生物信息学的方法范文

时间:2023-12-26 17:36:00

生物信息学的方法

生物信息学的方法篇1

生物信息学 生物科学 实践教学

生物信息学作为一门新兴的交叉性学科,综合生物学、计算机科学和信息技术试图,从大量数据中寻找具有指导和开创性价值的依据,为生命科学研究提供必要的、有效的系统模拟和信息预测结果。目前,生物信息学在生物医学、生物工程、植物学、动物学、生态学、遗传学、制药和高科技产业领域中的应用越来越广泛,产生巨大的影响力和推动力。

一、生物信息学在生物科学领域的作用

生物科学是研究生物结构、功能、发生和发展规律,及其与周围环境关系的科学。在分子生物学技术突飞猛进的发展过程中,生物科学从传统的个体及群体表征研究逐步演变为内在分子机制的研究,随着基因测序技术的发展,生物科学领域的研究不仅聚焦于生物个体的内在分子机制,同时还从大量的生物个体的基因数据中获取和解析生命的本质和规律,并以此尝试对生命过程进行干涉和改造。而在获取、解析、干涉和改造的过程中扮演重要角色的就是生物信息学。

生物信息学是在生物科学领域各个学科发展的过程中逐步产生的一门综合性学科,该学科在生物科学领域的应用极为广泛。目前,植物基因组研究取得了重大进展,水稻、大豆、小麦等农作物的遗传图谱、基因序列、基因组注释已公布于美国国立生物技术信息中心(NCBI)的生物信息数据库中。利用生物信息学的相关方法和技术能够对这些数据进行查询、统计和分析,从而更好地理解和认识植物基因组的功能,指导后续的科学研究和生产应用。传统的生物学分类方法已经鉴定及分类了成千上万的物种,但是随着生物科学的发展和认知,越来越多的物种在遗传进化上的分类依据较为模糊,而利用生物信息学结合传统的分类学可以更好的研究生物类群间(植物、动物、微生物等)的异同性、亲缘关系、遗传进化过程和发展规律,这在当今的生物分类学中应用日趋广泛。生物信息学还可以综合利用数学、统计学和计算机等学科对生态系统进行模拟和计算分析,探索物种间基因流动的本质,揭示生态系统的物质和能量循环规律,从而为找到决定生态系统平衡和稳定的根本因素提供重要的依据,帮助生态系统平衡的恢复。此外,通过生物信息学技术构建遗传工程菌,降解目标污染物的分子遗传物质,从而达到催化目标污染物的降解,维护生态环境的空气、水源、土地等质量,也是当今生态环境保护的新兴研究方向。

二、生物信息学的学科内容和课程要求

生物信息学主要由基因组学、蛋白质组学、系统生物学、比较基因组学、计算生物学等学科构成,主要涉及的内容有生物数据的收集、存档、显示和分析,体外预测、模拟基因及蛋白质的结构和功能,对生物的遗传基因图谱进行分析处理,对大量的核苷酸和氨基酸序列进行比对分析,确定进化地位等。从生物信息学的概念及其涉及的内容中可以明确生物信息学不是一门独立的学科,所以要求教师在教学过程中掌握多领域的知识和技能,才能较好地把握该课程。

1.高等数学和统计学基础

生物信息学将数学和统计学作为主要的计算理论基础,主要包括数学建模、统计方法、动态规划方法、数据挖掘等方面。此外还包括隐马尔科夫链模型(HMM)在序列识别上的应用,蛋白质空间结构预测的最优理论,DNA超螺旋结构的拓扑学,遗传密码和DNA序列的对称性方面的群论等。因此,在生物信息学教学过程中要求教师具备数学及统计学的计算方法的基础知识,能够利用牛顿迭代法、线性方程回归分析、矩阵求拟、最小二乘法等进行数学建模和计算,从而对基因和蛋白质序列进行比对、进化分析和绘制遗传图谱等。

2.生物科学基础

生物信息学包含的生物类学科有,生物化学、分子生物学、遗传学等基础学科,基因工程、蛋白工程、生物技术等应用学科。根据其课程特点,学生在学习生物信息学课程前需要学习生物化学、分子生物学、遗传学、基因组学、蛋白质组学等基本生物学课程,对于基因序列、蛋白质序列、启动子、非编码区等概念有深刻的理解,同时需要对一些重要的生物学数据库有一定的了解,如美国基因数据库(GeneBank)、欧洲分子生物学实验室数据库(Embl)和日本核酸数据库(DDBJ)等。此外,要求学生能够利用生物学数据库查找基因序列、蛋白质序列、基因及蛋白质结构模型,能够读懂数据库中基因和蛋白质的信息注释,能够计算蛋白质序列的分子量和等电点,能够为扩增特定的基因片段设计引物,能够对特定物种进行系统发育分析等。

3.计算机科学基础

计算机是生物信息学的主要辅助工具,利用生物信息学研究生物系统的过程需要能够熟练使用计算机对大量的生物信息数据进行处理和分析,这主要包括对数据信息进行搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。所以,学生在学习生物信息学的过程中需要了解和掌握一些常用的生物信息学软件,如BLAST和FASTA序列比对分析软件,Oligo和Primer引物设计软件,VectorNTI、DNASTAR、DNASIS等综合分析软件。此外,学生还需要学习和掌握一些常用的计算机语言,如正则表达式、Unix shell脚本语言和Perl语言。

利用生物信息学在处理和分析海量生物数据的过程中,计算机软硬件资源需要配合处理分析软件的运行,因此要求计算机操作系统使用Unix和Linux操作系统,这些操作系统需要大量的操作命令进行输入执行过程,对于经常使用Windows操作系统的学生来说是一个较难跨越的障碍。

三、生物信息学课程教学中存在的问题

目前国内大多数高校的生物信息学教学采用传统的教学模式,即以课堂式的理论教学为主,缺乏必要的实践教学。理论教学模式固定、教学方法单一、教学内容狭窄,通常是介绍性、科普性的课程,甚至作为公选课程。少数高校开展生物信息学的实践课程教学,但多以验证性实验为主,缺乏和专业相适应的综合性、设计性实验,而开放性实验更无从谈起。

1.教学模式固定单一

生物信息学在内容层面涵盖诸多学科领域,注重应用性和实践性。然而,目前大部分高校把生物信息学作为一门孤立的课程,这导致教师需要将大多数课程内容压缩到一门课程进行教学,在有限的教学时数下灌输大量内容,增加了学生学习的难度,降低了教学质量。再者,大多数高校仅开展生物信息学的理论教学,忽视实践教学过程,造成生物信息学理论与实践内容的脱节,使学生在学习完理论知识后难以深入理解和吸收,无法将所学的知识应用到后续的工作和学习中,最终未能体现出该门课程的价值。

2.教师专业背景薄弱

作为一门交叉学科,生物信息学的教学要求教师具有较强的数学、生物学和计算机科学背景。然而,目前从事生物信息学教学的教师即便具备深厚的生物学背景,但是多数教师在数学和计算机方面较为薄弱,并不具备完整的生物信息学知识体系,对生物信息学发展趋势也了解不多。在师资缺乏的情况下,院系开设生物信息学课程,教师为了完成教学任务,仅仅在教学中进行介绍性的讲解,在课程考查方式上通过小论文、综述和课外活动等方式完成该课程的学习。因此,无论是理论教学还是实践教学均无法实现该课程大纲的要求,从而影响学生对生物信息学课程的理解和掌握,生物信息学的实践操作能力更无从谈起。

3.实践教学薄弱,专业教材缺乏

生物信息学实践课需要学生在网络环境下用计算机学习NCBI数据库的检索与使用、序列比对分析软件的应用、蛋白质空间结构图视软件的应用、序列拼接软件的应用等。但是目前,大多数高校开设的生物信息学课程多以理论教学为主,实践教学课时非常少或者为零,学生对于生物信息学课程的学习仅仅通过教材上抽象的文字描述进行理解和掌握,这导致学生在理论课中学到的知识无法在实践课中进行验证或操作,严重影响了生物信息学的教学质量,也偏离了教学大纲中强调的重在培养学生实践操作能力的培养目标。

另外,目前还没有适用于生物科学专业的生物信息学教材。国内各大高校使用的教材多为国外教材的影印版或者中文翻译版本,这些教材偏重介绍生物信息学的理论和方法,涉及的实践内容较少,学生需要具有较高的相关知识才能接受和使用这些教材。因此,部分高校在生物信息学教学过程中往往使用自家编写的简化教材,从而造成生物信息学教学内容不统一,教学大纲混乱等情况。

4.实践课程经费不足,实践教学环境落后

当今,许多发达国家都很重视生物信息学的教学和研究,积极开展各种生物信息资源的收集和分析工作,培养大量生物信息学人才,为整个生物学的理论研究及其相关产业创新(主要是医药和农业)提供指导和支撑。国内对生物信息学的关注和认识起步较晚,其发展落后于国际发达国家。国家和高校对生物信息学的教学和科研资金投入力度不大,缺乏必要的仪器设备,生物信息学的实践教学条件得不到保障,比如大多数高校的生物科学专业没有相应的计算机实训室,配套软件也相对匮乏,落后于国际发展水平。

