模具设计范文

时间:2023-11-15 14:36:53

模具设计

模具设计篇1

论文摘要:随着塑料工业的飞速发展及塑料制品在各个领域的推广应用,产品对模具的要求也越来越高。同时也对专业设计人员的经验提出了更高的要求,在塑料制品模具设计时制品材料的选择是决定产品性能的重要因素。还有制品壁厚等问题是辅助设计软件所不能解决的,要需要专业设计人员长时间经验的积累才能做好的。因此本文就塑料制品模具设计中若干重要问题做以简要的讨论。

在我国塑料工业发展中,计算机的应用起到了重要作用。计算机技术在模具设计领域的应用,大大缩短了模具设计时间,尤其计算机辅助工程(CAE)技术的大规模推广,解决了塑料产品开发、模具设计及产品加工中的薄弱环节。更在提高生产率、保证产品质量、降低成本等方面体现出现代科技的优越性。但是现代技术并不能替代专业设计人员的经验,在塑料模具设计时制品材料的选择是决定模具设计时模具材料选用的重要因素。怎样选用合适的材料,是模具设计中一个重要的问题。

一、塑料制品材料的选用对模具设计的影响

一般来说,并没有不好的材料,只有在特定的领域使用了错误的材料。因此,设计者必须要彻底了解各种可供选择的材料的性能,并仔细测试这些材料,研究其与各种因素对成型加工制品性能的影响。本文只就传统的热塑性材料进行分析以说明问题。在注射成型中最常用的是热塑性塑料。它又可分为无定型塑料和半结晶性塑料。这两类材料在分子结构和受结晶化影响的性能上有明显不同。一般来说,半结晶性热塑性塑料主要用于机械强度高的部件,而无定型热塑性塑料由于不易弯曲,则常被应用于外壳。这是材料选用的大框,其次,还要根据填料和增强材料继续选择。

(一)根据填料和增强材料进行选择的分析

热塑性塑料可分为未增强、玻璃纤维增强、矿物及玻璃体填充等种类产品。玻璃纤维主要用于增加强度、坚固度和提高应用温度;矿物和玻纤则具较低的增强效果,主要用于减少翘曲。玻璃纤维会影响到成型加工,尤其会对部件产生收缩和翘曲性。所以,玻璃纤维增强材料不能被未增强热塑性塑料或低含量增强材料来替代,而不会有尺寸改变。玻璃纤维的取向由流动方向决定,这将引起部件机械强度的变化。试验(从注射成型片的横向和纵向截取了10个测试条,并在同一个拉力测试仪上对它们的机械性能进行了比较)表明,对添加了30%玻璃纤维增强的热塑性聚酯树脂,其横向的拉伸强度比纵向(流动方向)低了32%,挠曲模量和冲击强度分别减少了43%和53%。

在综合考虑安全因素的强度计算中,应注意到这些损失。

在一些热塑性塑料中加入了一系列增强材料、填料和改性剂来改变它们的性质。由这些添加剂产生的性能变化必须认真地从手册或数据库中查阅,更好的是听取原材料制造厂家的专家的技术建议。以选用最为合适的材料。

(二)考虑湿度对材料性能影响

一些热塑性材料,特别是PA6和PA66,吸湿性很强。这可能会对它们的机械性能和尺寸稳定性产生较大的影响。在进行设计时,应特别注意这种性能,考虑其对产品性能的影响。

模具材料的选用取决于制品材料,细致分析制品材料后,才能在模具设计时选用最为合适的模具材料。

(三)塑料制品模具材料选用

细致分析塑料制品使用的材料后,选取最为合适的模具材料。目前我国市场常见的、适合热缩性材料的模具材料有:非合金型塑料模具钢(即碳素钢)、渗碳型塑料模具钢、预硬型塑料模具钢、时效硬化型塑料模具钢、整体淬硬型塑料模具钢、耐腐蚀型塑料模具钢几种。在模具材料选取时,根据制品材料是否改性和增加填充剂,添加何种添加剂来选取适合的模具材料。例如:制作形状复杂的大、中型精密塑料制品时,其模具材料可选用预硬型塑料模具钢;制造复杂、精密且生产时间较长,需要高寿命模具时刻采用时效硬化型塑料模具钢。具体选用时主要还是要针对塑料制品的材料和模具预计使用情况选取。适宜的材料加上合理的设计将极大的提高模具使用周期,同时也可以提高产品质量。

二、壁厚及相关注意事项对产品性能的影响

在工程塑料零件的设计中,还有一些设计要点要经常考虑,其中对于壁厚的设计尤为重要,壁厚设计的合理与否对产品影响极大,改变一个零件的壁厚,对以下主要性能将有显著影响:零件重量、在模塑中可得到的流动长度、零件的生产周期、模塑零件的刚性、公差、零件质量,如表面光洁度、翘曲和空隙等。

(一)塑料模具设计工艺中的基础要求

在设计的最初阶段,有必要考虑一下所用材料是否可以得到所要求。流程与壁厚比率对注塑工艺中模腔填充有很大影响。如果在注塑工艺中,要得到流程长、而薄,则聚合物应具有相当的低熔融粘度(易于流动熔解)是非常必要的。为了深入了解聚合物熔化时的流动性能,可以使用一种特殊的模具来测定流程。

增加壁厚不仅决定了机械性能,还将决定成品的质量。在塑料零件的设计中,很重要的一点是尽量使均匀。同一种零件壁厚不同可引起零件的不同收缩性,根据零件刚性不同,这将导致严重的翘曲和尺寸精度问题。为取得均匀的,模制品的厚壁部分应设置模心。此举可防止形成空隙,并减少内部压力,从而使扭曲变形减至最小。零件中形成的空隙和微孔,将使横截面变窄,内应力升高,有时还存在切口效应,从而大大降低其机械性能。不同壁厚塑料制品的模具设计时,模腔的要求也不同,根据制品的要求,设计模具的模腔及脱模斜度,斜度要与塑胶制品在成型的分模或分模面相适应;是否会影响外观和壁厚尺寸的精度。

