模糊神经网络的优点范文

时间:2024-03-26 17:48:36

模糊神经网络的优点

模糊神经网络的优点篇1

关键词:钢坯加热炉;模糊BP神经网络;优化控制;钢铁热轧生产;炉温控制 文献标识码:A

中图分类号:TP273 文章编号:1009-2374(2015)35-0030-02 DOI:10.13535/ki.11-4406/n.2015.35.015

1 加热炉钢坯加温方式

热轧生产过程温度经过几个阶段最终达到满足工艺要求,使钢坯表面温度与目标温度之差、断面温差均满足温差,对钢坯的加热过程进行分析。炉温分布的不同,钢坯的升温过程和能耗也不同,在加热炉的生产实践中产生了三种不同的加热方式。

第一种,钢坯在开始阶段升温过于缓慢,所以需要给加热炉加大燃料,提高钢坯升温速度,结果造成后期升温梯度很大,容易导致钢坯的表面和内部的温差较大,钢坯受热不均匀,容易损伤轧机,同时燃料也消耗非常大。

第二种,开始阶段温度较低时,钢坯升温速度比较缓慢,钢坯产生的温度应力较小,造成钢坯的加热速度限制比较小,又经过短时间的均热段,钢坯表面温度和中心温度的温差很小,基本上很接近,温度达到均衡,适合出炉,从而缩短了钢坯在炉内的停留时间,降低了钢坯的氧化烧损程度,也减少了燃料的大量浪费,提高产品的成品率。

第三种,开始阶段钢坯升温较快,导致钢坯表面温度和中心温度的温差也很大,绝大多数钢种在温度较高时都是处于弹性状态,钢坯加热速度太快的情况下,造成轧制后的产品质量较差。

2 模糊控制系统

模糊控制系统是人工智能算法和现代先进控制理论与技术相结合的一种模糊集成控制。模糊控制系统由以下四部分组成:

2.1 被控对象

加热炉炉温优化的被控对象为确定的单变量线性数据,采用温度传感器进行采集,这种多因素变量适合模糊控制。

2.2 输入/输出接口

本文模糊控制系统部分采用的是一个单输入、双输出模糊控制系统,单个输入量分别为给定温度和炉内温度、设定值的差值及其变化率,输出量为煤气阀开度、空气阀开度。实际中,大多数数据的采集为模拟变化量,在接口中,还应该设置A/D、D/A转换。

2.3 模糊控制器

模糊控制器本质上是一个非线性控制器,采用偏差与偏差率作为输入,通过模糊控制知识表示和规则推理。

2.4 执行机构

大多执行机构采用电机进行控制,本文也是采用电机对煤气阀开度、空气阀开度进行控制,调节煤气与空气的比例,以达到炉内温度的最适宜情况。

3 BP神经网络

BP网络学习算法是把误差归因于阈值和连接权值采用的不适当。通过反向传播给各连接节点,算出各连接节点的参考误差,对各连接权值和阈值进行相应的调整,使网络达到相应的映射要求。

4 基于模糊BP神经网络的加热炉炉温优化

4.1 模糊神经网络控制系统结构

模糊神经网络通常指将模糊化概念和模糊推理引入神经元的模糊神经网络。如图1所示:

输入量为温度的偏差(设定值与实测炉温之差)e和偏差的变化率ec,通过模糊化的处理,得到各自的模糊语言变量E和EC。神经网络输出加热炉的煤气和空气阀开度的模糊语言值,通过去模化后,实现通过阀门的开度控制炉膛温度。

4.2 模糊神经算法

4.2.1 模糊神经网络连接权值的调整。本系统采用神经网络与模糊系统的等价连接方式,基于模糊神经网络在本系统中的作用是将本领域专家的知识和经验进行数字化的模糊化处理,所以本系统采用输入值和权值均为模糊量五层的FNN3型模糊神经网络模型,依次为输入层、模糊化层、隐含层、反模糊化层、输出层。通过BP算法修正二、三和三、四层之间的连接权值和阈值以及隶属度函数的参数。

4.2.2 优化隶属度函数。在给定输入样本后,通过模糊神经网络的反复学习,不断调整模糊控制规则来适应神经网络的隶属度函数的变化趋势,使模糊控制方法与加热炉温度调整更加适应,达到通过PID控制器调节煤气、空气阀的开度。

4.3 模糊BP神经网络PID算法

根据上节所述,神经网络模糊PID控制算法如下:

4.3.1 选定BP网络的输入层节点数和隐含层节点数、加权初值、选定学习速率和惯性系数。

4.3.2 对误差的变化率、温度误差进行模糊化处理,作为神经网络的输入。

4.3.3 计算BP神经网络的各层神经元的输出以及输入,控制PID控制器的参数,控制煤气阀开度、空气阀

开度。

4.3.4 采用的是经典增量式数字PID控制,控制

式为:

4.3.5 计算修正输出层、正隐含层的连接权值。

5 仿真实验

本文以Q235,150mm*150mm*4000mm钢为例,钢坯在炉时间为5小时左右,出炉温度为1200℃~1280℃为例,在MATLAB中进行了仿真实验,仿真结果对比,图2为优化前后的温度对比。h/H为加热时间与在炉内的加热时间的比值。

(上方曲线b1是优化后加热炉的温度,下方曲线b2是传统控制方法加热炉温度)

6 结语

仿真结果证明综合优化后,能够在钢坯温度分布不符合要求下,调整钢坯的加热过程,减少了两者不必要的能耗,同时保证了粗轧制机组的生产安全。根据信息动态的调整加热炉加热过程,利用温度反馈到加热炉好坏反应钢坯质量,对钢铁生产改造具有非常重大的意义。

参考文献

[1] 陈南岳.现代加热炉过程控制技术及其数学模型[J].冶金自动化,1985,(3).

[2] 王中杰,关守平,柴天佑.加热炉自适应钢坯温度预报模型的开发[J].钢铁研究学报,1999,11(2).

[3] 王锡淮,李少远,席裕庚.加热炉钢坯温度软测量模型研究[J].自动化学报,2004,30(6).

模糊神经网络的优点篇2

关键词:模糊神经网络;股票预测

一、引言

中国股市经过十余年的发展,应该说已经取得十分巨大的成就,但是与国外成熟股市相比仍然是一个新兴市场。事实上,探索和研究股票价格波动的复杂性和规律性,是许多经济工作者,尤其是证券研究者一直追求的目标。

股票交易数据预测是一种时间序列预测方法。时间序列预测法是依据预测对象过去的统计数据,找到其随时间变化的规律,建立时序模型,以判断未来数值的预测方法。其基本思想是:过去的变化规律会持续到未来,即未来是过去的延伸。一般一维时间序列预测方法有移动平均与分解方法、指数平滑方法、状态空间模型等。这些预测方法经过长期的发展,在定量预测模型和定性预测模型等方面都有长足的进步。但是,当系统具有较强的非线性时,这些方法的适应性却是有限的,在实际的预测环境中常常失去效用,因此用这些传统的预测方法解决这类问题十分困难。

二、神经网络和模糊逻辑结合的可能性

神经网络的兴趣在于人脑的微观结构。并通过有自学习、自组识、自适应功能的神经网络上的非线性并行分散动力学,对无法语言化的模式信息进行处理。模糊逻辑根据人为定义的隶属函数和一系列并串行的规则,用逻辑推理去处理各种模糊性的信息,是通过模仿人的思维方式来表示和分析不确定、不精确信息的方法和工具。尽管“模糊”这个词在这里容易使人产生误解,实际上在模糊逻辑控制中的每一个特定的输入都对应着一个实际的输出。所以模糊逻辑本身并不模糊,模糊逻辑并不是“模糊的”逻辑,而是用来对“模糊”进行处理以达到消除模糊的逻辑,它是一种精确解决不精确、不完全信息的方法,其最大特点就是用它可以比较自然地处理人的概念,是一种更人性化的方法。在处理数据时,模糊逻辑更能容忍噪音干扰和元器件的变化,使系统适应性更好模。糊逻辑还对使产品开发周期缩短而编程更容易。通过模糊化样本,提高了样本集中各样本的质量,进而改进能量函数。用神经网络去预测股票,在对信息的推理上还存在相当大的困难;而在信息的获取方面,模糊技术也显得十分软弱。