四、生物信息学教学模式改革的探索

1.修改理论和实践教学大纲,编写适用的实践教材

根据当今生物信息学的发展方向,制定和修改理论教学大纲,除了引物设计、基因和蛋白质序列比对、基因和蛋白质结构功能预测等基本内容外,还需添加系统进化树分析、聚类分析、蛋白质互作网络谱图等较为综合的内容。另外,增加实践教学课程比例,充实实践教学内容,结合理论教学内容增加综合性、设计性实验,适当提供科研环境,鼓励开展开放性实验。

目前国内并没有系统的、专业的生物信息学实践教材,因此针对高校生物科学专业方向的特点,联合多学科领域(数学、生物科学、计算机科学)编写相应的生物信息学实践教材,在制定、修改实践教学大纲和编写教材的过程中结合学生的接受能力,由浅入深,多设实例和相关练习,使学生循序渐进的理解和掌握生物信息学的原理和方法,掌握更多的生物信息学工具。

2.紧密联系科研、基于实践问题开展教学

通过实践教学把生物信息学教学与科研有机结合起来,能够促进教学与科研的共同发展。在紧密联系科研的过程中,采用基于问题的教学(PBL)方法,通过实践教学环节,培养和训练学生把所学的生物信息学的知识和方法应用于各种生物科学领域的科研活动中,通过解决实际问题训练学生的实践技能,从而促进教学与科研的双重发展。例如,在生物信息学实践教学中多加入生产和科研中遇到的经典实例,鼓励学生利用相关的生物信息学软件及相关的理论和方法解决问题。学生也可以选择自己感兴趣的课题,利用自己熟悉的、合适的生物信息学软件和相关知识开展课题研究。此外,专业教师在指导学生课题研究的过程中还可以发现理论和实践教学的不足,不断的完善生物信息学理论和实践课程大纲和内容,提高教学质量。

3.开展多学科实践结合的教学模式

生物信息学属交叉学科,包含了不同领域的专业知识和技能,为使生物信息学教学达到教学的目标,该课程教学需要采用多学科实践结合的教学模式。

多学科实践结合的教学模式是指联合不同领域、不同学科、不同专业的课程在教学的过程中结合生物信息学涉及到的知识和技能进行基础性、铺垫性教学。比如,在高等数学和统计学的教学过程中,针对生物信息学的需求,适当增加数学建模、统计方法、动态规划方法、数据挖掘等方面的基础内容,同时,开设实例实践教学,使学生理解和掌握隐马尔科夫链模型,牛顿迭代法、最小二乘法等方法的应用原理和规则;在生物科学专业课程设置上,尤其是实践课程的教学过程中,结合生物信息学涉及的引物设计、序列比对分析、基因及蛋白质结构功能预测等方面开展相应的设计性、综合性、开放性实验项目,使学生了解和掌握基本的生物信息学原理及软件的应用;在计算机科学的教学过程中,应根据生物信息学的需求,开设正则表达式、Perl语言、R语言等课程学习,以及增加Linux和Unix操作系统课程学习,使学生在学习生物信息学前打好坚实的基础。

值得注意的是,生物信息学课程与其他课程的开设时间和顺序需要有一定的探索和评估,对于开设该课程的时间把握是开展多学科实践结合的教学模式的关键因素。过早开设生物信息学则会导致学生在不具备相应学科基础的条件下跨越式的接触生物信息学,无法理解和掌握相关的知识和技能;过晚开设则会使学生学习了相关学科知识和技能后,由于课程衔接不紧,导致在学习生物信息学时出现理解滞后和无法适应的现象。因此,针对不同专业和学科的特点,根据具体情况进行统筹安排,使生物信息学和其他相关学科课程有很好的衔接和过渡,以确保和提高生物信息学的教学质量。

五、结语

生物信息学是现代基因组学时代的开阔者,也是生物科学研究的重要的工具和载体。针对生物信息学的特点,高校生物科学专业课程设置、教学方法、教学模式和教学软硬件等需进行一定的改革,将多学科实践结合的教学模式运用到生物信息学的教学实践中,在提高教学质量的同时将更好的提升学生科研、应用和创新能力。

参考文献:

[1] 郝柏林,张淑誉.生物信息学手册[M].上海:上海科学技术出版社,2002.1-10.

[2]GUYD, NOELE, MIKEA. Using bioinformatics to analyse germplasm collections [J]. Springer Netherlands,2004.39-54.

[3]王春华,谢小保,曾海燕.深圳市空气微生物污染状况监测分析[J].微生物学杂志,2008,28(4):93-97.

[4]张菁晶,冯晶,朱英国.全基因组预测目标基因的新方法及其应用.遗传,2006, 28(10):1299-1305.

[5]周海延.隐马尔科夫过程在生物信息学中的应用.生命科学研究,2002, 6(3):204-210.

[6]萧浪涛.现代生物信息学及其主要研究领域[J].湖南农业大学学报 (自然科学版),2000,(6):409.

生物信息学的方法篇2

关键词:信息技术; 大学物理教学; 积极影响

中图分类号:O4

一、前言

在大学物理教学中,随着学生求知欲和教学难度的增加,传统教学手段的弊端越来越明显,单纯依靠课堂讲解难以实现对物理原理和现象的描述。在这种状态下,信息技术的发展及应用给了大学物理教学以可靠的支撑。信息技术的发展,主要表现在计算机技术和网络技术等方面,其中计算机和网络技术对大学物理教学的影响最为明显。应用了信息技术之后,大学物理教学实现了对物理原理和现象的准确描述,将难懂的物理原理变成了易于理解的视频信息,降低了教学难度,提高了教学效果。为此,我们应认真分析信息技术发展对大学物理教学的影响。

二、信息技术发展使大学物理教学理论和实验教学实现了有机结合

通过了解发现,大学物理存在较多的理论和实验,在理论教学和实验教学开展过程中,由于理论和实验相对复杂,单纯利用讲解的方式难以达到教学目的。信息技术的应用,给了大学物理理论教学和实验教学以有力的支撑。

例如:在讲授非惯性参照系中惯性力的引入时,首先通过视频演示小球相对加速运动小车的运动情况,提出问题,使学生先对非惯性系产生感性认识;进而通过动画演示利用引入惯性力解决问题的可行性;最后再给出生活实例(人在汽车启动和刹车时的反映和转盘上小球惯性力提供向心力视频)加深对惯性力的感性理解。

通过采用信息技术手段,大学物理理论教学和实验教学找到了新的教学方式,对理论的讲解已经从单纯的平面讲解向视频讲解和多媒体讲解转变,讲解的总体效果和教学质量也得到了持续提高。在实验教学方面,在应用信息技术手段之前,对于一些实验现象,难以做到深入描述,更难以让学生迅速接受。应用了信息技术手段之后,大学物理实验教学将许多实验过程做成了多媒体教材,利用动画演绎的方式,诠释物理实验过程,让学生能够更好的理解物理实验,加深对物理原理和物理现象的理解,从而达到提高大学物理教学质量的目的。为此,我们要认识到信息技术发展对大学物理理论教学和实验教学的重要影响。

对于三类本科学生而言,考虑到物理基础比较薄弱,理解能力需要进一步加强,信息技术的应用,给三类本科提供了有力的时机和良好的了解机会,使三类本科学生能够更好的理解课堂教学内容,加深对物理概念和定理的理解,提高物理学习效果。

三、信息技术发展使大学物理教学的抽象规律变得更加具体形象

发挥多媒体技术的优势可以有效的解决物理现象及规律的讲解问题。对于有些不能用实验演示的物理现象,可以通过计算机模拟,将宏观现象缩小,将微观现象放大,让客观存在的看不见摸不着的东西变得形象逼真,营造一种真实氛围。

考虑到大学物理教学中存在较多的抽象规律及原理,要想加深学生对抽象原理和规律的印象,单纯依靠讲解的方式难以奏效。随着信息技术的发展及应用,赋予了大学物理教学更多的教学手段,不但改变了教学模式,同时也实现了教学方法创新,信息技术发展对大学物理教学抽象规律的介绍主要表现在以下几个方面:

1、信息技术使大学物理教学抽象规律的介绍更加容易

信息技术的采用,为大学物理教学抽象规律的介绍提供了有力支撑,使大学物理教学抽象规律的介绍更加容易,满足了大学物理抽象规律教学需要。

2、信息技术改变了物理教学中抽象规律的教学方法

应用了信息技术之后,物理教学中抽象规律的教学改变了过去单纯讲解的方法,取而代之的是多媒体技术及方法,对大学物理教学抽象规律的讲解促进作用明显。

3、信息技术提高了物理教学中抽象规律的教学效果

信息技术作为先进的教学方法,对大学物理教学产生了重要影响,特别是为抽象规律的教学提供了有力的支持,保证了抽象规律的教学效果满足实际需要。

从三类本科学生的物理学习情况来看,普遍对抽象定理的理解存在困难,信息技术的应用对提高学生理解能力,促进学生更好的理解抽象定理具有重要的现实作用。为此,我们应认识到信息技术应用对三类本科学生物理学习的积极影响。

