设计要求,为活动的“实现”做好充分准备,并按一定的步骤和方法实施活动,继而“运行”所实现的模型系统,对获得的结果进行分析,研究是否达到了仿真目的,如果达到了,则仿真成功,如果没有达到,则重新进行一个新的CDIO过程。基于上述分析,本位提出“仿真是一种基于模型的CDIO活动”,该概念将仿真和CDIO紧密结合起来了,既适应于实验,又适应于技能培训等其他活动,而且突出了仿真的过程特性,具有鲜明的指导意义,优点明显。

三、仿真新概念的教学实践

1.控制系统计算机仿真技术教学面临的问题

(1)教学内容问题。该课程现行的教学内容主要包括系统的数学模型、连续系统仿真、离散事件系统仿真、仿真工具介绍及仿真的应用等,相关内容与《自动控制原理》、《现代控制理论》、《数值计算》、《数据结构与算法》、《数学建模》、《参数估计与检测》、《系统辨识》等课程有交叉和重叠。有关“数学模型”及“状态空间方法”在《自动控制原理》、《现代控制理论》中有详细讲述,“数值积分法”的内容在《数值计算》中有详细讲述,“建模方法”在《数学建模》、《参数估计与检测》、《系统辨识》等课程中有详细讲述,仿真工具介绍及仿真的应用等在《Matlab/Simulink程序设计与应用》课程中有大量讲授等。当主要教学内容限定为上述内容时,不可避免地出现与其他课程内容交叉和重叠的现象,令教师和学生无法准确界定和掌握仿真课程的核心内容,使得教学效果不佳。

(2)教材选用问题。《控制系统计算机仿真》课程的教学,曾经采用过的教材达8种之多。对教材进行分析发现,有一类近似于以Matlab为基础讲述自动控制原理,有一类主要讲述仿真的算法与实现,不涉及具体工具,还有一类属于仿真技术综述的,尚不足以支持仿真课程体系建设,难以满足实践需求。

(3)教学方法问题。就教学方法来说,本课程的教学主要还停留在传统的教学理念与方法上,通常是按照教学大纲规定的内容或者教材内容,结合多媒体进行按部就班的教学。如上所述,由于本课程在教学内容和教材选用方面存在的问题,常规教学方法面临诸多弊端,难以把握仿真的核心概念,更难以培养实践能力,严重滞后于时展和科技进步的步伐。

2.仿真新概念下的教学改革实践

有些高校研究了控制系统计算机仿真课程教学改革问题,但依托核心理念的改革尚显不足,对CDIO实施的关键问题,尚不有不同的认识。作者负责的控制系统计算机仿真技术的课程教学和改革中,借鉴同行方法,以先进CDIO理念为指导,采用案列教学方式,着眼于培养仿真专业的创新型人才,进行了教改研究与实践,简要介绍如下:

(1)教学大纲的运用与修改。教学工作通常要遵守教学大纲的规定,不能随意更改,但是对于教学改革项目可以适当放宽。总体而言,以遵守教学大纲的指导性原则为主,以遵守具体内容的限制为辅,以掌握核心概念、掌握课程精髓为基本原则,以实践为基础,以创新为目标,适当安排基于课题的“研讨式”教学内容。增加课外实验课时,增加任课教师和实验员,通过第二课堂引导学生从事一个完整的“仿真项目”,以教学团队的方式完成教学任务,改革教学考核方式。

(2)研讨式教学方式。结合学生的兴趣点与能力培养目标,课题组设计了若干个研讨项目,锻炼学生设计、构思能力,限于篇幅,本文简要介绍一项。安全帽佩戴方式问题。安全帽是工程施工人员在工作现场最重要的劳动防护用品,其佩戴方法有标准方法和经验方法。利用所学的仿真知识,比较两种方法中是否存在较优的方法,并给出佩戴建议。这一课题诱导学生提出了仿真人的概念,通过不同的高空坠物方式,检验仿真人的受伤程度,进而检验安全帽的佩戴方式。本项讨论在教学上结合采用多媒体教学、实际软件编程过程展示、课堂研讨小型项目、课外实践大型项目等多种方式,以掌握CDIO核心概念、仿真课程精髓为目标,以是否能在实践中灵活运用为检验标准,面向优秀创新型人才培养,引发了学生们的学习热情,并取得了若干优秀的成果,并且其影响力已扩展到大学毕业后的一生。