因此本文根据模糊逻辑和神经网络的各自长处把它们结合起来,利用这种方法对股票预测进行研究。模糊系统提供了一种推论式语句用来逼近人的推理能力和并且应用到基于知识的系统中。模糊逻辑理论是用一种数学工具来获取人们认知过程。然而,模糊逻辑中有个共同的瓶颈是它们都依赖于由领域专家给出的规则,而且,不存在正式的框架来选择模糊系统的各种参数,因此,调整参数的方法是模糊系统的一个重要研究课题。另一方面,神经网络所具有一些重要的有点,比如学习能力、自适应能力、容错能力等,所以神经网络能够处理复杂的、非线性的以及不确定性问题。正是因为如此,可以相信它们具有构建与人们人之有关的各种行为的潜能。但是神经网络的主要问题是它没有明确的物理意义,使用者不知道这些网络是如何运转的。这就是为何神经网络总是被称为“黑箱”的原因。对以一个训练好的神经网络,其连接权值不能清楚地说明网络是如何处理数据的,其含义是什么。特别是,现在的神经网络理论还没有提供一种方法来预测训练好了的网络的输出。因此,在实际应用中造成了一些不确定性。

把模糊系统和神经网络的结合成为模糊神经网络,该网络致力于获得两种系统的优点而克服各自的缺点。正如前文提到的,神经网络的优点在于,第一个是能够生成不需要明确表现知识的规则;第二个是其强大的自学能力。模糊系统的优点在于,第一个是能用模糊性的语言表达知识;第二个是能用简单的预算来实现知识的模糊推理。两者的结合可以解决模糊系统中的只是抽取问题以及专家知识也能很容易融合到神经网络中,避免了初值选择的任意性。

三、模糊神经网络的模型设计

1、模型的结构

模糊神经网络与一般的神经网络相类似,通常分为前向型模糊神经网络和反馈型模糊神经网络两类。本文采用的就是前向型模糊神经网络。该网络是可以实现模糊映射关系的模糊神经网络。一个前向型模糊神经网络可分为五层组成,分别为输入层、模糊化层、模糊推理层、去模糊化层和输出层。图1-1为含有两个输入层节点、一个输出节点的一个基本前向模糊神经网络结构。

输入层指的是接受外部输入信号的一层,并将输入值传送给模糊化层的模糊单元;模糊化层的作用是按模糊规则将输入值转换为一定的模糊度,是对模糊信息进行预处理的网层。模糊推理层是前向型模糊神经网络的核心,其网络参数是由具体问题所确定的;去模糊化层接受经中间层处理的数据,并按照模糊度函数将数据进行非模糊化处理;最后输出层给出确定性求解结果。

本文采用的是TS模糊神经网络。该神经网络分为输入层、模糊化层、模糊规则计算层和输出层(包括去模糊化)。输入层与输入向量xi连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数(公式1-1)对输入值进行模糊化得到模糊隶属度值μ。模糊规则计算层采用模糊连乘(公式1-2)计算得到φ。输出层采用(公式1-3)计算模糊神经网络的输出。下面给出各公式:

1-1

式中,分别为隶属度函数的中心和宽度;k为输入参数;n为模糊子集数。

1-2

1-3

式中为模糊系统参数。

2、模糊神经网络的学习算法

(1)误差计算

式中,yd为网络期望输出;yc是网络实际输出,e为期望输出和实际输出的误差。

(2)系数修正

式中,为神经网络系数;α为网络学习率;xj为网络输入参数;φi为输入参数隶属度连乘积。

(3)参数修正

式中,、分别为隶属度函数的中心和宽度。

3、预测模型的结构设计和参数的设定

网络结构的选择需要考虑以下因素:软硬件实现的难易程度、训练速度和网络的推广能力等,其中网络的推广能力是最主要的,网络结构设计至今还没有确定的方法可循。14世纪的法国修道士 提出过一个最简单原则:“与己知事实满意符合(一致)的理论中最简单者就是最好的理论”,后人称此原则为“奥克姆剃刀”。由此产生了一个公认的指导原则:“在没有其他经验知识时,能与给定样本满意符合(一致)的最简单(规模最小的网络就是最好的选择”。这相当于在样本点的误差在允许范围条件下用参数最少的模型去逼近一个未知的非线性映射。

从总体上来说,网络结构设计并没有固定可循的步骤,有许多参数要靠经验选择,并通过试验加以比较。规模小的网络的泛化能力强,同时也易于理解和抽取规则、知识,便于软硬件实现。通常情况下,由于训练样本有限,所以把泛化能力作为主要要求,强调选择能达到要求的最小网络。理论证明,一个三层网络可以任意逼近一个非线性连续函数。

基于T-S模糊神经网络的算法流程如图1-2所示。其中模糊神经网络构建根据训练样本维数确定模糊神经网络的输入和输出的节点以及模糊隶属度函数个数。由于输入数据为开盘价,最高价,最低价,收盘价这四组数据,所以为n=4维的,输出的是次日的开盘价格即输出数据为1维的。在模糊化层中,该层有nm个节点,利用K-means法对样本进行聚类分析得到模糊规则数以确定m。在聚类分析得出m=2所以得到节点数为8,该模糊神经网络的结构为4-8-1。在根据T-S的模型,所以选择5组系数ρi。

虽然权值随迭代而更新,一般都是收敛的,但是如果初始值设置的太大的话会影响该网络,会使网络饱和的很快。初始的权值对收敛速度也会造成影响。实验表明,初始权值只要不是过大,对网络整体的性能的影响并不大,一般可选在(-0.5,0.5),本文取权值为0。由于本文的隶属度函数利用的是高斯函数,所以高斯函数中的中心和宽度随机得到。

在学习率和网络参数的选择上,若选择的太小,会使网络参数修改量过小,收敛的速度缓慢;若选择的太大,虽然可以加快了学习的速度,但是有可能导致在稳定点附近进行持续的振荡,难以收敛,目前在理论上还没有明确的确定学习率的方法,对于具体问题需要进行试验,通过实验比较出适合的学习率,本文在通过实验选取学习率为0.025,网络参数选取0.001,最大迭代次数选取为100。

四、实证分析

1、预测的效果

选取绿景地产(000502)2010年1月20日连续120个交易日的数据作为训练和预测样本。其中使用前100个交易日的指标作为训练样本训练网络,用后20个数据进行样本预测。

如图1-3为训练网络的效果图,该结果是用归一化后的数据。

表 1-1列出真实值和预测值以及预测的相对误差((真实值-预测值)/真实值):

2、网络性能的评价

对神经网络常用的预测性能的评价指标常用的有RRMS,MPE,mpe,PC。选取绿景地产(000502)2010年1月20日连续120个交易日的数据作为训练和预测样本。其中使用前100个交易日的指标作为训练样本训练网络,用后20个数据进行样本预测。本系统的各项性能指标如下:

相对均方根误差:RRMS=0.63%最大误差:MPE=0.19元 正确趋势率:PCD=65%

从以上指标看出用该模糊神经网络进行预测是有效的,预测系统式成功的。

五、总结

股票市场是反映经济的“晴雨表”,其作用不但被政府重视,而且受投资大众的普遍关注,股票市场中的收益伴随着风险,以最小风险获得最大收益是每个投资者的目标,所以研究股票市场内在规律及其预测具有重大的意义和应用的价值。股票交易数据预测是时间序列预测。在股票市场这个极其复杂的系统中,它所具有的非线性和高噪声等因素决定了股票预测的过程的复杂与困难,传统预测方法很难应用于此,难以建立有效的数学模型。