四、信息技术发展增加了大学物理教学信息的传递量

以往的传统教学中,在给学生介绍一些物理前沿、物理学史或物理趣闻等内容时,总是苦于只有一张嘴,无法给学生提供更多的信息资料,在使用多媒体技术后,通过大量的图片和影像资料,可以向学生提供更多的信息、更多的资料,从而在扩展学生知识面,提高学生学习物理的兴趣方面提供了有力的技术保证。

由此可见,信息技术的发展给大学物理教学信息的传递提供了有力的支持,其影响具体表现在以下几个方面:

1、信息技术给大学物理教学信息的传递提供了新的方式

信息技术的应用,使得大学物理教学信息的传递能够以新的方式进行,在传递效果和传递速度上都有明显提升,改变了大学物理教学信息的传递方式,促进了大学物理教学信息的传递。

2、信息技术解决了大学物理教学信息的传递瓶颈问题

受到传统受到的限制,大学物理教学信息的传递速度和质量难以得到继续提升。在这一制约下,信息技术的应用给了大学物理教学信息传递以有力的支持,保证了大学物理教学信息的快速传递。

3、信息技术优化了大学物理教学信息的传递过程

信息技术的应用,给大学物理教学信息以全新的模式,使大学物理教学信息能够在传输速度和传输质量上都能有明显的提高,对大学物理教学的促进作用比较明显。

五、结论

通过本文的分析可知,在大学物理教学过程中,信息技术的发展对大学物理教学的影响非常明显,只有加深对信息技术的了解,做到正确理解信息技术的内涵,扩大信息技术的应用范围,才能为大学物理教学提供有力的支持,实现信息技术对大学物理教学的有效支撑。

参考文献:

[1] 蒋晓明;刘旺盛;施国栋;胡春来;;大学物理网络考试应用与分析系统[J];电脑编程技巧与维护;2011年14期

[2] 刘淑娥;拾景忠;孙镭;;大学物理演示实验室建设实践与思考[J];实验室研究与探索;2011年06期

[3] 刘浩广;王海威;李昊昱;;独立学院大学物理教学改革的探索[J];时代教育(教育教学);2011年06期

[4] 陈波;杨茂田;;独立学院大学物理多媒体教学的思考[J];科技信息;2011年21期

[5] 王成;网络环境下大学物理自主学习的研究[D];陕西师范大学;2008年

生物信息学的方法篇3

2l世纪是生命科学的世纪,人类及模式生物基因组计划的全面实施,使分子 生物 学数据 以爆炸性速度增长。面对基因组学、蛋白质组学、基因芯片、分子进化等大量的生物信息,在计算机科学、网络技术以及生物分析技术的相互作用和渗透下,诞生了一门崭新的学科――生物信息学 (Bioinforma-tics)。当前,生物信息学教学还处于起步阶段,对于生物信息学实践课还没有完善的教学模式和有效的教学方法,如何在医学院校进行生物信息学实践课教学还有待进一步探索。

1医学生物信息学的主要研究内容

1.1 疾病基因的发现与鉴定

据相关研究表明,约有6000种以上的人类疾患与特异基因的改变有关,这些关键性基因或其产物的结构功能异常,可以直接或间接地导致疾病的发生。目前,使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段。例如:通过构建肿瘤 cDNA文库,我们可以揭示肿瘤发生的分子水平变化,寻找靶基因。

1.2药物设计与新药研发

生物信息技术为药物研究、设计提供了崭新的研究思路和手段。生物信息药物设计常用的方法有:(1)三维结构搜寻,寻找符合特定性质和三维结构的分子,从而发现合适的药物分子。(2)分子对接,建立大量化合物的三维结构数据库,依次搜索小分子配体使其与受体 的活性位点结合,通过优化使得配体与受体的形状和相互作用最佳匹配。(3)全新药物设计,利用计算机自动设计出与受体活性部位的几何形状和化学性质相匹配的结构新颖的药物分子。

生物信息学方法为药物研制提供了更多的、潜在的靶标,大大减少药物研发的成本,提高研发的质量和效率。

1.3流行病学研究中的应用

将流行病学的遗传和非遗传性的研究与生物信息学结合起来,会对疾病的机理、个体对某种疾病的易感性和疾病在群体中的分布有更明确的认识,对疾病的预防和治疗有极大的指导意义。

2 医学生物信息学教学存在的问题

2.1缺乏实践课教材

目前,?没有专门针对医学院校学生的生物信息学实践课教材。而国内各大高校使用的生物信息学教材多为国外教材的影印版或者中文翻译版本,这些教材一般内容宽泛,需要学生具有较高的相关基础知识,并且偏重介绍生物信息学的理论和方法,对实践环节的指导较少。

2.2缺乏有效的教学方法。

很多院校开设生物信息学实践课仅是以验证理论课所讲授的内容为目的,缺乏针对学生特点的教学设计,讲授内容单调,忽视了对学生分析问题能力的培养。

2.3学生实践课学习基础存在差异

生物信息学实践课的授课内容需要学生使用计算机在网络环境下完成,这需要学生具有较强的计算机操作技能和网络运用能力。不同学生在计算机的操作技 能和网络使用能力上存在较大的差异。另外,常用的数据库和软件基本上都是英文版本,这需要学生具有一定的英文素养,学生英文水平的差异也会影响他们对实践课学习的效果。

3 医学生物信息学实施方法和对策

3.1建立具有模块化的教学大纲

根据医学生物信息学课程的特点,对授课内容进行调整,建立模块化的教学大纲,例如:导论模块、数据库及使用模块、基因组信息学及其分析方法模块、蛋白质组生物信息学模块、代谢和药物生物信息学及系统生物学模块等,使学生清楚每个模块的特点和作用,提高学生的学习兴趣,激发学生的学习热情。

3.2强化实验教学

生物信息学的学习是运用生物、医学、数学、以及计算机科学等诸多学科知识进行分析、判断推理、综合的实践过程,强化实验教学显得尤为重要。

3.3结合多媒体技术与双语教学

教学过程中可以打开相关软件和网站进行演示,使抽象的生物信息学知识以具体的、动态的形式展现出来, 从而加深学生对课程的掌握程度。此外,生物信息学涉及到的数据库、网站、应用软件多为英文界面,所以双语授课显得尤为重要,教师可借助多媒体,对课程进行中英整合讲解。

3.4结合科研实例进行教学

教师可以结合现阶段的科研背景和具体的研究方向,结合实例进行教学,可以让学生真正掌握利用生物信息学方法解决生物学问题的思路,并培养和提高学生的科学思维能力。

4结语

生物信息学的方法篇4

2l世纪是高科技发展的世纪,随着人类基因组计划的完成、遗传语言的破译、生物大分子的功能与结构研究,一门崭新的、拥有巨大发展潜力的新的学科生物信息学悄然兴起并得以蓬勃发展。生物信息学已成为分子生物学家和从事生物学研究和学习的科研人员、教师和学生的必备工具。在生物信息学开设条件尚不成熟的情况下,目前还没有完善的教学模式,如何在高校进行生物信息学教学则亟需探索。为此,笔者根据几年的生物信息学教学实践,提出几点见解,期盼能“抛砖引玉”,引起同行专家学者的关注,由此推动生物信息学教学质量的提高。

1生物信息学概述

生物信息学(Bioinformatics)是生物学、数学和计算机科学交叉所形成的一门新兴学科,它主要运用信息科学和计算机手段通过数据分析和处理.揭示海量数据间的内在联系和生物学含义,进而提炼有用的生物学知识。诺贝尔奖获得者W.Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的,一个科学家将从理论推测出发,然后再回到实验中去追踪或验证这些理论假设”。该论点预示了生物信息学在生物科学中的重要地位。

生物信息学的最大特点;一是数据库庞杂,仅人类基因组一项,就大约有3.0×l0个A、G、C、T构成:二是操作主要在网络环境中运行,通过网络强大的搜索功能实现数据储存、检索和分析;三是由于是一门由计算机技术、数学、生物学等多学科综合交叉产物.它的理论及内容尚在不断地完善与更新中。

2教学现状

2.1缺乏合格的生物信息学师资,教师队伍的整体数量和质量与我国生物信息学教育快速发展的规模极不相称。

2.2对生物信息学专业人才培养的认识各异,造成课程设置不合理。我国高等教育的传统模式在创新性人才和交叉学科人才的培养方面本身就存在不少薄弱环节,如何通过生物信息学专业课程教学与实践加强学生的研究能力,从而加快培养不同专业背景的“复合型”人才是摆在我们面前的一项艰巨任务

