故障树分析范文

时间:2023-03-19 13:51:25

故障树分析

故障树分析范文第1篇

关键词:分析法;故障判断;提高可靠性

中图分类号:U47 文献标识码:A

1南京产BRW400/31.5、BRW200/31.5液泵故障分析

1.1泵的某一吸液阀或排液阀卡住

由于长时间使用疲劳过度或锈蚀严重都可能导致弹簧断裂。吸排液阀的弹簧软或短及卸载阀坏都可以导致冲击过大使阀锥断裂。其次由于阀锥质量问题,热处理时硬度超过规定硬度也容易造成阀锥断裂。

1.2自动卸载阀主阀阀芯卡住不能动作

这一原因和人为因素有很大关系,由于没有定期更换易损件如滑套内的密封圈用的过久不更换,阀芯使用的太久磨损严重都能导致主阀阀芯卡住不动作。

1.3高压过滤器阻塞

主要原因是吸排液阀上破损的密封圈进入过滤器内。或由于长时间没有使用滤芯导致虑芯锈蚀严重,高压过滤器阻塞。

1.4自动卸载阀下部推动活塞卡住不动作

其原因是复位弹簧折断或没有复位弹簧,推力活塞磨损严重,组装不得当或导向套密封脱落导致导向套有毛刺。

1.5自动卸载阀主阀不起作用,先导阀出液小孔堵住

由于看泵人员不细心,液箱盖没有随时关闭,掉入杂物使液箱内液体变脏,堵住出液小孔。由于质量问题如开胶掉底。或没有定期更换清洗吸液过滤网,使小杂物进入先导阀堵住先导阀出液小孔。

1.6液箱内液位低

液箱内液位低泵不能吸进工作液导致不能排出高压液。由于泵箱内没有及时加入乳化液或由于泵箱开焊漏液。

1.7卸载阀未关闭

在有手动卸载阀的泵上如果手动卸载阀未关紧,导致自动卸载阀不工作,在压紧螺套未压紧的情况下卸载阀也不关闭。

1.8吸液管截止阀未打开

这一原因主要是截止阀损坏根本打不开或截止阀在打开的位置上实际是关闭的。

2乳化液泵站故障树的定性分析

对乳化液泵站进行定性分析的主要目的就是找出导致顶事件发生的所有可能的故障模式,即弄清系统(或设备)出现最不希望发生的事件(故障)有多少种可能性。

如果故障树的某几个底事件同时发生时,将引起顶事件(系统故障)的发生,把这些底事件组成一个集合的形式,这个集合称之为割集。

也就是说,一个割集代表了系统中一种故障发生的可能性,即一种失效模式。如果去掉其中任意一个底事件就不再是割集,则这个割集就叫做最小割集,最小割集发生时,顶事件必然发生。

综上所述,一棵故障树的全部最小割集的完整集合就代表了顶事件发生的所有可能性。

2.1计算此系统的最小割集

例如,该乳化液泵站的故障树中“泵的某一吸液阀或排液阀卡住”,以此树最上一级的中间事件暂做为顶事件,先将各个级的中间事件及底事件设为某些变量。

T1泵的某一吸液阀或排液阀卡住

Ga弹簧断裂

Gb 阀锥断裂

Gc 冲击过大

x1 锈蚀

x2 使用时间过长

x3 质量问题

x4 弹簧短或软

x5 卸载阀坏

处于故障树最下一级的中间事件是Gc ,对应的逻辑门为或门,所联系的底事件是x4 x5 ,因此

Gc = x4Ux5

对于上一级的中间事件Gb ,则是通过或门与底事件x3与Gc相联系,因此

Gb= x3UGc=x3Ux4Ux5

同理可知Ga= x1Ux2

最后可知顶事件T1的表达式为

T1= GaUGb = GaUx3UGc = x1Ux2U x3Ux4Ux5

2.2用最小割集表示出此系统的结构函数

在故障树中,只要任何一个最小割集发生,顶事件就会发生。

上面列举的故障树有5个最小割集K=(K1+K2+K3+K4+K5),只要任一个最小割集Kj(j=1、2…..5)发生时,顶事件必定发生。

Kj可表示为

这里将属于Kj的全部底事件用或门联结起来称作最小割或门结构。

所以该故障树的结构函数Φ(x)可以表示为:

