开关电源范文

时间:2023-11-27 05:23:31

开关电源

开关电源篇1

1.电源对比与选择

一台汤姆逊TH-4R100C彩电,三无。在某修理部维修时,经检查电源开关管BU508和电路多只元件损坏。更换开关管和损坏的其它元件后,检查电源其它元件和负载未见异常,可是通电开机后,瞬间开关管再次损坏,连续更换3只开关管均被损坏,不敢再换,送修我处。该电源维修期刊中也有类似屡损开关管介绍。从经济方面考虑,计划用现有的日电CT1803彩电开关电源代换汤姆逊TH-4R100C开关电源。

比较两个开关电源代换条件:

电源类型:二者均为并联型开关电源,具备代换要求。

输出功率方面:二者均为20 ~21英寸彩电开关电源,输出功率接近。

输出电压方面:日电CT1803电源输出110V和25V两组电压。汤姆逊TH-4R100C电源有三组电压输出,其中DP51整流后的U1为90V,经泵电源电路升压、L57整流、CL57滤波后变为108V,为行输出级供电;DP46整流后的U3电压为22V,为伴音功放电路供电; DP47整流后的U2电压为13V,经IP61稳压后变为U7,电压为12V,为小信号电路供电。日电电源虽然只有110V和25V电压输出,分析后认为:日电电源输出的110V可直接接到被代换电源的108V泵电源输出端,25V代换为伴音功放供电的22V,不会对功放电路造成威胁,而被代换电源的U2电流不大,可在25V输出电压上通过降压取得。

开关机控制电路:日电CT1803不是遥控彩电,无遥控开关机控制电路,汤姆逊TH-4R100C开关机控制电路是通过控制IP61是否输出12V电压待机的,代换后对被代换电源的开关机电路不产生影响,符合代换要求。

2.代换方法

代换接线电路如图1所示,具体代换步骤如下:

①代换电源为品牌电源,整流滤波电路较好,可以采用。在220V市电输入端抗干扰电路LP01之后断开,接入日电电源的市电输入端。

②将汤姆逊TH-4R100C输出整流电路的DP46、DP47、DP51和泵电源整流电路的BL57拆除,代换电源的输出端地线接被代换电源的地线,代换电源的110V输出端J2接被代换电源的原泵电源整流管DL57负极;代换电源的25V输出端J3接被代换电源的原DP46的负极,并将代换电源的R611短接。

③代换电源设有行回扫脉冲控制电路,而被代换电源没有。在被代换彩电的行输出变压器上用导线绕6匝后接入被代换电源的J1与J4之间。如果开机后,输出电压偏低,应将J1与J4接线对调。

④在代换电源的25V输出端外接一个三端稳压器7815,降压到15V后接被代换电源的原DP47的正极,代替U2的13V电压。

例2.用市售电源代换索尼2182CH彩电电源

1.电源对比与选择

一台索尼2182CH彩电,三无。经检查开关电源厚膜电路IC601(STR50115B)损坏。更换STR50115B后,通电开机瞬间行输出管击穿损坏。拆出行输出管,接60瓦灯泡作假负载,测量开关电源输出电压,高达150V,查STR50115B元件未见异常,说明新更换的STR50115B内部稳压电路不良。当时再也购不到STR50115B,计划用市售开关电源代换索尼2182CH电源。比较两个开关电源代换条件:

电源类型:索尼2182CH彩电电源为串联热底板电路,并具有行脉冲同步和激励电路。市售电源为并连冷底板电源,无需行脉冲同步和激励电路。用并连冷底板电源代换串联热底板电路,满足代换要求。

输出功率方面:由于市售电源质量欠佳,决定用25英寸电源代换 20英寸索尼电源,满足输出功率要求。

输出电压方面:市售电源为仿三洋电源,+B电压为130V,偏高。经过调整取样电路,输出电压降到以下值:180V、110V、 24V、16V四组输出电压,索尼电源仅需110V和16V两组电压,符合代换要求。

开关机控制电路:二者均无开关机控制电路。

2.代换方法

代换电路如图2所示。具体代换步骤如下:

①考虑到市售电源市电输入抗干扰电路和滤波电路欠佳,保留被代换电源市电输入和抗干扰、整流滤波电路,从滤波电容C606两端接入市售电源的300V电容两端,为了代换后将索尼底板变为冷底板,将索尼电源电路C606以后的电路全部与原电路断开。

②将索尼电源115V输出端和15V输出端与原电源电路断开,代换电源的输出端地线接被代换电源的地线,代换电源的110V输出端接被代换电源的115V输出端;代换电源的16V输出端接被代换电源的原15V整流管的负极。

③将索尼电源的行逆程脉冲反馈电路从D606正极切断。

例3.用日电CT1803开关电源代换康佳T2106电源

1.电源对比与选择

一台康佳T2106彩电,三无。经检查开关电源厚膜电路STR-S6309损坏,标签部分炸裂。更换STR-S6309后,检查电源其它元件和负载未见异常,可是通电开机后,瞬间STR-S6309再次损坏。当时一只STR-S6309近百元,很多期刊也都介绍该机STR-S6309容易损坏,而手中存有日电CT1803彩电开关电源,从经济方面考虑,计划用其代换康佳T2106开关电源。

比较两个开关电源代换条件:

电源类型:二者均为并联型开关电源。

输出功率方面:二者均为20 ~21英寸彩电开关电源,输出功率接近。

输出电压方面:日电CT1803电源输出110V和25V两组电压,康佳T2106电源有四组电压输出,其中D904整流后的105V、D909整流后的26V与日电电源相对应, D905整流后的电压是待机时为CPU副电源提供电压的,D907整流后的电压均是开机时为CPU副电源提供电压的。

开关机控制电路:日电20T774PDH不是遥控彩电,无遥控开关机控制电路,康佳T2106开关机控制电路是通过控制开关电源脉宽实现待机的,无法对日电电源进行控制,代换时开关机控制电路需进行改动,由原来控制开关电源脉宽改为控制电源市电输入,CPU副电源也需另用一只变压器单独供给,这样康佳电源D905和D907整流后的电压正好不用,符合代换要求。

2.代换方法

代换电路如图3所示。 具体代换步骤如下:

①将康佳被代换电源输出整流电路的D904、D905、D909拆除,在220V市电输入端抗干扰电路L902之后断开,接入新增加的副电源15V变压器B的初级,次级一端接C921负极的地,另一端接D907的正极,并将D907的正极与T901的连接脚之间断开。该电压经D907整流、C921滤波,通过D908作为副电源,为CPU供电。

②将康佳电源的C918正极与C921的正极相连,断开Q902的集电极改接到新12V继电器的上端,继电器另一端接地,与原来的开关机电路组成新的开关机电路,代换电源的市电输入的经继电器控制后输入。通过控制继电器的通断,达到待机的目的。

③代换电源的输出端地线接被代换电源的C917负极地线,代换电源的110V输出端J2接被代换电源的C917正极;代换电源的25V输出端J3接被代换电源的C926正极,并将代换电源的R611短接。

④代换电源设有行回扫脉冲控制电路,而被代换电源没有。在被代换彩电的行输出变压器上用导线绕6匝后接入被代换电源的J1与J4之间。如果开机后,输出电压偏低,应将J1与J4接线对调。

