开关电源的设计与制作范文

时间:2023-12-06 18:11:19

开关电源的设计与制作

开关电源的设计与制作篇1

>> GIS开关油压监控系统硬件电路设计 基于小型高效直流开关电源的控制电路设计 针对反激式开关电源箝位电路设计分析 电路设计与开关 开关电源设计 开关电源系统稳定性补偿电路的设计 开关电源无源PFC电路优化设计探析 开关电源电路分析与技术改进 硬件电路设计流程与方法 开关电源模块并联供电系统设计 超声波导盲系统硬件电路设计 MPEG-4的解码系统硬件电路设计 网络型停车场控制系统硬件电路设计与实现 基于M51995A开关电源保护电路的设计 开关电源并联均流系统 数字机开关电源输出电路检修方法与实例 基于反激式开关电源电路实现与测试分析 开关电源EMC设计实例 通用开关电源的设计 开关电源电磁兼容设计 常见问题解答 当前所在位置:

关键词:开关电源;UCC3895;测控系统

DOI: 10.3969/j.issn.1005-5517.2013.10.012

引言

大中功率直流开关电源一般采用移相全桥DC/DC变换器 。实现全桥变换器的移相控制主要有以下三种方法:(1)采用分立器件进行逻辑组合;(2)采用DSP或CPLD实现数字控制;(3)采用专用集成控制芯片 。采用分立器件进行逻辑组合构成的模拟控制电路结构复杂,不利于开关电源小型化;采用DSP或CPLD实现数字控制的成本较高,且存在数字电路延迟;采用专用的集成控制芯片电路简单且成本较低。第三种方法中可以采用UCC3895芯片来产生PWM控制波形,UCC3895是一款优良的移相全桥控制芯片,有电压和电流两种控制模式,占空比可从0%~100%, 且可以为零电压开关(ZVS)提供高效高频的解决方案。国内外常用的移相全桥反馈模式为电流模式 ,但其双闭环控制电路复杂,不易实现。

由于单电压环反馈模式简单有效的优点,本文基于UCC3895移相全桥控制芯片采用单电压环加限流环的反馈模式和单片机相结合设计了直流开关电源数字模拟混合测控系统,详细设计了闭环系统、控制器参数、保护电路,显示电路,调压电路,并对测控系统进行了实验。

系统方案

采用应用广泛的TI公司生产的UCC3895芯片与单片机相结合的方案设计了直流开关电源数字模拟混合测控系统。如图1所示,利用UCC3895对DC/DC变化器主电路进行PWM移相控制,并与单片机相结合来实现对主电路的检测与反馈控制,以及输出过压,过流,过温等保护。其中,所选单片机型号为美国微芯公司生产的PIC16F873单片机。PIC16F873共28个引脚,内部自带5个10位A/D通道,2个定时计数器,2个脉宽调制(PWM)通道。

UCC3895电路设计

如图4所示,UCC3895的EAN脚为内部误差放大器反相输入端,E A O U T脚为误差放大器输出端,R 3、R 4、R 6、C 1、C 2、C 3构成了闭环控制系统的电压调节器,输出电压Vo经过电阻分压接到电压调节器反相输入端构成反馈电压,改变可调电阻R2的值可以改变电源输出电压。RT、CT可以实现开关频率的设定,A D S脚为自适应延迟死区时间设置端,接地表示输出延迟死区时间设为最大。限流调节器输出端也接到UCC3895的EAOUT脚,故障保护电路接到CS脚实现电源系统的故障保护功能。

故障保护电路设计

UCC3895的CS脚有过流保护功能,当CS脚电压高于2.5V时,UCC3895芯片将会被软关断,驱动脉冲被封锁,CS脚低于2.5V,芯片将进入下一个软启动过程。如图5所示,保护电路的设计就是基于CS脚的过流保护功能,正常情况下保护电路的输出为低电平,一旦出现输出过压、过流、过温等故障,相应的电压比较器输出高电平,同时故障信号被单片机检测,通过单片机数字控制也可使电压比较器输出为高电平,开关管T1导通,输出一个高于2.5V的高电平至CS脚,使芯片封锁驱动信号,从而使主电路停止工作,实现电源系统的数字模拟双重保护功能。

限流值可调的限流环电路设计

单片机与电路设计

单片机部分电路和电源状态显示电路分别如图7和图8所示。单片机部分引脚功能分配如下:AN0脚是限流信号检测,AN1脚是输出电压检测,AN2脚是输出电流检测,AN4脚是温度检测,其中AN0、AN1、AN2、AN4脚均为A/D转换端口。CCP2脚(PWM端口)提供可调的限流调节器的限流参考值,CCP1脚(PWM端口)提供可调的电压调节器的输出电压参考值,SCK、SDO、RB4脚用于电源状态显示,RB1脚(I/ O口)为单片机数字控制。单片机通过SPI(同步串行通讯)向移位寄存器SN74HC164发送电源当前工作状态数据,由移位寄存器把串行数据转换为并行数据并输出给显示模块。单片机RB4脚(I/O口)控制发光二极管的供电电压,在刚开机还没有采集工作状态之前,保证所有二极管不工作。单片机SCK(时钟)脚接在三个移位寄存器的脉冲输入口(CLK)作为脉冲输入。单片机SDO(SPI通讯数据输出)脚接到移位寄存器的数据输入口(A、B脚),并把三个移位寄存器接到一起串联使用。通过数码管实时显示输出电流值,通过4个LED灯图11 突加突减负载电压波形的亮灭表示电源当前的工作状态,其中发光二极管D4(绿灯)灯亮表示电源正常工作,D3(红灯)灯亮表示输出过压故障,D2(红灯)灯亮表示输出限流,D1(红灯)灯亮表示过温故障。

调压电路设计

单片机CCP1脚为PWM波端口,可以通过调节PWM波的占空比产生不同的电压。如图9所示,PWM信号经过滤波电路由数字量转变为模拟量输入到由运放5构成的电压跟随器进行缓冲与隔离,该模拟电压与参考电压VDD叠加构成分压电路,分压信号输入到由运放6构成的电压跟随器正向输入端。输出端经过滤波电路接到UCC3895芯片电压调节器参考电压端(EAP)。改变CCP1的PWM波占空比即可调整电压调节器参考电压,进而改变电源输出电压。图中由R2、R3、R4构成的分压电路可以设定PWM占空比为最低时电压调节器参考电压的最低值,保证电源电压的最低输出。可调电阻R2的作用是调节电压调节器参考电压的范围,改变R2的值,在输出占空比范围不变的情况下,输出参考电压的范围可以进行调整,进而改变电源输出电压的范围。图12 过载限流波形

实验及结果

图10是直流开关电源上电输出电压瞬态波形,上电输出瞬态电压的超调量为1.1%,调整时间为50ms,稳态误差为0.5V。图11是直流开关电源突加突减负载输出电压瞬态波形,突加突减负载输出瞬态电压的恢复时间为30ms,电压动态降落为22%。图12是突加过载限流波形,过流后限流环起作用,通过调节输出电压,使得电流很快限制在限流值上。

由实验波形可知开关电源数模混合测控系统方案可行,调节器参数选取合理,系统的动静态性能和抗扰性能良好。

开关电源的设计与制作篇2

【关键词】可编程控制器;PLC技术;智能开关;低压双电源

0.前言

传统的双电源自动转换双电源线路主要是通过集成多种继电器、接触器、开关等,按照特设的逻辑顺序进行相关的转换,在工作时,传统的转换器安全性差、结构复杂、安装困难、维护工作量较大,为其发展带来了极大的影响,同时因为诸多外借因素的影响,传统的电源转换器逐渐被市场淘汰,越来越多的建筑设施和工业设备采用PLC智能转换器。

PLC智能开关就是在工业环境下应用而升级的数字运算操作电子装置。它主要代替继电器实现逻辑控制,同时随着技术的发展,这种采用微型计算机技术的工业控制装置的功能已经大大超过了逻辑控制的范围,因此在市场上占有份额越来越大,将逐步取代传统的控制系统进行更科学有效的控制。

1.双电源电路工作要求及实现环境的设计

双电源本质上就是一种由微处理器控制,用于电网系统中网电与网电或网电与发电机电源启动切换的装置,可使电源连续源供电。当常用电突然故障或停电时,通过双电源切换开关,自动投入到备用电源上,使设备仍能正常运行。最常见的是电梯、消防、监控上。在双电源线路的实现过程中,主要是市供电和机械发电之间的转换,转换之后要及时调整电压、频率等参数,同时双电源中作线路中要有及时有效设备的控制和相应的人力检测,保障供电的安全可靠。