神经网络是一种很好的时间序列预测方法。神经网络具有逼近任意复杂连续函数关系的能力,而这些能力正是传统方法所不具有的。本文把模糊逻辑和神经网络相结合起来,首先介绍了模糊系统和神经网络的基本知识以及二者结合的可能性。然后建立模糊神经网络模型并用于股票价格的预测,运用相关分析在剔除了与预测指标相关性较小的指标,简化了模糊神经网络的结构,并在实际的试验中确定了相关网络系数的初始值,简要的介绍了建模的工具,并用设立模糊等级对模糊神经网络的有效性进行了评价,在通过实证分析证实了网络系统基本上达到了预想的要求。

参考文献:

[1]胡守仁,神经网络应用技术[M],国防科技大学出版社,1993

[2]赵振宇,模糊理论和神经网络的基础与应用[M],清华大学出版社,1996

[3]刘增良,模糊逻辑与神经网络[M],北京航空航天大学出版社,1996

[4]吴华星,基于神经网络的股票价格预测,中国科学院计算技术研究所,1998

[5]姚培福,人工神经网络在股票预测中的应用与研究,昆明理工大学硕士学位论文,2007

[6]邵航,模糊神经网络在股票价格短期预测中的应用研究,暨南大学硕士学位论文,2008

模糊神经网络的优点篇3

1 模糊系统的Takagi-Sugeno模型

模糊系统理论[11]是沟通经典数学的精确性与现实世界中大量存在的不精确性之间的桥梁。它是以模糊集合的形式表示系统所含的模糊性并能处理这些模糊性的系统理论,能够有效地处理系统的不确定性、测量的不精确性等模糊性。Takagi-Sugeno模糊系统(T -S模糊系统)作为函数模糊系统的一种特例,由于构成的各条规则采用线性方程式作为结论,使得模型的全局输出具有良好的数学表达特性,这在处理多变量系统时能有效地减少模糊规则个数,具有很大的优越性[12]。其规则表达如下[13]:

2 T-S模糊神经网络

模糊系统在模糊建模的过程中常存在学习能力缺乏,辨识过程复杂,模型参数优化困难等问题。而人工神经网络具有自学习、自组织和自适应的能力,具有强大的非线性处理能力。二者的结合构成模糊神经网络,可以有效地发挥模糊逻辑与神经网络的各自优势,弥补各自的不足[14]。

2.1 T-S模糊神经网络的结构

基于标准型的T -S模糊神经网络结构如图1所示。图1中第1层为输入层;第2层每个结点表示一个语言变量值;第3层用来匹配模糊规则前件,计算出每条规则的隶属度;第4层用于归一化计算,输出第 条规则的平均激活度[14];第5层是输出层,它所实现的是清晰化计算。T -S模糊神经网络由前件网络和后件网络两部分组成。前件网络用来匹配模糊规则的前件,其结构与图1的前4层结构完全相同;后件网络用来产生模糊规则的后件,由N个结构相同的并列子网络组成[15]。

2.2 T-S模糊神经网络的学习算法

T -S模糊神经网络需要学习的参数主要有后件网络的连接权pkki以及前件网络第二层各结点隶属函数的中心值ckj及宽度σkj。设取误差代价函数为:

3 应用研究

以下通过实例介绍T -S模糊神经网络在地下水水质评价中的应用。

3.1 研究区概况

吉林省西部地区位于松嫩平原的西南部,地理坐标为东经123°09′~124°22′,北纬44°57′~45°46′。研究区东接吉林省长春市,南接四平市及辽宁省,西邻内蒙古自治区,北接黑龙江省,东北以嫩江、松花江和拉林河与黑龙江省为界。吉林省西部属半干旱半湿润的大陆性季风气候区,四季变化明显。该区多年平均气温3~6℃,多年平均降雨量为400~500mm。研究区大部分属于松嫩盆地,该盆地为一个巨大的含水层系统,埋藏有多层含水层,包括孔隙潜水含水层和承压水含水层(分别为浅层、中深层)、上第三系大安组、泰康组孔隙-裂隙含水层(深层)和白垩系下统及上统裂隙孔隙含水层(深层)。研究区的地下水补给来源主要为降水入渗,排泄以潜水蒸发和人工开采为主。

3.2 原始数据

原始数据取自于吉林西部2005年50个地下水水化学监测点的水质监测数据,结合研究区地下水水质状况,有针对性地选择了铁、氨氮、硝酸盐、亚硝酸盐、硫酸盐、氯化物、溶解性总固体、氟化物和总硬度共9项指标作为评价因子。地下水水质评价标准参照GB/T 14848-93《地下水质量标准》,评价标准见表1。

3.3 神经网络的准备工作

(1)训练样本、检验样本及其期望目标的生成。采用Mat-lab7.0的linspace函数在各级评价标准之间按随机均匀分布方式内插生 成 训 练 样 本。各 级 评 价 标 准 之 间 生 成500个,共2 000个训练样本,以解决仅利用各级评价标准作为训练样本,导致训练样本数过少的问题[16]。检验样本用生成训练样本同理的方法生成400个样本。小于一级标准的训练样本和检验样本的期望目标为按照生成训练样本和检验样本的内例产生对应的0~1.5之间的数值;一、二级标准之间的训练样本和检验样本的期望目标为按照生成训练样本和检验样本的内例产生对应的1.5~2.5之间的数值;同理,二、三级和三、四级标准之间的训练样本和检验样本的期望目标为2.5~3.5、3.5~4.5之间的数值。(2)水质评价等级的划分界限。据上述生成训练样本与检验样本目标输出的思路可以确定一、二、三、四、五各级水的网络输出范围分别为:<1.5、1.5~2.5、2.5~3.5、3.5~4.5、>4.5。(3)原始数据的预处理。利用Matlab7.0中的mapminmax函数将原始数据归一化到0与1之间。

3.4 T-S模糊神经网络的建立、训练、检验及水质评价

3.4.1 T-S模糊神经网络的建立

模糊神经网络的构建根据训练样本维数确定模糊神经网络输入/输出结点数、模糊隶属度函数个数。由于输入数据为9维,输出数据为1维,通过试错法确定模糊神经网络结构为9-18-1,即有18个隶属度函数。选择10组系数p0-p9,模糊隶属度函数中心和宽度c和σ随机得到,通过动态BP算法对网络的权值在线调整。隶属度函数采用高斯函数,模糊推理采用sum-product[14],解模糊采用加权平均法。网络模型的概化如图1所示。T -S模糊神经网络的第3层输出为输入数据的隶属度函数;第4层输出为第 条规则的平均激活度;后件网络实现了T -S模型模糊规则空间到输出空间的映射,输出为yj=pjk0+pjk1x1+…+pjkmxm和y=∑αk×yj。

3.4.2 网络的训练、检验及水质评价

采用归一化的训练样本和检验样本数据,对网络进行训练和检验。以10个水质待评点的基础数据(表2)为例,利用已训练好的模糊神经网络对其进行水质评价。网络输出结果见表3。

3.4.3 不同水质评价方法的对比分析

利用内梅罗指数法和BP人工神经网络法分别对上述水质待评点进行水质评价。BP人工神经网络的训练与检验样本生成方式同T -S模糊神经网络,确定BP神经网络的结构为9-3-1。规定各等级的期望输出值,为0.1,0.3,0.5,0.7,0.9。两种方法得到的评价结果如表3。由表3可知,3种方法的评价结果大体相同。利用训练好的模糊神经网络模型对50个待评点水质进行评价,结果如表4所示。由表4可以看出,吉林西部地区地下水资源已经遭受不同程度的污染,且部分地区地下水资源污染严重,需要进行有效的保护。

4 讨 论

模糊神经网络的优点篇4

80年代初,在美国、日本、接着在我国国内都掀起了一股研究神经网络理论和神经计算机的热潮,并将神经网络原理应用于图象处理、模式识别、语音综合及机器人控制等领域。近年来,美国等先进国家又相继投入巨额资金,制定出强化研究计划,开展对脑功能和新型智能计算机的研究。

人脑是自生命诞生以来,生物经过数十亿年漫长岁月进化的结果,是具有高度智能的复杂系统,它不必采用繁复的数字计算和逻辑运算,却能灵活处理各种复杂的,不精确的和模糊的信息,善于理解语言、图象并具有直觉感知等功能。