⑤继电器触点接成常闭点开机,关机时吸合断开。

⑥代换电源和副电源立在被代换电源一侧,并注意与其它电路保持良好的绝缘。

例4.用康艺KTN-5145开关电源代换康佳2506电源

1.电源对比与选择

一台康佳T2506彩电,三无。经检查开关电源厚膜电路STR-S6309及其电路损坏,其次级的开关机控制电路中的Q902、Q903和行输出管也同时损坏。由于市售的STR-S6309质量不佳,在其它修理部维修时新更换的STR-S6309再次损坏,不敢再修。从经济和安全方面考虑,准备用代换方法修复。

购得一块康艺KTN-5145彩电开关电源,比较两个开关电源代换条件:

电源类型:二者均为并联型开关电源。

输出功率方面:虽然康艺开关电源是用在20英寸电视机上,但质量上乘,开关变压器体积与25英寸彩电开关变压器差不多,开关管的散热片也比较大,估计能胜任25英寸彩电供电。

输出电压方面:康艺电源输出110V和18V、12V三组电压,康佳T2506电源有四组电压输出,其中D904整流后的130V为行输出电路提供电压,D909整流后的26V为功放电路提供电压,D907整流后的14V开机时为CPU提供电压, D905整流后的电压开机时65V不用,待机时变为15V为CPU副电源提供电压,由于代换电源电压均偏低,需对稳压电路进行调整以达到代换要求。

开关机控制电路:康艺电源的开关机控制是控制+B电压的通断来实现待机的,康佳T2106开关机控制电路是通过控制开关电源脉宽实现待机的,代换时开关机控制电路需进行改动,由原来控制开关电源脉宽改为控制代换电源的开关机控制电路,达到控制+B电压的通断来实现待机。由于待机时开关电源正常工作,各路输出电压不变,CPU副电源不再需要电压转换,这样康佳电源D905整流后的电压正好不用,符合代换要求。

2.代换方法

代换电路如图4所示。具体代换步骤如下:

①先将代换电源的输出电压调整到需要值。在代换电源+B整流滤波电容两端接100W灯泡做假负载,将电源接入市电,测量+B电压,调整取样电路可调电阻,发现调到电阻的一端输出电压仍达不到所需电压。采取减小取样电路上分压电阻的方法,将其减小到原值的20%后,再调整可调电阻,达到了需要值。110V升到130V,原来的18V也升到20V。

②将康佳被代换电源输出整流电路的D904、D905、D907、D909拆除,在220V市电输入端抗干扰电路L902之后断开,接入代换电源的市电输入端。

③将代换电源的输出端A座①脚12V输出端与被代换电源的C921正极相连,为CPU提供副电源。将代换电源的输出端A座②脚开关机控制端与被代换电源的开关机控制管Q620的集电极相连,并断开原来与Q620集电极相连的所有连接线,由被代换电源的开关机电路控制代换电源的开关机控制电路,实现待机控制。

开关电源篇2

关键词:通信电源开关技术

0引言

通信电源是通信行业的动力,在电信网络中发挥着不可替代的作用,具有无可比拟的重要基础地位。通信电源又是通信设备系统的心脏,即使是瞬间的中断也是不允许的,因为通信电源系统发生直流供电中断故障是灾难性的,往往会造成整个通信局(站)和通信网络的全部中断和瘫痪。通信电源是电信网络中不可缺少的重要组成部分,是一个完整、规模日趋庞大和复杂的交换、传输、数据、信息、业务、智能等通信网的基石和后台保障,因此通信电源直接关系到整个网络的稳定、可靠和畅通,而开关电源因效率高、体积小、重量轻等优点被大量运用在通信设备供电中。

1开关电源占据通信电源的主导地位

通信直流稳压电源按照其实现直流稳压方法的不同,可分为:线性电源、相控电源和开关电源三种。

1.1线性电源是通过串联调整管来连续控制,其功率调整管总是工作在放大区。由于调整管上功率损耗很大,造成电源效率较低,只有20~40%,发热损耗严重,安装有体积很大的散热器,因而功率体积系数只有20~30W/dm3。因此线性电源主要用于小功率、对稳压精度要求很高的场合,如通信设备内部电路的辅助电源等。

1.2相控电源是将市电直接经整流滤波后提供直流,通过改变晶闸管的导通相位来控制直流电压。由于相控电源的工作频率低,工频变压器的体积和噪声大,造成对电网干扰和负载变化的响应慢,设备笨重,且危害维护人员的身体健康。另外,其功率因数较低,只有0.6~0.7,严重污染电力电网,效率较低,只有60~80%,造成能源的极大浪费。因此传统的相控电源已逐渐被淘汰。

1.3开关电源的功率调整管工作在开关状态,主要的优点在"高频"上。其工作频率高,大都在40kHz以上,无烦人的噪声。体积小,重量轻,适用于分散供电,可与通信设备放在同一机房。效率高,大于90%,在当前能源比较紧张的情况下,能够在节能上做出很大的贡献。功率因数高,大于0.92,当采用有效的功率因数校正电路时,功率因数可接近于1,且对公共电网基本上无污染。模块化的设计,可实行N+1配置,可靠性高。维护方便,可在运行中更换模块,而不影响系统供电,扩容方便、分段投资,可在初建时,预留终期模块的机架,随时扩容。调试方便,内设模拟测试电路,无需另配假负载。具有监控功能,并配有标准通信接口,可实现集中监控,无人值守。

2开关电源的关键技术

开关电源中具有技术突破主要有体现在以下四个方面:

2.1均流技术

大功率电源系统需要用若干台开关电源并联,以满足负载功率的要求,另外通信电源必须通过并联技术来实现模块备份,以提高电源系统的可靠性。因此并联技术在供电系统中必不可少,而并联运行的整流模块间需要采用均流措施,它是实现大功率电源系统的关键,用以保证模块间电流应力和热应力的均匀分配,防止一台或多台模块运行在限流或满载状态,同时延长电源系统的寿命和平均无故障时间。

2.2软开关技术

DC-DC变换器是开关电源的主要组成部分,因此功率变换技术一直受到全世界电力电子学科和行业研究的关注。而如何降低开关损耗,提高开关电源的频率和开关电源的系统效率,代表了开关电源的发展趋势。在经过了硬开关PWM(或PFM)技术和硬开关加吸收网络技术后,软开关技术得到了广泛应用。这样能够极大地降低开关损耗,减小功率器件电和热应力,改善器件工作环境,降低电磁干扰,提高功率密度等,为开关电源实现高效、节能、体积小、重量轻和高可靠性的要求做出了贡献。软开关技术有:谐振技术、准谐振技术、PWM和准谐振相结合的技术。

2.3功率因数校正技术

功率因数校正技术有:采用三相三线制整流,即无中线整流方式,可使谐波含量大大降低,功率因数可达0.86以上;采用无源功率因数校正技术,即在三相三线整流方式下加入一定的电感,可使功率因数达0.93以上,谐波含量降到10%以下;采用有源功率因数校正技术,即在输入整流部分加入一级功率处理电路,使无功功率几乎为0,功率因数可达0.99以上,谐波含量降到5%以下。