2.3生物信息学教育与其他专业的合作还有待加强。尽管生物信息学是一门新兴学科,但与其他专业之间存在不少联系。现阶段的问题是不同专业学科的教师之间缺乏交流与合作,难以满足生物信息学教学的需求。 2.4在教学方法上.重视系统知识的传授和授课计划的完成,而忽视学生能力和素质的培养。此外,缺乏理论教学与实验教学的有机整合,实验教学只是以验证理论为目的,内容单一,无创新点,忽视了对学生实际操作能力的培养。

2.5教学中还缺乏适合的理论和实验教材。授权影印国外原版教科书和翻译书籍仍占主导地位,而国人自编的教材寥寥无几。例如,我们在教学实践中已深感到《基础生物信息学及其应用》一书已不能满足实际教学工作的需要,但由于种种原因.修订版迟迟未能完成。此外,系统性也是目前生物信息学教材中普遍存在的一个问题。

3创新教学模式探讨

作为教学论三大流派之一的建构主义认为:学生在现实世界的真实环境中去感受和体验该知识所反映事物的性质、规律以及该事物与其他事物之间联系,通过学生的自主学习和协助学习,来完成对所学知识的意义建构。多媒体计算机和网络通信技术的发展,为建构主义学习环境提供了理想认知工具.能更有效地促进学生的认知发展。基于其他学科的成功教学模式。结合生物信息学课程特点,笔者提出“一个中心,两者结合”的教学模式。即“以知识为中心,理论教学与实验教学有机结合”。突出学生的主体地位,强化了个性教育。

3。1知识定位为中心以教学活动的真正对象——知识定位为中心.在不同的具体教学活动中教师与学生的“主角”与“配角”地位相互转换.即在某些教学环节中,教师是知识建构的主角,学生当配角,而在另一些教学环节中,则相反。同时,针对不同的教学内容和教学需要.采取不同的教学方法。生物信息学是一门多学科交叉的科学,涉及的知识面即深又广,学生进行独立自学的难度很大。尤其是生物信息学中的相关数学知识,诸如隐马尔科夫链、动态规划算法和几何拓扑理论等,在教学中则需采用教师主导的传统讲授方法。

课堂教学受学时的限制,通过探究式方法,引导学生利用课余时间拓展知识,是不可或缺的教学方法,其教学过程大致分为3个步骤:首先确立教学目标,目标可以由教师设定,也可以是学生所感兴趣的内容。如:玉米基因组SSR引物设计,这类问题一般无法找到现成答案.必须通过学生自己去查阅和检索相关数据库后综合分析才可得到。其次进行分组.对一个崭新事物的认识单靠个人智慧的力量往往难以全面兼顾,需要集体的智慧。分组就是将学生随机分组.以组为单位去检索相关基因和蛋白质数据库。如何使用检索工具、哪些数据库需要检索、哪些指标是可以限定、哪些地方不可以忽略等方面的问题,指导教师可给予一定的启发提示和帮助,但不能替代完成。最后集中讨论,由小组成员围绕指定的问题,如SSR引物,则本着资源共享的原则,陈述检索过程、分析结果,并就检索过程中存在的问题及技巧进行共同讨论,最后由指导教师就检索结果进行取舍、总结,对学生的学习情况作出点评。并提出改进意见及进一步要求。

3.2理论教学与实验教学的有机整合

3.2.1通过生物数据库的使用,提高学生处理生物信息的能力由于大型服务器和计算机的参与,分子生物学对生物分子(主要是核酸和蛋白质)研究工作的效率大大提高。到目前为止,生物学数据库总数已达500个以上,在DNA序列方面有GenBank、EMBL和DDBJ等;在蛋白质一级结构方面有SWISS—PROT、PIR和MIPS等:在蛋白质和其他生物大分子的结构方面有PDB等:在蛋白质结构分类方面有SCOP和CATH等.各数据库均通过Intemet提供多种形式的数据检索服务。例如:NCBI—Gen.Bank数据库就提供Retrieve(Email),Entrez(Web集成信息检索)及Query(Email集成检索)等多种方式的检索服务。这类检索服务是生物数据库所能提供的多种服务中最基本的信息共享和应用服务.也是生物专业学生和科研工作者经常使用的。

3.2.2通过序列比对软件的开发.增强学生使用生物信息处理软件的能力将未知序列同整个数据库中的已知序列进行比较分析是研究者手中的一个强有力的研究手段。对2个物种进行全基因组序列比较已不再是一个梦想.进行序列比较的目的之一是判断2个序列之间是否具有足够的相似性,从而判定二者之间是否具有同源性。在世界各地,科学家每天都要进行成千上万次的序列比对和数据库搜索。实验操作中通过序列比对软件开发的培训,使学生熟练掌握生物信息处理软件.并能编制解决相关问题的小软件。3.2.3运用生物信息学相关知识,提高学生获取蛋白质信息的能力由于构成蛋白质的20种氨基酸化学构造上的差别远远大于构成核酸的4种碱基的差别。因而蛋白质在结构和功能上存在更大的多样性。目前实验方法获取蛋白质结构信息仍然需要大量的时间,而且对技术和技巧都有很高的要求。越来越多的蛋白质在测定空间结构后尚不清楚其生物功能,因此蛋白质功能预测日益受到重视。预测的方法是目前提供蛋白质结构及功能信息的重要方法。蛋白质结构与功能的复杂性必须借助生物信息学的技术手段才能更好的阐明,通过对生物信息学的学习和掌握,可使学生更多更快地了解蛋白质的信息。

3.2.4优化实验教学内容,发挥网络教学优势生物信息学实验教学主要是针对海量生物数据处理与分析的实际需要,培养学生综合运用生物信息学知识和方法进行生物信息提取、储存、处理、分析的能力.提高学生应用理论知识解决问题的能力和独立思考、综合分析的能力。生物信息学实验教学内容的选择与安排应按照循序渐进的原则.针对特定的典型性的生物信息学问题设计,以综合性、设计性实验内容为主,明确目的要求,突出重点,充分发挥学生的主观能动性和探索精神,以激发学生学习的主动性和创造性为出发点,加强学生创新精神和实验能力的培养。

生物信息学实验教学以互联网为媒介、计算机为工具,全部在计算机网络实验室内完成。在教学中,充分利用网络的交互特点实现信息技术与课程的结合。教师通过电子邮件将实验教学内容、实验序列、工具等传递给学生,学生同样通过电子邮件将实验报告、作业、问题和意见等反馈给教师,教师在网上批改实验报告后将成绩和评语发送给学生,让学生及时了解自己的学习情况。

3.2.5加强实践能力考核生物信息学主要是学习利用互联网、计算机和应用软件进行生物信息分析的基本理论和基本方法。考试重点是考察学生对生物信息分析的基本方法和技能的掌握程度和对结果的分析解释能力。因此,通过上机实践操作重点考核学生在互联网环境下,对序列进行生物信息分析并对结果进行解释。不仅考核学生对基本知识和基本原理的掌握,而且考察学生进行生物信息分析的实际能力和分析思考能力。通过实践技能考试.促进学生注重提高理论用于实践的综合能力。

生物信息学的方法篇5

关键词:生物信息学;医学相关专业;教学;临床应用

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2017)23-0146-02

一、前言

生物信息学(Bioinformatics)是随着现代生命科学的发展而兴起的交叉学科,旨在为生物学研究提供信息处理的支撑,从海量数据中挖掘生物信息,实现对生命科学问题的研究。生物信息学包含了对核酸和蛋白质的序列和结构信息的获取、处理、存储、分布、分析和解释等各个方面的分析研究,是通过综合利用生物学、计算机科学和信息技术等手段,来认识生命的起源、进化、遗传和发育的本质,揭示海量数据中蕴含的生命奥秘或生物学内在规律的一门科学[1]。随着测序技术的不断发展,人类与其他物种基因组计划相继实施和完成,产生了海量的数据,尤其是近年来的各种组学数据,如蛋白质组、代谢组、基因组、转录组等生物学数据,生物信息学将在解读基因组序列中的功能信息等方面发挥巨大的作用[2]。

二、生物信息学课程开展的现状

生命科学的迅猛发展、生物技术在社会发展中的应用越来越广泛,例如产前诊断、遗传并筛查、肿瘤靶向治疗等生物信息学相关的医学应用,生物信息学的作用和地位也越来越重要。研究机构和高等院校,特别是息息相关的医学院校,迫切需要通过各种形式的教学,系统地培养新的复合型研究力量的医学工作者。因此,医学院校针对医学相关学生开展与其专业紧密结合的生物信息学课程已经成为必然趋势[3]。目前,国内许多医学院校相继开设了生物信息学课程,将生物信息学作为必修或者选修课程。由于生物信息课程教学尚处于刚刚起步的探索阶段,尚未形成一个完整的课程建设体系,再加上生物信息学研究的范围广、相关数据与分析工具资源繁多、涉及多学科知识尚缺乏系统成熟的理论方法,正处在迅速发展中等一系列特点,如何开展生物信息学教学尚有待探索。因此,生物信息学课程的教育理念、教学内容、方式和方法等迫切需要根据自身专业特点,科学确立教学目标,及时系统地总结规划教学内容,探索和改革教学方法,以适应医学专业背景学生的学习,对于促进医学生自身综合素质的提高有重要意义。本文结合南京医科大学本科学生(主要为医学相关专业学生,非生物信息学专业学生)开展的生物信息学课程进行调研和改进,对该课程的学生的反馈意见及各教研室教师的建议进行了深入分析。本着以学生需要为原则,针对学生的专业背景,适当调整教学内容和方法,理论教学与上机实践有机结合,侧重将生物信息学的思维融入解决生物医学的问题,行成一套完整的、合理可行的医学生物信息学课程理论、实验教学方案。进而达到专业与课程相结合,激发学生的学习兴趣,从而达到较好的教学效果。