四、讨论与总结

本文的主要贡献是在教育创新大背景下,通过结合CDIO核心理念与仿真的核心要素,提出了仿真新概念:“仿真是一种基于模型的CDIO活动”,并以此为指导,在教学内容选取、教学方法创新等方面均进行了教研教改实践,并获得了较好的效果。

计算机仿真论文范文第5篇

负控系统在电力网络中有两个重要的应用,首先是数据采集节点,通过部署在各个电力网络节点的负控终端来实时的采集电力负荷的运行数据,并且通过中继站上传到负控中心。由于中继站的成本较高,因此在中继站的部署过程中也要通过仿真分析来确定一个优化的部署方案。在中继站的部署过程中要考虑到本区域的电力负荷、地形等因素,以便能够更好的规划部署,消除盲区。在负控系统的规划阶段,可以使用现有的智能算法来确定最优化的方案,在本节剩下的部分中将会根据人工鱼群基本算法提出一个适用于负控系统规划的人工鱼群算法模型。在负控系统中,为了避免负控终端的资源浪费,规划的目标应该是使目标函数达到最大值,因此也就是使人工鱼群向食物浓度较大的方向移动。

1.1参数设定

根据负控系统的特性对参数进行设定,根据指定区域中预先估计的负控中心的规模、中继站的数量负控终端的数量,结合该区域中的用户数量和电力负荷来确定人工鱼群的规模,根据负控系统需要覆盖的区域的大小来确定鱼群的移动范围,根据中继站的覆盖范围和负控终端的覆盖范围来确定鱼群的视野,最后根据指定中继站所管理的负控终端数来确定迭代参数和密度参数。

1.2初始化人工鱼群

根据指定区域中的用电负荷和用户数来生成n个数,为每条人工鱼的初始位置,人工鱼的初始位置要根据指定区域中电力负荷来确定。

1.3执行算法

根据预先设定的参数,使用人工鱼群基本算法对人工鱼群的追尾行为、聚群行为进行模拟,人工鱼根据自己的所在区域中鱼群密度较大而且食物浓度较高的区域移动。如果无法确定移动方向,则根据自己当前位置的食物浓度选择一个比当前浓度高的方向进行移动或者随机移动一步。如果达到最大迭代次数,输出鱼群密度最高的区域,即得到最佳的部署位置。

1.4方案分析

根据算法执行结果来设定负控终端和中继站的部署方案,根据地形等因素适当的进行调整。最后根据指定区域的实际用电数据对方案进行仿真测试,根据测试结果在进行方案的优化和修改。人工鱼群的基本算法提出后,学术界根据不同的需求对该算法模型进行了大量的优化,并且在电力系统中有很多的应用研究,例如齐志华将人工鱼群算法应用于电力控制系统,吴杰对人工鱼群算法在输电网络规划中的应用进行了分析。

2结语

随着社会经济的发展,必然会对电力负载控制提出更高的要求。负控系统将在监控电力网络中各节点的状态、动态控制各节点的运行等方面起着重要的作用。合理的部署负控系统能够最大化的节约电力网络的投入,更好的为用户服务。因此,在以后的发展中,基于人工智能算法的计算机仿真优化技术将会对负控系统的规划提供更好的决策依据。

计算机仿真论文范文第6篇

现代控制理论近年来发展迅速,使得我们对各类控制对象有了更好的理解,能够很好地刻画实际对象中事件驱动的动态过程,提出了离散事件系统,它的动态行为是由一系列随机出现的事件驱动的,而且控制理论界已经给出了很多建模方法和建模工具,如Gracefet图、自动机和Petri网[2,3]。而现有的计算机仿真内容主要是面向连续动态系统,虽然也涉及离散事件系统,但是对离散事件系统建模和仿真方法少有涉猎。离散事件系统的模型大部分来自计算机科学研究领域,现代控制理论和控制工程都离不开计算机,对此类建模工具的了解可以拓宽自动化专业学生的知识结构,提升他们思考和解决计算机控制工程问题的能力。为此,在计算机仿真课程内容中,我们增加了自动机和Petri网的基本概念。考虑到学生缺乏离散数学的基础,我们拟根据实际对象建模需要,结合Matlab中的stateflow工具箱,介绍离散事件系统的建模和仿真方法。具体内容包括:

(1)离散事件系统概念;

(2)自动机模型;

(3)Petri网模型;

(4)离散事件系统的自动机模型的建模方法;

(5)离散事件系统Petri网模型的建模方法;

(6)自动机的仿真模型的设计方法;

(7)Petri网的仿真模型的设计方法。

另外,现实工程领域大多数系统是混杂系统[4],既有连续变化的特征,又有事件驱动的特征,而且连续变量子系统与事件系统之间相互作用相互影响。从20世纪60年代,学界就开始了混杂系统的研究,目前已经取得了丰富的成果,涉及混杂系统的建模、分析、控制、调度和优化等问题。其中,建模和分析方法对自动化专业知识体系的构建非常重要,事件驱动的思想能够让学生将控制理论与实际过程更好地建立联系,因此在计算机仿真课程中,我们增加了对混合自动机和混合Petri网的介绍,并结合实例阐述如何给出混杂系统的数学模型以及仿真模型和仿真程序的设计方法。具体内容包括:

(1)混杂系统概念;

(2)混合自动机;

(3)混合Petri网;

(4)混杂系统的混合自动机建模方法;

(5)混杂系统的混合Petri网建模方法;

(6)混合自动机的仿真模型的设计方法;

(7)混合Petri网的仿真模型的设计方法。

二、计算机仿真实践教学内容改革

计算机仿真是一门实践性很强的课程,利用代码将实际对象虚拟到计算机中,这就要求自动化专业的学生不仅要掌握知识概念,还要能够编写代码用计算机实现抽象的概念。如果实验课内容设计合理,可以很好地锻炼学生解决实际问题的能力。鉴于自动控制原理大量内容属于动态系统的分析方法,而仿真是分析系统不可或缺的手段,仿真实践课程可以巩固控制原理的抽象的知识。如何设计仿真课程的实验项目对自动化专业的计算机仿真课程非常重要,围绕自动化专业课程体系,我们拟设定如下实验项目:

(1)二阶电路的C程序仿真实验;

(2)单容水箱的C程序仿真实验;

(3)电机拖动控制系统的C程序仿真实验;

(4)一阶倒立摆的C程序仿真实验;

(5)立体仓库系统的自动机模型仿真实验;

(6)立体仓库系统的Petri网模型仿真实验;

(7)Bang-bang控制液位系统的混杂自动机、Petri网模型的仿真实验;

(8)反应釜复杂控制系统的Matlab仿真。

三、结束语

本文探讨了自动化专业计算机仿真课程的教学改革问题,通过实践改革,使教学内容更加符合自动化专业的课程体系。从前期的教学效果看,上述改革能够激发学生的学习兴趣,巩固专业知识基础,并且有效地提高了学生解决工程实际问题的能力。