2.可编程控制器(PLC)的工作原理

PLC是一种专门在工业环境下应用而设计的数字运算操作的电子装置。它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。PLC及其有关的设备都应按照易于与工业控制系统形成一个整体,易于扩展其功能的原则而设计。

在PLC投入运行的时候。其工作过程主要分为三段:输入采样、用户程序执行、输出刷新。完成这单个步骤就是完成一个扫描周期。

输入采样就是PLC以扫描方式依次的读入所有输入状态和数据,并将它们存入特定的I/O映象区中的相应的单元内,输入采样结束后,就转入用户程序执行和输出刷新阶段,这时输入状态数据进行运算和处理,原始的I/O映象区的数据不发生改变。

用户程序执行阶段就是PLC按照其设定的顺序对用户程序进行系统性扫描和逻辑运算,根据逻辑运算结果,PLC自动刷新逻辑线圈在RAM存储区中对应位的状态,或者是发出指令,控制设备自动进行工作和生产。

当扫描用户程序结束后,PLC就进入输出刷新阶段。在此期间,CPU按照I/O映象区内对应的状态和数据刷新所有的输出锁存电路,再经输出电路驱动相应的外设。这才是PLC的真正输出。

综合来看,PLC同传统的转换设备相比其功能更加完善,组合灵活,扩展方便,实用性强,同时用户程序编制简单,系统开发周期短,现场可以调试;相对与环境来说,PLC技术对环境要求低,抗干扰能力强,易学易用。

3.PLC低压双电源智能开关的实现和应用

PLC主要面向工业化生产,控制主要用于三相交流供配电控制。与传统的智能开关相比,PLC低压双电源智能开关有缺相保护功能,在发生缺相的时候,可以有效的控制电源切断,同时还可以在系统电源恢复时进行反切,有效保护了电路和生产设备,PLC应用时还可以有效避免构件的耗损率,减少成本的开支和资源的浪费。

系统方案的确定,PLC双电源在工作时,必须只能有一个电源与负载接通,且在一路电路故障时要实现自动切换,同时由于使用PLC设备的都是用电总功率较大的场合,必要时需使用发电机设备供电。系统在工作时就要有选择的进行检测工作,一旦主电源发生故障(系统电源出现缺相或者是欠压),此时立即启动发电机,同时主电源就会自动断开,备用电源启动后,同样要进行相关检测,检测备用电源无障碍后再进行备用电源与负载的接通。

系统硬件设计是主体设备的选择和确定。根据总系统设计方案要求,设置相应的硬件设备。硬件设备中,主要考虑因素是控制环节和判断步骤,在选择了使用的设备后,要进行实用性实验检测和统计,只有严格控制好硬件设备的安装与使用,才能更好在系统软件设备中编制程序和实现功能。

系统软件设计就是编译PLC控制系统的语言主体。软件设计主要分为五部分:对于复杂的控制系统要绘制控制系统流程图,对于简单的系统可以忽略此步骤;根据实践经验和对PLC的认识设置梯形图;根据梯形图编制语言表程序清单;用程序编程器键入PLC用户存储器中,并检查键入程序是否正确;对程序进行调试直到满足要求。

PLC的后期实现主要就是根据以上步骤进行合理的物理设备实现,这样一项PLC低压双电源智能开关就可以得以实现。

4.我国PLC低压双电源智能开关的发展趋势

PLC低压双电源智能开关已经被广泛的应用于钢铁、石油、化工、电力、建材、机械加工等各个行业。PLC虽然已经有了广阔了发展前景,但在其创新领域内还是有很大的空间,PLC发展趋向主要是更小的设备体积、更强的通信功能和更高速的处理速度。

5.总结

从最早美国数字设备公司研制出的可控编程控制器PDP-14,到现在比较成熟的PLC整体设备,短短几十年之间,PLC技术取得了不错的发展,PLC现已成为工业控制三大支柱之一,以其可靠性高、逻辑功能强、体积小、可在线修改控制程序、具有远程通信联网功能、以易与计算机接口、能对模拟量进行控制,具备高速计数与位控等性能模块等优异性能,日益取代由大量中间继电器、时间继电器、计数继电器等组成的传统继电—接触控制系统,在机械、化工、冶金、电力、轻工、电子、纺织、食品、交通等行业得到广泛应用。同时在未来的市场上也将占有很大的份额,PLC智能开关也将得到更广阔的发展前景。

【参考文献】

[1]陈军统,潘再平,杨舒捷.基PLC低压双电源智能开关设计[J].制造业自动化,2012(8):135-138.

[2]于静.PLC低压下的双电源智能开关设计探讨[J].大科技,2012(20):24-25.

[3]金晓龙,杨显斌.关于PLC技术在电气自动化中的发展应用[J].华东科技,2013(2):418-418.

开关电源的设计与制作篇3

    【关键词】变电站;电气自动化;系统设计

    一、引言

    随着科学技术的不断发展,新技术层出无穷,伴随着数字化变电站的兴起,我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,并已获得成功。在变电站自动化系统的具体实施过程中,目前有不同的方法:一种主张站内监控以远动(RTU)为数据采集和控制的基础,相应的设备以电网调度自动化为基础,保护相对独立;另一种则主张站内监控以保护(微机保护)为数据采集和控制的基础,将保护与控制、测量结合在一起。从我国目前的电力系统运行体制、人员配备、专业分工来看,前者占有较大优势。因为无论从规划设计、科研制造、安装调试、运行维护等各方面,控制与保护都是相互独立的两个不同专业,因此前者更符合我国国情,而后者因难以提供较清楚的事故分析和处理的界面而一时还不易被运行部门接受。但从发展趋势、技术合理性及减少设备重复配置、简化维护工作量等方面考虑,后者又有其优越性。此实施方法正在成为一种发展趋势和共识。

    二、方案设计思想

    从信息流的角度看,保护(包括故障录波等)和控制、测量的信息源都是来自现场TA、TV二次侧输出,只是要求不同而已。保护主要采集一次设备的故障异常状态信息,要求TA、TV测量范围较宽,通常按10倍额定值考虑,但测量精度要求较低,误差在3%以上。而控制和测量主要采集运行状态信息,要求TA、TV测量范围较窄,通常在测量额定值附近波动,对测量精度有一定的要求,测量误差要求在1%以内。总控单元直接接收来自上位机或远方的控制输出命令,经必要的校核后可直接动作至保护操作回路,省去了遥控输出、遥控执行等环节,简化了设备,提高了可靠性。

    从无人值守角度看,不仅要求简化一次主接线和主设备,同时也要求简化二次回路和设备,因此保护和控制、测量的一体化有利于简化设备和减少日常维护工作量,对110kV及以下,尤其是10kV配电站,除了电量计费、功率总加等有测量精度要求而需接量测TA、TV外,其他量测仅作监视运行工况之用,可以与保护用TA、TV合用。此外,在局域网上各种信息也可以共享,控制、测量等均不必配置各自的数据采集硬件,常规的控制屏、信息屏、模拟屏等亦可取消。

    对于10kV配电站,由于接线简单,对保护相对要求较低,为简化设备节省投资,建议由RTU来完成线路保护及双母线切换等保护功能。因此需在RTU软件中增加保护运行判断功能,如备用电源自投功能,可通过对相应母线端失压和相关开关状态信号的逻辑判断来实现。

    随着计算机和网络通信技术的发展,站内RTU/LTU或保护监控单元将直接上网,通过网络与上位机及工作站通信。取消传统的前置处理机环节,从而彻底消除通信“瓶颈”现象。变电站自动化系统和无人值班运行模式的实施,在很大程度上取决于设备的可靠性。这里指的设备不仅是自动化设备,更重要的是电气主设备。

    三、设计说明

    变配电站自动化包括继电保护、变配电站集中监控以及远方调度管理3部分。继电保护有常规电磁型继电器保护、晶体管继电保护与微机保护3种形式。常规继电器保护仍在继续使用,晶体管保护是一种过渡型产品,现在已被先进的微机保护所替代。智能化开关与智能化开关柜,以及变配电站综合自动化系统集继电保护、数据监测及远方调度于一体,在变配电自动化设计中应根据工程实际情况选用上述产品。