三、教学内容及方法的具体实践

(一)针对医学专业学生,优化教学内容

生物信息学作为一门发展迅猛的多学科交叉的前沿学科,理论、研究方法、研究内容尚在不断完善和更新中,其内容繁多复杂,更需要进行精心的选择裁剪和编排组织,才能在有限的时间内实现既定的教学目标,使学生学习到有用的知识。教学中应充分结合当前研究前沿和进展、时刻更新教学内容,更应该根据学生的不同专业背景适当调整教学内容和教学方法。在医学院校中,更要针对不同专业及背景的学生,制订具有专业特色的教学大纲。教学应以学生的需求为前提,结合不同专业背景、就业选择方向,调整培养方案和优化授课内容,以满足他们的需求,使学生能够学有所用。比如,针对临床专业的学生,生物信息学教学应该偏重医学研究中的方法和成果,本科教学注重转化医学、生物技术应用成果的普及,研究生教学注重利用生物信息手段和方法解决科研学习中遇到的实际问题;而针对法医专业的学生,教学应该偏重新一代高通量测序技术的原理、数据分析、结果意义等方面。针对目前医学院校中研究方向多元化的背景,强调教学与科研共促进,通过科研时刻关注、追踪学科前沿,将最新的研究成果和在医学上的应用展示给学生,丰富教育资源,使学生能在其他课程的学习时学以致用,从而高质量的完成教学任务。生物信息学亦是众多科学研究工作中强有力的必不可少的研究手段,教学反过来也可促进科研的进一步开展和深入。因此,教学和科研相结合,可以拓宽知识面,全面了解生物信息学和相关学科最新进展,不断为科研提供新的思路,不断的完善生物信息学教学体系。只有坚持教学与科研同时进行、并紧跟科学前沿,并做到及时纳入最新的研究成果,更新教学内容,才能给予学生高质量的前沿教学[4]。

(二)基于计算机的实验教学,锻炼动手能力

在生物信息学教学中,计算机实践教学是不可缺少的部分,理论和实践的有机结合才能达到更好的教学效果。只有亲自动手进行生物数据的分析,学生才能建立一个感官的、多方面的认识。优化上机内容、改进上机教学方法,使得理论知识在上机教学中可以得到实现,实际操作充分理解理论课内容,由此激发学生动手实践的激情和信心,更好地掌握知识。所以在生物信息的教学中,上机实验课程应该占据较大的比例,并通过生动的课堂练习培养学生的兴趣。实验课内容的设计应该考虑医学相关专业学生的背景,根据医学问题作为出发点,以如何解决这些问题作为主线设计课程。所以,通过了解当前医生常用的科研手段或当前医院正在开展的临床检测项目,设计相关实验课程、增加应用性实践教学,并结合最新研究成果和基础到临床应用的实例、以及项目原理及优缺点,可以调动学生学习的主动性。例如,针对临床专业开展常用的生存分析的原理和分析流程的实践教学;针对法医专业,开展常用的STR(短串联重复序列)作为亲权鉴定标志物的序列特点和可视化的教学等。另外,生物信息学本身是多学科交叉融合,知识面广而杂,其相关数据库资源,以及生物信息学工具、算法和软件等均更新迅速。在理论教学中,授课教师时刻密切关注学科发展前沿、并将最新研究成果及学术发展动态,而在实验课授课中,更应该注重教会学生,充分利用互联网资源,独立开展课题、综合分析、解决问题。例如,榱耸寡生了解当前网络数据共享的环境下,如何从网上搜索网络资源、下载数据,我们下载了多种不同类型的数据,包括测序数据、芯片数据、注释数据等,然后再从实际数据出发上机操作,介绍分析的方法和工具。

四、生物信息在医学相关专业的应用

基础科研成果的积累逐渐带来了临床应用的突破,而生物信息学的技术和数据在临床应用的重要性也愈加重要。目前,医疗上的应用主要有生育健康、遗传病检测、传染病药物研发、肿瘤诊断及治疗等几大方面[5]。2014年7月国家卫生计生委承认基因测序技术在产前诊断的应用,批准了基因测序诊断产品的上市,2015年3月27日,国家卫生计生委医政医管局又通过了第一批肿瘤诊断与治疗项目高通量基因测序技g临床试点单位。一些大型医院已经把基因诊断作为患者必需的诊断项目,特别是产前无创诊断,很多医院也正在筹建基因检测中心。目前国内每年新增癌症患者300万人左右,且发病率呈上涨趋势,肿瘤的基因检测和靶向治疗已经成为提高肿瘤治疗效果的一条重要途径。产前诊断和精准医疗的飞速发展所带来的巨大临床应用,亟需懂临床一线的医生了解前沿科技、懂生物信息、会临床应用。根据市场反馈的情况,未来基因检测在临床上应用所占比例会越来越大,医学工作者对生物信息知识的需求也越来越高。

五、结语

当前生物信息学与医学的联系越来越紧密,应用也越来越广泛。为此,我们需要为医学相关专业学生开设生物信息学课程,而课程的设置中不但需要教师掌握较高的生物信息学知识,更需要结合学生的不同专业背景进行其专业领域的应用实践教学。一方面扩大学生的知识面、紧跟科学技术前沿,了解生物信息学在当前临床诊断和治疗中的应用,另一方面提高学生的实践分析能力,只有这样才能使得临床和科研相结合,互相促进,推动进步。

参考文献:

[1]NIH生物信息学定义委员会.NIH working definition of bioinformatics and computational biology [EB/OL].2000-7-17/2008-517.

[2]Reuter,J.A.,et al.High-throughput sequencing technologies.Mol Cell 2015,58(4):586-597.

[3]赵方庆,方向东,李亦学.转化生物信息学研究前沿及挑战[J].遗传,2015,37(7):619-620.

[4]郭丽,赵杨,柏建岭,于浩,陈峰.医学院校生物统计学专业生物信息学教学探索[J].南京医科大学学报,2013,13(5):101-104.

[5]田李,张颖,赵云峰.新一代测序技术的发展和应用[J].生物技术通报,2015,31(11):1-8

Research of Bioinformatics Teaching in Medical Related Majors

LI Yan,ZHAO Xiao-jie

(School of Basic Medical Sciences,Nanjing Medical University,Nanjing,Jiangsu 211166,China)

Abstract:Bioinformatics is developing a new cross-cutting subject,and the teaching of bioinformatics has not formed system.The article explore optimization of bioinformatics teaching contents and method for the medical related majors,and also discussed that bioinformatics is widely used in clinical medicine.

生物信息学的方法篇6

关键词 创新;信息增殖;信息运动;信息空间;产品设计

中图分类号TP39 文献标识码A 文章编号 1674-6708(2011)57-0200-02

对创新过程和创新方法的研究已有诸如行为科学、思维科学等多种视角[1-5],本文所运用的是信息的视角。

1从信息的视角审视创新过程

任何事物与反映该事物属性的信息之间都具有相互对应的关系。

人们是通过获得反映客观外界事物的信息,而得到对外界事物的认识的――在创新活动中获得新的发现、解释事物之间前所未知的新的联系、修正旧的“定律”、总结出新的规律等等,就是通过试验、观测、统计、分析,而获得了此前人们未知的新信息。

同样,人们也是通过生发出的关于未曾有过的新事物的信息,而创造出新事物的――首先要在头脑中生发出前所未有的事物的信息和能使该新事物得以实现的信息,然后根据这些关于新事物的信息,在物质世界中使新事物的出现成为现实。

可见,不论是提出新的发现,还是搞出新的发明,或是做出新的改进,任何创新活动都伴随着相应的信息发现、信息采集、信息处理和信息的加工生产过程。

因此,研究创新过程、创新方法,很有必要再开辟一个新的视角――信息的视角。运用该视角,可以从信息的层面揭示创新过程和创新活动的规律,通过研究信息在信息空间中运动、传递、转化、增殖的规律,梳理现有的各种创新方法、构筑创新方法框架,为创造学研究和创新方法研究增加一条新的途径。

