开关电源原理及设计范文

时间:2023-12-07 11:30:19

开关电源原理及设计

开关电源原理及设计篇1

关键词:应急照明、接线方式、施工方法

中图分类号:TU997文献标识码: A

一、三种常用的应急照明灯具

1.1疏散指示灯

交流电源正常工作时,对蓄电池充电,当交流电源因故障而不能正常供电时,转换成备用电源工作的应急状态,始终使标志清楚明确,有效地引导人员安全疏散。

1.2双头应急灯

正常状态下灯具关闭,电池充电,火灾发生时,灯具点亮通过电池供电,能有效照明和显示疏散通道的灯具。由光源、灯体等部件组成。双头应急灯实际上是停电应急灯,并不适合于强制点亮。

1.3普通灯具加备用电池的应急灯具

普通灯具加应急电池及应急启动装置组成的应急灯,多用于车间备用照明。当电源断开时,通过启动装置,经电池供电点亮灯具,实际上是停电应急灯。当电源持续供电时,通过消防控制模块+接触器+强制点亮线+双控开关+应急灯具,实现强制点亮功能。

二、用电负荷及应急照明方式的选择

在我国用电负荷根据对供电可靠性的要求及中断供电在政治及经济上所造成的损失或影响程度分为一级、二级、和三级;其中一级为重要负荷,不能停电,通常是两路独立电源供电及备用发电机组(或EPS);二级为保证负荷,优先供电,少停电,少有双电源供电,一般自备发电机组;三级为一般负荷,断电后影响较小,一般是单电源供电,不需要备用电源。

当应急照明为三级负荷时,应急照明灯具与普通照明同在一个回路,火灾发生时,切断市电,充电检测线失电,采用应急电池供电照明。例如:我公司承建的南京长澳冻干粉针车间应急照明设计为三级负荷即采用这种方式。当应急照明为二级负荷时,应急照明与普通照明为分开的单独回路,火灾发生时首先切断市电、消防电源继续供电,火灾信号发出后,通过消防强启,强制点亮应急照明。例如:我公司承建的南京圣和冻干车间、固体车间应急照明为二级负荷,即采用这种方式。

强启是指在应急状态下将灯具点亮。应急灯具的强启分为两种一、充电检测线失电,自带电池供电给应急照明灯具。二、充电检测线带电应急照明强启线供电给应急灯具。

三、应急灯具工作的原理及接线方式

3.1、疏散指示灯、安全出口灯的原理及接线方式

疏散指示灯、安全出口灯常亮,灯具内部有电压自动转换电路,市电电压如下降到187V-132V之间某电压值时,灯具会由主电状态转入应急状态由电池供电,当市电电压上升到132V-187V之间某一电压值时,灯具会由应急状态恢复主电状态。接线方式如图一所示:

图一:疏散指示灯安全出口灯的接线方式

3.2、双头应急灯停电启动原理及接线方式

应急灯停电启动的原理图如图二所示:

图二:停电启动的原理

当火灾时充电检测线失电,继电器线圈失电,常闭触电闭合,接通灯具,灯具点亮。双头应急灯以及加电池的应急灯具都是采用上述方式启动。双头应急灯,采用三线制,接线方式如图三所示:

图三:双头应急灯的接线方式

3.3应急照明做备用照明的原理及接线方式

应急照明正常情况下作为普通灯具使用,当火灾或者停电时市电断开,充电检测线失电,继电器器线圈失电,常闭触电闭合,接通灯具,灯具点亮。一般采用四线制,接线方式采用如图四所示:

图四:应急照明灯的接线方式及原理

3.4采用双控开关强启的原理及接线方式

当电力负荷为二级负荷,消防电源与市电分开,且当火灾发生时消防电源不切除,保证消防水泵、排烟风机、走廊应急照明的供电。当照明电源不断开时采用如下方式强启走廊应急照明灯具,保证人员疏散。

3.4.1在非应急状态下:此灯具作为普通灯具使用,与双控开关静触头1连接的导线处于导通状态,灯具点亮;与双控开关静触头2连接的导线处于断开转态,灯具熄灭。原理如图五所示:

图五:双控开关强启应急灯非应急时原理图

3.4.2在应急状态下:火灾发生时火灾报警启动,应急照明箱内接触器常开触点闭合,消防强启线上电,原来关闭的灯具,强制点亮。此时双控开关,在任意位置都是点亮的,开关失效。保证车间内人员从容撤离。原理如图六所示:

图六:双控开关强启应急灯应急时原理图

3.4.3在消防电源切除的状态下:充电检测线失电采用备用电池供电,原理如图七所示:

图七:消防电源断电时应急灯原理图

四、应急照明施工的方法及要点

4.1电线电缆保护管的选用

《建筑电气工程施工质量验收规范》(GB50303―2005,以下简称《验收规范》)要求疏散照明应敷设耐火电线、电缆,电线采用额定电压等于或高于750V的铜芯绝缘电线(20.1.4.8条)。阻燃型及耐火型电线、电缆允许长期工作的最高额定温度一定要符合设计要求,安装前一定按设计要求验收导线。施工过程中要加强监督检查,以免错用普通电线。应急疏散照明线路的保护管在《验收规范》中都要求使用钢导管,而对其他应急照明线路的保护管材质未做强制规定。

4.2应急照明线路的敷设

应急照明线路单独敷设,在每个防火分区有独立的应急照明回路,不能与普通照明线路混用。穿越不同防火分区的线路应有防火隔堵措施。(防火隔堵的具体作法详见标准图集《钢导管配线安装》(03D301―3)第38页)。当火灾应急照明线路的工作电源与备用电源在同一桥架敷设时,中间加隔板。明敷管线时,钢性导管上涂防火涂料保护。线管、线槽的PE保护线连接完成后,经检查确认才能穿线。应急照明线路不能与其他普通照明线路混用。

4.3应急照明配电箱的安装

应急照明配电箱的安装工艺同普通照明配电箱的安装工艺,但应急照明配电箱与其他普通照明配电箱应有明显的区分标志。应急照明配电箱的结构及电气元件宜选用耐火耐热型,当用普通型配电箱时,其安装位置应尽可能避开易受火灾影响的区域。

4.4应急照明灯具的安装

疏散标志灯的箭头指向应与逃生疏散方向一致,安装部位一般在走道及楼梯转角处。疏散标志的箭头应指向通往出口的方向。灯具安装高度由设计决定。标志的间距不应大于20m,袋形走道的尽头离标志的距离应小于或等于10m。封闭楼梯间、防烟楼梯间及其前室、消防电梯前室也应安装疏散指示标志。