人脑的信息处理机制极其复杂,从结构上看它是包含有140亿神经细胞的大规模网络。单个神经细胞的工作速度并不高(毫秒级),但它通过超并行处理使得整个系统实现处理的高速性和信息表现的多样性。

因此,从信息处理的角度对人脑进行研究,并由此研制出一种象人脑一样能够“思维”的智能计算机和智能信息处理方法,一直是人工智能追求的目标。

神经网络就是通过对人脑的基本单元---神经元的建模和联结,来探索模拟人脑神经系统功能的模型,并研制一种具有学习、联想、记忆和模式识别等智能信息处理功能的人工系统。本文介绍神经网络的特点以及近年来有关神经网络与混沌理论、模糊计算和遗传算法等相结合的混合神经网络研究的动态。

一.神经网络和联结主义

回顾认知科学的发展,有所谓符号主义和联结主义两大流派。符号主义从宏观层次上,撇开人脑的内部结构和机制,仅从人脑外在表现出来的智能现象出发进行研究。例如,将记忆、判断、推理、学习等心理活动总结成规律、甚至编制成规则,然后用计算机进行模拟,使计算机表现出各种智能。

符号主义认为,认识的基本元素是符号,认知过程是对符号表示的运算。人类的语言,文字的思维均可用符号来描述,而且思维过程只不过是这些符号的存储、变换和输入、输出而已。以这种方法实现的系统具有串行、线性、准确、简洁、易于表达的特点,体现了逻辑思维的基本特性。七十年代的专家系统和八十年代日本的第五代计算机研究计划就是其主要代表。

联接主义则与其不同,其特点是从微观出发。联接主义认为符号是不存在的,认知的基本元素就是神经细胞(神经元),认知过程是大量神经元的联接,以及这种联接所引起的神经元的不同兴奋状态和系统所表现出的总体行为。八十年代再度兴起的神经网络和神经计算机就是这种联接主义的代表。

神经网络的主要特征是:大规模的并行处理和分布式的信息存储,良好的自适应、自组织性,以及很强的学习功能、联想功能和容错功能。与当今的冯.诺依曼式计算机相比,更加接近人脑的信息处理模式。主要表现如下:

神经网络能够处理连续的模拟信号。例如连续灰度变化的图象信号。

能够处理混沌的、不完全的、模糊的信息。

传统的计算机能给出精确的解答,神经网络给出的是次最优的逼近解答。

神经网络并行分布工作,各组成部分同时参与运算,单个神经元的动作速度不高,但总体的处理速度极快。

神经网络信息存储分布于全网络各个权重变换之中,某些单元障碍并不影响信息的完整,具有鲁棒性。

传统计算机要求有准确的输入条件,才能给出精确解。神经网络只要求部分条件,甚至对于包含有部分错误的输入,也能得出较好的解答,具有容错性。

神经网络在处理自然语言理解、图象模式识别、景物理解、不完整信息的处理、智能机器人控制等方面有优势。

符号主义和联接主义两者各有特色,学术界目前有一种看法:认为基于符号主义得传统人工智能和基于联接主义得神经网络是分别描述人脑左、右半脑的功能,反映了人类智能的两重性:精确处理和非精确处理,分别面向认识的理性和感性两个方面,两者的关系应该是互补而非互相代替。理想的智能系统及其表现的智能行为应是两者相互结合的结果。

接下去的问题是,符号AI和联接AI具体如何结合,两者在智能系统中相互关系如何?分别扮演什么角色?目前这方面发表的文献很多,大致有如下几种类型:

1.松耦合模型:符号机制的专家系统与联接机制的神经网络通过一个中间媒介(例如数据文件)进行通讯。

2.紧耦合模型:与松耦合模型相比较,其通讯不是通过外部数据进行,而是直接通过内部数据完成,具有较高的效率。其主要类型有嵌入式系统和黑板结构等。

3.转换模型:将专家系统的知识转换成神经网络,或把神经网络转换成专家系统的知识,转换前的系统称为源系统,转换后的系统称为目标系统,由一种机制转成另一种机制。如果源系统是专家系统,目标系统是神经网络,则可获得学习能力及自适应性;反之,可获得单步推理能力、解释能力及知识的显式表示。当然,转换需要在两种的机制之间,确定结构上的一致性,目前主要问题是还没有一种完备而精确的转换方法实现两者的转换。有待进一步研究。

4.综合模型:综合模型共享数据结构和知识表示,这时联接机制和符号机制不再分开,两者相互结合成为一个整体,既具有符号机制的逻辑功能,又有联接机制的自适应和容错性的优点和特点。例如联接主义的专家系统等。

近年来神经网络研究的另一个趋势,是将它与模糊逻辑、混沌理论、遗传进化算法等相结合,即所谓“混合神经网络”方法。由于这些理论和算法都是属于仿效生物体信息处理的方法,人们希望通过她们之间的相互结合,能够获得具有有柔性信息处理功能的系统。下面分别介绍。

二.混沌理论与智能信息处理

混沌理论是对貌似无序而实际有序,表面上看来是杂乱无章的现象中,找出其规律,并予以处理的一门学科。早在七十年代,美国和欧洲的一些物理学家、生物学家、数学家就致力于寻求在许许多多不同种类的不规则性之间的联系。生物学家发现在人类的心脏中有混沌现象存在,血管在显微镜下交叉缠绕,其中也有惊人的有序性。在生物脑神经系统中从微观的神经膜电位到宏观的脑电波,都可以观察到混沌的性态,证明混沌也是神经系统的正常特性。

九十年代开始,则更进一步将混沌和神经网络结合起来,提出多种混沌神经网络模型,并探索应用混沌理论的各种信息处理方法。例如,在神经元模型中,引入神经膜的不应性,研究神经元模型的混沌响应,研究在神经网络的方程中,不应性项的定标参数,不定性时间衰减常数等参数的性质,以及这些参数于神经网络混沌响应的关系,并确定混沌---神经网络模型具有混沌解的参数空间。经过试验,由这种混沌神经网络模型所绘出的输出图形和脑电图极为相似。

现代脑科学把人脑的工作过程看成为复杂的多层次的混沌动力学系统。脑功能的物理基础是混沌性质的过程,脑的工作包含有混沌的性质。通过混沌动力学,研究、分析脑模型的信息处理能力,可进一步探索动态联想记忆、动态学习并应用到模式识别等工程领域。例如:

对混沌的随机不规则现象,可利用混沌理论进行非线性预测和决策。

对被噪声所掩盖的微弱信号,如果噪声是一种混沌现象,则可通过非线性辨识,有效进行滤波。

利用混沌现象对初始值的敏锐依赖性,构成模式识别系统。

研究基于混沌---神经网络自适应存储检索算法。该算法主要包括三个步骤,即:特征提取、自适应学习和检索。

模式特征提取采用从简单的吸引子到混沌的层次分支结构来描述,这种分支结构有可能通过少数几个系统参数的变化来加以控制,使复杂问题简单化。自适应学习采用神经网络的误差反传学习法。检索过程是通过一个具有稳定吸引子的动力学系统来完成,即利用输入的初始条件与某个吸引子(输出)之间的存在直接对应关系的方法进行检索。利用这种方法可应用于模式识别。例如黑白图象的人脸识别。

三.模糊集理论与模糊工程

八十年代以来在模糊集理论和应用方面,也有很大进展。1983年美国西海岸AI研究所发表了称为REVEAL的模糊辅助决策系统并投入市场,1986年美国将模糊逻辑导入OPS---5,并研究成功模糊专家系统外壳FLOPS,1987年英国发表采用模糊PROLOG的智能系统FRIL等。除此通用工具的研制以外,各国还开发一系列用于专用目的的智能信息处理系统并实际应用于智能控制、模式识别、医疗诊断、故障检测等方面。