2 创新过程是信息的增值过程

无论是技术经济学意义上的创新[6],还是作为技术创新源头的知识创新,乃至更广义的文化艺术领域的创新,创新活动所得出的新发现、新规律、新见解、新决策、新方案、新产品(不仅限于物质产品,同样包括文化产品)、新技术、新工艺、新材料、新结构、新机构、新机制、新体系、新组织、新途径、新改进等等,都是前所未有的新事物,它们的出现都是经历了一个从无到有的过程。

如本文上一段所述,任何事物与反映该事物属性的信息之间都具有相互对应的关系,因此,上述事物所经历的从无到有的过程,必然对应着关于上述新事物的信息的从无到有的过程――信息的从无到有的增殖过程。任何创新都对应着信息的增殖,且由信息的增殖作为先导。

只要是创新活动(不论创新活动的参与者是个体或群体的,即使是有计算机辅助的),就都贯穿着在参与者头脑中进行的一系列得以生发出有创意的新信息的智力活动。

产生创意是创新过程的开端。创意是创新活动参与者的头脑中产生的新的思想火花、新的念头、新的设想,它们都是创新参与者头脑中的信息加工厂在原有信息的基础上增殖出的新信息。

在人的头脑中进行的得以生发出有创意的新信息的智力活动过程就是信息的加工生产过程,这个过程贯穿于创新过程的始终。不仅创意产生于信息的增殖,而且创意也落实于信息的增殖。创意所包含的仅仅是新念头、新设想的信息,仅有这些信息尚不足以使之得到落实,尚不足以实现一项“创造”。所谓创造,是要制造出有形的物质实体(或具体的事物)以体现和承载新设想的灵魂。创造的进一步落实,就是让创造的成果产生经济效益和社会效益,实现经济学意义上的创新目标。为此,需要有伴随着从创意到创造、从创造到经济学意义上的创新的一系列信息增殖过程作为落实创意的保证。

总之,创新的过程贯穿着利用已知信息生产前所未有的新信息的过程,贯穿着对那些尚不掌握其全部信息但要把它创造出来的事物,进行信息求解的过程。人们在创新过程中利用头脑加工厂增殖出新的信息(新的知识)破解未知事物的规律,设想出新事物应具备的新的属性,并设想出让具备新属性的事物得以实现的方法。

3信息增殖在信息运动中实现

信息是可以流通、传递的,是可以组合、融合的,也是可以分解和转化的。信息的流通、传递、组合、融合、分解、转化,可以产生新的信息,实现信息的增殖。信息在静止的状态是不可能实现增殖的。

信息的运动路线既有看上去是连贯的,也有看上去是跳跃或间断的;既有沿直线行进的,也有沿曲线行进的;既有单向的,有多向的;既有正向的,也有反向的。既有多路向单路的汇合,又有单路向多路的分叉。既有单一的一种形式的运动路线,又有上述多种路线的组合。

信息运动路线的多样性,确定了信息增值方法途径的多样性――既确定了创新方法的多样性,也确定了创新成果的多样性。

因此,研究信息的增殖必须研究信息的运动方式、方向、路线,以及不同方向路线间的衔接、转化和匹配。

4信息运动依信息空间而拓展

在创新过程中,从某已知事物的信息作为信息运动的起点,将该已知信息向其他已知信息延伸搭接交汇,交合增殖为新的信息,并形成新的信息通路,从而使得原先看上去走不通的路走通,原先看上去做不成的事做成,原先不存在的事物诞生。

在一维空间,在头脑的信息加工厂中所加工的信息只能“跑直趟”;在二维空间,头脑的信息加工厂中所加工的信息便能突破“跑直趟”的束缚,可以在两个关注因素之间作平面曲线运动,但仍然受到局限――那些在三维空间本来可以连贯通畅的信息运动路线,对于二维的空间平面而言,则只能是间断的、跳跃性的,不通畅的。

在创新过程中,人们视野的拓展、学科领域界限的突破、对旧有陈规陋习的突破、增加可借鉴事物所属领域的跨度等等,无疑都属于对信息运动空间维度的拓展。信息运动的自由度依信息空间维度的拓展而增加。信息运动的自由度大了,信息增殖的途径就会增多,进而信息增殖的品种就会增多,从众多信息增殖产品中择优的质量就会更高――创新成果的产量和质量都会提高。

5在信息空间中梳理创新方法

基于信息的视角,在多维信息空间,研究信息沿不同路线运动所形成的不同增殖过程,有利于对现有众多不同类型的创新方法加以梳理,使之系统化、条理化,在此基础上构建起创新方法体系框架,有利于从事创新活动的人员学习、掌握、运用、发挥,并进一步进行创新方法的创新。

目前分别发表于各种书刊杂志、会议论文集中的创新方法有数十种,它们分属于发明原理、思维方法、操作技法和技巧、工作过程或步骤、个案成功经验总结、群体的组织管理方法等不同范畴、领域、层面;其中有的是着眼于从事创新的人,有的则又是着眼于被变革的事物,且不同名称的方法之间出现内容或案例的重叠交叉。这对于学习创新方法的人们而言,增加了学习和掌握的难度。在信息空间中梳理创新方法,正是在这种需求背景下提出的[7]。

笔者曾于2008年在中国发明学会高校创造教育分会举办的中国高校创造教育论坛上,对于从信息视角梳理出的创新方法分类脉络,以及在此分类脉络基础上构筑的信息增值方法体系框架雏形,曾作过简要介绍[8](限于篇幅本文不再赘述),本文则是着重于从理论基础层面进一步阐述研究创新方法的信息视角及其意义、阐述信息在信息空间中运动的概念及信息运动路线对信息增值的影响,旨在为进一步完善和充实信息增值方法体系框架,为派生出针对产品设计创新的方法体系框架,在产品设计创新领域推广应用,提供理论依据。

参考文献

[1]贺善侃.论创新思维的形式及在科学创造中的作用[J].杭州师范大学学报:社会科学版,2010(6):13-18.

[2]钱学森.给“非理性及其研究的可能性”一文作者的信[Z].中国社会科学,1993(6):56.

[3]钱学森.关于形象思维问题的一封信[J].中国社会科学,1980(6):66.

[4]庄寿强.论行为创造学中的新观点[J].发明与创新(综合版),2007(11):19-21.

[5]庄寿强.行为学派创造学理论体系的形成[J].发明与创新,2004(6):10-11.

[6]许家梁.开发信息资源为技术创新服务[J].津图学刊,2001(1):22-25.

[7]许翰锐.关于在高校开展创新素质教育的探讨.//中国创造学会等合编.国际创造学学术讨论会论文集[M].北京:中国科学技术出版社,2006:234-236.

生物信息学的方法篇7

关键词: 生物信息学 农业研究领域 应用

“生物信息学”是英文单词“Bioinformatics”的中文译名,其概念是1956年在美国田纳西州Gatlinburg召开的“生物学中的信息理论”讨论会上首次被提出的[1],由美国学者Lim在1991年发表的文章中首次使用。生物信息学自产生以来,大致经历了前基因组时代、基因组时代和后基因组时代三个发展阶段[2]。2003年4月14日,美国人类基因组研究项目首席科学家Collins F博士在华盛顿隆重宣布人类基因组计划(Human Genome Project,HGP)的所有目标全部实现[3]。这标志着后基因组时代(Post Genome Era,PGE)的来临,是生命科学史中又一个里程碑。生物信息学作为21世纪生物技术的核心,已经成为现代生命科学研究中重要的组成部分。研究基因、蛋白质和生命,其研究成果必将深刻地影响农业。本文重点阐述生物信息学在农业模式植物、种质资源优化、农药的设计开发、作物遗传育种、生态环境改善等方面的最新研究进展。

1.生物信息学在农业模式植物研究领域中的应用

1997年5月美国启动国家植物基因组计划(NPGI),旨在绘出包括玉米、大豆、小麦、大麦、高粱、水稻、棉花、西红柿和松树等十多种具有经济价值的关键植物的基因图谱。国家植物基因组计划是与人类基因组工程(HGP)并行的庞大工程[4]。近年来,通过各国科学家的通力合作,植物基因组研究取得了重大进展,拟南芥、水稻等模式植物已完成了全基因组测序。人们可以使用生物信息学的方法系统地研究这些重要农作物的基因表达、蛋白质互作、蛋白质和核酸的定位、代谢物及其调节网络等,从而从分子水平上了解细胞的结构和功能[5]。目前已经建立的农作物生物信息学数据库研究平台有植物转录本(TA)集合数据库TIGR、植物核酸序列数据库PlantGDB、研究玉米遗传学和基因组学的MazeGDB数据库、研究草类和水稻的Gramene数据库、研究马铃薯的PoMaMo数据库,等等。

2.生物信息学在种质资源保存研究领域中的应用

种质资源是农业生产的重要资源,它包括许多农艺性状(如抗病、产量、品质、环境适应性基因等)的等位基因。植物种质资源库是指以植物种质资源为保护对象的保存设施。至1996年,全世界已建成了1300余座植物种质资源库,在我国也已建成30多座作物种质资源库。种质入库保存类型也从单一的种子形式,发展到营养器官、细胞和组织,甚至DN段等多种形式。保护的物种也从有性繁殖植物扩展到无性繁殖植物及顽拗型种子植物等[6]。近年来,人们越来越多地应用各种分子标记来鉴定种质资源。例如微卫星、AFLP、SSAP、RBIP和SNP等。由于对种质资源进行分子标记产生了大量的数据,因此需要建立生物信息学数据库和采用分析工具来实现对这些数据的查询、统计和计算机分析等[7]。