2.4智能化监控技术

开关电源大量应用控制技术、计算机技术,进行各种异常保护、信号检测、电池自动管理等,实时监视通信电源设备运行状态,记录和处理有关数据,及时发现故障,以先进的、集中的、自动化的维护管理方式来管理通信电源设备,从而提高供电系统的可靠性。智能化监控技术的应用,使得维护人员面对的不再是复杂的器件和电路,而是一个人机表达和交流的信息,大大改进了维护管理方式。

3开关电源的发展

开关电源在发展,今后仍要不断提高开关电源和供电系统的高新技术含量,以支撑高速发展的现代化通信网络的建设和运行维护管理为主导方向,以高可靠性、高稳定性和可维护性为最终目的。具体有以下几个方面:

3.1小型化

随着通信设备日益集成化、小型化和分散化的发展,以及势在必行的分散供电的广泛应用,要求开关电源也相应小型化,而开关电源工作频率高频化和控制电路集成化,使开关电源的小型化成为可能。

特别是随着小型化开关电源的市场迅速扩大,如接入网、数据产品、移动基站、无线市话等,一些小功率模块插件形式的开关电源将应运而生,大有蓬勃发展之势。如中兴通讯的ZXDU45嵌入式电源,在结构上采用标准的19英寸插框设计,高度为4U,功能齐全,使用起来极为安全方便。

3.2高智能化

随着开关电源在通信领域多方面的广泛使用,而维护人员又不是专业电源维护人员,只有借助其智能化,对电源设备的运行状态自动检测,对电源故障及时发现、诊断和处理。这就要求智能化在原有监控功能的基础上,增加诊断功能,即故障诊断专家系统,以指导维护人员处理问题,加快故障诊断和检修过程。

3.3电池管理

电池在通信电源系统中的重要性,要求开关电源应具备完善的电池管理功能,充分考虑到电池对管理的需求,全方位地管理电池。也就是说,我们不能满足于对电池的均/浮充、温度补偿、电池保护等方面的管理,还要在电池的充/放电曲线、容量测试、容量恢复等方面进行高层次的管理。

3.4多功能性

开关电源篇3

【关键词】开关电源 高频 小型

1 引言

随着电力 电子 技术的告诉发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代 计算 机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,程控交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用 现代 电力电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源,这一成本反转点。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。

2 开关电源的分类

人们的开关电源技术领域是边开发相关电力电子器件,边开发开关变频技术,两者相互促进推动着开关电源每年以超过两位数字的增长率向着轻、小、薄、低噪声、高可靠、抗干扰的方向发展。开关电源可分为AC/DC和DC/DC两大类,DC/DC变换器现已实现模块化,且设计技术及生产工艺在国内外均已成熟和标准化,并已得到用户的认可,但AC/DC的模块化,因其自身的特性使得在模块化的进程中,遇到较为复杂的技术和工艺制造 问题 。以下分别对两类开关电源的结构和特性作以阐述。

2.1 DC/DC变换

DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。其具体的电路由以下几类:

(1) Buck电路――降压斩波器,其输出平均电压Uo小于输入电压Ui,极性相同。

(2) Boost电路――升压斩波器,其输出平均电压Uo大于输入电压Ui,极性相同。

(3) Buck-Boost电路――降压或升压斩波器,其输出平均电压Uo大于或小于输入电压Ui,极性相反,电感传输。

(4) Cuk电路――降压或升压斩波器,其输出平均电压Uo 大于或小于输入电压UI,极性相反,电容传输。

当今软开关技术使得DC/DC发生了质的飞跃,美国VICOR公司设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80-90)%。日本NemicLambda公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27 W/cm3,采用同步整流器(MOS-FET代替肖特基二极管),是整个电路效率提高到90%。

2.2 AC/DC变换

AC/DC变换是将交流变换为直流,其功率流向可以是双向的,功率流由电源流向负载的称为“整流”,功率流由负载返回电源的称为“有源逆变”。AC/DC变换器输入为50/60Hz的交流电,因必须经整流、滤波,因此体积相对较大的滤波电容器是必不可少的,同时因遇到安全标准(如UL、CCEE等)及EMC指令的限制(如IEC、FCC、CSA),交流输入侧必须加EMC滤波及使用符合安全标准的元件,这样就限制AC/DC电源体积的小型化,另外,由于内部的高频、高压、大电流开关动作,使得解决EMC电磁兼容问题难度加大,也就对内部高密度安装电路设计提出了很高的要求,由于同样的原因,高电压、大电流开关使得电源工作消耗增大,限制了AC/DC变换器模块化的进程,因此必须采用电源系统优化设计 方法 才能使其工作效率达到一定的满意程度。

3 开关电源的选用

开关电源在输入抗干扰性能上,由于其自身电路结构的特点(多级串联),一般的输入干扰如浪涌电压很难通过,在输出电压稳定度这一技术指标上与线性电源相比具有较大的优势,其输出电压稳定度可达(0.5~1)%。开关电源模块作为一种电力 电子 集成器件,在选用中应注意以下几点:

3.1输出电流的选择

因开关电源工作效率高,一般可达到80%以上,故在其输出电流的选择上,应准确测量或 计算 用电设备的最大吸收电流,以使被选用的开关电源具有高的性能价格比,通常输出计算公式为:

Is=KIf

式中:Is―开关电源的额定输出电流;

If―用电设备的最大吸收电流;

K―裕量系数,一般取1.5~1.8;

3.2接地

开关电源比线性电源会产生更多的干扰,对共模干扰敏感的用电设备,应采取接地和屏蔽措施,按ICE1000.EN61000.FCC等EMC限制,形状开关电源均采取EMC电磁兼容措施,因此开关电源一般应带有EMC电磁兼容滤波器。如利德华福技术的HA系列开关电源,将其FG端子接大地或接用户机壳,方能满足上述电磁兼容的要求。

3.3保护电路

开关电源在设计中必须具有过流、过热、短路等保护功能,故在设计时应首选保护功能齐备的开关电源模块,并且其保护电路的技术参数应与用电设备的工作特性相匹配,以避免损坏用电设备或开关电源。

4 开关电源技术的发展动向

开关电源的发展方向是高频、高可靠、低耗、低噪声、抗干扰和模块化。由于开关电源轻、小、薄的关键技术是高频化,因此国外各大开关电源制造商都致力于同步开发新型高智能化的元器件,特别是改善二次整流器件的损耗,并在功率铁氧体(Mn-Zn)材料上加大 科技 创新,以提高在高频率和较大磁通密度(Bs)下获得高的磁性能,而电容器的小型化也是一项关键技术。SMT技术的 应用 使得开关电源取得了长足的进展,在电路板两面布置元器件,以确保开关电源的轻、小、薄。开关电源的高频化就必然对传统的PWM开关技术进行创新,实现ZVS、ZCS的软开关技术已成为开关电源的主流技术,并大幅提高了开关电源工作效率。对于高可靠性指标,美国的开关电源生产商通过降低运行电流,降低结温等措施以减少器件的应力,使得产品的的可靠性大大提高。

模块化是开关电源发展的总体趋势,可以采用模块化电源组成分布式电源系统,可以设计成N+1冗余电源系统,并实现并联方式的容量扩展。针对开关电源运行噪声大这一缺点,若单独追求高频化其噪声也必将随着增大,而采用部分谐振转换电路技术,在 理论 上即可实现高频化又可降低噪声,但部分谐振转换技术的实际应用仍存在着技术 问题 ,故仍需在这一领域开展大量的工作,以使得该项技术得以实用化。