模糊集理论和神经网络虽然都属于仿效生物体信息处理机制以获得柔性信息处理功能的理论,但两者所用的研究方法却大不相同,神经网络着眼于脑的微观网络结构,通过学习、自组织化和非线性动力学理论形成的并行分析方法,可处理无法语言化的模式信息。而模糊集理论则着眼于可用语言和概念作为代表的脑的宏观功能,按照人为引入的隶属度函数,逻辑的处理包含有模糊性的语言信息。

神经网络和模糊集理论目标相近而方法各异。因此如果两者相互结合,必能达到取长补短的作用。将模糊和神经网络相结合的研究,约在15年前便已在神经网络领域开始,为了描述神经细胞模型,开始采用模糊语言,把模糊集合及其运算用于神经元模型和描述神经网络系统。目前,有关模糊---神经网络模型的研究大体上可分为两类:一类是以神经网络为主,结合模糊集理论。例如,将神经网络参数模糊化,采用模糊集合进行模糊运算。另一类以模糊集、模糊逻辑为主,结合神经网络方法,利用神经网络的自组织特性,达到柔性信息处理的目的。

与神经网络相比,模糊集理论和模糊计算是更接近实用化的理论,特别近年来美国和日本的各大公司都纷纷推出各种模糊芯片,研制了型号繁多的模糊推理板,并实际应用于智能控制等各个应用领域,建立“模糊工程”这样一个新领域。日本更首先在模糊家电方面打开市场,带有模糊控制,甚至标以神经---模糊智能控制的洗衣机、电冰箱、空调器、摄象机等已成为新一代家电的时髦产品。我国目前市场上也有许多洗衣机,例如荣事达洗衣机就是采用模糊神经网络智能控制方式的洗衣机。

四.遗传算法

遗传算法(GeneticAlgorithm:GA)是模拟生物的进化现象(自然、淘汰、交叉、突然变异)的一种概率搜索和最优化方法。是模拟自然淘汰和遗传现象的工程模型。

GA的历史可追溯到1960年,明确提出遗传算法的是1975年美国Michigan大学的Holland博士,他根据生物进化过程的适应现象,提出如下的GA模型方案:

1.将多个生物的染色体(Chromosmoe)组成的符号集合,按文字进行编码,称为个体。

2.定义评价函数,表示个体对外部环境的适应性。其数值大的个体表示对外部环境的适应性高,它的生存(子孙的延续)的概率也高。

3.每个个体由多个“部分”组合而成,每个部分随机进行交叉及突然变异等变化,并由此产生子孙(遗传现象)。

4.个体的集合通过遗传,由选择淘汰产生下一代。

遗传算法提出之后,很快得到人工智能、计算机、生物学等领域科学家的高度重视,并在各方面广泛应用。1989年美国Goldberg博士发表一本专著:“GeneticAlgorithmsinSearch,OptimizationandMachineLearning”。出版后产生较大影响,该书对GA的数学基础理论,GA的基本定理、数理分析以及在搜索法、最优化、机器学习等GA应用方面进行了深入浅出的介绍,并附有Pascal模拟程序。

1985年7月在美国召开第一届“遗传算法国际会议”(ICGA)。以后每隔两年召开一次。近年来,遗传算法发展很快,并广泛应用于信息技术的各个领域,例如:

智能控制:机器人控制。机器人路径规划。

工程设计:微电子芯片的布局、布线;通信网络设计、滤波器设计、喷气发动机设计。

图象处理:图象恢复、图象识别、特征抽取。

调度规划:生产规划、调度问题、并行机任务分配。

优化理论:TSP问题、背包问题、图划分问题。

人工生命:生命的遗传进化以及自增殖、自适应;免疫系统、生态系统等方面的研究。

神经网络、模糊集理论和以遗传算法为代表的进化算法都是仿效生物信息处理模式以获得智能信息处理功能的理论。三者目标相近而方法各异;将它们相互结合,必能达到取长补短、各显优势的效果。例如,遗传算法与神经网络和模糊计算相结合方面就有:

神经网络连续权的进化。

传统神经网络如BP网络是通过学习,并按一定规则来改变数值分布。这种方法有训练时间过长和容易陷入局部优化的问题。采用遗传算法优化神经网络可以克服这个缺点。

神经网络结构的进化。

目前神经网络结构的设计全靠设计者的经验,由人事先确定,还没有一种系统的方法来确定网络结构,采用遗传算法可用来优化神经网络结构。

神经网络学习规则的进化。

采用遗传算法可使神经网络的学习过程能够适应不同问题和环境的要求。

模糊神经网络的优点篇5

简而言之模糊神经网络就是具有模糊权值和输入信号的神经网络。模糊神经网络是自动化控制领域内一门新兴技术,其本质上是将常规的神经网络输入模糊信号,因而模糊神经网络具备了模糊系统和神经网络的优势,集逻辑推理、语言计算等能力于一身,具有学习、联想、模糊信息处理等功能。模糊神经网络是智能控制和自动化不断发展的产物,在充分利用神经网络的并行处理能力的基础上,大大提高了模糊系统的推理能力。模糊神经网络是科技发展的产物,有效吸收了神经网络系统和模糊系统的优点,在智能控制和自动化发展等方面有着重要的作用,能够有效地处理非线性、模糊性等诸多问题,在处理智能信息方面能够发挥巨大潜力。模糊神经网络形式多种多样,主要包括逻辑模糊神经网络、算术模糊神经网络、混合模糊神经网络等多种类型,被广泛的运用于模糊回归、模糊控制器、模糊谱系分析、通用逼近器等方面的研究中,随着智能控制和自动化领域的不断发展,模糊神经网络广泛应用于智能控制领域。

2基于模糊神经网络的生物质气化炉的智能控制系统

2.1温度智能控制系统

生物质热值、给料理以及一次风量等因素变化能够影响到生物质气化炉的炉温,但是最重要的影响因素是在气化炉工作过程中物料物理和化学反应的放热和吸热。由于生物质气化工作过程中的生物质热值的变化范围较小,在实际运行中很难测量与控制,有时可以忽略不计,同时,该工作过程中存在非线性和大滞后等问题,采用传统的数学模型达不到预期测量效果,因此需要利用模糊神经网络设计气化炉炉温控制系统,不断的提高温度的控制效果。模糊神经网络首先根据当前温度以及设定温度设,主控制器对最优的生物质物料添加量进行预测,然后由副控制根据该添加量,全面跟踪控制送料速度,从而能够进行精确上料和控制炉温。模糊神经网络系统十分庞大复,其中包含了大量错综复杂的神经元,蕴含对非线性的可微分函数训练权值的基本理念。模糊神经网络具有正向传递和反向传播两个不同的功能,在信息的正向传递中,采用逐步运算的方式对输入的数据信息进行处理,信息依次进入输入层、隐含层最终到达输出层。假如在输出层获得的输出信息没达到预期效果时,就会在计算输出层的偏差变化值后通过网络将偏差信号按原路反向传回,与此同时各层神经元的权值也会随之进行改变,直到符合预期的控制效果。

2.2含氧量智能控制系统

在生物质气化工作过程中,可燃气体的含氧量是衡量其生产质量的重要依据,能够严重影响气化产物的安全使用,因此,通过模糊神经网络实现生物质气化炉含氧量的智能控制十分重要。其含氧量智能控制系统的目的是为了合理控制可燃气体的含氧量,从而稳定气化炉的温度。但是,一次风进风量是影响可燃气体的含氧量的重要因素,所以可以把控制一次风量作为主要调节手段,有效地解决含氧量控制和炉温控制之间的矛盾,在控制炉温的前提条件下,最大程度地降低可燃气体含氧量,进而有效控制气化产物含氧量的。生物质气化炉含氧量的智能控制系统是严格运用模糊神经网络控制原理,主控制器采用温度模糊免疫PID控制,根据炉内含氧量和温度的偏差进行推算,查找出鼓风机转速的最优状态,副控制则以此为根据,全面跟随与控制鼓风机的速度,确保鼓风机转速。生物质气化炉工作过程中的不同阶段和部件具有不同的控制要求,模糊神经网络就要充分发挥被控对象的优良性能,根据不同的控制要求,合理运用模糊神经网络控制原理对PID参数模型中的数据信息进行在线修改,从而达到预期的控制效果。