    1.系统选型

    主要从继电保护及站内集中监测与远方调度几方面考虑。对于继电保护而言,35kV及以上的变配电站一般都有变压器保护,应优先考虑选用微机保护或变配电站综合自动化系统。10kV变配电所一般均为电力系统开闭所及用户变配电站,一次接线比较简单,应以常规继电保护为主。选用价格低、性能可靠的智能化开关,智能化开关柜或综合自动化系统之后,可以取消常规继电保护。对于站内集中监测与远方调度来讲,有集中式与分散于开关柜内的集散系统两种形式,变配电站综合自动化系统是一种最先进的分散安装于开关柜内的变配电站站内集中监测与远方调度系统。集中式变配电站计算机监测与远方调度系统需要安装各种电量变送器。测量、信号与控制电缆要由开关柜内引出,外部电缆数量多,设计与施工工作量大,一般不宜再推广使用。变配电站综合自动化系统的末端数据采集与控制单元直接安装于开关柜内,大都采用交流采样从电流或电压互感器直接进行测量,省掉了电量变送器,有些还可以省掉开关柜上的指示仪表。外部电缆只有一根通信电缆与供电电源电缆,设计与施工简单,所以应积极推广选用。智能化开关与智能化开关柜本身已经具备集中监测与远方调度功能。只要设计一根通信电缆引到调度值班室中央控制站计算机就可以实现集中监测与远方调度。但由于各厂家的通信协议不统一,不同厂家的产品实现联网比较困难,所以近期还难以推广应用。

    2.电气设计原则

    从一次系统与二次系统两方面考虑。对于一次系统设计而言,变配电站采用计算机监测与控制后对一次系统接线没有影响,一次系统接线方式及供电方案仍按有关要求与规定进行设计。变配电站采用计算机监测与控制后,应发挥计算机的图形显示功能,模拟盘可以简化或取消。变配电站采用计算机监测与控制后,可以实现无人或少人值班,值班室面积可以减小,分散值班可以集中于一处值班。

    对于二次系统,其设计方案应该注意以下几点:开关柜内的继电保护,计量,信号与控制回路设计不变,值班室的继电保护屏与中央信号系统(信号屏、计量屏与控制屏)保持原设计不变,再设计一套重复的计量、信号与控制回路进入计算机监测与控制系统。开关柜内的继电保护,计量,信号与控制回路设计不变,值班室的中央信号系统(信号屏、计量屏与控制量)取消,集中保护的继电保护屏应保留,再将计量,信号与控制回路进入计算机监测与控制系统。开关柜内的继电保护、计量、信号与控制回路设计不变,值班室的中央信号系统(信号屏、计量屏与控制屏)只包括电源进线与母线联络开关柜,所有出线开关柜均不进入中央信号系统。电源进线,母线联络开关柜及所有出线开关柜的中央信号系统(信号、计量与控制)全部进入计算机监测与控制系统。

    二次系统设计原则是:变配电站采用计算机监测与控制后值班室原有的中央信号系统(信号屏,计量屏与控制)应取消,采用集中保护的继电保护屏应保留,应优先选用第二方案。对于有特殊要求的单位或地区,可以选用第三方案,第一方案一般不宜设计选用。

    3.电气设计

    一次系统的电气主接线方式按原设计不变,在单线系统图的设备型号说明中应注明采用计算机监测与控制系统后所增加的设备数量与型号,如电量变送器,电力监控器等。对于需要通过计算机监测与控制系统进行远方遥控操作的开关,一定要选用能进行远方分、合闸功能的自动开关。开关运行状态要进入计算机监测与控制系统的开关,一般要有一对独立的常开接点引入计算机监测与控制系统。低压自动开关的型号设计时一定要注意满足这一要求,多选一对常开辅助接点。

    对二次系统继电保护设计来讲,35kV及以上供电系统可以考虑选用微机保护,而且应优先考虑采用变配电站综合自动化单元。10kV供配电系统仍应以常规继电器型继电保护为主,可以再设计只有监控功能的变配电站综合自动化单元。220/380V低压配电系统,仍应以自动开关与熔断器作为保护,再设计只有监控功能的变配电综合自动化单元。

    对于测量回路设计而言,需要进入计算机监测与控制系统的测量参数由设计者根据有关规定与用户实际需要来确定。需要进入计算机监测与控制系统的各种测量参数,首先经过电流互感器与电压互感器变为统一的交流。采用变配电站综合自动化系统之后,其监控单元均为交流采样,直接从电流或电压互感器取0A~5A或0V~100V测量信号,低压直接取220V或380V信号。不再需要各种电量变送器,开关柜上各种测量仪表可以取消。电度计量应选用带脉冲输出的电度表。其型号及一次接线与原电度表相同,只在备注中说明带脉冲输出,并注明与计算机监测与控制系统相匹配的直流电源电压,设计时应优先选用自带供电电源的有源型,输出为隔离型的脉冲电度表。计量柜电度表一般不进入计算机监测与控制系统,所以应在进线开关柜内增加有功与无功脉冲电度表各一块,作为内部统计用电量使用。

    对于信号回路设计,所有需要计算机监测与控制系统进行监视的开关状态,均应有一对常开接点引到计算机监测与控制系统。所有常开接点可以共用一个信号地线,但不能与交流系统地线相连接。所有信号继电器均应有一对单独的常开接点引到计算机监测与控制系统。有中央信号系统时,信号继电器应再有一对常开接点引到中央信号系统,以下两种常开接点应分开,由于电压等级不同,不能共用地线。

    控制回路设计中应该注意以下问题:计算机监测与控制系统都有合闸与分闸继电器输出接点,将其并连接到开关柜的合分闸开关或按钮上就可以进行远方合分闸操作。计算机监测与控制系统的合分闸继电器接点与开关柜上合分闸开关或按钮之间应设计手动与远方自动转换开关。10kV及以上的供配电系统需要计算机监测与控制系统进行远方合分闸操作时,其控制开关应取消不对应接线,可以选用自复位式转换开关,也可选用控制按钮。所有进入计算机监测与控制系统的远方操作开关的手动分闸操作开关或按钮应有一对独立的常开接点引到计算机监测与控制系统,以便在人工手动分闸时给计算机监测与控制系统一个开关量输入信号,以防止人工就地手动分闸时出现误报信号。

    四、变配电站综合自动化系统

    变配电站综合自动化系统是以一个配电间隔为单元,由一台电力监控器完成信号测量、继电保护与控制。测量为交流采样,直接从电流互感器或电压互感器取交流。--SA电流信号或交流。0V~100V电压信号,380/220V低压系统直接取交流0V~220V或0V~380V电压信号。所有电力监控器通过通信电缆引到计算机系统。

    1.变配电站综合自动化系统外部电缆设计

开关电源的设计与制作篇4

>> 基于FPGA+DSP的高速中频采样信号处理平台的实现 光伏逆变辅助电源的设计 基于DSP平台的人民币编号识别系统的设计与实现 基于DSP的可扩展实验平台的设计与实现 基于DSP平台的语音编解码模块的设计与实现 银河飞腾DSP平台以太网接口的设计与实现 基于STM32的数控稳压电源的设计与实现 基于单片机的数控直流稳压电源设计与实现 数字中频接收机的设计与实现 数字中频调制解调系统的设计与实现 基于EDA技术的航空电源逆变控制电路设计 X―DSP ALU与移位部件的设计与实现 数控电火花加工脉冲电源的设计与实践 便捷式数控电源的设计与制作 基于DSP的稳定平台设计 基于DSP的单相正弦波变频电源设计与应用 基于FPGA+DSP的数字中频收发机的设计 数控沙盘系统的设计与实现 基于FPGA数控变频电源的设计 数控稳压电源的设计 常见问题解答 当前所在位置:

关键词:逆变电源;串联谐振;数字信号处理器(DSP)

DOI: 10.3969/j.issn.1005-5517.2013.10.008

引言

随着电力电子技术、信号处理技术及计算机控制技术的迅速发展和广泛应用,对逆变电源的性能及效率等要求也越来越高。串联谐振中频逆变电源是感应加热的关键设备,在现代工业生产中,熔炼金属及对工件进行透热、淬火和弯管等,常常采用中频(150Hz~20kHz)谐振逆变电源装置作为感应加热电源。