计算机仿真论文范文第7篇

该高速旋转电弧传感器的频率0~30Hz,扫描区域半径0~3.5mm。本次实验选用25r/s的固定频率进行数据采集。实验表明,如果焊接工艺参数一定,设定水平偏差为变量,则在一个旋转电弧圆周运动的周期内,电流的波形具有一定的规律性,通过电流波形的变化特点可以得到焊点的水平偏差的参数。但是在实际操作中,焊接作业很容易受到外界因素的影响,如熔池的震荡、飞溅等,这样获得的电流信号就有了干扰因素,即使在偏差一定的情况下,检测到的电流也不相同。所以为了减小这些因素的影响,将采集到的数据通过小波滤波后进行归一化处理。将采集到的不同周期内的同一点的电流信号进行纵向的平均值处理,取该均值为这点的电流信号,这样便减小了外界因素的影响。设定采样频率为104Hz,旋转频率为25r/s,则每个周期内可以采集到416个点的信息,然后将各个点的电流信息进行小波滤波、归一化、均值处理后得到样本波形保证结构风险最小化原则要求,采用不敏感损失函数ε,加入惩罚参数C和松弛变量ξ(*),ξ(*)=(ξ1,ξ1(*),ξ2,ξ2(*),…,ξb,ξb(*)),得到原始最优化问题minτ(W,ξ*)=12W2+C1l1i=1Σ(ξ1+ξ1*)(1)s.t.(Woxi+b)-yi≤ε+ξi,i=1,2,…,lyi-(Woxi+b)≤ε+ξi,i=1,2,…,lξi*≥0,i=1,2,…,l构造拉格朗日函数进行求解,最优问题以Wolfe对偶原则化作凸二次规划问题min121i,j=1Σ(αi*-αi)(αj*-αj)•K(xi,xj)+ε1i=1Σ(αi*+αi)-1i=1Σyi(αi*-αi)1i=1Σ(αi-αi*)=0αi≥0αi≤Cn变为标准形式,得到最优解α=(α1,α1*,…,αl,αl*)T根据α构造出决策函数为(fx)=1i=1Σ(αi*-αi)K(xi,x)+b(3)式(3)为决策函数式,其支持向量为非零解所对应的矢量。不敏感损失函数ε的选取可以用来调整回归逼近的精确度。根据式(3)选取新的输入参数便可得到一个精确的输出参数。

2支持向量回归机的实现

2.1支持向量回归机的计算原理

设定输入的训练样本集为D={(xin,yk),k=1,2,3,…,l}式中xin∈Rn,yk∈R。通过训练样本可以得到一个决策函数,这样通过训练样本集之外的输入参数x可以较为精确的计算到相应的输出参数y。际工程中可操作。提高焊缝跟踪精度前(下)后(上)的焊缝形貌。

2.2构造核函数运用

支持向量回归机解决实际问题时必须构建一个合适的核函数,类型不同的核函数与之相对应的支持相对应的向量回归机类型也不相同,一个合适的核函数直接决定了所构造的支持向量回归机的运算性能。通过采集的数据信息的包角映射建立SVR核函数,然后修正函数,以提高核函数的回归精度。构造核函数:设定一个标量函数式F(x),F(x)≥0。令F(x)的最大值在支持向量处取得,最小值在支持向量以外点处取得,得到修正后的核函数K(x,x')=F(x)F(x')K(x,x')(4)令其标量函数F(x)的最小值在支持向量处取得,最大值在其他以外点处取得。这样修正后的核函数对支持向量回归的精度有所提高。由于实际操作中支持向量一般都是不知道的,所以通常的初始核函数选为GAUSS核函数K(x,x')=exp(-x-x'22σ2)(5)式中σ为归一化参数。通过式(5)可以得到初始的支持向量,将其带入函数F(x)实现支持向量邻域内黎曼度规的减小。修正后的GAUSS核函数大大提高了回归精度。在Matlab中编写函数式M文件,其逻辑流程为:(1)读取样本数据集;(2)建立数据集矩阵;(3)构建矩阵f,LB,UB;(4)计算初始核矩阵;(5)计算初始α值;(6)计算修正函数;(7)计算各个最优解α,将最后求的各个α值和变量值保存到MAD文件,然后编写决策函数编码通过调用MAD文件里的参数得出偏差值。

3仿真模拟

3.1水平偏差值

计算通过调用MATLAB中已经编写的M文件,得到的变量与函数值采用小波滤波、归一化、均值化处理后得到一个周期内的数据点参数集,使用已经编写好的决策函数文件计算出各个点的水平偏差,将其转化为水平偏差值。

3.2高度偏差值

计算焊炬的高度与电弧的电流值具有一定的规律性。选取焊炬在某一不变的位置高度,得到该位置的电流值,将该电流值与电流均值做差值,则该差值和高度偏差值具有线性规律,在LABVIEW中通过函数公式的各节点可以推算出高度偏差值。