(二)热塑性塑料设计中的指标分析

热塑性塑料一般具有高的延展性和弹性,不需要像具有高刚性、低延展性和低弹性的金属一样指定严格的范围。设计者在决定热塑性塑料模具制品的成本方面起了关键作用,合理且不影响产品性能的、缩小公差,较少成本是可以实现的。一般商业上可接受的产品与标准尺寸的偏差不高于0.25-0.3%,但这还需要与应用时的具体要求相结合来判断。精确的模具可以有效的缩小制品公差,从而降低制品成本。因此,模具精密度对制品生产厂家具有重要意义。

三、塑料模具设计时对收缩值的考虑

为了不对塑料部件制定过分严格的范围,必须要注意一些影响塑料制品尺寸准确性的因素。模具制造的标准必须严格遵守,同时要特别注意脱模斜度的重要性,因为它决定了脱模容易与否及防翘曲性能。

还有一个与产品设计相关的重要问题是,当成型品是由不同材料或不同壁厚制成时,其模后收缩值与方向和厚度相关如果复杂的成型对加工的要求非常严格,必须要获得模具原型有关收缩值和翘曲行为的准确数据玻璃增强材料的这一性质最为明显。玻璃纤维的取向性可在水平方向和垂直方向产生具有显著性差异的收缩,从而导致尺寸不准确。塑料制品的几何形状对收缩也有影响,进而影响到产品的性能,这也是设计者值得关注的一点。因此在此类制品模具设计时要注意制品脱模收缩后的尺寸是否为产品要求尺寸,否则因制品模后收缩值的影响,极有可能导致产品尺寸不符合标准。

结论:

与产品模后性能相关问题还有许多,设计人员可以参考手册进行设计。总之,在塑料制品模具设计时要充分考虑可能影响制品尺寸、性能、外观等多方面因素,综合利弊,选用适合的材料,合理的设计,才能保证产品的性能。

参考文献

[1]张国栋.模具设计概述[J].中国模具设计,2003,6.

[2]李海龙.注塑模具设计[J].模具前沿,2005,12.

[3]肖海燕.模具设计之材料选用[J].西安机械设计,2006,1.

[4]吴利国.塑料模设计手册[M].机械工业出版社,2005,1.

[5]张旭.塑料成型工艺与模具设计[M].高等教育出版社,2002,7.

模具设计篇2

注塑模具CAD技术是一种将模具制造转向高自动化的人工智能化的一种技术,具有以下一些特点:

(1)生产效率高。注塑模具CAD技术中的注塑成型方法能够将一些形状较复杂的塑料产品一次成型,并且这种方式生产的塑料产品在目前塑料产品中所占的比例是比较大的;

(2)可以批量生产。利用注塑模具CAD技术能够迅速将塑料的形状进行复制,并且快速成型,能够克服注塑模具外部约束多、结构复杂且多变、试探性和经验性较强的特点,进而批量生产大量的塑料产品;

(3)操作性强。注塑模具CAD技术系统的功能是比较丰富的,在注塑模具的流程中涉及到多个层面,因此也比较复杂,另外其交互性比较强,因此需要操作人员掌握丰富的软件知识和广泛拓宽计算机知识领域,从而才能做出正确的操作决策。注塑模具CAD系统一般包括五个部分,如产品造型或产品图输入部分、模具总体设计方案确定部分、模具详细设计部分(包括结构和零件的设计)、模具模拟过程部分(包括强度分析、流动分析以及冷却分析的模拟)以及CAM系统的接口部分等,这些部分一般是相互独立并相互联系的,在注塑模具功能的发挥中起到至关重要的作用。注塑模具CAD技术的广泛应用给传统模具设计和制造提供了一个更为先进快捷的方式,在模具的质量和制模的周期上都有了很大的改善。另外通过该项技术还能够大幅度降低制模的成本,提高企业的管理水平,同时还让设计人员的主观能动性得到充分的发挥。

2UG中模具设计中MoldWizard模块分析

由上述的描述可以知道,UG注射模具设计技术主要是通过UG软件中的MoldWizard模块对将要制作的模具进行数据库的开发,然后得到设计图形。在UG软件中,MoldWizard模块能够根据用户企业的需求建立出与需求产品参数相关的三维模具,这些建立出来的模具是可以用来直接加工的。另外MoldWizard模块能够对模块进行自动分模,也就是说,通过其能够自动搜索模具的分型线,并且自动生成分型面和提取公母模面,从而生成磨具的型芯与型腔。在这个过程中大大简化了设计程序,并且具有很强的逻辑性。另外,MoldWizard模块能够定义标准件库系统,能够将直观的图形直间调入到设计的模具中去,并且可以很方便地在上面进行修改。该标准件库是一个庞大的数据库,既能将数据库内的图形数据调出利用还能往数据库中添加新的标准件数据,用户可以根据结构来自行对这些标准件进行定义。

3UG注射模在模具设计和制造中的应用

对于UG注射模在模具设计和制造中的应用,以下以游戏机手柄上盖的注射模具来进行分析。进行UG软件的MoldWizard模具设计时,主要有以下流程:

3.1产品的模型结构分析

在进行模具的设计时,首先需要对所期望的产品的模型结构进行分析,本文以游戏手柄为例,对游戏手柄的材料、外形等进行分析,判断其结构类型。

3.2产品的加载和项目的初始化

根据上述对所期望产品的结构模型进行分析之后,就需要选择材料的种类,并对产品和项目的路径、名称以及单位进行设置,这就是产品的加载和项目的初始化过程。在这个过程中,材料的选择一般基于UG软件的数据库系统,或者直接编辑新增,然后完成模具的整个资料,形成一个加载项。

3.3模具坐标系和收缩率的定义

通过上述将游戏手柄的材料信息进行设置处理后,就需要在软件中将该种模具的坐标系和收缩率进行定义。此坐标系属于三维坐标系,在坐标系中模具要处于零件分型面的中心线上,Z轴需要代表产品的顶出方向,这样才能保证MoldWizard系统只能进行操作。收缩率则是根据游戏手柄材料的种类来确定。