电力电子技术的不断创新,使开关电源产业有着广阔的发展前景。要加快我国开关电源产业的发展速度,就必须走技术创新之路,走出有 中国 特色的产学研联合发展之路,为我国国民 经济 的高速发展做出贡献。

开关电源篇4

论文首先介绍了电力电子技术及器件的发展和应用,具体阐明了国内外开关电源的发展和现状,研究了开关电源的基本原理,拓扑结构以及开关电源在电力直流操作电源系统中的应用,介绍了连续可调开关电源的设计思路、硬件选型以及TL494在输出电压调节、过流保护等方面的工作原理和具体电路,设计出一种实用于电力系统的开关电源,以替代传统的相控电源。该系统以MOSFET作为功率开关器件,构成半桥式Buck开关变换器,采用脉宽调制(PWM)技术,PWM控制信号由集成控制TL494产生,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器进行隔离,并设计了软启动和过流保护电路。该电源在输出大电流条件下,能做到输出直流电压大范围连续可调,同时保持良好的PWM稳压调节运行。 开关电源结构

以开关方式工作的直流稳压电源以其体积小、重量轻、效率高、稳压效果好的特点,正逐步取代传统电源的位置,成为电源行业的主流形式。可调直流电源领域也同样深受开关电源技术影响,并已广泛地应用于系统之中。

开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。

SCR在开关电源输入整流电路及软启动电路中有少量应用, GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。在本论文中选用的开关器件为功率MOSFET管。

开关电源的三个条件:

1. 开关:电力电子器件工作在开关状态而不是线性状态;

2. 高频:电力电子器件工作在高频而不是接近工频的低频;

3. 直流:开关电源输出的是直流而不是交流。

根据上面所述,本文的大体结构如下:

第一章,为整个论文的概述,大致介绍电力电子技术及器件的发展,简单说明直流电源的基本情况,介绍国内外开关电源的发展现状和研究方向,阐述本论文工作的重点;

第二章,主要从理论上讨论开关电源的工作原理及电路拓扑结构;

第三章,主要将介绍系统主电路的设计;

第四章,介绍系统控制电路各个部分的设计;

第五章,集中在系统的仿真与调试。对系统的整体性能做出评价,指出系统的优缺点。

开关电源篇5

关键词:开关电源;示波器;电源设计;电源测量

从传统的模拟电源到高效的开关电源,电源的种类和大小千差万别。它们都要面对复杂、动态的工作环境。设备负载和需求可能在瞬间发生很大变化。即使是“常用的”开关电源,也要能够承受远远超过其平均工作电平的瞬间峰值。设计电源或系统中要使用电源的工程师需要了解在静态条件以及最差条件下电源的工作情况。

过去,要描述电源的行为特征,就意味着要使用数字万用表测量静态电流和电压,并用计算器或PC进行艰苦的计算。今天,大多数工程师转而将示波器作为他们的首选电源测量平台。现代示波器可以配备集成的电源测量和分析软件,简化了设置,并使得动态测量更为容易。用户可以定制关键参数、自动计算,并能在数秒钟内看到结果,而不只是原始数据。

电源设计问题及其测量需求

理想情况下,每部电源都应该像为它设计的数学模型那样地工作。但在现实世界中,元器件是有缺陷的,负载会变化,供电电源可能失真,环境变化会改变性能。而且,不断变化的性能和成本要求也使电源设计更加复杂,需要考虑的问题有:

电源在额定功率之外能维持多少瓦的功率?能持续多长时间?电源散发多少热量?过热时会怎样?它需要多少冷却气流?负载电流大幅增加时会怎样?设备能保持额定输出电压吗?电源如何应对输出端的完全短路?电源的输入电压变化时会怎样?

设计人员需要研制占用空间更少、降低热量、缩减制造成本、满足更严格的EMI/EMC标准的电源。只有一套严格的测量体系才能让工程师达到这些目标。

示波器和电源测量

对那些习惯于用示波器进行高带宽测量的人来说,电源测量可能很简单,因为其频率相对较低。实际上,电源测量中也有很多高速电路设计师从来未曾面对的挑战。

整个开关设备的电压可能很高,而且是“浮动的”,也就是说,不接地。信号的脉冲宽度、周期、频率和占空比都会变化。必须如实捕获并分析波形,发现波形的异常。这对示波器的要求是苛刻的。多种探头――同时需要单端探头、差分探头以及电流探头。仪器必须有较大的存储器,以提供长时间低频采集结果的记录空间。并且可能要求在一次采集中捕获幅度相差很大的不同信号。

开关电源基础

大多数现代系统中主流的直流电源体系结构是开关电源(SMPS),它因为能够有效地应对变化负载而广泛应用。典型SMPS的电能信号路径包括无源器件、有源器件和磁性元件。SMPS尽可能少地使用损耗性元器件(如电阻和线性晶体管),而主要使用(理想情况下)无损耗的元器件:开关晶体管、电容和磁性元件。

SMPS设备还有一个控制部分,其中包括脉宽调制调节器、脉频调制调节器以及反馈环路等组成部分。控制部分可能有自己的电源。图1是简化的SMPS示意图,图中显示了电能转换部分,包括有源器件、无源器件以及磁性元件。

SMPS技术使用了金属氧化物场效应晶体管(MOSFET)与绝缘栅双极晶体管(IGBT)等功率半导体开关器件。这些器件开关时间短,能承受不稳定的电压尖峰。同样重要的是,它们不论在开通还是断开状态,消耗的能量都极少,效率高而发热低。开关器件在很大程度上决定了SMPS的总体性能。对开关器件的主要测量包括:开关损耗、平均功率损耗、安全工作区及其他。

测量一次采集中的100V和100mV电压

要测量开关器件的开关损耗和平均功率损耗,示波器首先必须分别确定在断开和开通时开关器件上的电压。

在AC/DC变流器中,开关器件上的电压动态范围非常大。开通状态下开关器件上通过的电压取决于开关器件的类型。在图2所示的MOSFET管中,开通电压为导通电阻和电流的乘积。在双极结型晶体管(BIT)和IGBT器件中,该电压主要取决于饱和导通压(VCEsat)。断开状态的电压取决于工作输入电压和开关变换器的拓扑。为计算设备设计的典型直流电源使用80 Vrms到264Vrms之间的通用市电电压。

在最高输入电压下开关器件上的断开状态电压(TP1和TP2之间)可能高达750 V。在开通状态,相同端子间的电压可能在几毫伏到大约1伏之间。图3显示了开关器件的典型信号特性。

为了准确地进行开关器件电源测量,必须先测量断开和开通电压。然而,典型的8位数字示波器的动态范围不足以在同一个采集周期中既准确采集开通期间的毫伏级信号,又准确采集断开期间出现的高电压。要捕获该信号,示波器的垂直范围应设为每分度100伏。在此设置下,示波器可以接受高达1000 V,的电压,这样就可以采集700 V的信号而不会使示波器过载。使用该设置的问题在于最大灵敏度(能解析的最小信号幅度)变成了1000/256,即约为4 V。

泰克DPOPWR软件解决了这个问题,用户可以把设备技术数据中的RDSON或VCEsat值输入测量菜单中。如果被测电压位于示波器的灵敏度范围内,DPOPWR也可以使用采集的数据进行计算,而不是使用手动输入的值。