3.3焊缝跟踪将LABVIEW

与机器人纠偏系统相联结,将水平偏差值与高度偏差值的实时参数传送给机器人纠偏系统,焊接机器人实时调整焊缝的路径,这样就实现焊缝焊接的实时跟踪。

3.4实验结果

选取旋转电弧传感器的扫描半径为3mm,V型坡口,角度45°,取样频率104Hz,电弧旋转频率25r/s。在水平偏差不相同的条件下分别选取两组数据,第一组取采集试验结果12个数据训练支持向量回归机,第二组作为参考组,进行偏差识别对比测试。使用该算法系统具有较小的偏差识别误差,提高了系统的识别精度,在实{st(2)α(*)∈R2lW∈R,ξ(*)∈R2I,b∈R。通过图像能够清楚地看到,进行处理后的数据提高了系统的精度和实时性。

4结论

在一定工艺参数下,焊炬的水平偏差和焊接电弧的电流大小在一个旋转周期内具有一定的规律性。通过采集LABVIEW焊接过程中的电弧电流信号,将原始信号进行小波滤波减少外界因素干扰,然后信号进行归一化、均值滤波处理,提高了数据精度。将处理后的数据在MATLAB中进行支持向量回归机的计算,通过修正核函数与决策函数的运算处理最终得到偏差值。试验结果证明,采用这种算法进行电弧传感焊缝的偏差识别是可行的,提高焊缝识别精度约20%,完全满足实际工程的需要。

计算机仿真论文范文第8篇

冰壶运动是以队为单位在冰上进行的一种投掷性竞赛项目。投掷的冰壶为圆壶状,周长约为91.44厘米,高(壶的底部与顶部)11.43厘米,重量(包括壶柄和壶栓)最大为19.96公斤,冰壶底部和冰面相接触的部分是一个半径约为12.8至13.1厘米的圆环。冰壶所用场地是一个长44.5米、宽4.32米的冰道。场地冰面浇过平整的冰面后,还需要用喷头像冰面喷洒热水滴,保证冰面出现表面圆滑的凸起的小冰点,使冰壶的底面不能完全接触到冰面,并且冰面更粗糙,对冰壶的阻力更大。冰道的一端画有一个直径为1.83米的圆圈作为球员的发球区,被称作本垒。冰道的另一端也画有一圆圈,被称为营垒。在场地两端各装有一个斜面橡胶起蹬器。在冰壶场地前后两端各有一条蓝色的实线称为“前卫线”和“后卫线”。球员掷壶时,身体下蹲,蹬冰脚踏在起蹬器上用力前蹬,使身体跪式向前滑行,同时手持冰壶从本垒圆心推球向前,至前卫线时,放开冰壶使其自行以直线或弧线轨道滑向营垒中心。在一名队员掷球时,由两名本方队员手持毛刷在冰壶滑行的前方快速左右擦刷冰面使冰壶能准确到达营垒的中心或者将对方冰壶击打出得分区域。最后当双方队员掷完所有冰壶后,以场地上冰壶距离营垒圆心的远近决定胜负。

2运动学方程的建立

冰壶在冰面上滑行可以视为刚体的平面运动,可以将其分解为质心的平动和绕过质心轴的定轴旋转。以前卫线的中心为O,前卫线中线为x轴,垂直于x轴的是y轴,垂直与冰面的为z轴建立坐标系。

2.1旋转

冰壶的质量为m,开始时的角速度为,冰壶与冰面间的摩擦系数为μ,μ的大小与温度T有关,可表示成假设摩擦力是均匀分在整个低面圆盘上,故计算摩擦力矩时,应将圆盘分解为许多的以转轴为圆心的同心环来考虑。

3仿真系统结构

为了实现冰壶运动轨迹的仿真,根据前面所述的运动方程模型,需要先确定冰壶运动轨迹的一些参数。为此将冰壶运动轨迹仿真系统分成两部分,即基础参数设置和动态模拟。基础参数设置中分别输入初速度、初始角速度和温度。冰壶场地两营垒之间的距离近30米,所以在没有任何干扰的情况下,冰壶应可以自由滑行20米才是有可能到达营垒。