五、小结

现场施工人员应该充分理解应急照明的供电方式及启动原理,对于应急照明的施工要认真思考,在充分理解设计意图及规范的前提下,深化设计并施工。设计和施工中一个小小的疏忽,在火灾时都可能引起严重的后果。一个完善的、质量过硬的火灾照明应急系统,可能为逃生者赢得宝贵的时间。我们应以高度的责任感去面对火灾应急照明的设计及施工,保障客户的生命财产安全。

作者简介:蒋荣(1988年1月)研究生学历 工程硕士学位

2011年毕业于河南理工大学电气工程专业

开关电源原理及设计篇2

关键词:电力系统规划;运行规划;发展规划

一、电力系统规划的目标要求

在电力系统规划设计中,首先在总体上需要考虑以下两个问题:一是技术上的合理性,二是投入上的经济性。

规划设计所追求的目标就是技术性能合理和总支出费用最低的问题。为了使规划方案具有相对的合理性,就需要认真研究电力系统的自身特点和规划的具体环境,然后选择有效的量化分析手段,以便使决策行为最大限度符合预定的目标。

电力系统的发展水平和结构变化对于国民经济的发展具有巨大影响,因此,合理进行电力系统规划可以避免不必要的重复投资;同时,电力工业又是一个设备和技术密集性行业,设备使用寿命相对较长,不合理的规划又将造成连续顺性的费用和维护费用的极大浪费。由于计算机技术的应用,使得规划方案形成的科学性和求解过程定量化成为可能。

二、电力系统规划的任务及流程

一是能源规划,属于电力规划的前期准备,主要任务包括研究规划区一次能源平衡关系和开发条件;分析各类能源的储存分布、输送方式、可供能力、成本估算等,为电力规划及其他能量转换需求提供依据。

二是电力负荷预测,主要任务是,依据规划地区国民经济发展速度及要求,预测规划期内对用电总需求的相关数据。

三是电源规划,主要任务是,根据能源规划和规划期电力负荷需求,提出电源布局与电源容量建设方案。

四是电网规划,主要任务是,根据电力负荷预测和电源规划,提出主干网络结构设计规划方案并给出系统地理接线图。

实际上,电源规划与电网规划是不可分割的整体,对电力系统而言,只是两者的作用或功能不同,一是发电,一是输电。一般情况下,两者分开处理,然后进行总体协调。但两者的目的是一致的,即共同实现系统未来的供求平衡。

三、电力系统规划的划分

电力系统可以从不同角度进行分类,若按用途划分,则有运行规划和发展规划两类。

运行规划主要针对电源环节而言,它的基本任务是解决电力系统在短期内的电力供求平衡问题。具体内容包括:制定发电设备检修计划,确定机组出力分配,进行发电成本和互联系统效益分析,制定燃料需求及储存计划等。

发展规划的基本任务是解决电力系统在远景(5-20年之间)的电力供求平衡问题。其内容包括:电源布点、装机规模、更新计划、网络结构、输电走向、联网设计等。并在总体上力求电力系统的潮流分布合理,电能质量合格和运行的经济性。

发展规划若按规划的周期长短,又可以分为短期、中期和长期三种。

短期规划一般指5年左右的规划设计,主要针对网络部分进行优化或改进设计。研究5年内电源、电网建设方案并进行技术经济分析。根据国民经济和社会发展五年规划及经济结构调整对电力工业发展的要求,找出电力工业中不相适应的主要问题;深入研究电力需求水平及负荷特性、电力电量平衡、环境及社会影响等。提出5年内电源结构调整和建设原则,需调整和建设的项目、进度及顺序;电网结构调整和建设原则,需调整和建设的项目、进度及顺序;开展二次系统规划工作。进行逐年投融资、设备、燃料及运输平衡,测算逐年电价、环境指标等。

中期规划,一般是指10年左右的规划设计,主要对系统未来发展结构或方向进行规划估计,通常一个中型水电站建设周期为10年左右,为此需将电源和电网综合在一起规划设计。研究5~15年内电力系统发展和建设方案,根据:国民经济及社会发展目标、发电能源资源开发条件、节能分析、环境及社会影响等。分析:电力需求水平及负荷特性、电力流向。提出:规划水平年的电源布局、结构和建设项目;电网布局、结构和建设项目;宜对建设资金、电价水平、设备、燃料及运输等进行测算和分析。

长期规划,一般是指20年左右的规划设计,它主要是对系统发展的未来给出一种趋势性的设想方案。

研究电力发展的战略性问题。根据国民经济和社会发展长期规划、经济布局和能源资源开发与分布情况宏观分析电力市场需求;综合分析煤、水、电、运和环境等。提出:电力可持续发展的基本原则和方向;电源的总体规模、基本布局、基本结构,能源多样化等;电网主框架。必要时提出:更高一级电压的选择意见;电力设备制造能力开发要求;电力科学技术方向。

1.各阶段规划内容与差别

五年规划(设计)包括:大区电力系统设计,省或地区系统设计,电厂接入系统设计,工程设计的系统专业配合,电力系统专题设计。

中期规划包括:电力需求预测,动力资源开发,电源发展规划,电力网发展规划,环境及社会影响分析,重点是测算和分析电力建设资金、电价水平等。长期规划包括:电力需求预测,动力资源开发,电源发展规划,电力网发展规划,环境及社会影响分析,重点是研究资金、电价、设备供应、人员培训等问题,提出措施。

电力系统规划之间的关系及作用。五年规划(设计)以现状为基础,并应在中期、长期规划的指导下进行编制。中期规划的深化和具体表现,也是对中期、长期规划进行补充和修订。其是编制、报批项目建议书、项目可行性研究报告书的依据,电力工程项目开展设计工作的依据。

中期规划以五年规划为基础,并应在长期规划的指导下编制。其是长期规划的深化,也是长期规划的补充和修订,是电力工程项目开展初步可行性研究、设计工作的依据。

长期期规划以五年规划和中期规划为基础,研究电力发展的战略性问题。

2.电力系统规划设计的内容

(1)五年规划(设计)即大区电力系统设计。任务是以系统内大电源的接入和主网络方案为研究对象,主要解决系统内主力电厂的合理布局和主网架的结构问题,相应于推荐方案的无功补偿容量及其配置,某些系统运行技术条件的校核,可能采取的技术措施及实施方案(如系统调峰、调频、调相调压及系统稳定、短路电流、过电压等问题)。(2)省或地区系统设计。在大区系统主力电源接入系统方案和主网架方案已经确定的条件下,研究省及地区电源接入系统方式及二次电压等级的网络方案,通过系统潮流、调相调压及短路电流计算,提出省及地区的系统接线方案及相应需要建设的输变电项目(包括无功补偿配置)。(3)电厂接入系统设计。根据负荷分布和电厂合理供电范围,研究电厂最佳接入系统方式(包括电压等级及出线回路数)、电厂送出工程相关网络方案、建设规模及无功补偿配置,并提出系统运行对设计电厂的技术要求(如稳定措施、调峰、调频、调压设备的规范及发电机的进相及调相能力等)。(4)本体工程设计的系统专业配合。把电网规划设计、电厂接入系统设计中确定的技术原则落实到具体工程设计中去,包括设计规模,分期建设方案,电气主接线、主设备规范,建设进度、技术条件校核及可能采取的措施等。系统专业的配合资料是本体工程设计的依据和基础资料。电力系统专题设计:系统扩大联网设计;系统高一级电压等级论证;交、直流输电方式选择;电源开发方案优化论证;输煤输电方案比较;弱受端系统供电方案;特殊负荷的供电方案;发电机励磁方式论证;发电机快控汽门控制方式研究等等。