3基于模糊神经网络的生物质气化炉智能控制系统的仿真实验

为了验证运用模糊神经网络进行生物质气化炉的智能控制的真实效果,对生物质气化炉的温度智能控制系统进行仿真实验,并进行详细地分析。为了保证生物质气化炉能够在条件大体一致的状态下进行运行状况,仿真实验可以采用组合预测算法。首先要到某厂气化炉现场采集2000组干燥层温度数据,并且从中选取连续1500组作为仿真实验样本数据,然后对剩余500组实验样本数据进行研究,通过两组数据的分析建立预测模型。然后采用模糊神经网络对生物质气化炉的温度控制系统进行三次模拟化实验,三种不同情况下的仿真试验结果为:在无外界任何干扰的情况下,模糊神经网络控制无论在超调量还是其他方面,都比单纯的模糊控制效果好;在生物质给料量扰动的情况下,模糊神经网络控制要比单纯的模糊控制所受的影响要小很多;在发生一次风量搅动的情况下,模糊神经网络控制仍受到极小的影响。从三种不同情况下的仿真试验中可以看出基于模糊神经网络的生物质气化炉的炉温智能控制系统效果较好,具有极强的抗干扰性,能够有效地预测气化炉温度实时值,把平均误差控制在很小范围内,并且智能控制系统能实时跟踪实际温度的变化,根据实际温度的变化做出相应的变化,从而能够有效地控制气化炉温度和可燃气体含氧量。

4结束语

总之,基于模糊神经网络的生物质气化炉的智能控制系统具有较好的控制效果,有效的解决了生物质气化过程中的一系列问题,能够十分精确地控制生物质气化炉的炉温及可燃气体的含氧量,对于保证社会经济的稳定发展以及生态环境的改善发挥了重要作用。

模糊神经网络的优点篇6

1公路工程造价估算概述

1.1 公路工程造价估算的重要性

公路工程造价估算作为公路工程管理的重要组成部分其重要性主要体现在如下几个方面。

第一,公路工程造价的估算是实现工程成本控制的基础。其中工程施工前期造价估算、施工前的编制预算以及施工图设计阶段的编制预算等环节作为工程造价估算的核心,同样是公路工程施工成本控制的起点,因此,实现公路工程造价的合理估算是实现工程成本控制的重要前提条件。

第二,公路工程造价的估算可以为施工企业成本控制计划方案的制定提供重要的参考依据。施工企业通过工程造价的估算可以寻找到降低工程成本的有效途径,从而为工程施工过程中施工成本的控制提供正确的方向。

第三,公路工程造价的估算可以帮助施工企业在进行设计招标前可以确定工程的大致造价。这样一来,施工企业在招标的过程中就可以有效避免中间商的欺诈以及保标等恶意行为的发生。

1.2 传统公路工程造价估算中存在的问题

尽管工程造价估算在公路工程建设中越来越受到人们的重视,但是由于受各方面因素的影响,在传统公路工程造价估算中还存在一系列的问题,其中我国传统公路造价估算中主要存在如下几个方面的问题:一是相关规章制度的限制,造价估算结果往往与投标报价相差悬殊;二是预算结果与概算结果差距较大,不利于工程实际造价的控制和确定;三是缺少对工程造价估算的有效监督机制,从而使最终的造价结果变的十分不确定;四是由于各参与方利益的问题,在进行工程造价估算时很难早到平衡点,以至于造价估算精度不能得到有效的保证。

2认识模糊神经网络

2.1 模糊数学概述

(1)模糊数学的概念,我们通常说的模糊就是指一些模棱两可的、即可能又不可能、即是又不是的概念。而模糊数学就是要用数学的方法来表示那些模糊概念发生的可能性的大小,换句话讲就是明确那些模糊概念所处的状态,从而利用数学的思想来解决那些模棱两可的、不确定的实际问题。

(2)模糊数学的数学描述,一般模糊数学的数学描述,多采用的是类似与集合的数学表示方法。与集合的区别就在于模糊数学在表示集合元素时需要附带一个称为隶属函数值的参数,其中该参数的值是隶属函数与元素的值进行运算的结果。

2.2 神经网络概述

(1)神经网络的概念,所谓的神经网络是一个借鉴物理和生物技术来实现的用来模仿人类大脑神经细胞结构和功能的系统,与人类的大脑结构相似,它也由大量的模拟神经元所组成的,而且这些神经元之间相互连接,并行工作,作为一个系统协同完成一系列复杂的信息处理活动。

(2)神经网络的基本原理,神经网络在结构和功能上都是模拟人脑的神经系统来进行设计和实现的,它同时作为模拟生物神经元的一种计算方法,其基本原理是这样的,与生物神经元的基本原理相似,用那些具有突的网络结点来接受信息,并不断的将接受到的信息累加起来,这些信息有些是抑制神经元,有些则是激发神经元,对于那些激发神经元,一旦积累到一定的阈值后,相应的神经元便会被激活,被激活的神经元就会沿其称为轴突的部件向其它神经元传递信息,并完成信息的处理。

2.3 模糊神经网络概述

模糊神经网络是模糊数学和神经网络有效结合的应用研究成果。其中在模糊神经网络中模糊数学的应用体现在它可以根据那些假定的隶属函数以及相应的规律,用逻辑推理的方法去处理各种模糊的信息。

3模糊神经网络在公路工程造价估算中的应用

3.1 基于模糊神经网络的公路工程造价估算方法的实现

将模糊神经网络应用于公路工程造价估算方面,是近年来公路工程造价估算发展的特点和重点。从本质上来看,模糊神经网络就是一个系统,它即有输入又有输出,与公路工程的造价估算十分相似,因为公路工程造价估算就是在输入公路工程施工的一系列要求和特点后输出相应结果的,所以与模拟神经网络所提供的输入输出机制非常相似,其中结合模糊神经网络的原理,基于模糊神经网络的公路工程造价估算方法的实现过程如下。

第一,构建已施工公路工程的造价信息库,其中包括应经施工的公路工程的各种特征因素以及工程造价等其他各方面的材料。

第二,结合拟建工程的施工需求来确定其包括评价指标等在内的各种特征因素的数据取值。

第三,按照模糊数学的思想法在已施工公路工程的造价信息库中选取若干个(至少三个)与拟建工程最相似的已施工的工程,将其作为神经网络进行学习和训练的基础数据。其中,将信息库中公路工程的各种特征因素值的隶属度作为神经网络的输入向量,信息库中公路工程的造价值作为神经网络的输出向量。

第四,将拟建公路工程的各种特征因素值的隶属度作为神经网络的输入向量,通过神经网络的学习后所得到的输出向量即为拟建公路工程的造价估算值。

第五,建立公路施工工程造价信息数据,编制神经网络学习的算法通用程序。将学习训练的基础数据输入神经网络,然后合理设计学习率,经过一定次数的迭代运算,有效提高公路工程造价估算结果的精度。

3.2 基于模糊神经网络的公路工程造价估算方法的优点

基于模糊神经网络的公路工程造价估算方法有效的克服了传统上工程造价估算方法的一系列缺点,与传统的工程造价估算方法相比,其显著优点就在于造价估算的迅速以及估算结果的精确。其中该方法的优点可以概括为如下几点。

第一,模糊神经网络中所采用的模糊数学可以对公路工程造价估算中的模糊信息进行有效的处理,通过对已竣工的公路工程和计划施工的公路工程的相似度进行定量化描述,从而使模糊的公路工程造价问题得以模型化。