4结论

根据机械能量守恒理论建立的冰壶运动方程,从主观上验证了它的正确性,可以帮助运动员分析投掷冰壶时应以怎样的初速度和角速度投壶,才能有效的进入营垒。

计算机仿真论文范文第9篇

1.1引水系统

由于水轮机是一个动态元件,在工作时,其内部结构的变化和运动相对于稳定时要复杂很多,所以在进行水力瞬变的计算中,工作人员通常采用水轮机在稳定情况下工作时的综合特性曲线去确定水轮机流和水轮机力矩特性,但是在水轮机稳定状态下的综合特性曲线不包括尾水管和蜗壳不称定工况时水流惯性对水轮机特性曲线的影响。在计算水轮机综合特性曲线时如果引水管道很长,其影响对于整体的综合特性曲线影响不大,所以可以忽略。反之,则要进行一些运算确定其特性曲线而不可忽略。在计算机对水轮机调节系统进行仿真建模时,由于实际的水力发电站中线路复杂,所以在建立模型是必须要对整个水力发电系统中的所有管道通路进行编号,这样可以有效地避免重复而出现的误差,也可以提高整体的工作效率。在对于系统管道进行编号后,由于整体管道过多,同时建立其仿真模型非常麻烦,工作人员通常需要把管道分成若干个网格,网格的边界点作为计算节点,然后在网格内部进行仿真,然后进行最后统一的计算,建立合理的引水系统。

1.2电液随动系统

现代水轮机调速是由电子调节控制器和电液随动系统两部分构成。对于前一部分我国研究的比较深入,技术比较成熟。但对于电液随动系统基本保持原有体制并在此基础上进行一部分优化微调。微调主要分为模拟电调和微处理器电调两种方法。但是这两种方法都是采用电液随动系统。电液随动系统作为水轮机调速的执行部分,是其中不可缺少的重要组成部分。但是由于在水轮机调速系统中工作油液量大,流动路径较长,并且与大气和压缩空气直接接触,使得工作油液内的金属微粒、油泥、纤维等机械杂质较多,并且由于酸碱、水分所引起的油质劣化十分严重,又由于电液随动系统可靠性差,综合所有因素,电液随动系统油孔容易被堵塞,多次工作后断线,强度低等缺点。但是通过电子计算机仿真系统对此进行仿真,可以满足不同情况下的水轮机调节系统,使效果达到最优值。

2.水轮机调节系统仿真算法

2.1引水系统仿真算法

在仿真编程时,引水系统特征线方程与水轮机联立作为一个部分,引水系统采用特征线法求解;水轮机的流盆和力矩可由模型特性曲线上查得。调速器和发电机等部分的徽分方程作为另一部分,并分为存在大扰动和小扰动两种情况考虑。由于存在大扰动时,水轮机参数变化很大,超出其线性范围,因此小扰动模型不适用。为此调速器和发电机采用差分方程的方式建模,采用特征线原理求解。将上述两部分交替求梁晨哈尔滨电机厂有限责任公司黑龙江哈尔滨150040解,即为水轮调节系统动态仿真结果。

2.2电液随动系统的传递函数

将电液随动系统中的步进电机,主接力器作为积分环节,液压缸、主配压阀作为一阶惯性环节。同时记录导叶控制信号的限幅,步进电机输出限幅,步进电机输入信号死区以及液压缸、主配压阀死区等5个主要非线性。并且利用连续系统离散化非线性系统数字仿真,即可得电液随动系统传递函数。

3.仿真系统具备功能

3.1水轮机特性的计算

在求解非线性方程组时,如果没有水轮机流量特性和力矩特性的全特性,就只能在模型综合特性与逸速特性的基础上延长使用,所以在求解非线性方程组时,必须知道水轮机流量特性和力矩特性的全特性。同时将水轮机的特性参数用数组的方式在计算机中储存,需要储存的参数有:导叶开度,机组单位转速,机组单位流量和机组力矩。但是由于实际值与计算机所储存的理想数值存在误差,所以在实际计算出的数值与计算机储存的数值不相等,可以通过拉格朗日公式或者四点插值方法计算求得与单位流量个单位力矩所对应的计算值。

3.2仿真系统步长计算

由于理想情况下和现实情况存在误差,从而导致计算结果不准确,为了减小误差,使计算结果与实际情况更加符合,仿真计算时的步长必须取得足够小,分割的足够精密。步长的确定原则是:仿真系统计算步长的时间必须小于计算机微调调速器的采样时间,这样才能最小的减小误差,同时步长的计算必须在上述条件下同时也满足水击计算的特征方程曲线。当步长计算不能满足水击计算特征方程曲线时,应该在仿真系统中适当的调整波速使得步长满足其条件。