此故障树的结构函数即为:

Φ(x)= x1Ux2Ux3Ux4Ux5

3乳化液泵站故障树的定量分析

对于给定的故障树,若已知其结构函数和底事件(即系统基本事件的发生概率),从原则上来说,应用容斥原理对事件和与事件积的概率计算公式,可以定量的评定故障树顶事件T出现的概率。

结合本故障树分析可知,底事件可定性为相容事件,设底事件x1 、x2 …xn 发生的概率各为q1、q2 …qn 则这些事件和与事件积的概率,可按下式计算:

当有n个相容事件时,积的概率

和的概率

当故障树包含两个以上同一底事件时,则必须用布尔代数整理简化后,才能使以上概率计算公式,否则会得出错误的计算结果。

用系统最小割集的表达式为K (x),系统最小割集结构函数为

式中,k是最小割集数,Kj(x)的定义为

求系统顶事件的发生概率,即是使Φ(x)=1的概率,只要对上式两端取数学期望,左端即为顶事件发生概率

如果将事件和的概率写作

继而,就可以计算该故障树顶事件的发生概率,

本故障树共有五个最小割集,以此为K1=x1 K2 =x2 K3=x3 K4=x4 K5=x5,各底事件的概率q1=q2=q3=q4=q5=0.1

利用排列组合的方式

五个底事件只有其中的一件发生时可求得

其中任意两件发生时可知共10种故障路线

=10×0.01=0.1

同理可知其中任意三件发生时也共有10种故障路线

F3=10×0.001=0.01

其中任意四件发生时共有5种故障路线

F4=0.0001×5=0.0005

其中五件底事件均发生时也是一种故障路线

F5=0.15=0.00001

则由公式

综上所算,顶事件为"泵的某一吸液阀或排液阀卡住"的故障树

顶事件发生的概率为0.41

4应用动态规划理论优化效果及结论

通过机采科液压车间全体职工的共同努力,乳化液泵站故障树的设计方案比原计划25天提前了5天,为车间班组人员以后下井维修提供了新的技术手段,同时也为以后车间的生产提供了保障。

参考文献

[1]于治福,韩燕,于会荣.商德勇故障树分析法在矿井提升机电动机故障诊断中的应用[J].煤矿机械,2012(11).

[2]张世明.采煤机故障分析与诊断[J].企业技术开发,2011(13).

故障树分析范文第2篇

【关键词】 故障树分析安全性分析

1 引言

某型飞机升降舵系统是采用液压助力系统的双余度系统,主要用于实现飞机俯仰控制机动性能,该系统的主要组成及原理可参见图1,在驾驶舱中,正副驾驶各有驾驶盘及立柱,通过上拉和下推驾驶盘及立柱对传动线系产生力和位移,再通过液压助力器放大操纵力,实现对升降舵的操纵。

故障树分析分为定性分析和定量分析。故障树定性分析的目的在于寻找顶事件发生的原因和原因组合,即识别导致顶事件发生的所有故障模式。故障树定量分析的一个重要用途是利用底事件的发生概率计算出顶事件的发生概率,以确定和调整系统的可靠性水平或安全性水平。

各组成部分可能发生以下故障:

1)驾驶盘及立柱可能发生卡滞、机械脱开等故障;

2)传感器可能发生元件故障、输入输出电路故障、机械损坏、接触不良、导线脱落、线圈老化损坏、感应线圈损坏等故障;

3)拉杆可能产生紧涩卡住、端头螺栓脱落或断裂、连接摇臂故障、拉杆断裂、安装期间造成损坏等故障;

4)摇臂可能产生摇臂紧涩卡住、旋转螺栓脱落或断裂、摇臂断裂、安装期间造成损坏等故障;

5)液压助力器可能产生液压源失效、进回油连通阀密封故障、助力器泄漏严重、滑阀卡住、活塞卡住、回中锁故障、安装期间造成助力器损坏等故障;

6)舵面可能产生卡阻、脱落等故障;