中期规划包括电力需求预测,动力资源开发,电源发展规划,电力网发展规划,环境及社会影响分析等。

长期规划包括电力需求预测,动力资源开发,电源发展规划根据动力资源和负荷分布条件;电厂建设条件、可能开发的设备制造的技术条件,提出发电电源构成和电源布局方案(包括对发电机组设备技术水平的要求)。电力网发展规划根据对大气环境及社会影响的分析,提出相应的建议。此外,还必须研究技术进步问题,提出对技术进步的要求和课题,以保证电力系统能不断地向用户提供充足、安全、可靠、质量合格、价格合理的电力。还包括环境及社会影响分析等。

四、电力系统规划的方法

1.基本条件分析

电力工业发展的基本条件有3个,即电力负荷需要、动力资源开发及运输条件许可、发变电设备的制造及供应及时。

2.基本功能分析

分析电网功能就是分析电网各部分及某些大电源及主要网架的作用。对基本功能的分析要分层次进行,首先是全网供电范围、电源建设地点、电源的作用、分区电网之间的送受电关系等,其次应分析主力电源的合理送电范围、功率流向及相应的网架,最后是地区电网的情况。分析时要注意:随着系统的发展,电网各部分无论是电源、网架还是输电线的功能都是变化的。

3.基本形态分析

分析发电厂与变电所之间的连接方式,也就是电网结构。最基本的电网结构有辐射型、链型及环型3种,电网结构主要取决于电厂和负荷的分布、电网覆盖地域的情况等。电网结构设计的基本原则是分层分区原则,即不同电压等级电网构成不同的层次,不同地域的下一级电网解列构成不同的地区电网,地区电网本身具有足够的电压支撑和无功储备。

4.动态分析即弹性分析或可变因素分析

主要是指电网实际发展进程与设计预计有差别时规划电网的适应能力。可变因素主要是指:负荷实际增长超过或低于预计;电源建设进度或顺序发生变化;主要送电线路投产时间提前或推迟等。因此电力系统规划要采用滚动的方法不断修正。

5.限制性条件分析

在制定电力系统规划方案时要特别注意那些会影响方案成立的限制性因素,这些因素主要是:自然地理条件的限制性因素;供水水源条件;煤矿建设进度不能满足电厂需要;厂、所区公路、铁路、码头的建设进度和规模不能满足要求;主要输电线存在跨江、河问题;主要电气设备制造困难等。

6.可靠性与经济分析

开关电源原理及设计篇3

关键词:中水处理站;设备电源;改造

1 系统简介

皖能合肥发电有限公司目前的中水处理站区域只有一路380V电源,取自#5机汽机MCCⅡ段,接入循环水加药总电源箱,另外在中水区域就地配置有一台15kVA隔离变箱,提供380V变220V电源,中水区域所有设备均由这两个电源箱供电。由于此区域设备的工作电源与检修照明电源交织在一起,单路电源不利于安全,加上#6机组设备投产又增加了部分设备,使各分路电源接入混乱,因此需对其进行改造,使工作电源与检修照明电源分开,保证该区域电源可靠。

2 改造前系统状况

在进行改造设计前,先对目前中水处理站设备电源进行梳理如下:

2.1 中水处理站设备现有电源布置:

(1)中水隔离变总电源容量15kVA;(含就地检修电源箱容量D100A;路灯照明箱容量25A)

(2)中水采样装置房间电源容量63A;(含热控采样柜电源25A,一台空调电源16A)

(3)二氧化氯装置电源20A;(含热控二氧化氯发生器程控电源10A及区域内小负荷)

(4)循环水加药间总电源160A;(含循环水卸盐酸、卸阻垢剂控制箱40A;循环水阻垢剂加药泵控制箱80A;循环水卸硫酸、增效计量泵控制箱16A)

2.2 中水处理站现有设备及电源的统计(如表1所示)

3 改造方案

3.1 中水处理站电源改造总体方案

中水处理站区域设备电源设计2路380/220V供电(一用一备),电源分别取自#6机化水PC A段#4柜#4-1备用间隔(开关容量250A)、#6机化水PC B段#4柜#4-3备用间隔(开关容量250A)。电缆采用3*95+1*50mm2铜芯钢铠电缆。就地配置一面电源柜,布置2个进线电源开关,18个分路开关,将中水各处设备接入开关间隔,预留部分开关做备用;中水处理站检修照明电源拟从#5高厂变处检修动力箱电源开关上口并接;拆除原中水处理站取自#5机汽机MCCⅡ段的电源。改造后,中水处理站区域共三路电源,1路检修照明电源,2路设备工作电源。

3.2 针对目前设备及电源分布,中水处理站新装就地电源柜配置及安装地点如下

3.2.1 就地电源柜采用两路进线,安装2个进线开关(NSX-250A),配置18个分路开关(开关容量按统计负荷配置),预留几个备用电源开关。

3.2.2 经过对中水区域设备布局的观察,考虑到如果就地柜在室内安装由于酸碱气体不流通容易导致柜体腐蚀,计划将就地电源柜安装在中水酸碱罐大棚内的西侧,将中水处理站所有运行设备电源接入该就地配电柜。

3.2.3 检修照明电源接入现中水处理站检修动力箱及照明箱。

3.3 中水处理站电源改造施工步骤

3.3.1 首先设备不停电安装就地电源柜,完成电源柜静态调试工作。

3.3.2 从#6机化水PCA、B段分别施放两根3*95+1*50mm2铜芯钢铠电缆至就地电源柜,对电缆进行电气试验合格后送电。

3.3.3 施放从#5高厂变处检修动力箱至中水处理站检修动力箱电缆,对电缆进行电气试验合格后送电。

3.3.4 施放从就地电源柜至中水各处设备的分路电缆,完成调试工作。

3.3.5 视设备运行情况,申请将中水区域所有各处设备电源接入就地电源柜,核对定值并送电。

3.3.6 拆除不用的原中水各处电源电缆。

3.4 中水处理站设备电源改造设备材质如表2

3.4.1 电源柜部分(如表2所示)