消除电压探头和电流探头之间的时间偏差

要使用数字示波器进行电源测量,就必须测量MOSFET开关器件(如图2所示)漏极、源极间的电压和电流,或IGBT集电极、发射极间的电压。该任务需要两个不同的探头:一支高压差分探头和一支电流探头。后者通常是非插入式霍尔效应型探头。这两种探头各有其独特的传输延迟。这两个延迟的差(称为时间偏差),会造成幅度测量以及与时间有关的测量不准确。一定要了解探头传输延迟对最大峰值功率和面积测量的影响。毕竟,功率是电压和电流的积。如果两个相乘的变量没有很好地校正,结果就会是错误的。探头没有正确进行“时间偏差校正”时,开关损耗之类测量的准确性就会影响。

图4所示的测试设置比较了探头端部的信号(下部迹线显示)和传输延迟后示波器前端面板处的信号(上部显示)。

图5-图、8是表明了探头时滞影响的实际示波器屏幕图。它使用泰克P5205 1.3k V差分探头和TCP0030AC/DC电流探头连接到DUT上。电压和电流信号通过校准夹具提供。图5说明了电压探头和电流探头之间的时滞,图6显示了在没有校正两个探头时滞时获得的测量结果(6.059mW)。图7显示了校正探头时滞的影响。两条参考曲线重叠在一起,表明已经补偿了延迟。图8中的测量结果表明了正确校正时滞的重要性。这一实例

表明,时滞引入了6%的测量误差。准确地校正时滞降低了峰到峰功率损耗测量误差。

DPOPWR电源测量软件可以自动校正所选探头组合的时间偏差。该软件控制示波器,并通过实时电流和电压信号调整电压通道和电流通道之间的延迟,以去除电压探头和电流探头之间传输延迟的差别。

还可以使用一种静态校正时间偏差的功能,但前提是特定的电压探头和电流探头有恒定、可重复的传输延迟。静态校正时间偏差的功能根据一张内置的传输时间表,自动为选定探头(如本文档中讨论的Tektronix探头)调整选定电压和电流通道之间的延迟。该技术提供了一种快速而方便的方法,可以将时间偏差降至最小。

记录长度在电源测量中的作用

示波器在一段时间内捕获事件的能力取决于所用的采样速率,以及存储采集到的信号样本的存储器的深度(记录长度)。存储器填充的速度和采样速率成正比。如果为了提供详细的高分辨率信号而将采样速率设得很高,存储器很快就会充满。

对很多SMPS电源测量来说,必须捕获工频信号的四分之一周期或半个周期(90或180度),有些甚至需要整个周期。这是为了积累足够的信号数据,以在计算中抵消工频电压波动的影响。

识别真正的Ton与Toff转换

为了精确地确定开关转换中的损耗,首先必须滤除开关信号中的振荡。开关电压信号中的振荡很容易被误认为开通或关断转换。这种大幅度振荡是SMPS在非持续电流模式(DCM)和持续电流模式(CCM)之间切换时电路中的寄生元件造成的。

图11以简化形式表示出了一个开关信号。这种振荡使示波器很难识别真正的开通或关断转换。一种解决方法是预先定义一个信号源进行边沿识别、一个参考电平和一个迟滞电平,如图12所示。根据信号复杂度和测量要求的不同,也可以将测得信号本身作为边沿电平的信号源。或者,也可以指定某些其它的整洁的信号。

在某些开关电源设计(如有源功率因数校正变流器)中,振荡可能要严重得多。DCM模式大大增强了振荡,因为开关电容开始和滤波电感产生共振。仅仅设置参考电平和磁滞电平可能不足以识别真正的转换。

开关电源篇6

1.1基本拓扑

基本的拓扑包括BUCK、BOOST、BUCK-BOOST、CUK、正激变换器、反激、半桥、全桥、推挽变换器。在课堂教学中应该使学生熟练掌握其工作原理、应用场所、电流连续和电流断续的工作波形、拓扑中的关键参数的计算,为学生设计基本的开关电源电路打下坚实的基础,这是第一层次,要求学生必须熟练掌握。尤其要着重讲解基本拓扑BUCK变换器,因为很多拓扑结构甚至是基本拓扑都可以由BUCK变换器变换得来。如果能在课堂上重点讲解BUCK变换器,使学生完全掌握BUCK变换器的原理和波形,对学生后期的开关电源学习将会大有助益。第二层次是以基本拓扑为核心部分的主功率电路各部分参数计算,相当于电源工程师的项目计算书部分,这也是电源工程师必须掌握的基本技能。由于课上时间有限,教师在课上会把拓扑中关键器件主要参数的计算方法给出,不可能把所有的参数计算一遍,所以导致有些学生就停滞在这个层次上,没有在课下把所有的参数,尤其是关系到器件选型的参数进行设计,为了解决这个问题,在课程中后期安排学生团队制作实物开关电源,在这个过程中就必须要对每个计算参数都要反复核算,这个教学环节取得了较好的效果。第三层次是主功率电路器件选型和调试,基本上只有参加过实物制作、电子设计大赛、实习项目的学生有机会达到这一步,通过实际存在的问题,就问题去解决,才会在实践当中结合他们上课学习的电源理论切实地体会调试电路的乐趣。

1.2PWM和PFC控制芯片

这部分会通过调研报告的形式让学生先去搜集相关PWM和PFC控制芯片的最新信息,先让学生去感知、去了解现在出来最新的控制芯片已经可以做到哪些功能了,此外重要的是积累总结每一个拓扑可以有哪些控制芯片来控制。让他们自己去发现问题,感知问题,带着问题和好奇,在课堂上授课教师会深入讲解PWM控制芯片的基本控制原理,通过工程项目详细讲解如何快速掌握一个新的控制芯片每个引脚的功能,电路的设计方法、元器件参数计算方法,使学生掌握如何用控制芯片来控制变换器实现电能的变换,学会设计控制芯片与变换器的连接电路,即检测电路和功率管的驱动电路。在课堂上教会学生使用PWM控制芯片数据说明书设计控制电路达到层次一,在课程学时中专门安排学生学习控制芯片电路的设计方法和参数计算方法达到层次二,不仅让学生掌握一种控制芯片的电路设计方法,更重要的是举一反三,在以后的设计和工作岗位上面对新的平台和控制芯片依然可以设计出符合要求的电路。

1.3变压器和电感设计

授课教师在课堂教学中依据教学改革培养电源工程师为目标不仅要介绍变压器和电感的各个参数的计算方法,还会结合实际项目讲授变压器同名端和异名端在实际电源制作时的注意事项,变压器的制作方法,掌握电压器参数的测试方法和测试工具,掌握用示波器和信号发生器测试变压器的匝比和同名端的方法。变压器和电感的设计直接关系到隔离型变换器的性能,很多学生对变压器和电感磁路设计部分学习起来会有些困难,所以这部分将作为课程的难点来重点讲解。

1.4保护电路设计

课堂教学中一部分学时将用来着重讲解各种保护电路,包括输入输出过压保护、过温保护、过流保护、输入欠压保护等。将采用调研报告、启发式和讨论式等教学方法引导学生去积累这些保护电路,学会在不同平台、不同应用场合使用不同的保护电路。