7)离合器可能产生动作失效等故障;

8)开关可能产生开关接触不良、开关内部电路断开等故障。

2 建树

“一侧助力操纵与机械操纵卡滞,同时升降舵离合器故障”是升降舵功能丧失的一个直接事件,会导致灾难性的后果,因此对此事件的失效概率要求为小于10-9,本文对此事件作为故障树的顶事件,故障树分析过程如图2。

此故障树中的各事件用相应符号代替,以便于分析,如表1。

3 确定割集及最小割集

割集是故障树的若干底事件的集合,如果这些底事件都发生则将导致顶事件发生。最小割集是底事件的数目不能再减少的割集,即在最小割集中任意去掉一个底事件之后剩下的底事件集合就不是割集。

在传统故障树中有一种比较常用的求最小割集的方法——下行法,即布尔表法,表2为下行法在升降舵故障树分析的一个应用。

通过下行法分析可以得出升降舵系统故障树的割集为7个:{x1,x2},{x1,x3},{x1,x4},{x1,x5},{x1,x6},{x1,x7},{x1,x8,x9}可以看出,此7个割集之间无需简化、吸收,因此,升降舵系统故障树分析有7个最小割集:{x1,x2},{x1,x3},{x1,x4},{x1,x5},{x1,x6},{x1,x7},{x1,x8,x9}。

4 底事件概率统计

通过统计故障树底事件发生概率并计算,可以对故障树进行定量分析,计算该系统是否满足可靠性或安全性要求。

升降舵系统故障树底事件故障概率统计表见表3。

5 故障树分析

故障树定性分析是最小割集的定性分析,通过故障树定性分析可以看出,两阶割集有6个,三阶割集有1个,在两阶割集中出现的事件相比更重要一些;在6个两阶割集和1个三阶割集中,x1事件都出现了,因此可以得出,“离合器故障”事件在顶事件“一侧助力操纵与机械操纵卡滞,同时升降舵离合器故障”下是最重要的底事件,需要加强离合器的设计。

故障树定量分析是指已知底事件发生概率通过计算得出顶事件的发生概率,通过故障树定量分析可以得知:顶事件概率为最小割集概率的和,即

p(t)=p({x1,x2},{x1,x3},{x1,x4},{x1,x5},{x1,x6},{x1,x7},{x1,x8,x9})

=p(x1x2+x1x3+x1x4+x1x5+x1x6+x1x7+x1x8x9)

=p(x1)×p(x2+x3+x4+x5+x6+x7+x8x9)

=(1.85×10-6)×[(1.00×10-5)+(1.00×10-5)+(9.09×10-6)+(7.43×10-6)+(9.09×10-6)+(7.43×10-6)+(1.05×10-5×1.05×10-5)]=0.981×10-10

故障树分析范文第3篇

关键词:船舶电气事故;故障树分析研究;船舶系统

DOI:10.16640/ki.37-1222/t.2017.07.025

1 船舶电气事故的认识

船舶电气设备是船舶系统中一个不可忽视的部分,为船舶进行各项活动提供电气支持,在科学技术的引领下,船舶电气设备的自动化水平在不断的提高。受到运行环境的影响,船舶电气设备的运行状态会受到影响,故障的发生在所难免。为了不影响到船舶的正常运行,出现电气故障的时候要及时地发现问题并解决问题,并由专业的维修人员进行维修,以恢复电气系统的正常运行状态。传统的解决方式中,维修人员要凭借自身的工作经验与知识储备对故障做出判断,随着科学技术的发展,船舶电气设备的自动化水平有了很大的提高,对维修人员的工作水平也提出了更高的要求,复杂的电气系统内部结构以及各种不同程度故障的出现,都难以保证事故可以及时处理并迅速的恢复船舶的正常运行。因此,我们有必要利用故障树理论对以往发生的电气事故进行研究与分析,更为系统的对故障有深入的把握,找出系统内的薄弱环节,由此可以提高电气系统的安全系数,减少事故发生的可能性。