3.4.2 电缆部分

(1)电源改造所需材料(如表3所示)

(2)电缆路由

a.就地电源柜电源1、2电缆:自化水PC段开关室沿电缆沟、电缆竖井、电缆桥架至综合PC段西侧电缆沟,沿此电缆沟向南至#5机仓库北侧电缆沟,一直向东并下穿主马路至#5机厂房西侧电缆竖井,由此竖井进入#5机汽机房电缆桥架,沿#5机汽机房电缆桥架一直向东,至#5机工作段开关室下电缆桥架转向南,经电缆竖井进入#5机凝泵变频小室东侧电缆沟,沿此电缆沟一直向南并下穿主马路至#6机冷却塔西北侧电缆井,经预埋电缆管道至#6机冷却塔西侧电缆井,经电缆沟下穿中水处理站马路至中水处理站电缆沟,并沿此沟一直向南至中水处理站。全程约500米。b.中水处理站检修动力箱电源电缆:拟从#5高厂变处检修动力箱电源开关上口并一路电源电缆,经#5高厂变南侧电缆沟向东至#5机凝泵变频小室东侧电缆沟,沿此电缆沟一直向南并下穿主马路至#6机冷却塔西北侧电缆井,经预埋电缆管道至#6机冷却塔西侧电缆井,经电缆沟下穿中水处理站马路至中水处理站电缆沟,并沿此沟一直向南至中水处理站。全程约100米。c.示意图如图所示。

4 结束语

开关电源原理及设计篇4

关键词:开关电源;软开关;硬件设计

0 引言

开关电源是一项电子化技术,其使用功率转换器实现电能间的转换,转换后的电能用来满足各方面用电的需要。其较线型电源重量更轻、体积更小、效率更高,在计算机、电视机、自动化控制设备、通信设备等各领域得到广泛的应用。

1 开关电源基本工作原理

开关电源有许多种形式,尤其是以调制型脉冲的宽度(PWM)最盛行,目前以该种形式开关电源的工作原理进行介绍。

主回路指由电网把能量传给负载的一种回路,其他回路则被称为控制类回路。

电网的交流电经滤波整流电路的输入,进而获得直流高波纹电压,此后经过变换功率电路,转换成满足要求的波脉动电压,再经整流形成连续直流低波纹电压。

控制类回路在将开关高压T动脉冲提高的同时,要实现电压稳定输出的控制,此外还要保护负载和电源元件。其通常是由检测放大型电路、震荡时钟电路、电压脉冲转换V/W电路及自用的电压等电路组合而成。

2 软开关相关技术

目前的电力电子设备发展主要趋势为轻量化。小型化,且对于装置效率和电磁的兼容问题要求更高。通常,变压器、滤波电感及电容在装置重量和体积中所占比例较大。所以,要达到装置的小型化、轻量化,就必须想办法降低他们的体积与重量。由“电路”的相关知识可知,工作效率的提高可以使变压器绕组间匝数减少,同时还可以使铁心体积减小,从而让变压器往小型化发展。因此高频化电路是设备轻量化、小型化的有效途径。然而在提高开关频率的同时,增加了开关的损耗,使电路运行效率降低,增大了电磁的干扰,可以知道简单提高电源开关的频率并不能从根本上解决问题。

软开关相关技术的出现能够使这些问题得到解决,其主要利用谐振辅助转换电流的手段,解决了电路中开关的损耗及噪声等问题,大幅度提高了开关频率。

3 高压软开关充电电源硬件设计

3.1 主电路的选型

在开关谐振技术中适合于电容脉冲充电的是谐振串联电路,其输出结果近似看做恒流源(等台阶充电),其优点为充电的效率较高,且可以保护固有的短路。因为电源的功率过大,全桥电路且高频变压器副边采取整流桥二极管整流。

3.2 电路工作方式与原理

直流(经过市电整流的)电压经电路而逆变成频率较高的交流方波电,该种高频交流方波电经过高频的变压器升压,经过二极管的整流桥进而得到稳定的电流,给电容充电。

设:IGBT开关的频率为fs, 谐振的频率为fr。

谐振串联变换器工作方式以fs的大小主要有三种方式:

(1)第一种方式(fsfs>fr/2) 电流处于连续的工作状态,实现电流为零切断。但在开通过程中,同一个桥臂的两开关有强制换流现象,所以开关的损耗和干扰较大;(3)第三种方式(fr

现对图3-1负载串联DC-DC变换器三种工作方式进行分析。

由图得出,Cr与Lr形成串联型谐振,同负载相互串联,经谐振后的电流于负载一端被整流。在输出端滤波的Cf足够大,可以认为Cf两端的电压为直流无波纹电压。若简单进行分析则可忽略谐振电路损耗过小的电阻,输出电压V0反射至整流桥输入端,用VCB表示,若IL为正值,VCB=V0,IL为负,VCB=-V0。

如果开关T加导通,当IL电流为正,电流流过T+,否则,流过D-二极管;

同上,当IL电流为负,若T-导通,流过T+;否则流过D+二极管。所以,图1(a)有以下四种情况:

1.当IL>0时

T+导通: VAB=+Vd/2,VAC=Vd/2-V0;

D-导通: VAB=-Vd/2,VAC=-Vd/2-V0。

2.当IL

T-导通: :VAB=-Vd/2,VAC=-Vd/2+V0 ;

D+导通: VAB=+Vd/2,VAC=Vd/2+V0。

谐振槽上的电压VAC由IL电流方向和哪一开关导通来决定。上面的方程表达的4种情形可由图1(b)的等效电路表示。要引起高度的重视,采用这一电路要根据不同时间的间隔进行计算。各间隔内,应确定初始状态条件,且要把VAB和VCB看做同一直流型电压。

当处于稳定对称的工作状态时,两开关处于相同的状态,同样,两个二极管也处于相同的状态,所以,只需要对运行的半个周期进行分析即可计算得到整周期运行状态,这是因为另外半个周期运行的状态和这前一半周期运行状态是相互对称的。

4 结语

本文结合当前开关电源的发展趋势,在系统学习开关电源原理的基础上,了解开关电源的主要设计过程及其相关方法;并争取在电源的设计和制造等工作中加以应用,希望能给同行提供借鉴意义,促进高压软开关充电电源硬件设计的良好发展。

参考文献:

[1]黄刚.开关电源及其功率材料的技术新动向[J].电气时代,2002(10).