传统的串联谐振中频逆变电源控制仍然多为模拟控制或模拟与数字相结合的控制系统[1-2],存在如控制电路结构复杂、采用较多的元器件,体积庞大、电源一致性差;系统工作不稳定、控制精度不高、开发调试复杂等缺点。克服以上缺点的方法是应用数字处理技术,将传统的模拟电源升级改造为数字化电源(DPS:Digital Power Supply)。数字电源控制电路的核心器件是数字信号处理器(DSP),通过微处理器的精确运算来控逆变电源的各项性能和工作全过程,使控制电路高度集成、简化,且实现了数控化。本文设计了基于DSP芯片TMS320LF2407的10kW/10kHz 的串联谐振中频逆变电源,并通过试验验证了该设计方案的有效性和可行性。

中频逆变电源设计

电源主电路设计

串联谐振中频逆变电源系统主电路结构如图1所示。三相380V/50Hz交流电经空气开关、熔断器后加到由二极管模块组成的三相不控整流桥,三相整流桥输出的直流电压Ud经电解电容Cd滤波成平直的电压,再加到由四个IGBT和四个反并联二极管组成的单相全桥逆变器,逆变器输出的电压Uo经中频变压器T隔离并降压后送到由补偿电容C和负载感应器Lo组成的串联谐振电路的两端。中频变压器T用于负载匹配,感应线圈等效电感Lo和电阻R以及谐振电容C组成变压器次级串联谐振槽路。

串联谐振逆变电源工作原理

串联谐振逆变电源等效电路如图2所示,其移相控制原理及工作过程分析如下[3]:

图2所示的主电路的控制采用了如图3所示的移相控制策略。其基本原理是:检测逆变器输出电流 利用其过零点来产生滞后桥臂管VT4的驱动信号4gVTu(VT2管的驱动信号2gVTu与之互补);由VT1和VT3组成的超前桥臂的驱动信号1gVTu和3gVTu 分别超前于4gVTu和2gVTu,超前的角度为移相角α或者调节逆变桥输出电压的宽度o u,从而调节基波电压的幅值,就能对电路输出功率调节进行调节。

数字锁相环(DPLL)控制

串联谐振逆变电路工作在谐振状态时,谐振回路呈电阻性,工作频率等于负载的谐振频率。由于逆变输出所接负载的规格不同,感应线圈的等效电感和等效电阻也将改变,谐振频率会发生变化,如果不改变逆变电路IGBT的驱动频率,将使逆变器偏离谐振点,不仅使逆变桥上IGBT偏离零电流开关点,而且引起开关损耗增大,当逆变器工作频率高于负载谐振频率较大时,在一定的P值下,还会使负载阻抗增大,逆变器的无功功率增加,输出功率因数下降,功率容量不能充分利用。因此逆变控制系统必须具备频率跟踪功能,使逆变器的工作点保持在谐振点附近,从而实现IGBT的ZCS开关,并且有效利用逆变器的输出功率容量。一般的频率跟踪采用锁相环控制(PLL),通过检测输出电压和电流的相位差,控制锁相环电路的触发信号输出频率,达到频率跟踪的目的。本设计采用基于DSP技术的数字锁相环(DPLL)来实现频率

的自动跟踪[4]。

串联谐振中频逆变电源系统结构框图如图4所示。电源控制系统采用以TMS320LF2407为控制核心的硬件控制平台,传感器采集的各种检测信号经转换后作为DSP的输入信号,DSP根据检测输入的信息对系统进行实时控制,逆变器中功率主开关管的驱动信号由DSP的事件管理模块EV产生,并对最终产生的PWM波形输出进行死区控制;通过对负载电流和电压的检测、采样、滤波、电平转换和A/ D 变换处理后,与给定频率作比较,进行频率锁相跟踪及移相功率控制;当过流或过压等故障信号产生时,硬件电路会封锁逆变器的触发信号来实现保护功能,同时,保护信号会使中断口XINT发生中断,立即进行系统的其他保护处理。系统具有电压、电流、工作频率及谐振频率等各项参数的显示;电路设有过流、过压、过热、缺相等全面的保护系统,并指示出各种故障便于维修;同时,还具有上下位机通讯功能,可以实现远程网络化控制或用计算机自动控制[5]。

实验结果及结论

依据前面的设计思想,我们设计了一台10kW/10kHz的串联谐振中频逆变电源样机应用于中频感应加热。输入为三相380V±15%,图6(a)和(b)分别示出驱动信号和输出电流电压的实验波形。实验结果显示,结果与理论分析基本一致,所设计的串联谐振中频逆变电源工作稳定可靠。

开关电源的设计与制作篇5

【关键词】变电站;电气自动化;系统设计

一、引言

随着科学技术的不断发展以及计算机技术在电力系统的应用,各地区电网都在建设和实现无人值班变电站,我国城乡电网改造与建设中不仅中低压变电站采用了自动化技术实现无人值班,而且在220kV及以上的超高压变电站建设中也大量采用自动化新技术,并已获得成功。在变电站自动化系统的具体实施过程中,目前有不同的方法:一种主张站内监控以远动(RTU)为数据采集和控制的基础,相应的设备以电网调度自动化为基础,保护相对独立;另一种则主张站内监控以保护(微机保护)为数据采集和控制的基础,将保护与控制、测量结合在一起。从我国目前的电力系统运行体制、人员配备、专业分工来看,前者占有较大优势。因为无论从规划设计、科研制造、安装调试、运行维护等各方面,控制与保护都是相互独立的两个不同专业,因此前者更符合我国国情,而后者因难以提供较清楚的事故分析和处理的界面而一时还不易被运行部门接受。但从发展趋势、技术合理性及减少设备重复配置、简化维护工作量等方面考虑,后者又有其优越性。此实施方法正在成为一种发展趋势和共识。

二、方案设计思想

从信息流的角度看,保护(包括故障录波等)和控制、测量的信息源都是来自现场TA、TV二次侧输出,只是要求不同而已。保护主要采集一次设备的故障异常状态信息,要求TA、TV测量范围较宽,通常按10倍额定值考虑,但测量精度要求较低,误差在3%以上。而控制和测量主要采集运行状态信息,要求TA、TV测量范围较窄,通常在测量额定值附近波动,对测量精度有一定的要求,测量误差要求在1%以内。总控单元直接接收来自上位机或远方的控制输出命令,经必要的校核后可直接动作至保护操作回路,省去了遥控输出、遥控执行等环节,简化了设备,提高了可靠性。

从无人值守角度看,不仅要求简化一次主接线和主设备,同时也要求简化二次回路和设备,因此保护和控制、测量的一体化有利于简化设备和减少日常维护工作量,对110kV及以下,尤其是10kV配电站,除了电量计费、功率总加等有测量精度要求而需接量测TA、TV外,其他量测仅作监视运行工况之用,可以与保护用TA、TV合用。此外,在局域网上各种信息也可以共享,控制、测量等均不必配置各自的数据采集硬件,常规的控制屏、信息屏、模拟屏等亦可取消。

对于10kV配电站,由于接线简单,对保护相对要求较低,为简化设备节省投资,建议由RTU来完成线路保护及双母线切换等保护功能。因此需在RTU软件中增加保护运行判断功能,如备用电源自投功能,可通过对相应母线端失压和相关开关状态信号的逻辑判断来实现。

随着计算机和网络通信技术的发展,站内RTU/LTU或保护监控单元将直接上网,通过网络与上位机及工作站通信。取消传统的前置处理机环节,从而彻底消除通信“瓶颈”现象。变电站自动化系统和无人值班运行模式的实施,在很大程度上取决于设备的可靠性。这里指的设备不仅是自动化设备,更重要的是电气主设备。

三、设计说明

变配电站自动化对保证电网安全稳定运行具有重大意义,是实现电网调度自动化、运行管理现代化的重要保障,包括继电保护、变配电站集中监控以及远方调度管理三部分。继电保护有常规电磁型继电器保护、晶体管继电保护与微机保护三种形式。常规继电器保护仍在继续使用,晶体管保护是一种过渡型产品,现在已被先进的微机保护所替代。智能化开关与智能化开关柜,以及变配电站综合自动化系统集继电保护、数据监测及远方调度于一体,在变配电自动化设计中应根据工程实际情况选用上述产品。