3.4成形工件的确定

在本例中,游戏手柄的总体形状为长方形,且有一定的弧度,因此,在形成模具时,需要在动态固定的模具中安装型芯和型腔,型芯和型腔是通过机床加工而来的,然后利用成形工具来定义模具的大小。

3.5模腔的布局

通过成形工具的确定后,就要对模腔的布局进行确定,一般是根据产品的需求量来决定,若需要大量生产,则可以将模腔布局为一模多腔,这样就能充分利用材料,提高生产效率。

3.6分型

模具设计的重点和难点就是分型面的建立,其目的就是让工件的分型面对工件进行分割,从而形成各个模具腔体的体积块。因此分型的过程主要包括:创建分型线、创建分型面以及创建型芯和型腔。

3.7模架的调用

等模具的大致零件部位确立后,就需要借助模架来确立整个模型。一般来说,模架的调用来自于UG软件系统本身存储的模架库,当然也可以借助其他软件自行建立模架库。本例中的游戏手柄则需要通过KBE知识工程来建立一个特定模架,加入到模架库之后,再进行调用。

3.8成形

该过程主要包括模具零件的标准零件,如主流道、推杆、固定环以及浇口等,进而进行模具浇注系统的设计。浇注后,需要对成型的模具进行冷却,因此UG软件系统还需要设计出该种模具的冷却系统,设计的内容包括冷却时间、冷却材料、冷却工艺等。最后就是模具的装配过程,根据模具的三维图进行各设计木块的安装。

4结语

UG软件提出的设计理念包含设计、制造、装配以及生产管理等多个层面,让塑料模具的设计与制造过程更加一体化。UG软件中的MoldWizard模块,更是将模具设计与制作推向更加简易化、自动化、高效率化、智能化方向发展,大大节约了人力和物力成本,为模具的开发提供了更加强有力的工具支撑。

模具设计篇3

国内塑料模具设计中常见的问题包括了诸多内容,其主要内容包括了收缩问题、公差标注问题、热膨胀问题等内容。以下从几个方面出发,对塑料模具设计中常见的问题进行了分析。

1.收缩问题

收缩问题对于塑料模具设计有着重要的影响。通常来说在塑料模具制作的过程中往往会需要在高温和高压的环境下进行,并且通过温度来将塑料溶解为液体,从而能够更好地将其注入到固定的模腔中。除此之外,收缩问题主要还体现在塑料本身的特性上,即这一问题会在液体塑料定型的过程中产生影响,并且会使塑料模具变得比固定的模腔更小。另外,针对收缩问题的存在模具设计人员在设计模具的过程中应当首先考虑并且分析到这种收缩的情况,从而能够尽可能的减小误差所带来的损失。

2.公差标注问题

公差标注问题对于模具设计的影响是显而易见的。众所周知公差标注的不一致问题主要是说对于不同的制品所需要的塑料模具比例也是不同的,因此公差标注也就是在设计过程中需要着重考虑的问题。除此之外,公差标注低则会导致塑料模具的精度也随之降低,但是如果这一问题得到了控制则会促进塑料模具精度的持续提升。另外,公差标注问题还体现在如果塑料模具设计人员在模具设计的过程中如果忽略了公差标注并且按照已有经验进行盲目的选择则会导致塑料模具在尺寸上和形状上出现较为严重的问题和差错,从而导致对塑料模具在设计中的质量和价值都产生较为不利的影响。

3.热膨胀问题

热膨胀问题是影响塑料模具设计的重要因素之一。通常来说热膨胀系数的问题主要体现在塑料模具设计中的热膨胀系数的不同会导致冷却后的塑料模具的形状和尺寸也出现较大的差异。由此可见在设计塑料模具的过程中热膨胀系数有着非常重要的作用。除此之外,热膨胀问题主要还体现在部分塑料模具设计人员在设计过程中没有提前将它进行谨慎的考虑和分析,与此同时没有在实践过程中根据设计时的实际情况来合理地对塑料模具进行尺寸上的调整,从而无法合理的保证塑料模具设计的整体质量。

二、国内塑料模具设计问题对策

国内塑料模具设计问题对策是一项系统性的工作,这主要体现在提升材料收集效率、合理进行公差标注、优化设计方案等环节。以下从几个方面出发,对塑料模具设计问题对策进行了分析。

1.提升材料收集效率

提升材料收集效率是塑料模具设计问题对策的基础和前提。在提升材料收集效率的过程中设计人员应当确保在进入设计之前一定首先做好材料的收集工作,即这一过程中塑料模具设计人员需要合理的掌握使塑料模具的相关数据和信息要求,从而能够更加全面谨慎的进行设计。除此之外,在提升材料收集效率的过程中塑料模具设计人员应当注重了解到所要设计的模具精确的大小尺寸和可能会影响设计模具的因素以及注塑机的操作方式和技巧,从而能够促进设计误差被控制在合理的范围内。

2.合理进行公差标注

合理进行公差标注对于塑料模具设计问题对策的重要性是不言而喻的。在理进行公差标注的过程中塑料模具设计人员应当注重根据实际的情况来选择,这主要是由于不同公差标注对塑料模具的影响是有着差异的,因此塑料模具设计人员应当根据塑料模具实际所需要的精度程度来进行选择,从而能够更好地满足客户的要求。除此之外,在理进行公差标注的过程中塑料模具设计人员应当注重在最大程度上保证塑料模具的尺寸不受影响并且不出差错。另外,在理进行公差标注的过程中设计人员可以对于精度不高的塑料模具使用低标准的公差标注,从而能够确保其既不会超出误差范围又可以满足经济要求,最终能够在此基础上促进塑料模具设计水平的有效提升。

3.优化设计方案

优化设计方案是塑料模具设计问题对策的核心内容之一。在优化设计方案的过程中塑料模具的设计人员应当注重积极地提出科学和理性以及新颖的设计方案,并且在这一过程将理论知识与实践经验完整的结合,从而能够更好地提高塑料模具设计的效率。除此之外,在优化设计方案的过程中塑料模具的设计人员应当注重对于可能会出现的问题进行探讨并且在这一过程汇总提出一些相对合理对策方案,从而能够更好地提升塑料模具设计的可靠性和精确性。