开关电源原理及设计篇5

关键词:电气工程;设计原则;节能措施

中图分类号:E271文献标识码: A

前言

在现代建筑工程中,建筑电气工程因其直接关系到建筑居民的生活工作安全和方便而备受关注,已经成为建筑工程不可或缺的重要组成部分。因此,建筑电气工程需依据其设计内容及其原则,配备相应的节能措施,不断的总结经验,在统筹兼顾,平和相关要素的前提下争取较大的节能效果。

一、建筑电气工程设计的主要内容

1.1 负荷的计算

电力负荷是供电设计的依据参数。计算准确与否,对合理选择设备,安全可靠与经济运行,均起决定性作用。高层建筑的电力负荷计算,基本上采用负荷密度法和需要系数法。

1.2 供电电源及电压的选择

为了保证供电可靠性,现代高层建筑至少应有两个独立电源,具体数量应视负荷大小及当地电网条件而定。两路独立电源运行方式,原则上是两路同时供电,互为备用。另外,还须装设应急备用柴油发电机组,要求在15 秒钟内自动恢复供电,保证事故照明、电脑设备、消防设备、电梯等设备的事故用电。国内高层建筑的供电电压,都采用10kV标准电压等级。

1.3 高低压配电系统的设计

1.3.1 高压配电系统:现代高层建筑均是采用两路独立的10kV电源同时供电。一般高压采用单母线分段,自动切换,互为备用。母线分段数目,与电源进线回路数相适应。只有当供电电源为一主一备时,才考虑采用单母线不分段的结线。电源进线几乎全部采用电缆进线。

1.3.2 高压系统及低压干线的配电方式基本上都采用放射式系统。楼层配电则为混合式系统。配电设备中的主要部分是干线。现代高层建筑的竖井多采用插接式母线槽。水平干线因走线困难,多采用全塑电缆与竖井母干线联接。每层楼竖井设配电小间。层间配电箱经插接自动空气开关从竖井母干线取得电源。当层数较多负荷数较大时,一般按层数分区供电,或将变压器分散设在地下层、中间层或最顶层。

1.3.3 功率因数按规定应补偿到0.9~0.95.无功补偿都采用集中补偿方式。为降低变压器容量,多集中装设在低压侧,与配电屏放在一起,但必须采用于式移相电容器。

1.4 主要设备的选型

1.4.1 高压开关柜。现代高层建筑的变配电室设在主楼地下层,按规定不宜采用油开关。国外用于高层建筑的开关有三种类型可供选用:高压空气断路器,SF6 开关和真空断路器。其中高压空气断路器因技术陈旧,SF6 开关尺寸数大,气体具有毒性,故目前10kV真空断路器应用的较为普遍。因此,应根据高层建筑地下室的标准,选用具有“五防”功能的真空开关手车式高压开关柜。

1.4.2电力变压器。根据防火要求,主楼内是不允许装设大容量的油浸电力变压器的。目前有干式变压器、SFe 变压器和硅油变压器等三种产品可供选用。

1.4.3 低压配电屏。国外低压配电屏的结构,几乎都做成抽屉式,特别是大容量的出线,则做成手车式。

1.4.4 应急备用发电机组。过去大多是采用柴油发电机组做应急备用电源的。近年国外高层建筑已开始采用燃汽轮发电机。这种发电机具有体积小、重量轻、反应速度快,故障率低等优点。应急备用发电机组必须是快速自起动的。一般应能在15s内恢复供电。从可靠性出发最好选用两台,自动并车。容量较小时也可选用一台。

1.5 变电所位置的确定

现代高层建筑的用电量相当大,在确定变电所位置时,应尽可能使高压深入负荷中心。这对节约电能,提高供电质量都有重要意义。

1.6 电气照明设计

电气照明设计,包括光源选择、照度计算、灯具造型,灯具布置,眩光控制和调光控制和照明配电线路敷设等。照明设计与建筑装饰有着非常密切的关系,应该相互配合,在使用功能及艺术意境方面求得统一。选用高光效电光源,可以取得节能的明显效果。

1.7 防雷与接地

现代高层建筑的防雷设计,采用避雷针和避雷带的做法简单可靠、经济合算。但必须保证各层楼面钢筋、金属管道与该层用作引下线的柱筋有可靠的连接,形成等电位层。现代高层建筑都是采用钢筋混凝土剪力墙,与楼板的连接是十分可靠的。关键是做好金属管线的接地。现代高层建筑的防雷接地、电气设备的保护接地和工作接地,都是合在一起的,组成混合接地系统。接地电阻按最小的要求而定,通常是在4 欧以下。利用建筑物的钢筋混凝土基础作接地板。尽管基础钢筋等自然接地体已能满足接地电阻的要求,仍需要装设水平的人工接地体,将主要的建筑物基础连接成接地网,这对均衡电位,提高安全性都有好处。

1.8 电梯

电梯按使用功能分,有高级客梯、普通客梯、观景梯、服务梯、消防梯、货梯、自动扶梯等许多种;按速度又分为低速梯、快速梯、高速梯和超高速梯等;按电流分则有交流和直流两大类。设计人员的任务是要确定电梯台数和决定电梯功能。电梯的配置和造型,不是电气设计人员单方面所能决定的,必须与总建筑师或总体交通设计人员共同研究才能确定。

1.9 消防

自动报警和自动灭火系统现代高层建筑的火灾自动报警灭火系统,包括:火灾探测器、分区消防报警控制器、消防中心和气体自动喷射灭火及自动洒水灭火系统等四个部分,实现报警灭火自动化。探测器探测到火灾信号后转换成电信号,进入分区报警器和消防中心,发出声光报警信号。消防中心负责整座大楼火灾的监控和消防指挥

二、电气工程设计的节能原则

为了确保高层建筑电气节能设计的有效性,在进行节能设计时应当遵循以下原则:

1.满足功能要求;对于高层建筑的节能设计,应当确保其能够满足显色、色温、照度指数要求,建筑物内部能够符合舒适卫生的要求,左右、上下运输通道不存在阻碍,电力用电、展览厅照明、娱乐场所设施等特殊工艺用电得到保证。

2.经济效益的原则;在进行高层建筑节能设计时,应当关注节能设计的经济型,不能只关注了电气节能而导致工程造价过高、日常使用费用增加,而是要使节能设计所引起投资增加部分,能够在未来几年电气节能中回收回来。

3.减少无谓的电能消耗;电气节能设计应当将减少无谓的电能消耗作为着眼点,在明确建筑物功能的基础上,分析哪些地方的电能消耗是多余的,之后在研究采取何种措施能够达到节能效果,如电能传输过程中所产生的有功损耗、变压器的功率损耗等均为可以避免的能量损耗,而数量多、使用面广的照明设施,则可以通过采用先进的照明设施而降低电能消耗。综上所述,高层建筑电气设计应当遵循技术先进、经济合理、实用的原则。