4.水轮调节系统仿真硬件设计

对于水轮机调节系统的仿真,应该从我们的真实情况出发,不能在理想情况下进行仿真实验,否则实验结果很难融入到真正的生产使用。在设计仿真系统的同时应该在实物中加入输入输出模块,以便系统中参数的输入。同时为了方便我们更容易的观察水轮机调节系统的实时性变化,仿真系统应该具备显示功能,并且为了方便我们对参数的调节,确定系统的优先级别,安装可控制的显示屏是最好的选择。结束语水轮机调节系统作为水电站中最为重要的环节,其控制性能和可靠性一直是人们十分关注并希望优化的问题。因此在计算机发展迅速的今天,很多学者利用计算机仿真技术研究。在当前看来,通过计算机仿真技术,分别建立模型,列写算法,并根据不同条件对模型算法进行微调,即可得到可靠,准确的结果,大大节省了人力物力,也使其可靠性增加。但随着科技的进步,越来越先进,精确的仿真也被提出来。由此可见,计算机仿真技术因为具有高效,优质,经济的特点,被越来越多的学者青睐,并且在水电能源理论研究和技术开发方面具有很好的前景。

计算机仿真论文范文第10篇

悬架系统是影响汽车驾驶及乘坐舒适性和操纵稳定性的主要部件,是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。汽车悬挂系统就是指由车身与轮胎间的弹簧和避震器构成的整个支撑系统。悬挂系统应有支撑车身的功能,改善乘坐的颠簸感觉,不同的悬挂系统设计会使驾驶者有不同的乘坐感受。外表看似简单的悬挂系统综合多种作用力,决定着轿车的稳定性、舒适性和安全性,是现代轿车十分关键的部件之一。常见的悬挂系统结构由弹性元件、导向机构以及减震器等组成,个别系统则还有缓冲块、横向稳定杆等。计算机仿真系统的电控单元控制悬挂系统可根据车载重量、路况条件、行驶速度等来调节悬挂系统的刚度、减振器阻尼力以及车身高度。从而使车辆在各种行驶条件下均可获得最佳的行驶平稳性和操纵协调性。有多种不同类型的电子控制悬挂系统,以大众汽车的电子控制空气弹簧悬挂系统为例,电子控制悬挂系统主要由空气压缩机、干燥器、车身高度传感器、带有减振器的空气弹簧、悬挂控制执行器、悬挂控制选择开关、悬挂用电控单元等组成。在汽车行驶过程中,电控单元不停地接收车身高度传感器、加速度传感器(即油门动作传感器)、制动传感器、转向传感器以及车速传感器输出的信号并进行运算、分析和判断,最终向执行器输出控制信号,控制车身高度和悬挂刚度。

2计算机仿真技术在汽车悬挂系统的应用特点

电控单元中计算机仿真控制悬挂系统的主要优点有:为提高汽车正常行驶时乘坐的舒适性,可以将弹簧刚度设计得较小,以使车身的自然振动频率尽可能的低。为提高汽车的操纵稳定性,使汽车的行驶安全性明显提高,可以将汽车悬挂抗侧倾,抗纵摆的刚度设计得比较大。将车轮快速提起,避开障碍物,可以在车轮碰到障碍物(如砖、石等)时,提高汽车的通过性。电控单元可以在汽车载荷变化,在不平路面上行驶时自动保持车身高度不变。仿真技术可以防止汽车制动时车头的下冲。提高汽车转弯时的操纵稳定性,可以避免汽车转弯时车身向外倾斜。为提高车轮与地面间的附着力,可以减小轮跳离地面的倾向。

3总结

计算机仿真技术是研究和分析系统运行行为、展现系统动态过程和运动规律的一种重要形式手段和方法。计算机仿真新技术的快速发展和计算机仿真技术所表现的实用性和前景效益是相当大的。特别近年来在仿真方法、技术研究、机械系统仿真应用等方面都取得了显著的成就。因此,计算机仿真技术在多方领域有广泛的应用。

上一篇:服装工艺论文范文 下一篇:变电站工程论文范文