三、结束语

随着国内国民经济整体水平的不断进步和制造行业发展速度的快速提升,塑料模具设计中常见的问题得到了越来越多的重视。因此我国塑料模具设计人员应当对于存在的问题有着清晰的了解,从而能够在此基础上通过设计实践的进行来促进我国制造行业整体水平的有效提升。

模具设计篇4

挤出吹塑成型最早出现于十九世纪三十年代,但是受当时技术设备、生产工艺等方面因素的影响,应用范围具有较大的局限性。随着技术创新和设备优化,吹塑成型工艺得到了发展,目前已经成为仅次于注射成型和挤出成型的第三大塑料成型方法。吹塑模具的结构简单,制作成本相对较低,吹塑成型效率高,因此受到了诸如汽车、机械等加工制造领域的青睐。文章通过分析吹塑模具的设计结构,对其设计要点进行了全面分析。

关键词:

塑料油箱;挤出吹塑成型;模具设计;结构

1塑料油箱挤出吹塑成型模具的结构设计

1.1吹塑成型模具的设计要点从结构上看,塑料油箱挤出吹塑成型模具可以分为两个形状相似、结构相同的分模模具。这样设计的优点在于是塑料油箱的外表面向外突出,并同时确定模具产品的规格和形状,进而利用吹塑挤出的工艺方式,将机械加工制造零部件送入冷却系统,实现从低分子形态向高分子形态的转变。其结构设计所要实现的目标主要有以下几点:第一,保证塑料油箱挤出吹塑成型的模具规格与当前的生产目标、客户需求相一致,这也是模具设计工作的根本所在。在前期制定模具设计规划时,相关的设计人员要熟练掌握生产目标和客户需求,并结合其设计成本和技术水平,综合考虑模具的设计规格,在保证模具设计标准的基础上,尽可能的向客户需求靠拢。第二,半制品塑料型胚的切断要迅速,防止切断过程给型胚造成损坏。模具型胚本身具有一定的物料硬度,在半制品切割时,要遵循“精确、快速、无伤”的操作原则,保证横切面的平整度,如果横切面存在切割条纹,还必须利用专业的打磨工具进行磨平。第三,保证挤出吹塑模具结构间的连接严密性。模具的使用寿命和使用质量与模具结构连接的紧密性直接相关,如果模具连接部分存在裂缝,或是连接区域的厚薄不均匀,在后期使用过程中很容易引起吹塑制品的变形。

1.2挤出吹塑模具的优点挤出吹塑模具在结构设计上采用了冷却分层设计,能够保证内部温度在冷却系统之间进行循环流动,从而有效控制了温度的上限,避免因温度过高引起塑料制品受热变形。挤出吹塑模具一次只能吹塑成型一个塑料件,虽然制作效率相对较低,但是能够保证每个塑料件的质量符合设计标准,而且其模具结构最为简单,加工流程效率较高,对操作技术、专业能力的要求程度较低,经济成本低廉。挤出吹塑模具适合小型化、个人化塑料件制造,能够有效避免吹塑过程中的材料和资源浪费问题。

2塑料油箱挤出吹塑成型模具的分型面设计

首先,塑料油箱挤出吹塑模具的分型面设计,要将模腔横向最大直径和管状型坯外径之间比值设定在合理范围内,尽量缩小比值差距。其次,在模具设计过程中,应尽量保证内部通路管道的均匀程度,防止管道壁出现厚薄不均的问题,以此来保证挤出吹塑成型的质量。保证管道厚度均匀的优点在于:一方面能够合理规划模具内部结构的设计,保证各个管道之间实现有序交叉和分布,避免因管道重叠导致吹塑成型的塑件存在质量问题;另一方面能够降低模具吹塑的操作难度,不需要在后期吹塑过程中进行人为的调整,降低了挤出吹塑成型对人力的依赖程度。再次,设计人员在进行分型面设计时,要在不影响吹塑成型质量的基础上,尽可能的简化吹塑流程。吹塑流程与塑件脱模的成功率之间有着必然联系,通常情况下,当吹塑流程相对简化,所经过的模具加工设计环节相对较少时,塑件脱模的成功率就高,塑件的质量也相应提升;反之,如果模具设计的环节相对复杂,就会在一定程度上影响脱模效率,导致脱模成功率降低。

3塑料油箱挤出吹塑成型模具的排气设计

空气排出设计是塑料邮箱挤出吹塑成型工艺的关键环节。吹塑成型过程中,所排出空气容量应当正好等于模具凹形型腔容积减去的模具闭合当时的型坯容积。为了将塑料型坯与模具凹形型腔当中的多余空气顺利、迅速排出,防止让残留空气阻滞在模具当中,提高产品的吹塑效率,保证吹塑过程中型坯与模具完全贴合,避免塑件外表收到空气阻隔影响而产生凹陷、突起或者其他形状变化和质量问题。排气不良还会延长制件的冷却时间,造成制件壁厚分布不均匀,降低制件的力学性能。故应开设足够的排气通道以保证制件能够成型饱满。由于该模具分型面外侧均匀地设置了切边刃口、压缩段和余边槽,成型时余料将分型面封闭,气体无法从分型面处排除,故该模具只能以在模腔中开设排气孔的形式排气。

4塑料油箱挤出吹塑成型模具的冷却分层设计

几乎所有的热塑性塑料成型工艺如挤出成型、注射成型、真空成型等,其成型周期在很大程度上取决于塑料的冷却时间长短。对吹塑成型尤其如此,因为其冷却时间占成型周期的60%以上,对厚壁塑料件则达90%。若冷却不均匀会使塑料件各部位的收缩率存在差异,引起制件翘曲、瓶颈歪斜等现象。该模具采用的是直通式冷却方式,即直接在模板上钻孔,模外串联形成冷却回路,通入冷却介质进行冷却。首先,开启的吹塑模具移至挤出机头下方,挤出机在两瓣吹塑模具中挤出型坯,达到要求的长度后,吹塑模具合模,截断型坯后从挤出机头下方移出,成型油箱进油孔的凸模前行,与型坯和吹塑模具接触,凸模中心开有气体通道,压缩空气由此引入型坯中,吹胀型坯,使其与吹塑模具内表面紧密接触,冷却定型后开模取件。