三、建筑电气工程设计的节能措施

(一)合理设计供配电系统

①根据负荷容量、供电距离及分布、用电设备特点等因素,合理设计供配电系统和选择供电电压,供配电系统应尽量简单可靠,同一电压供电系统变配电级数不宜多于两级。

②变电所应尽量靠近负荷中心,以缩短配电半径,减少线路损失,企业内部变电所之间宜敷设联络线,根据负荷情况,可切除部分变压器,从而降低损耗。

③根据负荷情况合理选择变压器容量、台数,其接线应能适应负荷变化时,按经济运行原则灵活投切变压器。对分期投产企业,宜采用多台变压器方案,避免轻载运行增大损耗。

④按经济电流密度合理选择导线截面,一般按年综合运行费用最小原则确定经济电流密度。

(二)照明智能控制及维护管理

智能照明节能控制装置是在满足规范要求照度的前提下,对气体放电灯实施轻松自如的调控,达到节能效果,同时使光源和附件的使用寿命延长,以节省费用采用各种类型的节电开关(如声光控延时开关、光电自动控制器、节电控制器等),通过控制灯光点燃时间,进一步达到节能的目的。如楼梯间常选用的声光控延时开关,路灯照明、景观照明常选用的时钟和光电控制器加强用电管理,做好节电宣传工作,建立实施节电制度,使人们养成节约用电的好习惯。在维护方面定期清扫照明灯与照明灯具上的灰尘。

因为灰尘聚积过多,就会减少透射与反射的光通量,降低照度。定期对室内墙壁和天花板进行刷白。因为白色墙壁的光反射率高,可达80%~85%,墙壁变灰之后,发光效率降低,耗电量反而增大。照明灯具损坏后,反射光的性能变差,使照度降低。所以照明灯具老化和损坏后都应及时更换。

(三)机电设备的节能

民用建筑内部有大量的电气设备、空调设备、照明设备、给排水设备等等,这些设备数量多而且多分散在大楼的各个层次和角落。为了合理的利用设备,节约能源,大型民用建筑应采用智能化的建筑设备自动化管理控制系统。自动控制、监视和测量和建筑物设备管理的3大要素,目的是正确掌握建筑设备的运转状态、事故状态、能耗和负荷的变动。通过有效的控制,可达到节能的目的。电动机采用变频调速,因为旋转磁场的转速与输入电流的频率成正比,如果改变电源的频率,同步速率也随之而改变,由此改变转子的旋转速率,从而达到节能的目的。变频调速在水泵/风机调速中应用十分广泛。单台用电功率大干350kw的电动机宜采用中压电动机。

(四)降低高次谐波

电力谐波的主要危害有:①引起串联谐振及并联谐振,放大谐波,造成危险的过电压或过电流;②产生谐波损耗,使发电、变电和用电设备效率降低;③加速电气设备绝缘老化,使其容易击穿,从而缩短它们的使用寿命;④使设备(如电动机、继电保护、自动装置、测量仪表、电力电子器件、计算机系统、精密仪器等)运转不正常或不能正确操作;⑤干扰通信系统,降低信号的传输质量,破坏信号的正确传递,甚至损坏通信设备。变频装置、硅整流器、晶闸管装置、调光设备、交流调速设备、电子镇流器、ups等具有谐波源的负荷,在运行中注入电网的谐波电流和产生的电压畸变率应符合《电能质量-公共电网谐波》(gb/t14549-1993)的规定。设备每相输入电流小于等于16a的低压电气及电子设备发出的谐波电流值应符合《低压电气及电子设备发出的谐波电流限值》(gb17625-1-1998)的规定。对谐波可能超标的用户,应加强在设计阶段采取限制谐波电流的方案和措施。

(五)用电峰谷调节

合理用电的峰谷调节对节能的意义也非常重大,根据不同时段的用电负荷合理设计配电系统,使变压器在最佳负载率时运行,有利于节能。在空调系统中采用冰蓄冷技术,在电气设计中推广应用峰谷电能表,鼓励用户避峰用电,虽然不是直接的节能措施,但对落实国家的节能政策有重要的意义。

四、结语

建筑电气设计应充分考虑选择高效率的节能设备,应用先进的设计技术,按照节能标准进行设计,为人们提供健康、舒适、安全的居住、工作和活动空间,同时在建筑的全生命周期中实现高效率地利用能源、最低限度地影响环境,使之符合社会的可持续发展战略。

参考文献

[1]刘鹏, 关庆龙. 变配电系统的节电应用与技术[j]. 中国石油和化工标准与质量, 2011,(08):136-137

[2]刚青林, 闫国庆. 降低变电所用电量的方法和途径[j]. 石油石化节能, 2011,(05):29-30

开关电源原理及设计篇6

论文首先介绍了电力电子技术及器件的发展和应用,具体阐明了国内外开关电源的发展和现状,研究了开关电源的基本原理,拓扑结构以及开关电源在电力直流操作电源系统中的应用,介绍了连续可调开关电源的设计思路、硬件选型以及TL494在输出电压调节、过流保护等方面的工作原理和具体电路,设计出一种实用于电力系统的开关电源,以替代传统的相控电源。该系统以MOSFET作为功率开关器件,构成半桥式Buck开关变换器,采用脉宽调制(PWM)技术,PWM控制信号由集成控制TL494产生,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器进行隔离,并设计了软启动和过流保护电路。该电源在输出大电流条件下,能做到输出直流电压大范围连续可调,同时保持良好的PWM稳压调节运行。 开关电源结构

以开关方式工作的直流稳压电源以其体积小、重量轻、效率高、稳压效果好的特点,正逐步取代传统电源的位置,成为电源行业的主流形式。可调直流电源领域也同样深受开关电源技术影响,并已广泛地应用于系统之中。

开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。

SCR在开关电源输入整流电路及软启动电路中有少量应用, GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。在本论文中选用的开关器件为功率MOSFET管。

开关电源的三个条件:

1. 开关:电力电子器件工作在开关状态而不是线性状态;

2. 高频:电力电子器件工作在高频而不是接近工频的低频;

3. 直流:开关电源输出的是直流而不是交流。

根据上面所述,本文的大体结构如下:

第一章,为整个论文的概述,大致介绍电力电子技术及器件的发展,简单说明直流电源的基本情况,介绍国内外开关电源的发展现状和研究方向,阐述本论文工作的重点;

第二章,主要从理论上讨论开关电源的工作原理及电路拓扑结构;

第三章,主要将介绍系统主电路的设计;

第四章,介绍系统控制电路各个部分的设计;