1.5闭环电路调试

结合自动控制原理课程的相关知识,着重讲解开关电源闭环电路的设计和分析,尤其是PID调节器的调试方法,结合实际项目演示电源工程师闭环电路调试过程,激发学生学习开关电源的学习兴趣,通过实物和仿真软件让学生体验调试的乐趣,这部分是开关电源课程重点讲解的内容,要联系实际项目,是课程的核心内容。以上5个部分是课程的主要教学内容块,完全按照培养电源工程师的目标下制定的教学计划,可以做到较好地给学生从课堂到就业的过渡,而不再是到了工作岗位上感觉课堂学习的东西和实际工作联系不紧密,什么知识什么技能都要工作之后学习。在课堂上,保证学生完全掌握第一个层次,通过课后作业、课堂实际项目案例、电源制作等形式的教学方法使大部分学生掌握层次二,在平时的教学中注意动手能力强或者电路设计能力强的学生,通过带学生电子设计大赛、创新大赛,或者学生在项目中辅助教师担任研发助理的工作等,使一部分学生研发能力可以快速提高,培养成具有基本技能的初级电源工程师。

2课程考核方式改革

考虑到开关电源课程的实践性强的特点,着重考核学生掌握所学的基本电路拓扑理论和技能,能综合运用所学知识和技能去分析电路、调试和测试电路、分析电路故障及排除电路故障的能力。

2.1制作电源实物

基于课堂系统的理论学习,独立制作75W单管正激变换器实物的能力考核,该正激变换器采用何种磁复位技术不限,根据班级人数,3~4名同学为一个小组,明确不同分工,共同制作出一款正激变换器。同时培养学生的团队合作意识,考核的内容也要增加当该团队遇到分歧和困难的时候,是如何解决的。

2.2课堂表现

主要是包括回答问题的情况,对问题分析的程度,出勤率,在平时小组讨论时的表现和活跃程度。

2.3科研报告、口头汇报

通过让学生搜索近3年国内外开关电源、尤其是通信电源技术和产品的最新发展概况,增强学生的自我学习能力,在以后的学习和工作中掌握更新自己开关电源知识体系的能力,这是我们教学的重点,不只是教会学生电源的基本知识,还要教学学生学习探索开关电源领域的学习方法。选取部分优秀学生的科研报告由学生浓缩成5分钟的口头汇报结合PPT、实物动画等多媒体展示方法在上课前5分钟做口头汇报分享给学生们。不仅较好地激发学生学习开关电源的兴趣也能够充分锻炼学生的公开演讲能力。

2.4作业

作业着重在学生是否是自己独立完成的电路设计,而不是应付了事。哪怕学生的设计内容很少,但是只要是他们自己经过思考得来的就要比其参考其他人的作业效果要好很多。

3开关电源技术教学改革反思

结合课堂教学改革,让学生们一边理论学习一边同步到学校实训基地巩固学习效果进行电源制作和电路故障排除以及电源设计,注重对学生电源技术思维和创新能力的培养,加强校企合作,为学生营造良好的学习氛围,同时,每年通过大学生科研立项和大学生电子设计大赛、创新大赛充分锻炼学生在课堂上的学习效果,教研团队教师会专门跟踪和调研学生的理论与实践结合的效果,从而不断总结经验,更好地服务教学。通过学生全程参与大赛和项目的经历,充分挖掘学生的设计潜力和创新思维能力,让学生充分享受到学习的乐趣,形成良性循环,并且可以拓展到其他科目,提高学生的综合素质。

开关电源篇7

关键词:开关电源 电磁兼容 气体放电管 瞬态电压抑制器

Electromagnetic Compatibility of Switching Power Supply

ZHU Liang1

(1. Wuhan Institute of Marine Electric Propulsion, CSIC, Wuhan 430064, China )

Abstract: This paper first introduced the switch power supply of the basic composition, working principle, working mode and main features, and then illustrates the two main types of modern switch characteristics, and during the second half of the article, it emphatically describes a DC/DC switching power supply for electromagnetic compatibility test CS106 projects, for the problems and the causes of the problems are analyzed, and finally gives the solution to the problem is in the switch power supply input terminal with a transient voltage suppressor (TVS diode) replace the gas discharge tube, after many times of electromagnetic compatibility test, proved that the method is feasible.

Key words: switching power supply; electromagnetic compatibility(EMC); gas discharge tube; transient voltage suppressor

1 引言

电子技术的高速发展,电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入21世纪后,开关电源相继进入各种电子、电器 设备领域,程控交换机、通讯、电力检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。开关电源是利用现代电子技术,控制开关晶体管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)和MOSFET 构成。开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。开关电源比普通的线性电源效率高,开关电源的发展与应用在节约能源、节约资源及保护环境方面都具有重要的意义。开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,开关电源比普通线性电源体积小,轻便化,更便于携带。但是随着体积越来越小带来的问题是,众多的电子系统集中装备在的狭窄空间内,电子设备的使用密度日趋增大。频谱的拥挤,发射电平的增大、接收灵敏度的提高、数据和弱信号传输量的扩大、各种金属构件的天线和非天线效应、大量成束电缆的敷设等等,都给电磁干扰的产生和传播提供了条件和途径。

2 开关电源简介

开关电源和线性电源相比,二者的成本都随着输出功率的增加而增长,但二者增长速率各异。线性电源成本在某一输出功率点上,反而高于开关电源。随着电力电子技术的发展和创新,使得开关电源技术在不断地创新,这一成本反转点日益向低输出电力端移动,这为开关电源提供了广泛的发展空间。

2.1 基本组成

开关电源大至由主电路、控制电路、检测电路、辅助电源四大部份组成。

2.1.1主电路

冲击电流限幅:限制接通电源瞬间输入侧的冲击电流。

输入滤波器:其作用是过滤电网存在的杂波及阻碍本机产生的杂波反馈回电网。

整流与滤波:将电网交流电源直接整流为较平滑的直流电。

逆变:将整流后的直流电变为高频交流电,这是高频开关电源的核心部分。

输出整流与滤波:根据负载需要,提供稳定可靠的直流电源。

2.1.2 控制电路

一方面从输出端取样,与设定值进行比较,然后去控制逆变器,改变其脉宽或脉频,使输出稳定,另一方面,根据测试电路提供的数据,经保护电路鉴别,提供控制电路对电源进行各种保护措施。

2.1.3检测电路

提供保护电路中正在运行中各种参数和各种仪表数据。

2.1.4辅助电源

实现电源的软件(远程)启动,为保护电路和控制电路(PWM等芯片)工作供电。

2.2 工作原理

开关电源的工作过程相当容易理解,在线性电源中,让功率晶体管工作在线性模式,与线性电源不同的是,PWM开关电源是让功率晶体管工作在导通和关断的状态,在这两种状态中,加在功率晶体管上的伏-安乘积是很小的(在导通时,电压低,电流大;关断时,电压高,电流小)/功率器件上的伏安乘积就是功率半导体器件上所产生的损耗。

与线性电源相比,PWM开关电源更为有效的工作过程是通过“斩波”,即把输入的直流电压斩成幅值等于输入电压幅值的脉冲电压来实现的。

脉冲的占空比由开关电源的控制器来调节。一旦输入电压被斩成交流方波,其幅值就可以通过变压器来升高或降低。通过增加变压器的二次绕组数就可以增加输出的电压值。最后这些交流波形经过整流滤波后就得到直流输出电压。