3.生物信息学在农药设计开发研究领域中的应用

传统的药物研制主要是从大量的天然产物、合成化合物,以及矿物中进行筛选,得到一个可供临床使用的药物要耗费大量的时间与金钱。生物信息学在药物研发中的意义在于找到病理过程中关键性的分子靶标、阐明其结构和功能关系,从而指导设计能激活或阻断生物大分子发挥其生物功能的治疗性药物,使药物研发之路从过去的偶然和盲目中找到正确的研发方向。生物信息学为药物研发提供了新的手段[8,9],导致了药物研发模式的改变[10]。目前,生物信息学促进农药研制已有许多成功的例子。Itzstein等设计出两种具有与唾液酸酶结合化合物:4-氨基-Neu5Ac2en和4-胍基-Neu5Ac2en。其中,后者是前者与唾液酸酶的结合活性的250倍[11]。目前,这两种新药已经进入临床试验阶段。TANG SY等学者研制出新一代抗AIDS药物saquinavir[12]。Pungpo等已经设计出几种新型高效的抗HIV-1型药物[13]。杨华铮等人设计合成了十多类数百个除草化合物,经生物活性测定,部分化合物的活性已超过商品化光合作用抑制剂的水平[14]。

现代农药的研发已离不开生物信息技术的参与,随着生物信息学技术的进一步完善和发展,将会大大降低药物研发的成本,提高研发的质量和效率。

4.生物学信息学在作物遗传育种研究领域中的应用

随着主要农作物遗传图谱精确度的提高,以及特定性状相关分子基础的进一步阐明,人们可以利用生物信息学的方法,先从模式生物中寻找可能的相关基因,然后在作物中找到相应的基因及其位点。农作物的遗传学和分子生物学的研究积累了大量的基因序列、分子标记、图谱和功能方面的数据,可通过建立生物信息学数据库来整合这些数据,从而比较和分析来自不同基因组的基因序列、功能和遗传图谱位置[15]。在此基础上,育种学家就可以应用计算机模型来提出预测假设,从多种复杂的等位基因组合中建立自己所需要的表型,然后从大量遗传标记中筛选到理想的组合,从而培育出新的优良农作物品种。

5.生物信息学在生态环境平衡研究领域中的应用

在生态系统中,基因流从根本上影响能量流和物质流的循环和运转,是生态平衡稳定的根本因素。生物信息学在环境领域主要应用在控制环境污染方面,主要通过数学与计算机的运用构建遗传工程特效菌株,以降解目标基因及其目标污染物为切入点,通过降解污染物的分子遗传物质核酸 DNA,以及生物大分子蛋白质酶,达到催化目标污染物的降解,从而维护空气[16]、水源、土地等生态环境的安全。

美国农业研究中心(ARS) 的农药特性信息数据库(PPD) 提供 334 种正在广泛使用的杀虫剂信息,涉及它们在环境中转运和降解途径的16种最重要的物化特性。日本丰桥技术大学(Toyohashi University of Technology) 多环芳烃危险性有机污染物的物化特性、色谱、紫外光谱的谱线图。美国环保局综合风险信息系统数据库(IRIS) 涉及 600种化学污染物,列出了污染物的毒性与风险评价参数,以及分子遗传毒性参数[17]。除此之外,生物信息学在生物防治[18]中也起到了重要的作用。网络的普及,情报、信息等学科的资源共享,势必会创造出一个环境微生物技术信息的高速发展趋势。

6.生物信息学在食品安全研究领域中的应用

食品在加工制作和存储过程中各种细菌数量发生变化,传统检测方法是进行生化鉴定,但所需时间较长,不能满足检验检疫部门的要求,运用生物信息学方法获得各种致病菌的核酸序列,并对这些序列进行比对,筛选出用于检测的引物和探针,进而运用PCR法[19]、RT-PCR法、荧光RT-PCR法、多重PCR[20]和多重荧光定量PCR等技术,可快速准确地检测出细菌及病毒。此外,对电阻抗、放射测量、ELISA法、生物传感器、基因芯片等[21-25]技术也是未来食品病毒检测的发展方向。

转基因食品检测是通过设计特异性的引物对食品样品的DNA提取物进行扩增,从而判断样品中是否含有外源性基因片段[26]。通过对转基因农产品数据库信息的及时更新,可准确了解各国新出现和新批准的转基因农产品,便于查找其插入的外源基因片段,以便及时对检验方法进行修改。目前由于某些通过食品传播的病毒具有变异特性,以及检测方法的不完善等因素影响,生物信息学在食品领域的应用还比较有限,但随着食品安全检测数据库的不断完善,相信相关的生物信息学技术将在食品领域发挥越来越重要的作用。

生物信息学广泛用于农业科学研究的各个领域,但是仅有信息资源是不够的,选出符合自己需求的生物信息就需要情报部门,以及信息中介服务机构提供相关服务,通过出版物、信息共享平台、数字图书馆、电子论坛等信息媒介的帮助,科研工作者可快速有效地找到符合需要的信息。目前我国生物信息学发展还很不均衡,与国际前沿有一定差距,这需要从事信息和科研的工作者们不断交流,使得生物信息学能够更好地为我国农业持续健康发展发挥作用。

参考文献:

[1]Yockey HP,Platzman RP,Quastler H.Symposium on Information.Theory in Biology.Pergamon Press,New York,London,1958.

[2]郑国清,张瑞玲.生物信息学的形成与发展[J].河南农业科学,2002,(11):4-7.

[3]骆建新,郑崛村,马用信等.人类基因组计划与后基因组时代.中国生物工程杂志,2003,23,(11):87-94.

[4]曹学军.基因研究的又一壮举――美国国家植物基因组计划[J].国外科技动态,2001,1:24-25.

[5]MICHAEL B.Genomics and plantcells:application ofgenomics strategies to arabidopsis cellbiology[J].PhilosTransR Soc Lond B Bio Sci,2002,357(1422):731-736.

[6]卢新雄.植物种质资源库的设计与建设要求[J].植物学通报,2006,23,(1):119-125.

[7]GUY D,NOEL E,MIKE A.Using bioinformatics to analyse germplasm collections [J].Springer Netherlands,2004:39-54.

[8]郑衍,王非.药物生物信息学,化学化工出版社,2004.1:214-215.

[9]俞庆森,邱建卫,胡艾希.药物设计.化学化工出版社,2005.1:160-164.

[10]Austen M,Dohrmann C.Phenotype―first screening for the identification of novel drug targets.Drug Discov Today,2005,10,(4):275-282.

[11]ARUN AGRAWAL,ASHWINI CHHATRE.State involvement and forest cogovernance:Evidence from the IndianHmi alayas.StComp International Developmen.t Sep 2007:67-86.

[12]TANG SY.Institutionsand collective action:Self-governance in irrigation [M].San Francisco,CA:ICSPress,1999.

[13]PUNGPO P,SAPARPAKORN P,WOLSCHANN P,et a.l Computer-aided moleculardesign of highly potentHIV-1 RT inhibitors:3D QSAR and moleculardocking studies of efavirenz derivatives[J].SAR QSAR EnvironRes,2006,17,(4):353-370.

[14]杨华铮,刘华银,邹小毛等.计算机辅助设计与合成除草剂的研究[J].计算机与应用化学,1999,16,(5):400.

[15]VASSILEV D,LEUNISSEN J,ATANASSOV A.Application of bioinformatics in plant breeding[J].Biotechnology & Biotechnological Equipment,2005,3:139-152.

[16]王春华,谢小保,曾海燕等.深圳市空气微生物污染状况监测分析[J].微生物学杂志,2008,28,(4):93-97.

[17]程树培,严峻,郝春博等.环境生物技术信息学进展[J].环境污染治理技术与设备,2002,3,(11):92-94.

[18]史应武,娄恺,李春.植物内生菌在生物防治中的应用[J].微生物学杂志,2009,29,(6):61-64.

[19]赵玉玲,张天生,张巧艳.PCR 法快速检测肉食品污染沙门菌的实验研究[J].微生物学杂志,2010,30,(3):103-105.

[20]徐义刚,崔丽春,李苏龙等.多重PCR方法快速检测4种主要致腹泻性大肠埃希菌[J].微生物学杂志,2010,30,(3) :25-29.

[21]索标,汪月霞,艾志录.食源性致病菌多重分子生物学检测技术研究进展[J].微生物学杂志,2010,30,(6):71-75

[22]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[J].重庆医学,2010,(22):3128-3131.

[23]陈彦闯,辛明秀.用于分析微生物种类组成的微生物生态学研究方法[J].微生物学杂志,2009,29,(4):79-83.