5塑料油箱挤出吹塑成型模具的型坯机头设计

挤出机塑化熔体并将熔体通过挤出机流道20侧向挤入模头内芯13的螺旋流道,一部分熔体沿螺旋流道流动,另一部分熔体沿套筒10与模头内芯13螺杆的间隙轴向漏流。螺旋流道的深度沿螺旋方向逐渐变小,螺棱顶面与套筒的间隙则沿轴向逐渐增加,螺旋流动逐渐减少,轴向漏流相应地增加。当螺旋流道深度为零时,流动完全被轴向流动所替代。带螺槽的模头内芯主要起分流作用,同时也对熔体进行进一步的塑化、压缩,侧向挤入的熔体沿螺旋流道流动,使得熔体流动均匀,分流后绕过模头内芯的熔体熔接良好,无熔接痕。

6结束语

塑料油箱挤出吹塑成型工艺具有广泛的应用市场,通过优化设计,提高模具设计和制造的水准,是推动挤出吹塑成型工艺不断发展的关键。相关工作人员在进行该方面工作时,一方面要不断加强自我知识的学习,密切关注行业发展最新动态,紧跟前沿潮流,为模具设计创新提供理念指导;另一方面要将理论与实践结合起来,在实际设计工作中,根据客户需求,制作出质量达标的塑件。模具结构设计的优化以及设计工艺的提高,已然成为企业的核心竞争力。

参考文献

[1]李道喜,李能文,明浩,黄虹.改善挤出吹塑制件壁厚均匀性的几种方法[J].精密成形工程,2012(1):131-133.

[2]吴裕农,王树辉,许中明.塑料挤出吹塑中空成型壁厚均匀性的控制[J].中国塑料,2011(1):164-165.

[3]黄虹,李道喜,李敬媛.中空制件凸缘高度对挤出吹塑和挤出吹塑-局部抽真空两种成型工艺的影响[J].真空科学与技术学报,2013(11):109-111.

[4]何亮,曾雪东.洗发水瓶挤出吹塑模具设计[J].工程塑料应用,2013(8):49-51.

模具设计篇5

1.研究性教学方法研究性教学是一种开放式教学,其具体办法和形式多种多样。教师要根据课程性质、教学内容和学生的特点,打破传统教学束缚学生手脚的那套做法,遵循以学生为本的观念,创造性地进行教学设计。具体到教学上,可以采用讨论式教学、互动式教学、任务驱动式教学、案例教学、合作式教学等各种教学方法。“冲压工艺与模具设计”这门课可以分成三大部分,冲裁模具设计、弯曲模具设计和拉深模具设计。其中冲裁模具设计部分,模具的标准化程度高,模具设计规律性比较强,适合传统的教学方法,而且由于大多数学生刚刚接触模具,对模具工作原理和加工特点认识不深,采用研究性教学方法让其自主学习这部分内容势必会对其造成很多困难,所以笔者采用了提问式和案例式的教学方法。为了提高教学效果,笔者制作了丰富的多媒体课件,极大地提高了学生的学习的兴趣。课堂“理论”教学要着重突出普遍性、典型性,理论分析则选择难易程度适中的某个题目进行工艺分析、工艺计算和模具结构设计,使学生具有系统的、完整的、扎实的知识结构。弯曲模具设计和拉深模具设计这两部分,由于模具结构简单,但弯曲、拉深工艺复杂,而且学生对模具工作原理和模具结2.设计训练载体训练载体的设计是实施研究性教学的主要环节,它依据教学目标,在相应的教学策略下,为传递教学内容而设计编制的教学内容的组合形式和形态。笔者在冲裁模具设计部分,通过垫圈的级进模设计和止动件的复合设计两个设计实例,使学生掌握冲裁件的工艺分析、工艺方案的确定、模具的工艺计算、压力设备的选择以及冲压模具结构的设计,培养学生模具设计的基本能力,使学生对模具有一个全面的认识和了解。在弯曲模具设计部分,弯曲模具的结构设计简单,但弯曲在成型工艺上,弯曲毛坯尺寸计算和弯曲回弹值的确定是个难点。所以笔者设计了“基于Dynaform软件的弯曲件毛坯尺寸计算方法”和“基于Dynaform软件的弯曲件回弹尺寸的确定”两个专题任务。这两个专题主要通过CAE软件对毛坯件进行数值模拟,从而得到毛坯尺寸和回弹数值。在这个专题任务中,并不要求学生懂得有限元原理,只是通过软件操作,使学生了解目前先进的设计方法,提高学生对新技术的认知和兴趣,同时也激励学生探索新的知识领域。拉深模具设计部分:拉深件的主要质量问题是拉裂和起皱,笔者通过“基于CAE圆筒件的质量分析与优化”这个任务,使学生更加直观地掌握拉深和起皱的影响因素,并对起皱的板料厚度、拉深系数、压边力、模具工作部分的尺寸等因素及解决拉深和起皱的措施,同时也培养了学生的科学研究能力。