1.系统选型

主要从继电保护及站内集中监测与远方调度几方面考虑。对于继电保护而言,35kV及以上的变配电站一般都有变压器保护,应优先考虑选用微机保护或变配电站综合自动化系统。10kV变配电所一般均为电力系统开闭所及用户变配电站,一次接线比较简单,应以常规继电保护为主。选用价格低、性能可靠的智能化开关,智能化开关柜或综合自动化系统之后,可以取消常规继电保护。对于站内集中监测与远方调度来讲,有集中式与分散于开关柜内的集散系统两种形式,变配电站综合自动化系统是一种最先进的分散安装于开关柜内的变配电站站内集中监测与远方调度系统。集中式变配电站计算机监测与远方调度系统需要安装各种电量变送器。测量、信号与控制电缆要由开关柜内引出,外部电缆数量多,设计与施工工作量大,一般不宜再推广使用。变配电站综合自动化系统的末端数据采集与控制单元直接安装于开关柜内,大都采用交流采样从电流或电压互感器直接进行测量,省掉了电量变送器,有些还可以省掉开关柜上的指示仪表。外部电缆只有一根通信电缆与供电电源电缆,设计与施工简单,所以应积极推广选用。智能化开关与智能化开关柜本身已经具备集中监测与远方调度功能。只要设计一根通信电缆引到调度值班室中央控制站计算机就可以实现集中监测与远方调度。但由于各厂家的通信协议不统一,不同厂家的产品实现联网比较困难,所以近期还难以推广应用。

2.电气设计原则

从一次系统与二次系统两方面考虑。对于一次系统设计而言,变配电站采用计算机监测与控制后对一次系统接线没有影响,一次系统接线方式及供电方案仍按有关要求与规定进行设计。变配电站采用计算机监测与控制后,应发挥计算机的图形显示功能,模拟盘可以简化或取消。变配电站采用计算机监测与控制后,可以实现无人或少人值班,值班室面积可以减小,分散值班可以集中于一处值班。

对于二次系统,其设计方案应该注意以下几点:开关柜内的继电保护,计量,信号与控制回路设计不变,值班室的继电保护屏与中央信号系统(信号屏、计量屏与控制屏)保持原设计不变,再设计一套重复的计量、信号与控制回路进入计算机监测与控制系统。开关柜内的继电保护,计量,信号与控制回路设计不变,值班室的中央信号系统(信号屏、计量屏与控制量)取消,集中保护的继电保护屏应保留,再将计量,信号与控制回路进入计算机监测与控制系统。开关柜内的继电保护、计量、信号与控制回路设计不变,值班室的中央信号系统(信号屏、计量屏与控制屏)只包括电源进线与母线联络开关柜,所有出线开关柜均不进入中央信号系统。电源进线,母线联络开关柜及所有出线开关柜的中央信号系统(信号、计量与控制)全部进入计算机监测与控制系统。

二次系统设计原则是:变配电站采用计算机监测与控制后值班室原有的中央信号系统(信号屏,计量屏与控制)应取消,采用集中保护的继电保护屏应保留,应优先选用第二方案。对于有特殊要求的单位或地区,可以选用第三方案,第一方案一般不宜设计选用。

3.电气设计

一次系统的电气主接线方式按原设计不变,在单线系统图的设备型号说明中应注明采用计算机监测与控制系统后所增加的设备数量与型号,如电量变送器,电力监控器等。对于需要通过计算机监测与控制系统进行远方遥控操作的开关,一定要选用能进行远方分、合闸功能的自动开关。开关运行状态要进入计算机监测与控制系统的开关,一般要有一对独立的常开接点引入计算机监测与控制系统。低压自动开关的型号设计时一定要注意满足这一要求,多选一对常开辅助接点。

对二次系统继电保护设计来讲,35kV及以上供电系统可以考虑选用微机保护,而且应优先考虑采用变配电站综合自动化单元。10kV供配电系统仍应以常规继电器型继电保护为主,可以再设计只有监控功能的变配电站综合自动化单元。220/380V低压配电系统,仍应以自动开关与熔断器作为保护,再设计只有监控功能的变配电综合自动化单元。

对于测量回路设计而言,需要进入计算机监测与控制系统的测量参数由设计者根据有关规定与用户实际需要来确定。需要进入计算机监测与控制系统的各种测量参数,首先经过电流互感器与电压互感器变为统一的交流。采用变配电站综合自动化系统之后,其监控单元均为交流采样,直接从电流或电压互感器取0A~5A或0V~100V测量信号,低压直接取220V或380V信号。不再需要各种电量变送器,开关柜上各种测量仪表可以取消。电能计量应选用带脉冲输出的电能表。其型号及一次接线与原电能表相同,只在备注中说明带脉冲输出,并注明与计算机监测与控制系统相匹配的直流电源电压,设计时应优先选用自带供电电源的有源型,输出为隔离型的脉冲电能表。计量柜电能表一般不进入计算机监测与控制系统,所以应在进线开关柜内增加有功与无功脉冲电能表各一块,作为内部统计用电量使用。

对于信号回路设计,所有需要计算机监测与控制系统进行监视的开关状态,均应有一对常开接点引到计算机监测与控制系统。所有常开接点可以共用一个信号地线,但不能与交流系统地线相连接。所有信号继电器均应有一对单独的常开接点引到计算机监测与控制系统。有中央信号系统时,信号继电器应再有一对常开接点引到中央信号系统,以下两种常开接点应分开,由于电压等级不同,不能共用地线。

控制回路设计中应该注意以下问题:计算机监测与控制系统都有合闸与分闸继电器输出接点,将其并连接到开关柜的合分闸开关或按钮上就可以进行远方合分闸操作。计算机监测与控制系统的合分闸继电器接点与开关柜上合分闸开关或按钮之间应设计手动与远方自动转换开关。10kV及以上的供配电系统需要计算机监测与控制系统进行远方合分闸操作时,其控制开关应取消不对应接线,可以选用自复位式转换开关,也可选用控制按钮。所有进入计算机监测与控制系统的远方操作开关的手动分闸操作开关或按钮应有一对独立的常开接点引到计算机监测与控制系统,以便在人工手动分闸时给计算机监测与控制系统一个开关量输入信号,以防止人工就地手动分闸时出现误报信号。

四、变配电站综合自动化系统

变配电站综合自动化系统是以一个配电间隔为单元,由一台电力监控器完成信号测量、继电保护与控制。测量为交流采样,直接从电流互感器或电压互感器取交流。--SA电流信号或交流。0V~100V电压信号,380/220V低压系统直接取交流0V~220V或0V~380V电压信号。所有电力监控器通过通信电缆引到计算机系统。

1.变配电站综合自动化系统外部电缆设计

变配电站综合自动化系统的外电缆设计非常简单,只有一根通信电缆与一根交流220V电源线。通信电缆一般选用计算用屏蔽电缆,线芯为两对两芯0.5m铜芯线,使用一对,备用一对。也可以选用双芯屏蔽双绞线。大型变配电站也可以考虑使用光缆。电力监控器应由专用电源集中供电,以保证供电可靠性,增加抗干扰能力。有些电力监控器可以用220V直流电源供电,此时可以由直流屏集中供电。变配电站数量少时,可以不设现场控制站,电力监控器的通信电缆可以直接引到中央控制站。供电电源可由变配电站内单独提供,距离中央控制站近时,也可以由中央控制站供电。通信距离可达3km。变配电站内开关柜数量少时,可以几个变配电站合用一个现场控制站,每个现场控制站可带犯个电力监控器。电力监控器到现场控制站及现场控制站之间的最远距离均为5km。

2.变配电站综合自动化系统的二次接线图设计

变配电站综合自动化系统的二次接线图设计按所选用的电力监控器种类分为只有监控功能与带保护功能两种。10kV及以下电压等级的供电系统一般应选用只有监控功能的电力监控器,其二次接线图见有关产品设计项或手册。

3.变配电站综合自动化系统的选用

变配电站综合自动化系统的成套设备生产厂商有很多,例如国内的鲁能、南瑞、南自、许继、思达、四通,国外的SIMENS、ABB等公司。应该根据实际设计要求与系统的功能,综合考虑选用,一般的变配电站综合自动化系统应该具有以下功能:SCADA功能、数据库系统、高级专家功能、运行管理功能、网络互联功能。选用的基本原则是:在满足要求的情况下,系统运行的可靠性好、性能价格比高。

五、结论

随着智能变电站建设的不断深化,变电站各系统将逐步优化和完善,实现高效、安全、可靠、经济的变电站建设,有力保证电网安全稳定运行。

参考文献

[1]电气工程电力设计手册[S].

[2]电力设计工程电气设备手册(电气一次部分上、下)[M].水利电力部西北电力设计院.

[3]李苇.220kV无人值班变电站综合自动化系统设计方案探讨[J].电力勘测设计,2003,2:70-73.