控制器的主要目的是保持输出电压稳定,其工作过程与线性形式的控制器很类似。也就是说控制器的功能块、电压参考和误差放大器,可以设计成与线性调节器相同。他们的不同之处在于,误差放大器的输出(误差电压)在驱动功率管之前要经过一个电压/脉冲宽度转换单元。

开关电源有两种主要的工作方式:正激式变换和升压式变换。尽管它们各部分的布置差别很小,但是工作过程相差很大,在特定的应用场合下各有优点。

2.3 工作模式及主要特点

开关电源就是利用电子开关器件(如晶体管、场效应管、可控硅闸流管等),通过控制电路,使电子开关器件不停地“接通”和“关断”,让电子开关器件对输入电压进行脉冲调制,从而实现DC/AC、DC/DC电压变换,以及输出电压可调和自动稳压。[1]

开关电源一般有三种工作模式:频率、脉冲宽度固定模式,频率固定、脉冲宽度可变模式,频率、脉冲宽度可变模式。前一种工作模式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作模式多用于开关稳压电源。另外,开关电源输出电压也有三种工作方式:直接输出电压方式、平均值输出电压方式、幅值输出电压方式。同样,前一种工作方式多用于DC/AC逆变电源,或DC/DC电压变换;后两种工作方式多用于开关稳压电源。

跟传统的线性电源相比,由于没有工频变压器,所以体积和重量只有线性电源的20~30%;并且功率晶体管工作在开关状态,所以晶体管上的功耗小,转化效率高,一般为60~70%,而线性电电源只有30~40%。

2.4 主要类型

现代开关电源有两种:一种是直流开关电源;另一种是交流开关电源。这里主要介绍的只是直流开关电源,其功能是将电能质量较差的原生态电源(粗电),如市电电源或蓄电池电源,转换成满足设备要求的质量较高的直流电压(精电)。直流开关电源的核心是DC/DC转换器。因此直流开关电源的分类是依赖DC/DC转换器分类的。也就是说,直流开关电源的分类与DC/DC转换器的分类是基本相同的,DC/DC转换器的分类基本上就是直流开关电源的分类。

2.4.1 按直流DC/DC转换器之间的电气隔离分

一类是有隔离的称为隔离式DC/DC转换器;另一类是没有隔离的称为非隔离式DC/DC转换器。

隔离式DC/DC转换器也可以按有源功率器件的个数来分类。单管的DC/DC转换器有正激式(Forward)和反激式(Flyback)两种。双管DC/DC转换器 有双管正激式(DoubleTransistor Forward Converter),双管反激式(Double Transistr Flyback Converter)、推挽式(Push-Pull Converter) 和半桥式(Half-Bridge Converter)四种。四管DC/DC转换器就是全桥DC/DC转换器(Full-Bridge Converter)。

非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器 ,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种 单管DC/DC转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换 器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

非隔离式DC/DC转换器,按有源功率器件的个数,可以分为单管、双管和四管三类。

单管DC/DC转换器共有六种,即降压式(Buck)DC/DC转换器 ,升压式(Boost)DC/DC转换器、升压降压式(Buck Boost)DC/DC转换器、Cuk DC/DC转换器、Zeta DC/DC转换器和SEPIC DC/DC转换器。在这六种 单管DC/DC转换器中,Buck和Boost式DC/DC转换器是基本的,Buck-Boost、Cuk、Zeta、SEPIC式DC/DC转换器是从中派生出来的。双管DC/DC转换 器有双管串接的升压式(Buck-Boost)DC/DC转换器。四管DC/DC转换器常用的是全桥DC/DC转换器(Full-Bridge Converter)。

隔离式DC/DC转换器在实现输出与输入电气隔离时,通常采用变压器来实现,由于变压器具有变压的功能,所以有利于扩大转换器的输出应用 范围,也便于实现不同电压的多路输出,或相同电压的多种输出。

在功率开关管的电压和电流定额相同时,转换器的输出功率通常与所用开关管的数量成正比。所以开关管数越多,DC/DC转换器的输出功率越大,四管式比两管式输出功率大一倍,单管式输出功率只有四管式的1/4。

非隔离式转换器与隔离式转换器的组合,可以得到单个转换器所不具备的一些特性。

2.4.2 按能量的传输来分

DC/DC转换器有单向传输和双向传输两种。具有双向传输功能的DC/DC转换器,既可以从电源侧向负载侧传输功率,也可 以从负载侧向电源侧传输功率。

DC/DC转换器也可以分为自激式和他控式。借助转换器本身的正反馈信号实现开关管自持周期性开关的转换器,叫做自激式转换器,如洛耶尔 (Royer)转换器就是一种典型的推挽自激式转换器。他控式DC/DC转换器中的开关器件控制信号,是由外部专门的控制电路产生的。

2.4.3 按照开关管的开关条件

DC/DC转换器又可以分为硬开关(Hard Switching)和软开关(Soft Switching)两种。硬开关DC/DC转换器的开关器件 是在承受电压或流过电流的情况下,开通或关断电路的,因此在开通或关断过程中将会产生较大的交叠损耗,即所谓的开关损耗(Switching loss)。当转换器的工作状态一定时开关损耗也是一定的,而且开关频率越高,开关损耗越大,同时在开关过程中还会激起电路分布电感和寄生 电容的振荡,带来附加损耗,因此,硬开关DC/DC转换器的开关频率不能太高。软开关DC/DC转换器的开关管,在开通或关断过程中,或是加于 其上的电压为零,即零电压开关(Zero-Voltage-Switching,ZVS),或是通过开关管的电流为零,即零电流开关(Zero-Current·Switching,ZCS)。这种软开关方式可以显着地减小开关损耗,以及开关过程中激起的振荡,使开关频率可以大幅度提高,为转换器的小型化和模块化创造 了条件。功率场效应管(MOSFET)是应用较多的开关器件,它有较高的开关速度,但同时也有较大的寄生电容。它关断时,在外电压的作用下, 其寄生电容充满电,如果在其开通前不将这一部分电荷放掉,则将消耗于器件内部,这就是容性开通损耗。为了减小或消除这种损耗,功率场 效应管宜采用零电压开通方式(ZVS)。绝缘栅双极性晶体管(Insu1ated Gate Bipo1ar tansistor,IGBT)是一种复合开关器件,关断时的电流拖 尾会导致较大的关断损耗,如果在关断前使流过它的电流降到零,则可以显着地降低开关损耗,因此IGBT宜采用零电流(ZCS)关断方式。IGBT在 零电压条件下关断,同样也能减小关断损耗,但是MOSFET在零电流条件下开通时,并不能减小容性开通损耗。谐振转换器(ResonantConverter ,RC)、准谐振转换器(Qunsi-Tesonant Converter,QRC)、多谐振转换器(Mu1ti-ResonantConverter,MRC)、零电压开关PWM转换器(ZVS PWM Converter)、零电流开关PWM转换器(ZCS PWM Converter)、零电压转换(Zero-Vo1tage-Transition,ZVT)PWM转换器和零电流转换(Zero- Vo1tage-Transition,ZVT)PWM转换器等,均属于软开关直流转换器。