二、研究性教学方案实施

“冲压工艺与模具设计”研究性教学方案实施是对教学方案设计做出全面具体而又明确安排的计划。其中包括教学实施过程进程表、教学组织安排、课程考核等内容。1.教学实施过程进程表根据教学任务和教学目标,对课堂讲授、课外布置研究报告、项目练习、学生分组讨论等内容进行统筹规划。2.教学组织安排在授课前,教师安排好学生分组。每个专题研究要求3~4人一小组。小组成员可以相互沟通,相互研讨,相互合作。小组的每个学生都要交一份研究报告或设计说明书。一些涉及到较深的研究领域,教师首先提出选题,然后引导学生自己去图书馆查找相关资料,分析总结,最后形成报告的形式。完成研究报告或项目训练之后,让每个学生分别陈述研究报告,并提出研究过程中所遇到的问题和解决的对策。教师对学生研究报告的内容及陈述进行点评。3.课程的考核考核包括学生成绩的评价方式、等级。以往采用的闭卷考试,学生死记硬背考试内容,并不能真正反应学生的学习效果,也不能体现学生真实能力。教师要改变传统的一考定终身的评价模式,实行课内教学与课外学习相结合的全程评价,采用多样化的考试方式,推进考试制度改革。在评价方式别重视学生的创新能力及科学研究能力,这部分成绩所占的比例应加大。本课程采用期末成绩和平时成绩相结合来进行考核,其中期末笔试占60%,平时成绩占40%。平时成绩中项目训练、研究报告成绩占30%,出勤、作业、课堂提问、学习主动性等占10%。

三、结束语

通过对设计09级、10级学生研究性教学的实践,“冲压工艺与模具设计”课程的教学水平和教学质量有了明显的提高。学生在掌握基本冲压工艺设计和模具结构设计的同时,及时了解科学研究方法,使学生对所学的知识加深了理解,拓宽了知识面,提高了学习兴趣,同时也培养了学生创新性思维能力,使学生能用正确的学科思维解决问题,为今后参加工作奠定了良好的基础。

模具设计篇6

1.培养学生具备冷冲压模具设计师基本素质据调研,模具企业职业岗位均设有冷冲压模具设计岗位,需要能掌握和运用新工艺和新技术的有可持续学习能力的冷冲压模具设计师[1]。冷冲压模具设计师是高职模具设计与制造专业的人才培养定位的主要方向之一。“冷冲压模具设计技术”课程是培养学生具有冷冲压模具设计基础理论和具备基本技能,担负着培养学生具备冷冲压模具设计师基本素质的重任。2.围绕职业能力目标精选教学内容,突出地域性通过对企业冷冲压模具设计师职业岗位职业能力分析,制定课程的能力目标,围绕能力目标确定知识目标,确定能够包含能力目标和知识目标的基础理论和基本技能作为教学内容,同时突出地域性。即在教学内容的组织上,以冷冲压模具设计的传统理论基础和基本技能为重点,以地区行业中应用广泛的冷冲压工艺和模具为典型案例展开教学,使学生对冷冲压模具技术在地区行业中的地位和作用有深入的了解,激发学生的学习兴趣;针对培养学生冷冲压模具设计师可持续学习能力的要求,选取以冷冲压模具设计的现代先进技术,如新工艺新方法,拓宽学生的专业视野和技能,更好地适应职业岗位对专业技能的需求等。

二、“冷冲压模具设计技术”课程教学改革设计

1.总体设计思路精选教学内容,合理设置教学时间和进程,加强实践性教学环节,选定具有区域特色的真实产品作为专业技能实训项目,让学生从分析产品出发,通过真实问题的解决,使学生潜移默化地学会运用专业理论知识,通过亲身实践,使得学生把所学转化为所用,并在所用中不断提高设计技能。针对制造企业技术岗位设置专业核心课程,加强课程内容建设,紧密结合温州区域产业特点,优化课程内部结构,从简到繁、从易到难、循序渐进;通过拉长教学时间,增设综合技能实训项目,增加学生理论和实践学习时间,实现提高职业岗位专业技能的目的。在教学实施中将原来的教学时间由一个学期改为两个学期,分四个阶段实施。2.分阶段循序渐进式的教学设计针对教学目标,将“冷冲压模具设计技术”课程教学过程划分为四个阶段:基础阶段教学——初级技能训练——提高阶段教学——高级技能训练[2]。基础阶段教学以专业基本理论和基本技能应用为教学内容,由浅入深,以讲清基础理论、注重理论应用为教学重点,使学生掌握冷压冲模具设计基本理论。初级技能训练以掌握设计基本方法为教学重点,以真实项目案例作为教学内容,按照和企业一样的工作流程开展教学,使学生初步掌握冷冲压模具设计的基本技能。提高阶段教学以培养具有可持续的学习能力为教学重点,教学内容的选取突出先进性和开放性,及时吸纳新工艺和新技术,传授先进的设计方法和技术。高级技能训练以提升专业技能为目标,围绕新工艺和新技术开展教学,突出区域性、实用性的技术传授,按照由简单到复杂的规律选取训练项目,增强学生分析问题和解决问题的能力,使学生专业技能由初级提升到高级的设计水平。3.深化实践教学内涵高职学生的学习特点是对实践性环节的学习兴趣明显高于理论课程的学习,通过实践学习获得所需的知识和技能也是人类目前为止一种最为高效的学习方法之一[3]。深化实践教学内涵要针对高职学生的学习特点,对理论教学环节和实践教学环节合理设置,改进教学方法,让学生通过参与实践学习活动掌握专业核心技能,培养学生的专业知识和专业技能的应用能力,进而提升学生的专业核心技能。通过增加实践教学环节,采取单元训练、系统训练、半工半读和企业参观等灵活多样的教学方法提高教学质量,选取真实产品进行综合技能系统训练,让学生体验、参与真实产品的生产过程,感受冷冲压模具设计职业岗位的工作性质,使学生领悟模具设计师角色内涵,掌握专业技能[4]。