2 故障树分析的认识

故障树分析是一种起到风险预估与安全性检测的方法,最早于第二次世界大战的时候被运用到军事领域。我国引入故障树分析技术的时间较晚,故障树的理论基础就是对可能会引发船舶电气系统故障的各种原因事件与相互联系的树状逻辑关系图进行描述的理论,在这之中,事件就是用来描述各种故障发生时的状态以及正常工作时状态的总称。故障树中,预先设定好的状态将最不希望发生的时间确定为顶事件,将其放置于故障树的顶部,对导致其他故障发生的事件称之为底事件,位于故障树的底部。中间事件则既是逻辑门的输入事件,又是其他逻辑门的输出事件,这样的故障树中包括了系统中的各类信息传递关系,将故障树作为工具对电气系统在运行过程中出现的故障进行分析的方法,就被称之为故障树分析法。这种方法可以直观的对电气事故故障的程度与原因等进行分析,故障树分析法的分析步骤主要是,先建立一个故障树模型,对系统内部的可靠性进行分析,找出每个环节与系统的逻辑关系,进而确定系统中的薄弱环节,对系统进行升级与改造,提高系统的可使用性。

具体到故障树的使用,在船舶电气事故发生的时候,利用故障树可以对电气系统的运行状态进行判断,对系统在运行时的部位进行检测,对系统出现故障的可能性进行预测,出现异常情况的时候编写维修报告,提高维修人员的系统与设备维修水平。故障树的使用,可以对事故发生时的因果关系进行梳理,并提供解决故障的方法,减少船舶事故发生的可能性,为船舶的正常运行提供保障。

3 船舶电气设备故障分析

电气设备在运行的时候会出现各种故障,某个环节的故障就有可能导致整个系统的正常运行受到影响。发电机原动机出现故障时因为油温过高,冷却速度慢,管道有漏油的现象等,导致发电机的开关跳闸。系统内进入空气,冷却水的压力过低,出现声光报警现象。发电机的电磁不足时,电压不能正常建立,发电机的电压出现异常现象,电线线路出现故障,电刷使用过于频繁,没有做好维系保养工作,导致跳电。主配电板的发电机开关跳闸,输电线路的绝缘材料使用寿命过长,绝缘能力降低。主触头的压力弹簧失效,保养工作不到位,造成接触面产生问题。电力网的电力系统绝缘电阻过低,控制箱出现故障,电源电压过高,热继电器使用频繁,电流值低于被保护设备的电流,受热元件变形,主电路开路故障。电动机运行停止,控制线路反应异常。诸多问题都会对船舶的安全运行带来不利的影响。

4 船舶电气事故故障树分析

在建立故障树的时候,可以采用人工建树,计算机建树两种方法,人工建树中,将最不希望发生的事件确定为顶事件,并找出导致电气系统出现故障的原因,一直追溯到底事件,然后将各级事件的对应内容与可以用来表_这些内容的逻辑关系进行梳理,使得逻辑门与顶事件可以相互连接。

建立故障树的时候,要对系统有进一步的了解,系统所体现的安全性能等各有差异,系统的管理人员有责任对所管理的系统有深入的认识,系统安全性分析的一个重点就是要清楚系统故障发生的原因。顶事件在定义的时候要使其能处于一个满足分析目的的范畴之内,并可以对未来发生的趋势做出预测。在确定故障的边界条件时,要参照系统提供的假设条件,有依据的做出边界确定,边界条件应该主要包括系统分析的对象也就是顶事件,这是最为关键的边界条件。初始状态,就是系统中各个部件在顶事件发生时所呈现的工作状态。必然事件是指在系统运行的时候必定存在的事件。确定边界的时候,可以将发生机率低的事件看作不容许事件,但是并不意味着可以忽略其的存在,这些事件对系统这个整体而言,都可能会产生重要的影响。小部件出现的故障可能造成运行的中止。所以,对小部件与低概率的事件都要给予重视,设计好应对方案。在故障树的结构中,通过对故障的整体性与局部性的关注,提出中间事件,由此增强事件的重要性。