开关电源的设计与制作篇6

关键词:备用电源;应急供电系统;配电级数

Abstract: the electrical design is an important part of the construction project, the construction of the electrical design standard, professional personnel did not cause the pay enough attention to the family homes electrical installation of chaos, electrical design is not standard, many residential electrical installation did not consider household appliances popularization and the rapid development of the situation, and buried the security hidden danger.

Keywords: backup power supply; Emergency power supply system; Distribution series

中图分类号:S611文献标识码:A 文章编号:

0. 建筑电气设计的概念

(1) 设计的概念。设计是一个构思表达、再构思表达、反复推敲、不断深入发展和进行评价的过程。基本上可以概括为博览、创意、构思、表达等几个阶段。设计过程从一开始到深入下去,各阶段思维的广度、深度都不同,表达方式、工具也可能是多样化的。表达方式和工具要适应思维的速度,推动思维发展成熟。

(2) 服务的对象。设计是为甲方(业主)的功能需要服务的,也是为施工单位的施工需要服务的。在满足国家有关规定的前提下,设计人员应树立服务意识、树立合作观念、树立敬业精神。对建筑电气专业的设计人员而言,妥善处理与各个专业之间的关系是十分重要的事情,在协调上所用的时间甚至可能超过埋头设计的时间。

1 备用电源的负荷严禁接入应急供电系统

在一级负荷中,当中断供电将造成人员伤亡或重大设备损坏或发生中毒、爆炸和火灾等情况的负荷,以及特别重要场所的不允许中断供电的负荷,应视为一级负荷别重要的负荷。3.0.3 一级负荷别重要的负荷供电,应符合下列要求:除应由双重电源供电外,尚应增设应急电源,并严禁将其他负荷接入应急供电系统。3.0.9 条备用电源的负荷严禁接入应急供电系统。

应按应急供电系统设计,要求在低压配电系统中设置专用应急母线段,生活水泵、客梯及重要保障性设备与专用应急母线段分开,设计方案见图1.1。

《供规》第2.0.3 条对应急供电系统(安全设施供电系统) 定义,供电系统包括电源和连接到电气设备端子的电气回路。在某些场合,它也可以包括设备。

1.3 应急供电系统组成

应急供电系统的设置首先应符合《供规》3.0.3 条规定,即a.双重电源+应急柴油发电机组,b. 双重电源+UPS(EPS),c. 双重电源+应急柴油发电机组+ UPS(EPS)的供电方案,并且其它负荷严禁接入由第三电源或第四电源组成的应急供电系统,上述a,b,c 中应急柴油发电机组、EPS 或UPS 可当作应急电源,方案c 的典型接线见图1.2。该方案柴油发电机组作为重要负荷的备用电源,同时设置EPS 和UPS 作为小容量特别重要负荷的应急电源,其它负荷严禁接入由EPS 和UPS 组成的应急供电系统。

2 配电线路采用的上下级保护电器,其动作应具有选择性

《低压配电设计规范》GB 50054-95 第4.1.2条配电线路采用的上下级保护电器,其动作应具有选择性;各级之间应能协调配合。但对于非重要负荷的保护电器,可采用无选择性切断。在建筑电气设计中,有设计人员误把放射式供电系统中仅在安装位置上为前后的保护电器理解成上下级关系。上下级保护电器不能简单理解成仅在安装位置上为前后关系,而应看设置的2个保护电器在逻辑关系上是否属于上下级关系,即当某回路故障时该回路最近的保护电器未动作,而上级保护电器越级跳闸,导致除发生故障回路中断供电外,其他非故障回路也中断供电,扩大了故障停电范围。

3 配电级数

3.1 配电级数的定义

配电级数与保护级数不同,不按保护开关的上下级个数(保护级数)作为配电级数,而是按一个回路通过配电装置分配为几个回路的一次分配称作一级配电。对于一个配电装置而言,总进线开关与馈出分开关合起来称为一级配电,不因它的进线开关采用断路器或采用隔离开关而改变它的配电级数。

4 装饰工程中利用装饰灯具作应急照明灯具

公共建筑在二次装修时,建筑装饰单位及电气专业为了达到顶棚或墙面装饰效果和美观,往往在照明设计时利用灯具外表面无保护措施而灯具外形比较美观的普通筒灯或灯杯作为火灾时应急照明灯使用,这种做法火灾时严重影响应急照明灯具的安全可靠性,影响人员安全疏散。

5 作为过渡照明用的EPS 初装容量时间《民规》JGJ 16-2008 对设置EPS 的相关规定:

13.8.5 火灾应急照明的设置,除符合本规范第13.8.1~13.8.4 条的规定外,尚应符合下列规定:

(1)应急照明在正常供电电源停止供电后,其应急电源供电转换时间应满足下列要求:

1)备用照明不应大于5s,金融商业交易场所不应大于1.5s;

2)疏散照明不应大于5s。

对于有一级或二级消防用电设备的建筑物,根据国家规范、当地供电部门要求及消防用电设备负荷级别,常常设置应急柴油发电机组作为消防用电设备应急电源的供电方案。《高规》“9.1.2 一类高层建筑自备发电设备,应设有自动启动装置,并能在30s 内供电。二类高层建筑自备发电设备,当采用自动启动有困难时,可采用手动启动装置。”因此,当采用应急柴油发电机组作为应急照明的应急电源时需设置集中EPS 电源作为应急柴油发电机组启动时的过渡照明。作为过渡照明用的集中EPS 的蓄电池初装容量仅需满足应急柴油发电机组启动时间即可,可不按《民规》第6.2.6 条第4 款“EPS 的蓄电池初装容量应保证备用时间不小于90min。”规定选择。因《民规》6.2 章节适用于应急电源装置(EPS)用作应急照明系统备用电源时的选择和配电设计。

6 规范条文、附录、条文说明之间

关系国家规范一般分为规范条文(或规范正文)、附录及条文说明三部分,规范中的附录与规范条文具有同等的法律效力,而条文说明不具备与规范条文、附录同等的法律效力。条文说明是为便于广大设计、施工、科研、学校等单位有关人员在使用规范时能正确理解和执行条文规定而编制的,仅供使用者作为理解和把握规范规定的参考。当条文说明与规范条文不一致时,以规范条文为准。

7 隔热墙

根据国家标准《布线系统载流量》GB/T16895.15-2002 对隔热墙的定义:隔热墙包含有防风雨的外护墙板,隔热材料和木质或类似木质的内护墙板,内护墙板的表面散热系数不小于10W(/ m•2 K),导管尽量靠近但不需与内护墙板接触,从电缆产生的热流量仅通过内护墙板散热,导管可以是金属或塑料的。建筑电气设计人员根据《布线系统载流量》GB/T 16895.15-2002 表52-B1~B2,表52-C1~C4 或04DX101-1 表6.2 选择电缆或导线载流量时,首先应明确电缆或导线敷设方法是否属于隔热墙的敷设方式。避免因敷设方式不同导致选择电缆或导线的截面偏大,增加工程造价。

8 火灾自动报警系统应急广播控制方案

目前国家相关规范对火灾自动报警系统应急广播的设置及控制的规定:《火灾自动报警系统设计规范》GB50116-98(以下简称《火警规》)6.3.1.6 消防控制室应设置火灾警报装置与应急广播的控制装置,其控制程序应符合下列要求:

(1)二层及以上的楼房发生火灾,应先接通着火层及其相邻的上下层。

(2)首层发生火灾,应先接通本层、二层及地下各层。

(3)地下室发生火灾,应先接通地下各层及首层。

(4)含多个防火分区的单层建筑,应先接通着火的防火分区及其相邻的防火分区。《民规》13.6.4 火灾警报装置应符合下列规定:

(1)设置火灾自动报警系统的场所,应设置火灾警报装置。

(2)在设置火灾应急广播的建筑物内,应同时设置火灾警报装置,并应采用分时播放控制:先鸣警报8-16s;间隔2-3s 后播放应急广播20-40s;再间隔2-3s 依次循环进行直至疏散结束。根据需要,可在疏散期间手动停止。《火警规》仅规定了发生火灾时首先接通应急广播的范围,而对首先接通后后续的控制播放方案未作规定。《民规》比《火警规》更具体些,但对后续的控制播放方案的整个疏散时间未作规定限制。在《民规》的现有规定基础上应补充“当确认火灾后,应急广播系统首先向全楼或建筑(高、中、低)分区的火灾区域发出火灾警报,然后向着火层和相邻层进行应急广播,再依次向其他非火灾区域广播;3min 内应能完成对全楼的应急广播。”,这样对应急广播的规定才比较完善,设计人员可根据建筑物规模及具体应急广播控制播放方案选择应急广播功放设备及容量。