三、“冷冲压模具设计技术”课程改革实践

1.针对温州行业对冷冲模的需求选取教学内容针对温州地区在低压电器及成套设备﹑泵阀﹑汽摩配﹑印刷包装机械﹑鞋机等行业[3]产品的冲压模具设计为基础阶段教学内容,并增加精密多工位自动级进模设计,同时介绍新工艺和新技术如液压成形、旋压成形、超塑成形、爆炸成形、电水成形、电磁成形及冲压成型模拟仿真技术等,拓宽教学范围和深度,开拓学生设计思路,引导学生综合运用所学知识和先进技术解决生产实际问题,培养学生具备可持续的学习能力。“冷冲压模具设计技术”课程改革前后教学内容和教学时间的比较见表1。2.采取灵活多样的教学方法提高教学质量“冷冲压模具设计技术”课程采用集中授课、单元训练、集中指导、系统训练、半工半读等教学方法,围绕专业核心技能设计多种方式的能力训练项目,强化实践教学环节,如图1所示。基础阶段包括“集中授课+单元训练”。“集中授课”是基础理论知识传授的主要方法,使学生对冲压工艺和各类冲压模设计有正确的思路和理念。“单元训练”是将专业能力划分为单元进行单项训练,如冲压工艺方案的确定、排样设计、冲压力计算,排样图、装配图和零件图的绘制等,使学生掌握冲压模具设计的一般方法和步骤;通过穿插安排冲压生产认识实习、冲压模具模型的拆装测绘实训与冲压模具安装调试实验等现场实践教学环节,加强实践教学,让学生对冲压加工和冲压模具整体结构有一个完整的感性认识,使学生将所学的理论知识与实际联系起来。初级技能训练包括“集中指导+系统训练”选用冲压件作为工作任务,进行冷冲压模具设计一般步骤和方法的系统训练,使学生对冷冲压模具设计有一个完整的实践过程,对整个专业理论知识有更好更深的理解和掌握。提高阶段包括“集中授课+半工半读+单元训练”。“半工半读”是指学生上午上课,下午到实训基地上岗实习,将生产中遇到的问题及时带到课堂上解决,注重培养学生分析问题和解决问题能力的训练及冲压新技术新工艺的应用。高级技能训练包括“集中指导+系统培养学生训练”。选用复杂的冲压件作为课程设计工作任务,进行冷冲压模具设计技能强化提高的系统训练,要求每位学生完成2~3种不同类型的冲压件冲压工艺和冷冲压模具设计的强化训练,使学生的设计能力达到工作岗位的基本要求,为零距离就业打下坚实的基础。3.深化实践教学环节改革选取来自生产一线的真实产品或项目作为“冷冲压模具设计技术”课程实践性教学环节的教学内容。采用企业真实产品或项目作为学生的学习设计任务,将知识、理论、实践一体化,使学生体验产品生产完整的真实工作过程。真实产品或项目的选取至关重要,要求既满足包含专业核心技能训练,又使学生感兴趣,对学生具有吸引力,促使学生自主完成学习任务,最终达到掌握专业技能的目的。选取企业真实项目——球形锁具冲压件冲压模具设计作为初级技能训练阶段的设计任务。锁具是家庭必备产品,学生看得见摸得着,很容易掌握和了解产品功能和结构,能够引起学生的学习兴趣和共鸣,从而引发学生的求知欲望去深入研究其制造方法。真实项目实践教学环节采用复杂的冲压件代替以往结构简单的冲压件作为设计任务,分为单工序模、复合模和级进模分配设计任务,分层次教学,逐步加大设计难度,使每位学生都有独立的设计任务,增强学生的参与度。学院模具设计与制造专业模具1001班,完成了一个球形锁具中7个冲压件的40套冲压模具的设计,其中包含多种冲压基本工序和模具类型(见表2)。4.课程改革成效培养了学生综合应用能力和专业素养。通过分阶段循序渐进式的教学改革,将知识、理论、实践一体化,提升了学生冷冲压模具设计的能力,培养了学生综合应用能力和专业素养。通过多环节的强化实践训练,学生的学习过程伴随着专业知识转化为自己就业能力提高的过程,增强了学生的学习动力。如在毕业设计阶段,学生接受冷冲压模具设计任务后,能够综合运用所学理论知识和技能去分析和解决生产中的实际问题,在完成理论设计后还可以把自己设计成果拿到生产车间制造出实物,看到自己的理论设计图纸变成了可用于加工产品的工具,在品尝成功的喜悦的同时增强了学生的自信心,进而提升了学生的就业能力。实践证明,深化专业核心课程内涵建设,采取分阶段循序渐进式教学设计,通过多种教学形式,强化实践教学环节,创设多种真实环境,让学生在校内获得与就业岗位要求相同的实践锻炼机会,提高了学生的学习效果,提升了学生的专业技能,为学生今后就业打下坚实的专业基础。

模具设计篇7

CimatronE的快速分模功能面向制造业,主要集中应用在那就得型芯、行腔的设计,模具的结构设计、加工所需电极的设计等。该功能可使用用户直接根据曲面模型进行分模方向的分析,把曲面自动分成型芯、性腔两部分,自动为用户产生分模先,再采用多种方法根据已有的分模先快速生成飞模曲面,最后经编辑整理形成最终的设计结果。快速飞分模直接针对曲面模型进行型芯、行腔的设计,不需要由曲面数据模型转换到实体模型。由于没有拓扑关系的求解与管理,该方法可以灵活地处理模型的曲面信息,并允许用户对计算精度进行细调,可以得到更加精确的结果。传统CAD/CAM系统针对一个大型复杂的产品进行模具的型芯、型腔以及抽芯嵌件等的设计时,常常要花费大量的时间与精力,一般需要20~200h的工作量。常常要花费大量的时间与精力,一般需要20~200h的工作量。

Cimatron快速分模功能极大地缩短了设计时间。一般情况下可节省近90%的设计时间。铸造模具时一种十分流行的模具,特点是使材料一次成型,工艺灵活性大,各种成分、形状和重量的铸件几乎都能适应,且成本低廉,适宜于形状复杂、特别是具有内腔的毛坯或零件,但模具设计难度较大,特别是上、下模难以分开,型芯不好改。而Cimatron快速分模功能刚好弥补这一缺憾。快速分模功能是Cimatron10.6以后版本新增的功能,特别是Cimatron版本对此有了进一步的改进,它的主要功能就是完成复杂曲面的分模及形成型芯。工作流程程图下面以一实例介绍Cimatron快速分模功能的应用。

利用Cimatron的模具功能处理功能,利用分模后的分模线生成分型面,完成模具的分模过程。用EXTR—OBJ选项将拆分后的模具存为独立的图形文件。分别打开每个图形时,发现坐标系已经自动转换成符合加工的坐标方向。分型面的生成三、模具的生成对上模过程中存储的图形文件分别进行定位及部分分厚处理后,便可生成上、下模。利用Cimatron强、大的加工功能进行动态仿真,即可加工出理想的模具。

2.CimatronE模具设计的过程.