第五章,集中在系统的仿真与调试。对系统的整体性能做出评价,指出系统的优缺点。

开关电源原理及设计篇7

数字信号处理器(DSP)在串联型电力有源滤波器中的应用

采用单片式开关控制器为锂电池充电

逆变器并联运行中的均流技术

大功率升压型DC/DC转换器,集成了10A开关管

电力系统用三相UPS的设计

微电容、输出可达1A的低压差线性稳压器

基于SA4828的三相组合式逆变器设计

SOT23封装的低功耗“看门狗”定时器

一种智能型大功率“绿色环保”UPS

超低静态电流,提供“电源好”指示的LDO

基于观测器的方法在三相逆变器故障诊断中的应用

无须外部元件的四电压监视器

TOPSwitch-FX系列单片开关电源的原理与应用

SOT23封装、尺寸最小的锂电池充电器

一种小功率金卤灯用电子镇流器

专用于CDMA手机、尺寸最小的电源管理IC

ML4835复合PFC/CFL小型荧光灯电子调光镇流控制器(下)

现代数据通信中的基础数据业务

UCC39421系列多模式高频PWM控制器的应用

双极性移相控制高频脉冲交流环节逆变器研究

信息窗

一种运用后级调整技术的新颖的多路输出正反激变流器

一种基于TMS320LF2407的并网逆变器控制策略

倍流同步整流在DC/DC变换器中工作原理分析

一种新型的ZCSPWM半桥变换器(英文)

便携式多功能太阳能数字移动电源

6kV·A逆变器滞环调制与单极性SPWM倍频调制的比较

C&D双绕SMD电感额定值为1.0-400μH

电动车铅酸蓄电池的脉冲快速充电设计

一种低价简易电源的设计

一种低压程控电源的设计

智能脱扣器的软硬件设计

一种电除尘器用智能高压逆变直流电源的研制

氧化锌非线性电阻测试电源系统

基于NCP1200A的多路反激变换器的研究

一种新颖的电流临界导通的功率因数校正芯片的研究

现代功率模块及器件应用技术(3)

《电源技术应用》2009年广告刊例

中国电源学会第十八届学术年会(CPSSC'2009)征文通知

《电源技术应用》征稿启事

阳光下的期盼——冀望《电源技术应用》再上一层楼

UPS电源及供电系统用户有奖调查表——2009第五届UPS电源及其供电系统用户调查活动

纳米硅胶体铅酸蓄电池

一种POL终端匹配电源的热模拟研究

电动汽车蓄电池组电池管理及其状态检

基于UCC3895与PIC单片机的智能充电器的设计

智能镍氢充电器的研制

电动自行车铅酸蓄电池的维护

阀控密封式铅酸蓄电池的原理及其运行维护

三电平ZCS充电结构的工作特性研究

UPS冗余并联与双总线连接供电方案(三)

无功补偿装置及应用(四)

技术应用新概念:电力/电子/电脑系统的标准规范3啥是次贷?那里兴旺?何出危机?怎么救市?

MAX774/MAX775/MAX776系列反极性开关集成稳压器

UPS蓄电池的维护经验

太阳能电池发电——前途无量的市场

开关电源原理及设计篇8

【关键词】SG3525;开关电源;AC-DC变换;设计

1.引言

SG3525能输出稳定PWM脉冲,采用场效应管来作为交流变成直流的控制器件,所用到的其他元器件较少。它简单可靠及使用方便,其芯片内部含有电压过小时可以将其锁定的电路、脉宽锁存器、具有电压电流过大时能够保护的功能,可以调节输出频率、占空比等电路。

2.系统结构设计

本设计采用市电供电,中间插入了一个电源变压器,将220V市电变换成24V电压,通过整流、滤波,变换成开关电源所需要的直流电源,系统总体框图如图2-1所示[1]。电路主要包括隔离降压电路、整流滤波电路、驱动电路、输出电路、稳压电路、过流保护电路以及辅助电源电路等[2]。

图2-1 系统总体框图

3.硬件设计

硬件部分主要由整流电路、升压斩波电路、PWM波形调制、过流过压保护等模块组成,各个部分的工作原理及设计如下。

3.1 脉宽调制器的设计

本设计脉宽调制器采用SG3525,它性能优良、功能齐全和通用性比较强的单片集成脉宽调制控制的芯片,它简单可靠及使用方便灵活,输出驱动为推拉输出形式,增加了驱动能力[3];当内部电压过小的时候,它可以将其锁定的电路、脉宽调制锁存器,电流过大时可以起到一定保护的功能,而且频率的范围也可以进行调整等诸多优点。

3.2 SG3525内部结构及电路组成

SG3525的内部有基准电压调整器、振荡器、误差放大器、比较器、锁存器、欠压锁定电路、闭锁控制电路、软启动电路和输出电路构成[4]。控制芯片采用脉宽调制控集成电路SG3525产生PWM波形,控制开关管的通断、选择为1000pF和24K;开关频率选44kHz;采用SG3525可推直接驱动MOSFET开关管。

3.2.1 频率可调

如下公式所述,改变电阻和电容的值来调节PWM波的输出频率,频率等于1除以RT乘以0.7加上RD乘以0.3在乘以CT的乘积,其频率的计算公式为:

(3-1)

3.2.2 死区时间可调

为了防止逆变桥的上下桥臂在强电流的情况下直通,可以通过调节SG3525的5脚外接可变电阻从而可以改变死区时间的大小。

3.2.3 具有PWM脉冲信号封锁功能

在SG3525脉宽调制芯片中,10脚功能用于电压或者电流过大时的故障保护电路,当该脚为高电平的时候将会封锁输出驱动脉冲信号。当10脚电压低于2.5V时(即为低电平时),可以及时地封锁输出脉冲,这是为了防止出现过压、过流故障时对电路产生的一系列危害。

3.2.4 芯片内振荡器

工作频率为100Hz~400KHz。设有引脚3为同步端,为多个SG3525连用提供方便。

3.2.5 具有软启动电路

SG3525内置了PWM锁存器,它可以将送来的置位信号进行比较之后再进行锁存,并且可以将噪声、振铃等诸多信号全部滤除,该系统的可靠性提高,这是因为仅在下一个时钟脉冲信号到来的时候,PWM锁存器才能重新置位[5]。

3.3 SG3525的工作原理

SG3525内部设置有5.1V精密基准电源,还设有同步功能,为了对死区时间的调节,可变电阻加在第5引脚和第7引脚之间,以便有效的调节死区时间的大小,SG3525集成一个电路,该电路具有软启动功能,通过外接一个定时电容便可以对该电路进行有效的控制调节,图3-1为其电路接线图[6]。

图3-1 SG3525的电路接线图

当输入电压升高或负载发生变化时输出电压便会增加,而且误差放大器的输出会降低,从而使得PWM比较器的输出的正脉冲的宽度增加,PWM锁存器输出高电平的时间增加,输出晶体管的导通时间会变短,最终使得输出电压降为额定值,完成了稳定电压的状态变化过程,反之亦然。电压过小时具有欠电压锁定功能,如果输入电压过低,在SG3525的输出被关断同时,软启动电容将开始放电[7]。此外,SG3525还具有以下功能,即无论因为什么原因造成PWM脉冲信号中止,输出都将被中止,直到下一个时钟信号到来,PWM脉宽调制锁存器才被复位[8]。