[24]王大勇,方振东,谢朝新等.食源性致病菌快速检测技术研究进展[J].微生物学杂志,2009,29,(5):67-72.

[25]苏晨曦,潘迎捷,赵勇等.疏水网格滤膜技术检测食源性致病菌的研究进展[J].微生物学杂志,2010,30,(6):76-81.

[26]饶红,冯骞,傅浦溥等.生物信息学与食品安全检测[J].中国卫生检验杂志,2006,16,(6):767-768.

生物信息学的方法篇8

    论文摘要:本文从信息的视角审视创新过程,认为:创新过程是信息的增值过程,信息增殖在信息运动中实现,信息运动依信息空间而拓展,并提出以此为基础在信息空间中梳理创新方法有助于构筑一种较为清晰的创新方法体系框架,在产品设计创新领域将会有较好的应用前景。 

对创新过程和创新方法的研究已有诸如行为科学、思维科学等多种视角[1-5],本文所运用的是信息的视角。 

1从信息的视角审视创新过程 

任何事物与反映该事物属性的信息之间都具有相互对应的关系。 

人们是通过获得反映客观外界事物的信息,而得到对外界事物的认识的——在创新活动中获得新的发现、解释事物之间前所未知的新的联系、修正旧的“定律”、总结出新的规律等等,就是通过试验、观测、统计、分析,而获得了此前人们未知的新信息。 

同样,人们也是通过生发出的关于未曾有过的新事物的信息,而创造出新事物的——首先要在头脑中生发出前所未有的事物的信息和能使该新事物得以实现的信息,然后根据这些关于新事物的信息,在物质世界中使新事物的出现成为现实。 

可见,不论是提出新的发现,还是搞出新的发明,或是做出新的改进,任何创新活动都伴随着相应的信息发现、信息采集、信息处理和信息的加工生产过程。 

因此,研究创新过程、创新方法,很有必要再开辟一个新的视角——信息的视角。运用该视角,可以从信息的层面揭示创新过程和创新活动的规律,通过研究信息在信息空间中运动、传递、转化、增殖的规律,梳理现有的各种创新方法、构筑创新方法框架,为创造学研究和创新方法研究增加一条新的途径。 

2 创新过程是信息的增值过程 

无论是技术经济学意义上的创新[6],还是作为技术创新源头的知识创新,乃至更广义的文化艺术领域的创新,创新活动所得出的新发现、新规律、新见解、新决策、新方案、新产品(不仅限于物质产品,同样包括文化产品)、新技术、新工艺、新材料、新结构、新机构、新机制、新体系、新组织、新途径、新改进等等,都是前所未有的新事物,它们的出现都是经历了一个从无到有的过程。 

如本文上一段所述,任何事物与反映该事物属性的信息之间都具有相互对应的关系,因此,上述事物所经历的从无到有的过程,必然对应着关于上述新事物的信息的从无到有的过程——信息的从无到有的增殖过程。任何创新都对应着信息的增殖,且由信息的增殖作为先导。 

只要是创新活动(不论创新活动的参与者是个体或群体的,即使是有计算机辅助的),就都贯穿着在参与者头脑中进行的一系列得以生发出有创意的新信息的智力活动。 

产生创意是创新过程的开端。创意是创新活动参与者的头脑中产生的新的思想火花、新的念头、新的设想,它们都是创新参与者头脑中的信息加工厂在原有信息的基础上增殖出的新信息。 

在人的头脑中进行的得以生发出有创意的新信息的智力活动过程就是信息的加工生产过程,这个过程贯穿于创新过程的始终。不仅创意产生于信息的增殖,而且创意也落实于信息的增殖。创意所包含的仅仅是新念头、新设想的信息,仅有这些信息尚不足以使之得到落实,尚不足以实现一项“创造”。所谓创造,是要制造出有形的物质实体(或具体的事物)以体现和承载新设想的灵魂。创造的进一步落实,就是让创造的成果产生经济效益和社会效益,实现经济学意义上的创新目标。为此,需要有伴随着从创意到创造、从创造到经济学意义上的创新的一系列信息增殖过程作为落实创意的保证。 

总之,创新的过程贯穿着利用已知信息生产前所未有的新信息的过程,贯穿着对那些尚不掌握其全部信息但要把它创造出来的事物,进行信息求解的过程。人们在创新过程中利用头脑加工厂增殖出新的信息(新的知识)破解未知事物的规律,设想出新事物应具备的新的属性,并设想出让具备新属性的事物得以实现的方法。 

3信息增殖在信息运动中实现 

信息是可以流通、传递的,是可以组合、融合的,也是可以分解和转化的。信息的流通、传递、组合、融合、分解、转化,可以产生新的信息,实现信息的增殖。信息在静止的状态是不可能实现增殖的。 

信息的运动路线既有看上去是连贯的,也有看上去是跳跃或间断的;既有沿直线行进的,也有沿曲线行进的;既有单向的,有多向的;既有正向的,也有反向的。既有多路向单路的汇合,又有单路向多路的分叉。既有单一的一种形式的运动路线,又有上述多种路线的组合。 

信息运动路线的多样性,确定了信息增值方法途径的多样性——既确定了创新方法的多样性,也确定了创新成果的多样性。 

因此,研究信息的增殖必须研究信息的运动方式、方向、路线,以及不同方向路线间的衔接、转化和匹配。 

4信息运动依信息空间而拓展 

在创新过程中,从某已知事物的信息作为信息运动的起点,将该已知信息向其他已知信息延伸搭接交汇,交合增殖为新的信息,并形成新的信息通路,从而使得原先看上去走不通的路走通,原先看上去做不成的事做成,原先不存在的事物诞生。 

在一维空间,在头脑的信息加工厂中所加工的信息只能“跑直趟”;在二维空间,头脑的信息加工厂中所加工的信息便能突破“跑直趟”的束缚,可以在两个关注因素之间作平面曲线运动,但仍然受到局限——那些在三维空间本来可以连贯通畅的信息运动路线,对于二维的空间平面而言,则只能是间断的、跳跃性的,不通畅的。 

在创新过程中,人们视野的拓展、学科领域界限的突破、对旧有陈规陋习的突破、增加可借鉴事物所属领域的跨度等等,无疑都属于对信息运动空间维度的拓展。信息运动的自由度依信息空间维度的拓展而增加。信息运动的自由度大了,信息增殖的途径就会增多,进而信息增殖的品种就会增多,从众多信息增殖产品中择优的质量就会更高——创新成果的产量和质量都会提高。 

5在信息空间中梳理创新方法 

基于信息的视角,在多维信息空间,研究信息沿不同路线运动所形成的不同增殖过程,有利于对现有众多不同类型的创新方法加以梳理,使之系统化、条理化,在此基础上构建起创新方法体系框架,有利于从事创新活动的人员学习、掌握、运用、发挥,并进一步进行创新方法的创新。 

目前分别发表于各种书刊杂志、会议论文集中的创新方法有数十种,它们分属于发明原理、思维方法、操作技法和技巧、工作过程或步骤、个案成功经验总结、群体的组织管理方法等不同范畴、领域、层面;其中有的是着眼于从事创新的人,有的则又是着眼于被变革的事物,且不同名称的方法之间出现内容或案例的重叠交叉。这对于学习创新方法的人们而言,增加了学习和掌握的难度。在信息空间中梳理创新方法,正是在这种需求背景下提出的[7]。 

笔者曾于2008年在中国发明学会高校创造教育分会举办的中国高校创造教育论坛上,对于从信息视角梳理出的创新方法分类脉络,以及在此分类脉络基础上构筑的信息增值方法体系框架雏形,曾作过简要介绍[8](限于篇幅本文不再赘述),本文则是着重于从理论基础层面进一步阐述研究创新方法的信息视角及其意义、阐述信息在信息空间中运动的概念及信息运动路线对信息增值的影响,旨在为进一步完善和充实信息增值方法体系框架,为派生出针对产品设计创新的方法体系框架,在产品设计创新领域推广应用,提供理论依据。 

 

 

参考文献: 

[1]贺善侃.论创新思维的形式及在科学创造中的作用[j].杭州师范大学学报:社会科学版,2010(6):13-18. 

[2]钱学森.给“非理性及其研究的可能性”一文作者的信[z].中国社会科学,1993(6):56. 

[3]钱学森.关于形象思维问题的一封信[j].中国社会科学,1980(6):66. 

[4]庄寿强.论行为创造学中的新观点[j].发明与创新(综合版),2007(11):19-21. 

[5]庄寿强.行为学派创造学理论体系的形成[j].发明与创新,2004(6):10-11. 

[6]许家梁.开发信息资源为技术创新服务[j].津图学刊,2001(1):22-25. 

[7]许翰锐.关于在高校开展创新素质教育的探讨.//中国创造学会等合编.国际创造学学术讨论会论文集[m].北京:中国科学技术出版社,2006:234-236. 

上一篇:地下水特点范文 下一篇:对知识产权保护的认识范文