2.1进入模具工程

选择模具工程图标。模具工程设置向导即被打开。命名主装配为:lamp为主装配选择创建一个新的文件夹。

2.2进入分模环境

选择加载工件图标。选择设置工作零件lamp—work。单击确认。

2.3创建分模面零件

为了创建布局中各零件之间的连接曲面,可以创建分模面零件激lamp—md_分模系统主装配。在分模向导条中选择创建分模面零件图标。

2.4定义激活、创建激活

把上模、下模、侧抽分别附属到前模、后模、行位里,注意定义激活时不要把侧抽全部定义到行位里。把前模、后模、行位再分别附属到定板、动板、行位系统里(行位系统需要新建)。

2.5加载模架.

加载模架。在分模向导条中选择切换到模具设计图标:选择futaba中sctype系列,2527—sc—m。

2.6创建毛坯

激活前模,选择如图所示的平面作为草图平面绘制毛坯草图。

创建一个矩形并定义如图尺寸。注意使用约束。选择实体/新建/拉伸命令创建毛坯实体。展开激活工具,选择其中的缝合分模面选项,软件就会缝合前模的分模面,确认选择。进行切除操作。然后使用删除几何命令删除多余的分模面。这样就得到了最终的模具前模。

模具设计篇8

针对“一体化”的模块化教学,必须在实践、网络教学环境方面加大建设,保证教学改革的进行。在本课程教学改革已经具备了以下条件:(1)实践教学环境。模具专业配备了模具设计与制造专业教室,具有多媒体教学设备、供学生实践训练的模具实物及装拆工具、工作台等;配备了专业机房,电脑配置足够能够运行各种CAD/CAM软件。(2)网络教学环境。本课程专门建立了精品课程网站,网站内容丰富,充实了网络教程、设计案例等素材资源,学生可以课后在专业机房及寝室内访问该网站,进行在线学习,下载模具设计资料,供设计使用。可以在校园网上访问的冷冲压工艺与模具设计论坛,和教师与其他同学进行在线讨论研究学习。课堂上用多媒体来丰富课程内容和表现形式,变黑板式教学为电化教学,教师利用多媒体就可以在课堂上穿插演示模具三维结构、运动过程等用语言和平面难以表达的内容,使过去因没有实物对象而抽象难学的内容变得生动形象,课程网站中的模具设计素材、参考资料使学生通过网络认识大量模具结构和动作原理,使深奥的理论变得浅显易懂。良好的实践环境和网络环境有力的保证了“一体化”的模块化教学,尤其是实践教学的开展。

2模块化教学的教学方法

为克服冲压成形工艺课堂理论教学抽象、难懂;冲压模具设计实践性强的特点,必须改革传统的教学方法,采用新的教学模式[3]。为加强对学生动手能力和工程实践能力的培养,提出理论教学和实践教学并重的一体化教学模式,并应用到课程教学中。(1)讲练结合型教学方法。“教、学、做”融为一体的教学模式适合于实践性内容的课程教学。在课程的每一模块开始时,布置给每名学生不同的设计项目,然后按照冲模的设计步骤,通过多媒体教学、模具装拆演示,逐步讲解冲模的工艺问题、工艺计算,结构设计等不同环节,在每个环节后要求学生在课堂上进行项目设计,教师现场解答疑问,挑选部分学生对自己项目设计过程进行叙述,并在教师与其它学生进行点评和质疑后进行修改。当完成该模块的教学时,学生也完成了自己的设计项目。同时将课程设计贯穿于各次项目训练中,随着不同模块的进行,逐步完成课程设计,并巩固各单元教学效果和提高学生的综合运用能力。采用讲、练结合型教学方法,教师在讲清基本概念、基本理论与方法之后,通过布置设计任务,进行实践训练,完成教学内容。采用这种教学方法,事实证明教学效果良好,学生很快地掌握了课程内容。(2)案例教学方法。生产一线的情况是千变万化的,案例教学为学生提供了一种模仿、借鉴和引申的范例。这种教学模式的最大特点是师生互动性强,体现了以学生为主的教育思想[4]。本课程挑选电机转子、电机定子、机芯自停杆、电容器接线片等几个典型冲压件的冲模设计案例,每个单元以一两个冲模设计的完整案例将课程的主要内容全部穿插起来。通过案例式教学,使学生先模仿借鉴案例,继而对自己的设计进行提升拓展,最终独立完成设计任务。(3)讨论式教学方法。在课堂上教师针对企业工作环境的模拟情况所采取的不同工艺措施提出几个讨论题,如针对电机转子冲压件,先是设置一定的生产条件,再讨论采用单工序模、连续模或复合模的优缺点。学生分组准备并派代表发言,不同观点之间可以展开争论,最后教师进行归纳总结,如果答案不统一,不同的观点可以允许存在。这种教学法,实际也是对企业工作环境的模拟,通过这种教学,能够提高学生工作的适应能力。实践证明,以上几种教学模式都充分调动了学生的学习积极性,体现了以学生为主体的思想,同时也体现了理论与实践的紧密结合。学生既学到了理论知识也掌握了实践技能,同时学生的技术应用能力也得到了提高,因而受到学生的普遍欢迎。

3结束语

一体化的模块式教学克服因课时分散而导致的学生前讲后忘、理解前后脱节前等困难,同时克服理论与实践分开进行时实践环节实施难度大、学生动手训练时间少、知识能力结构与企业需要脱节等缺点,保证了教学过程的连续性和完整性,加强了动手能力的培养和训练,同时结合企业生产实际需要进行教学和训练,使学生的知识能力结构更符合企业需要。

上一篇:广告设计与制作范文 下一篇:网页设计范文