第二,基于模糊神经网络的公路工程造价估算方法的估算结果科学合理,因为该方法采用的是基于数学模型的数学计算分析,所以其结果受人为因素的影响较小。

第三,模糊神经网络中所采用的神经网络模型对公路工程造价的估算具有很好的适应性,与传统的造价估算方法相比,该方法能更好的适应公路工程造价的动态变化。

第四,基于模糊神经网络的公路工程造价估算方法是借助计算机来完成的,所以还具有运算速度快和运算精度高的优点。

4结语

由于影响公路工程造价的因素比较多,而且各因素的构成比较复杂,计算相对繁琐,所以公路工程的造价估算具有很大的模糊性。对于使用传统的工程造价估算方法而言,公路工程造价的估算将是一项非常复杂的工作。然而结合模糊数学和神经网络的理论思想,利用工程之间所存在的相似性,使用基于模糊神经网络的公路工程造价估算方法可以迅速的得出精确的工程造价估算结果。

参考文献

模糊神经网络的优点篇7

【关键词】智能技术;电力系统自动化;应用

中图分类号:F407.6文献标识码: A

前言 电力系统在本质上为典型动态巨维数系统,它具有一定的时变性、非线性等特点,并且参数并不确定,含有很多没有进行建模的动态部分。在电力系统中,地域的分布十分广泛,很多元件具有磁滞、迟延、饱和等物理特性,要对这种系统进行有效的控制是十分困难的。此外,因为公众不满意新建线路的造价以及数量的增加,尤其是在走廊使用权方面的费用不断增加等,同时电力网在范围方面不断扩大,因此人们在控制电力系统方面的要求越来越高。也是因为电力系统具有此种特征,需要将先进的控制技术引入到电力系统。所以,新形势新条件下,我们应对电力系统自动化中的智能技术加大研究的力度,实现其更好的发展。

一、智能技术在电力系统自动化中的应用

几种典型智能技术在电力系统自动化控制中的引入运用,解决了传统方法难以解决的复杂系统的控制问题,从而有效提高电力系统自动化控制的适应性,降低控制系统的造价成本。

(1)模糊理论的应用。模糊理论是模糊化经典集合理论,将语言变量和近似推理的模糊逻辑引入进来,是一种包含一套完备的推理体系的智能技术。这种智能技术在电力系统自动化控制中非常实用,它能够对人的模糊推理和决策过程进行有效的模拟。通过已经存在的控制规则和数据,模糊理论可以对模糊输入量进行推导,得到模糊控制输出,输出结果的组成部分是:模糊化、模糊推理与模糊判决。模糊理论在电力系统自动化控制中的应用越来越广泛,这种智能技术的优势为:对于那些具有不确定性、不精确性的问题能够进行有效的处理,也能够处理由于噪声而造成的问题;专家的经验通过模糊知识的语言变量进行表达,与人的表达方式更接近,知识的抽取和表达更加容易完成;鲁棒性强,提高了自学习能力和容错能力,如果电力系统出现问题或者改变了网络拓扑图和环境变量的设置等,那么通过模糊理论的应用,能够进行及时应对并且给出完全正确的解决方法。

(2)专家系统控制的应用。专家系统在电力系统中的应用范围很广,包括对电力系统处于警告状态或紧急状态的辨识,提供紧急处理,系统恢复控制,非常慢的状态转换分析,切负荷,系统规划,电压无功控制,故障点的隔离,配电系统自动化,调度员培训,电力系统的短期负荷预报,静态与动态安全分析,以及先进的人机接口等方面。虽然专家系统在电力系统中得到了广泛的应用,但仍存在一定的局限性,如难以模仿电力专家的创造性、只采用了浅层知识而缺乏功能理解的深层适应、缺乏有效的学习机构,对付新情况的能力有限、知识库的验证困难、对复杂的问题缺少好的分析和组织工具等。因此,在开发专家系统方面应注意专家系统的代价/效益分析方法问题,专家系统软件的有效性和试验问题,知识获取问题,专家系统与其他常规计算工具相结合等问题。

(3)神经网络控制 的应用。 人工神经网络从1943年出现,经历了六、七十年代的研究低潮发展到现在,在模型结构、学习算法等方面取得了大量的研究成果。神经网络之所以受到人们的普遍关注,是由于它具有本质的非线性特性、并行处理能力、强鲁棒性以及自组织自学习的能力。神经网络是由大量简单的神经元以一定的方式连接而成的。神经网络将大量的信息隐含在其连接权值上,根据一定的学习算法调节权值,使神经网络实现从m维空间到n维空间复杂的非线性映射。目前神经网络理论研究主要集中在神经网络模型及结构的研究、神经网络学习算法的研究、神经网络的硬件实现问题等。

(4)综合智能系统的应用。 综合智能控制一方面包含了智能控制与现代控制方法的结合,另一方面包含了各种智能控制方法之间的交叉结合,对电力系统这样一个复杂的大系统来讲,综合智能控制更有巨大的应用潜力。目前在电力系统中研究得较多的有神经网络与专家系统的结合、专家系统与模糊控制的结合、神经网络与模糊控制的结合、神经网络、模糊控制与自适应控制的结合等方面。神经网络适合于处理非结构化信息,而模糊系统对处理结构化的知识更有效。因此,模糊逻辑和人工神经网络的结合有良好的技术基础。这两种技术从不同角度服务于智能系统,人工神经网络主要应用在低层的计算方法上,模糊逻辑则用以处理非统计性的不确定性问题,是高层次的推理,这两种技术正好起互补作用。神经网络把感知器送来的大量数据进行安排和解释,而模糊逻辑则提供应用和挖掘潜力的框架。因此,将二者结合起来的研究成果较多。

(5)线性最优控制的应用。最优控制是现代控制理论的一个重要组成部分,也是将最优化理论用于控制问题的一种体现。线性最优控制是目前诸多现代控制理论中应用最多,最成熟的一个分支。卢强等人提出了利用最优励磁控制手段提高远距离输电线路输电能力和改善动态品质的问题,取得了一系列重要的研究成果。该研究指出了在大型机组方面应直接利用最优励磁控制方式代替古典励磁方式。电力系统线性最优控制器目前已在电力生产中获得了广泛的应用,发挥着重要的作用。但应当指出,由于这种控制器是针对电力系统的局部线性化模型来设计的,在强非线性的电力系统中对大干扰的控制效果不理想。

二、电力系统自动化的发展趋势

目前,整个电力系统自动化的发展则趋向于:由开环监测向闭环控制发展,例如从系统功率总加到AGC(自动发电控制);由高电压等级向低电压扩展,例如从EMS(能量管理系统)到DMS(配电管理系统);由单个元件向部分区域及全系统发展,例SCADA(监测控制与数据采集)的发展和区域稳定控制的发展;由单一功能向多功能、一体化发展,例如变电站综合自动化的发展;装置性能向数字化、快速化、灵活化发展,例如继电保护技术的演变;追求的目标向最优化、协调化、智能化发展,例如励磁控制、潮流控制;由以提高运行的安全、经济、效率为完成向管理、服务的自动化扩展,例如MIS(管理信息系统)在电力系统中的应用。

结语

智能技术的广泛运用,推动了电力系统的自动化进程。随着对各种智能控制理论研究的进一步深入,它们之间的联系也会更加紧密,利用各自优势而组成的综合智能控制系统,会对电力系统起到更加重要的作用。随着科学技术的飞速发展,智能技术在电力系统自动化控制中的应用,将会越来越广泛。

参考文献

[1] 李妍;浅论电力系统自动化中智能技术的应用[J];中国科技信息;2010年08期

[2] 姚建国;赖业宁;智能电网的本质动因和技术需求[J];电力系统自动化;2010年02期

[3] 刘进升;智能控制方法在电力系统自动化中的应用[J];科技创新导报;2008年34期

[4] 莫娜,田建设.模糊电力系统稳定器的研究[D].华北电力大学2006

模糊神经网络的优点篇8

关键词:温度控制;PID控制;模糊控制;神经网络;遗传算法

一、前言

在科学研究和生产实践的诸多领域中,温度控制占有着极为重要的地位,特别是在冶金、化工、建材、食品、机械、石油等工业中,具有举足轻重的作用。本文就最近几年快速发展的PID温控、模糊控制、神经网络及遗传算法在温度控制中的应用进行综述。

二、PID控制

PID控制即比例、积分、微分控制。工作原理如图1所示:

PID算法根据比例、积分、微分系数计算出合适的输出控制参数,利用修改控制变量误差的方法实现闭环控制,使控制过程连续,是很普通的调节方法。其缺点是现场PID参数整定麻烦,容易受到外界干扰,对于滞后大的过程控制,调节时间过长。其控制算法需要预先建立模型,对系统动态特性的影响很难归并到模型中,被控对象模型参数难以确定,外界干扰会使控制脱离最佳状态。

三、神经网络控制

人工神经网络是当前主要的,也是重要的一种人工智能技术,是一种采用数理模型方法模拟生物神经细胞结构及对信息的记忆和处理而构成的信息处理方法。它用大量简单的处理单元广泛连接形成各种复杂网络,拓扑结构算法各异,其中误差反向传播算法(BP算法)应用最为广泛。

四、模糊控制

模糊逻辑是人工智能的重要组成部分,自从1965年美国控制理论专家L.A.Zadeh提出了用“Fuzzy Sets”(模糊集合)描述Fuzzy(模糊)事物以来,Fuzzy技术获得了广泛的应用。

模糊控制是基于模糊逻辑的描述一个过程的控制算法,主要嵌入操作人员的经验和直觉知识。它适用于控制不易取得精确数学模型和数学模型不确定或经常变化的对象。仅依赖于操作人员的经验和直观判断,非常容易应用。

五、模糊控制与PID结合(Fuzzy-PID)

Fuzzy-PID复合控制是用模糊技术与常规PID控制算法相结合的控制方法,当温度偏差较大时采用Fuzzy控制,响应速度快,动态性能好;当温度偏差较小时采用PID控制,使其静态性能好,满足系统控制精度。因此Fuzzy-PID复合控制,比单一的模糊控制器或单一的PID调节器有更好的控制性能。其工作原理如图2所示:

六、基于模糊控制理论的PID参数整定

基于模糊控制理论的PID参数整定,是将模糊控制与PID结合,使其具备两者的优点。即用过程的运行状态(温度偏差及温度变化率)确定PID控制器参数,用PID控制率确定控制作用。主要问题是合理获得PID参数的模糊校正规则。其实质是一种以模糊规则调节PID参数的自适应控制,即在一般PID控制系统基础上,加上一个模糊控制规则环节。

七、自调整因子模糊控制

在通常情况下,模糊控制一旦设计完成,其语言规则和合成推理往往是固定的,也是不可调整的,因此常规模糊控制器存在较大的局限性,可采用带自调整因子的模糊控制。本文根据系统运行状态调整系数α,达到修改控制规则的目的,使系统在随机环境中能对控制器进行自动校正,使得被控对象特性变化或扰动情况下控制系统保持较好的性能。因此,这种方法具有自适应性。

《温度控制仪表的模糊PID控制》采用模糊自适应PID设计方法,根据人们要求的温度曲线,由计算机系统进行监控,根据模糊推理判断,实现对任何一种模型参数的系统都能自动调节其PID参数,使输出与温度曲线趋于一致,实现快速响应特性与超调量最优的统一。

八、专家模糊控制

专家模糊控制是专家系统技术与模糊控制相结合的产物,它保持了基于规则方法的价值和用模糊集处理带来的灵活性,同时结合了专家系统技术的表达与利用知识的长处。因此,这种控制进一步提高了模糊控制器的智能水平。

九、模糊控制与神经网络结合

温控系统由于被控过程常常具有严重的非线性时变性以及种类繁多的干扰,基于精确数学模型的传统控制方案很难获得满意的动静态控制效果。近些年来模糊逻辑控制取得了巨大成功。但是,模糊控制所基于的专家经验不易获得,一成不变的控制规则也很难适应被控制系统的非线性、时变性等问题,控制效果受到严重影响。因此,模糊控制应该向着自适应方向发展,使模糊控制规则隶属函数模糊量化在控制过程自动地调整和完善。

神经模糊控制是基于神经网络的模糊控制方法。这种控制利用了模糊逻辑,具有较强的结构性知识表达能力(描述系统定性知识的能力),以及神经网络的强大的学习能力与定量数据的直接处理能力。

十、神经网络PID控制

在PID控制的基础上,加入神经网络控制器,构成神经网络PID控制器。神经网络控制器NNC是前馈控制器,通过对PID控制器的输出进行学习,在线调整自己,目标是使反馈误差e(t)或ul(t)趋近于零,使其逐渐在控制中占据主导地位,以减弱或最终消除反馈控制器的作用。

十一、遗传算法

遗传算法(Genetic Algoriths,G A)是模拟达尔文的遗传选择和自然淘汰的生物进化过程的全局优化搜索算法。它将生物进化过程中适者生存规则与群体内部染色体的随机信息交换机制相结合,通过正确的编码机制和适应度函数的选择来操作,称为染色体的二进制串1或0。该算法引入繁殖交叉和变异等方法,在所求解的问题空间上进行全局的、并行的、随机的搜索优化,朝全局最优方向收敛。

这种算法不要求系统是否连续可调,能否以显式表示。基于遗传算法的自适应PID控制的原理框图如图3。

十二、模糊控制、神经网络、遗传算法三者结合

关明方提出基于神经网络的方法,将模糊辨识、预测最优控制与神经网络结合,由神经元网络模型预估器辨识系统模型,并实时为控制器提供参考输入,由最优控制器对数据进行处理、决策,选定最优的控制量,达到温度最佳控制的目的。神经网络应用广泛的BP网络,由于其收敛慢和存在局部最小点,因此将遗传算法和BP算法结合得到的遗传BP(GA-BP)算法可以作为网络预估器的学习算法。该系统能使温度随外界干扰条件的变化,实时调节网络和控制规律,具有良好的温度跟踪性能和抗干扰能力。近些年来,硬件电路设计的软件化也应用于温控系统中,《VHDL及其在温控系统中的应用》引入VHDL语言采用自顶向下的设计方法对系统逐步细化,优点是可提高系统的效率,达到资源共享的目的。由于其屏蔽了具体工艺及器件差异,因此不会因工艺及器件变化而变化。

十三、广义预测控制

预测控制(Predictive Control)是基于模型的计算机控制算法。其预测模型有脉冲响应模型、阶跃响应模型、CAMRMA模型和CARIMA模型。基于CARIMA模型的广义预测控制(GPC)是一种新型计算机控制算法。

十四、结论

随着电子器件的发展,控制电路的形式也多种多样。实现温控系统的参数自调整,将线性控制与非线性相结合,使温度能满足用户的需要是温控系统的最终目的。在实际应用中,应该根据具体的应用场合、不同的加热对象和所要求的控制曲线和控制精度,选择不同的系统方法。

参考文献:

1、白雪飞.神经网络自适应PID高精度温度控制研究[D].中国科学技术大学,2002.

2、凌善康,李然.温度测量基础[M].中国标准出版社,1998.

3、Matsuda K,Tamura N, Konishi, etal.Application of Artificial Intelligence to Operation Control of Kobe No.3 Blast Furnace[M].Proceedings of the Sixth Internationl Iron and Steel Congress,1990.

4、吕剑虹,陈来九.模糊PID控制器及在汽温控制系统中的应用研究[J].中国电机工程学报,1995(1).

5、马维明.多变量复杂系统的模糊控制[J].自动化与仪表,1998(4).

6、胡社教,徐晓冰,杨柳.温度控制仪表的模糊PID控制[J].合肥工业大学学报(自然科学版),1998(10).

7、Honda,Hiroyuki, Kobayashi,Takeshi.Fuzzy control of bioprocess[J].Journal of Bioscience and Bioengineering,2000(4).

8、郑明方.管式裂解炉温度神经网络优化控制[J].江苏石油化工学院学报,1999(9).

9、黄耀军,周云,严国平.VHDL及其在温控系统中的应用[J].电子与自动化,1999(3).

*本文为海南大学校科技基金项目:基于单片机的巴氏灭菌机的电气系统研制(Rnd0627)。

上一篇:革命传统教育感悟范文 下一篇:外贸公司财务制度范文