3 关于开关电源的电磁兼容

3.1 开关电源的电磁兼容性问题

我们使用的DC/DC型电源设备在进行电磁兼容性试验的CS106项目时,可以使在该电源前端的0.75A的保险丝熔断,导致试验失败。

电磁兼容性试验的CS106项目的内容为:将尖峰发生器与受试设备并联,调整尖峰发生器的输出幅度,使5欧姆无感电阻上的信号幅度符合标准中的规定值,这个值即为校准值[2],如图所示:

在试验中,干扰以差模方式注入:具有较大的瞬间功率和一定的能量。

我们所使用的是一款DC/DC的开关电源,其主要功能是将外部蓄电池的250V左右的直流电转换为直流±15V的直流电,给后续的电力电子设备提供电源,其主要电路图如下:

3.2 针对电磁兼容性问题的分析及解决方法

由于CS106试验主要测试在设备分系统所有不接地的交流和直流输入电源线上测试设备、分系统对电源线上注入的尖峰信号的敏感度。而在此电源中,我们使用的是型号为2RM600-8的气体放电管,其动作电压为DC600V±20%,电源在正常工作时,输入端电压是DC250V,因此气体放电管不动作。当电源输入端的电压有超过该只气体放电管动作电压的时候,气体放电管可靠的动作,并产生放电吸收的现象,该过程能将来自于输入端的尖峰过电压以气体放电的形式被吸收,从而保护电路其他元器件不受过压损坏。但是,在放电过程中,会使电源的输入端瞬间的峰值吸入电流。当在进行CS106试验时,其输入端接有保险丝,当超过DC600V的尖峰电压出现时,开关电源内的气体放电管工作,使电源的输入端产生瞬间的峰值吸入电流,该峰值电流要远大于0.75A保险丝的熔断电流,因此该保险丝会瞬间熔断。此时开关电源内部的气体放电管又恢复常态,当下一次再出现DC600V以上的尖峰浪涌电压时,气体放电管又会重复上述工作过程[3]。

为了不影响开关电源外部电力电子设备的正常使用,我们将开关电源内的气体放电管更换为TVS管,更换后的电路如下:

如图所示,将气体放电管从开关电源前端去除后,在限流电阻后并联了一个TVS管。TVS管是一种二极管形式的高效能保护器件,我们选用的型号为1.5KE400A,当该TVS管的两极高于直流电压400V±20V时,它能以10-12秒量级的速度,将其两极间的高阻抗变为低阻抗,吸收高达1.5千瓦的浪涌功率,使两极间的电压箝位于548V,有效地保护电子线路中的精密元器件,免受各种浪涌脉冲的损坏。

我们将更换了TVS管的开关电源重新进行了CS106试验项目,结果保险丝完好,顺利通过该项试验。

4 结束语

综上所述,对于电磁干扰的抑制方法很多,可以选择一种或多种综合运用。本文提到的只是此种DC/DC类型的直流开关电源在进行电磁兼容性试验中所涉及的问题,并针对出现这种问题提出了解决方案且进行了验证,结果证明该方法是可行的,希望对其他遇到类似的问题给予帮助。

参考文献:

[1] 开关电源的工作模式. 电气自动化技术网,2013.

[2] 白同云等.电磁兼容设计[M].北京: 北京邮电大学出版社,2001.

[3] 气体放电管在浪涌抑制电路中的应用.电子元件网 ,2012.

开关电源篇8

电力电子技术经历了一个漫长的发展过程。最早应该追溯到第一个晶闸管(FGH)的诞生。“晶闸管”是美国一家通用电气公司的问世标志,为电力电子技术的发展开了先河,并促进了电力电子技术在许多新领域的应用。目前很多家用电源开关内部使用的都是FGH,是第一代半控型器件,不能自行关断,需要使用者根据需求进行操作。以FGH为核心的变流电路在电子能源转换过程中扮演着重要的角色,主要功能是使交流变成直流,为用户提供全面的安全服务。随着科学技术的不断进步,电力电子技术水平也呈现出不断发展的趋势。传统的FGH逐渐被“GTR、GTO”等新颖的电力转换器件所代替,从“传统电力电子技术”向“现代电力电子技术”转变。电力电子器件的研究和开发,也推动了当前电力行业的进步,使人们进入高频化和智能化的电力时代。“IGBT”的出现,更是实现了电网之间的非同期互联,解决了很多电源开关的不稳定问题,避免电路中出现短路和功损。很多家居用品和用电器等,都需要配置相应的开关,才能为用户提供便利,有效的实现开关和电路互通。在电源开关系统中加入电力电子应用,是新时期的科技需求,也是每个家电设计工作者需要掌握的重点技术。影响电力传输的因素有很多,比如“电路的距离、电压的大小、传输电线的质量、电路设备的品牌”等,这些都会影响电流在线路中的传输速率。如果电路距离过长、电压强度不够、电路设备不够完善,就有可能降低电源开关的反应灵敏度,增加电路能量的消耗。此外,有的用户不注意用电安全,反复使用电源开关,就会导致短路电流,烧断保险丝等问题出现,甚至产生漏电的危险,对用户的人身安全产生威胁。所以新时期的电力工作者必须事先预想这些可能存在的安全隐患,做出有效的应对政策和解决措施,加大电力电子技术在电源开关中的应用。传统的电力传输系统比较简单,不存在电容充电电流,电力的功率损耗也相对较小,这适合小家电的用户使用。很多大型的家用电器,比如“电冰箱、洗衣机、电视机、跑步机”等,就需要改变传统的电力传输系统,采用高压直流输电输送的方式,使电源系统拥有较快的调节速度,方便用户的操作,并且投入到市场当中使用。这些大功率的电子器件,电流的传输形式和传统的小电路不同,用户在使用时必须注意安全,建立有效的防范意识,逐渐改善高压直流输电设备的性能。

2开关电源的种类和特点

随着科学技术的不断发展和运用,各种各样的电源开关出现在人们生活当中。根据电路类型和电流传输方式的不同,开关电源主要分为以下几类。(1)传统输入和输出的类型。由于输入和输出方式的区别,可以将开关电源分为“DC/DC和AC/DC”两种变换器。“DC/DC”模式更注重电流的可靠性和安全性,而“AC/DC”注重的是电源开关的低耗和低噪声设计,给用户提供更提心的服务。根据两种电流传输形式不同,用户需要选择适合自己家庭的电源开关,发挥“DC/DC和AC/DC”两种变换器的价值和作用。(2)可以通过驱动方式的不同,可以将开关电源分为“接触式和非接触式”两种。通过字面意思理解,“接触式”需要用户接触电源开关才能进行相关的操作,而“非接触式”则强调智能化和自动化,用户远程即可实现对电源开关的控制。“接触式”的开关比较传统,但是灵敏度极高,“非接触式”的开关虽然更加智能化,但助长了人们懒惰的思想。无论是哪种类型的电源开关,只要是用户需要的,都值得各大企业的充分研究和发展。(3)根据控制方式的不同,还可以将开关电源分为“PWM、PFM、脉冲宽度调制”三种。每一种电源开关都有自己的价值和特点,用户可以根据自己的需要自行选择。PWM是“脉冲宽度调制式”;PFM是“脉冲频率调制式”。只有把握电力电子能量传输的方式和方法,才能不断提高电源开关的使用性能,有效保证开关电源的使用效率,减少不必要的能量损耗。

3电力电子技术在开关电源中的应用

上一篇:电源适配器范文 下一篇:南都电源范文