9 火灾自动报警系统控制器类设备安装

《火灾自动报警系统施工及验收规范》GB50166-2007“3.3.4 控制器的主电源应有明显的永久性标志,并应直接与消防电源连接,严禁使用电源插头。”《消防联动控制系统》GB 16806“4.2.1.2 消防联动控制器主电源应采用220V,50HZ 交流电源,电源线输入端应设接线端子。以上两条规定有利于消防用电设备安全运行。也为了防止用户经常拔掉插头做其他用。

10 火灾自动报警系统总线控制盘及多线控制盘

《火警规》GB50116-98”5.3.2 消防水泵、防烟和排烟风机的控制设备当采用总线编码模块控制时,还应在消防控制室设置手动直接控制装置。

因此,采用火灾报警系统传输总线编码模块控制消防水泵、防烟和排烟风机时,需配置消防联动控制器的总线控制盘或直接手动控制单元(直接手动控制单元的规定参见《消防联动控制系统》GB 16806 第4.2.2.6~4.2.2.9 条)。总线控制盘实际是火灾报警控制器上联动单元的扩展,一般通过RS485 通讯接口与火灾报警控制器配接,用该控制盘上的启动按键通过传输总线及编码模块对联动设备进行手动控制。同时消防水泵、防烟和排烟风机的工作、故障、电源、手/自动状态采用设置在控制设备控制箱(柜)旁的编码模块通过传输总线在联动控制器的共用显示器上显示。

除设置总线控制盘通过总线启停消防水泵、防烟和排烟风机外,还应设置多线控制盘手动直接控制上述消防用电设备,多线控制盘手动直接控制与火灾自动报警系统之间无联系。规范并未规定在使用多线控制盘手动直接控制时需显示消防水泵、防烟和排烟风机的工作、故障状态。因此多线控制盘采用钥匙式按钮时仅需设计2 芯控制电缆至消防水泵、防烟和排烟风机控制箱(柜)实现启停功能即可。

11.结束语

我国正处于大量消耗自然资源、原材料以支撑经济高速增长的工业化时期,能源对经济增长的约束作用已经开始显现,节能成为关系到我国国计民生的大事。现代建筑中广泛采用了变压器、空调、电动机、照明、电梯等耗能系统,建筑作为我国一个重要的能耗源,对其节能方法和节能措施的研究已是刻不容缓。建筑电气节能是指在充分满足、完善建筑物功能要求的前提下,合理配置建筑设备,并对其进行有效、科学的控制与管理,以尽量减少能源消耗,提高能源利用率,而不是简化建筑物的功能要求,降低其功能标准。

参考文献

[1] 工业与民用配电设计手册[M].中国航空工业规划设计研究院组编.中国电力出版社,2005.

[2]民用建筑电气设计手册[M]戴瑜兴主编,中国建筑工业出版社.2005.

[3] 全国民用建筑工程设计技术措施-电气[M]2003 年版, 建设部工程质量安全监督与行业发展司,中国建筑标准设计研究所.中国计划出版社.

开关电源的设计与制作篇7

关键词:交流抗干扰电路;PFC电路;高压整流滤波;PWM

Abstract: the computer switching power supply computer power only providers, equivalent to the human heart, in computer components in a very important position. Power supply output current quality will directly influence the computer component life and performance. This paper introduces the computer switching power supply circuit and other aspects of the content, elaborate computer the working principle of switching power supply, to ensure good company computer equipment long time steady work to provide important technical support.

Key words: Communication anti jamming circuit of high-voltage rectifier filter circuit; PFC; PWM;

1.计算机电源发展历程

在计算机各部件中最令人注意的就是CPU的频率、内存的大小、硬盘容量,显卡的性能等等。而对于电脑中的一个重要部件电源.却往往总会受到忽略。而事实上,电脑的许多奇怪症状都是由电源引起的。假如我们把计算机比作一个人的话,CPU作为计算机的核心部件起着运算和控制的作用,它相当于我们人类的大脑;而电源作为计算机的动力提供者,完全等价于我们人类的心脏,其重要之处由此可见。所以有必要了解电源内部结构,熟悉电源的工作原理,才能更好地维护好计算机电源,才能从根本上保障公司各部门计算机设备长时间稳定工作。

2.算机电源发展历程

PC/XT_ IBM最先推出个人PC/XT机时制定的标准;AT_ 也是由IBM早期推出PC/AT机时所提出的标准,当时能够提供192W 的电力供应;ATX—Intel公司于1995年提出的 工业 标准。与AT比较主要变化为:

1、取消了AT电源上必备的电源开关而交由主板进行电源开关的控制,增加了一个待机电路为电源主电路和主板提供电压来实现电源唤醒等功能:

2、ATX电源首次引进了+3.3V的电压输出端,与主板的连接接口上也有了明显的改进:ATX12V—— 支持P4的ATX标准,是 目前 的主流标准:ATX12V一1.1:在ATX的基础之上增加了4pin的+12V辅助供电线(PIO)为P4处理器供电,改变了各路输出功率分配方式, 增强+12V 负载能力;ATX12V一1.3:提高了电源效率,增加了对SATA的支持。去掉了一5V输出,增加了+12V的输出能力;ATX12V一2.0:尚未有产品实施的最新规范;电源连接器由20针改为24针,以支持75W 的PCI Express总线.同时取消辅助电源接口;提供另一路+12V输出,直接为4Pin接口供电;WTX—ATX 电源的加强版本:尺寸上比ATX电源大。供电能力也比比ATX电源强,常用于服务器和大型电脑;BTX一现有架构的终结者,电源输出要求、接口等支持ATX12V。

3.算机开关电源的工作原理

电源是一种能量转换的设备,它能将220V的交流电转变为计算机需要的低电压强电流的直流电。首先将高电压交流电(220V)通过全桥二极管整流以后成为高电压的脉冲直流电,再经过电容滤波以后成为高压直流电。此时,控制电路控制大功率开关三极管将高压直流电按照一定的高频频率分批送到高频变压器的初级。接着,把从次级线圈输出的降压后的高频低压交流电通过整流滤波转换为能使电脑工作的低电压强电流的直流电。其中,控制电路也是必不可少的部分。它能有效的监控输出端的电压值,并向控制功率开关三极管发出信号控制电压上下调整的幅度。目前的常见产品主要采用脉冲变压器耦合型开关稳压电源,它分为交流抗干扰电路、功率因数校正电路、高压整流滤波电路、开关电路、低压整流滤波电路5个主要部分。

4.流抗干扰电路

为避免电网中的各种干扰信号影响高频率、高精度的计算机系统.防止电源开关电路形成高频扰窜,影响电网中的其他电器等;各种电磁、安规认证都要求开关电源配有抗干扰电路。主要结构为兀型共模、差模滤波电路.由差模扼流电感、差模滤波电容、共模扼流电感、共模滤波电容组成:

5.因数校正电路

开关电源传统的桥式整流、电容滤波电路令整体负载表现为容性,且使交流输入电流产生严重的波形畸变,向电网注人大量的高次谐波,功率因数仅有0.6左右,对电网和其他电气设备造成严重的谐波污染与干扰。因此,我国在2003年开始实施的CCC中明确要求计算机电源产品带有功率因数校正器(Power Factor Corrector,即PFC),功率因数达到0.7以上。PFC电路分为主动式(有源)与被动式(无源)两种:主动式PFC本身就相当于一个开关电源.通过控制芯片驱动开关管对输入电流进行“调制“,令其与电压尽量同步,功率因数接近于1;同时.主动式PFC控制芯片还能够提供辅助供电,驱动电源内部其他芯片以及负担+5VSB输出。主动式PFC功率因数高、+5VSB输出纹波频率高、幅度小,但结构复杂,成本高,仅在一些高端电源中使用。目前采用主动式PFC的计算机电源一般采用升压转换器式设计,电路原理图如下:被动式PFC结构简单,只是针对电源的整体负载特性表现,在交流输人端.抗干扰电路之后串接了一个大电感,强制平衡电源的整体负载特性。被动式PFC采用的电感只需适应50~60Hz的市电频率,带有工频变压器常用的硅钢片铁芯,而非高频率开关变压器所采用的铁氧体磁芯,从外观上非常容易分辨。被动式PFC效果较主动式PFC有一定差距,功率因数一般为0.8左右;但成本低廉,且无需对原有产品设计进行大幅度修改就可以符合CCC要求,是目前主流电源通常采取的方式。