3.4 工作频率及功率开关管的选取

由于开关电源对开关二极管的开关速度及频率要求是非常的高,一般在快速恢复二极管和肖特基二极管中进行选择,选取两者中的最优者最为开关管。由于肖特基二极管的正向导通压降比较小,恢复时间较短等优点,因此选择肖特基二极管。

4.系统电路设计

4.1 整流电路

整流电路是将50Hz单相交流220V的交流市电电压经过变压器降压之后,变成24V/2A的交流电压,通常采用电容性负载以及二极管IN4007作为整流电路,其电路图如图4-1所示。

图4-1 整流电路

4.2 开关稳压转换电路

开关稳压转换电路主要包括SG3525 PWM波形控制电路和升压斩波电路,以及还有周围的辅助电路,例如过流过压保护电路,反馈稳压电路等[9]。

4.3 SG3525 PWM波形调制电路

在图4-2所示的PWM波形控制电路中,集成控制器SG3525的振荡频率由7脚的电阻,振荡器频率由外接电阻、和电容决定,频率等于1除以RT乘以0.7加上RD乘以0.3在乘以CT的乘积,其振荡频率的计算公式为:

(4-1)

SG3525管脚1与9相连接相当于给该芯片构成了一个可反馈补偿的网络,2脚接基准电源和开关稳压输出端,将得到的取样电压值作为其设定的初始电压值,8脚可接一个无极性小于1uF的电容,其电容是用来在软启动时减少功率开关管的冲击力而设置,管脚11和14采用的是并联单端输出的方式连接,其外部加一个驱动电路,增强了其电源输出电压的可靠性与稳定性[10]。

4.4 过压过流保护电路(见图4.3)

SG3525有关断保护功能,可用于过流保护,采样电阻(0.1Ω),若电流过大,开关管将会处于关断状态,使输出电压降低,形成保护功能,一旦检测电压降低,就会重新产生PWM波形,此电路具有自恢复功能,过流保护动作电流为5.5A,其电路图如图4-3所示[11]。

4.5 欠压锁定功能

SG3525控制器内设有电压过小时可以将其自动锁定的电路,当输入电压小于时芯片内部将会自动锁定,停止芯片内部的一切工作,使消耗电流降至小于2mA。

4.6 光电隔离器

电路中使用光电耦合器的作用是对主电路和控 制电路进行隔离,开关 电源电路中,开关的控制是至关重要的,对精度的要求以及对稳定性要求非常高,且控制电路对噪声特别的敏感,一旦有噪声,控制电路中的控制信号就会产生紊乱现象,严重影响电源的工作和其性能,因此,用光电耦合器将电源中的两部分进行隔离,这样便防止了噪声通过传导的途径传入到控制电路中[12]。

5.变压器的绕制

5.1 磁芯材料与线径的选择

绕制变压器时考虑到我们对电源输出功率的要求比较高,功率大约为150W左右,因此,我们对集中线径材料的性能进行了比较,我们选择了饱和磁感应强度BS相对较高,温度稳定性较好的漆包线,加工方便的且性价比较低的锌锰铁氧体材料PQ32/30磁芯来绕制本设计中的脉冲变压器。本设计采用的是频率为44KHz,查表可得知在此频率下的穿透深度为0.3312mm,直径应为此深度的2倍,即为0.6624mm,因此我们选择的AWG规格应为21#,直径为0.0785CM(此数 据是含漆 皮时的直径)[14]。

5.2 初次级匝数比的确定

脉冲控制芯片SG3525的最大脉宽可为0.48,近似为0.5计算。工作频率应设定为44KHz,当输入的交流电压为24V时,输出最大直流电压为,则电源效率取80%,最终确定本设计中SG3525的工作周期T为:

(5-1)

最大导通时间为:

(5-2)

变压器次级输出电压()为:

(5-3)

公式中为肖特基二极管的正向压降,取值0.6V,为滤波电感的压降取值为0.4。设变压器初级最低直流电压为,=36V, 则:

(5-4)

变压器匝数比为:

(5-5)

输入功率为:

(5-6)

根据资料32/30磁芯的有效截面积,磁通密度取0.2,则变压器次级匝数为:

(5-7)

变压器初级匝数为:

(5-8)

取匝。

6.系统调试

硬件调试:由于本设计的闭环控制主要由PWM脉宽调制芯片SG3525自动将其控制,根据理论值进行元器件的选择,由于精度的要求比较高且受到电路内部干扰的影响,往往多次修改和调整基础电压方能得到好的反馈电压,使输出达到我们所需要的理想值。

7.实验测试

(1)输出电压范围测试

经过测试,输出直流电压随输入电压的升高而逐渐升高,当输出电压达到36V时,将不再随输入电压的升高而升高,测试值如表7输出电压测试表所示。

(2)效率测试

输入电压,输入电流,输出电压,输出电流,则电源效率为

(7-1)

8.结论

本电路经过测试,其在一定的负载范围内的输出可稳定为36V。本电源设计简单,调试方便,所需元器件较少,体积小,成本低,负载在全范围内变化时,本电源均能保持良好的输出性能,实验数据表明指标满足设计要求。

参考文献

[1]康光华,陈大钦主编.电子技术基础模拟部分(第四版)[M].北京高等教育出版社,1996:47-54.

[2]王剑英,长敏慧.新型开关电源实用技术[M].北京:电子工业出版社,1999:136-155.

[3]彭世林等.彩色电视机原理与维修[M].兰州大学出版社,2004:176-191.

[4]王水平.开关稳压电源[M].西安:电子科技大学出版社,1997:113-156.

[5]曲学基等.新编高频开关稳压电源[M].北京:电子工业出版社,2005:104-149.

[6]康华光.电子技术基础数字部分(第五版)[M].北京:高等教育出版社,2005:23-67.

[7]周志敏,周纪海.开关电源实用技术设计与应用[M].北京:人民邮电出版社,2003:23-46.

[8]张占松等.开关电源的原理与设计[M].北京:电子工业出版社,1999:44-52.

[9]赵保经.中国集成电路大全(第一版)[M].北京:人们邮电出版社,1990:36-60.

[10]常敏慧.开关电源应用、设计与维修[M].北京:科学文献出版社,2001:60-69.

[11]曲维本,刘铁墉.光电耦合器的原理及其在电子线路中的应用[M].北京:北京国防工业出版社,1981:70-84.

[12]尹克宁编著.变压器设计原理[M].北京:中国电力出版社,2003:13-15.

[13]赵宝成.变压器的设计绕制原理[M].北京:中国国防工业出版社,1995:18-30.

上一篇:课程线上教学方案范文 下一篇:对于建筑材料的认识范文