6 高压整流滤波电路

目前的各种开关电源高压整流基本都采用全桥式二极管整流,将输人的正弦交流电反向电压翻转,输出连续波峰的“类直流”。再经过电容的滤波,就得到了约300V的“高压直流”。

7 开关电路

1.开关电源的核心部分.主要由精密电压比较芯片、PWM芯片、开关管、驱动变压器、主开关变压器组成。精密电压比较芯片将直流输出部分的反馈电压与基准电压进行比较.PWM芯片根据比较结果通过驱动变压器调整开关管的占空比,进而控制主开关变压器输出给直流部分的能量,实现“稳压”输出。PWM(Pules Width Modulation)即脉宽调制电路,其功能是检测输出直流电压,与基准电压比较,进行放大,控制振荡器的脉冲宽度,从而控制推挽开关电路以保持输出电压的稳定,主要由1C TL494及周围元件组成。使用驱动变压器的目的是为了隔离高压(300V)区与低压区(最高12V),避免开关管击穿后高压电可能对低压设备造成的危害,也令PWM芯片无需接触高压信号,降低了对元件规格的要求。

2.冲变压器耦合型开关稳压电源主要的直流(高压到低压)转换方式有5种,其中适合作为 计算 机电源使用的主要为推挽式与半桥式,而推挽式多用于小型机、UPS等,我们常见的电源产品则基本都采用半桥式变换。

8.结语

开关电源的设计与制作篇8

中图分类号:TM6文献标识码: A

随着电子技术与计算机技术的发展,变配电站的自动化水平不断提高。这就要求在进行变配电站电气设计时不断采用性能可靠、技术先进以及自动化程度高的产品,从而保证变配电站自动化水平得到提高。变配电站自动化水平提高之后,可以提高变配电站的供电可靠性,可以及时发现故障减少停电时间,合理调配负荷实现优化运行,还可以减少值班人员,实现无人或少人值守。所以在变配电站的设计中应积极选用计算机监测与控制系统。

一、系统选型

1.35KV及以上的变配电站一般都有变压器保护,应优先考虑选用微机保护或变配电站综合自动化系统。

2.10KV变配电所一般均为电力系统开闭所及用户变配电站,一次接线比较简单,应以常规继电保护为主。选用价格低、性能可靠的智能化开关,智能化开关柜或综合自动化系统之后,可以取消常规继电保护。

二、电气设计原则

(一)一次系统设计原则

l变配电站采用计算机监测与控制后对一次系统接线没有影响,一次系统接线方式及供电方案仍按有关要求与规定进行设计。

2.变配电站采用计算机监测与控制后,应发挥计算机的图形显示功能,模拟盘可以简化或取消。

3变配电站采用计算机监测与控制后,可以实现元人或少人值班。值班室面积可以减小,分散值班可以集中于一处值班。

(二)二次系统设计原则

l二次系统设计方案。

(1)开关柜内的继电保护,计量,信号与控制回路设计不变,值班室的继电保护屏与中央信号系统(信号屏,计量屏与控制屏)保持原设计不变,再设计一套重复的计量、信号与控制回路进入计算机监测与控制系统.。

(2)开关柜内的继电保护,计量,信号与控制回路设计不变,值班室的中央信号系统(信号屏、计量屏与控制屏)只包括电源进线与母线联络开关柜,所有出线开关柜均不进入中央信号系统。电源进线,母线联络开关柜及所有出线开关柜的中央信号系统(信号、计量与控制)全部进入计算机监测与控制系统。

2二次系统设计原则

(1)变配电站采用计算机监测与控制后值班室原有的中央信号系统(信号屏计量屏与控制屏)应取消,采用集中保护的继电保护屏应保留,应优先选用第二方案。

(2)对于有特殊要求的单位或地区,可以选用第三方案,第一方案一般不宜设用。

三、电气设计

(一)一次系统电气设计

l.一次系统的电气主接线方式按原设计不变,在单线系统图的设备型号说明中应注明采用计算机监测与控制系统后所增加的设备数量与型号,如电量变送器,电力监控器等。

2.对于需要通过计算机监测与控制系统进行远方遥控操作的开关,一定要选用能进行远方合分闸的自动开关。

3.开关运行状态要进人计算机监测与控制系统的开关.一般要有一对独立的常开接点引入计算机监测与控制系统。低压自动开关的型号设计时一定要注意满足这一要求,多选一对常开辅助接点。

(二)二次系统设计

1.继电保护设计。

(1)35KV及以上供电系统可以考虑选用微机保护,而且应优先考虑采用变配电站综合自动化单元。

(2)10KV供配电系统仍应以常规继电器型继电保护为主,可以再设计只有监控功能的变配电站综合自动化单元。

(3)220/380V低压配电系统,仍应以自动开关与熔断器作为保护,再设计只有监控功能的变配电综合自动化单元。

2.测量回路设计。

(1)需要进入计算机监测与控制系统的测量参数由设计者根据有关规定与用户实际需要来确定。

(2) 需要进入计算机监测与控制系统的各种测量参数,首先经过电流互感器与电压互感器变为统一的交流。一5A电流与交流。一100V电压,220/380V系统直接利用交流守-220V或+380V电压,然后再经各种电量变送器将交流参数变为直流。一5V,10mA,4一20mA或10V信号给计算机监测与控制系统进行测量。

(3)电量变送器的种类与电工测量仪表完全对应。有什么类型的电工测量仪表,就有什么样类型的电量变送器。即有电流变送器(单相与三相),电压变送器(单相与三相),有功功率变送器(三相三线制与三相四线制),无功功率变送器(三相三线制与三相四线制),有功/无功功率因数变送器(三相三线制与三相四线制),有功电度变送器(三相三线制与三相四线制),无功电度变送器(三相三线制与三相四线制),频率变送器等。

(4)电量变送器的一次接线与电工测量仪表完全相同。电流回路串联在电流互感器回路中,电压回路并联再电压互感器电压回路中。设计时应将电量变送器统一布置于电流互感器电流回路的末端,避免与电工测量仪表相互交叉布置。

(5)电压变送器的测量输入电压最大值应提高20%,高压选交流120V,低压选交流250V或420V,各种电量变送器的输出一般选直流0一5V或4—20mA。

(6)采用变配电站综合自动化系统之后,其监控单元均为交流采样,直接从电流或电压互感器取。一5A或0—100V测量信号,低压直接取220V或380V信号不再需要各种电量变送器,开关柜上各种测量仪表可以取消。

(7)电度计量应选用带脉冲输出的电度表。其型号及一次接线与原电度表相同,只在备注中说明带脉冲输出,并注明与计算机监测与控制系统相匹配的直流电源电压,设计时应优先选用自带供电电源的有源型,输出为隔离型的脉冲电度表。计量柜电度表一般不进入计算机监测与控制系统,所以应在进线开关柜内增加有功与无功脉冲电度表各一块,作为内部统计用电量使用。

3.信号回路设计。

(1)所有需要计算机监测与控制系统进行监视的开关状态,均应有一对常开接点引到计算机监测与控制系统。所有常开接点可以共用一个信号地线,但不能与交流系统地线相连接。

(2)所有信号继电器均应有一对单独的常开接点引到计算机监测与控制系统。有中央信号系统时,信号继电器应再有一对常开接点引到中央信号系统,以下两种常开接点应分开’由于电压等级不同,不能共用地线。

4.控制回路设计。

(1)计算机监测与控制系统都有合闸与分闸继电器输出接点,一般接点容量为A050V,3A。将其并连接到开关柜的合分闸开关或按钮上就可以进行远方合分闸操作。

(2)计算机监测与控制系统的合分闸继电器接点与开关柜上合分闸开关或按钮之问应设计手动与远方自动转换开关。

(3)10KV及以上的供配电系统需要计算机监测与控制系统进行远方合分闸操作时,其控制开关应取消不对应接线,可以选用自复位式转换开关,也可选用控制按钮。

所有进入计算机监测与控制系统的远方操作开关的手动分闸操作开关或按钮应有一对独立的常开接点引到计算机监测与控制系统.以便在人工手动分闸时给计算机监测与控制系统一个开关量输入信号,以防止人工就地手动分闸时出现误报信号。

参考文献:

[1]张涛.10kV及以下变电所设计规范[S].2004(11).

上一篇:数字化盈利模式范文 下一篇:移动互联网的立足点范文