为了更好的解决电气故障,近年来,在科学技术的支持下,故障树分析软件开发工作取得了很大的成果。数据库可以将信息长时间的进行保存,在必要时刻对信息进行共享。数据库的数据独立性很强,在电气事故发生以后可以将信息单独的进行归纳与存储。数据库的数据库存在冗余的情况,通过数据共享解决这一问题。根据以往的故障案例可以建立船舶电气事故数据库。将以往发生的典型案例进行记录,及时的对数据信息进行更新。

5 结语

本文围绕船舶电气事故的故障树进行了简单的分析与研究,船舶在国际贸易中发挥的作用越来越大,在出现电气故障的时候要及时地对故障进行维修,运用故障树理论可以帮助维修人员系统的对故障做出认识,提供有效的帮助,迅速使船舶恢复到正常的运行状态。

参考文献:

[1]王文起.船舶电气事故的故障树分析研究[J].城市建设理论研究(电子版),2015(19):5841-5842.

故障树分析范文第4篇

【关键词】 故障树分析法 飞机维修

1 故障树分析法简介

故障树分析法(Fault Tree Analysis,FTA)是一种自上而下逐层展开的图形分析方法,是通过对可能造成系统故障的硬件、软件、环境、人为因素等进行分析,画出逻辑框图,也就是故障树,再对整个系统中发生的故障事件,由总体至部分地按树状逐级进行细化分析,这样能够判明基本故障、确定故障发生的原因、故障的影响和故障发生的概率等。故障树分析法的步骤常因分析对象、分析目的等地不同而略有区别。但一般可以按以下四个步骤进行,即;

(1)建立故障树;

(2)建立故障树的数学模型;

(3)故障树的定性分析和定量分析。

故障树分析法用机各系统的故障诊断,是因为它具有如下几个特点:

(1)故障树分析法可以针对某一特定的故障作层层深入的分析,用清晰的图形直观、形象地表述系统的内在联系,指出部件故障与系统故障之间的逻辑关系。

(2)故障树可以清楚地表明,系统故障与哪些部件有关系,有什么关系,以及关系的紧密程度。同时,也可以从故障树看出元部件发生故障后,对整个系统的工作有无影响,有什么影响,有多大的影响,以及通过何种途径产生影响。

(3)故障树建成以后,对于没有参与过系统设计与试制的管理与维修人员来说,是一个形象的直观的维修指南,在实际维修应用中可以大大缩短维修人员的培训时间,节约对维修人员的培训费用[1]。

2 建立故障树的方法与步骤

先选定系统中最不希望发生的故障事件作为顶事件,接下来第一步是找出直接导致该事件发生的各种可能的因素或各因素的组合,比如硬件故障、软件故障、环境因素、人为因素等等。第二步是找出导致第一步中各因素的直接原因。按照此方法向下演绎,一直追溯到引发系统故障发生的全部原因,即分析到不需要再分析的底事件为止。然后,再把各种事件用对应的符号和适用于它们的逻辑关系的逻辑门和顶端事件相连,这样就构成了一棵以顶事件为根,中间事件为节,底事件为叶的有若干级的倒置的故障树。

3 故障树分析的数学模型

故障树是由所有底事件的“并”和“交”的逻辑关系连接构成,因此可以用结构函数作为数学工具,来建立故障树的数学表达式,以便对故障事件作出定性分析和定量计算。为了简化分析起见,假设分析的零部件和系统只有两种状态,正常或故障;且假设零部件的故障是相对独立的。以由n个相互独立的底事件构成的故障树作为研究对象。

设是表示底事件的状态变量,取值0或l,设表示顶事件的状态变量,也取值0或1,则有如下定义:

=

=

因故障树顶事件是系统所不希望发生的故障状态,即=1与此状态相对应的底事件状态为零部件故障状态,即=1。显而易见,顶事件状态完全取决于底事件,即顶事件的状态必须是底事件状态的函数,则有=(X)=(,,…,),称(X)为故障树的结构函数,它表示系统状态的一种逻辑函数,其自变量为该系统各组成单元的状态。

3.1 与门结构函数

如果一与门故障树,=1,=1,…,,则其结构函数为(x)=1,表示当全部零部件都发生故障时,系统才发生故障。反之,只要其中一个=0,则(x)=0,表示只要有一个零部件不发生故障,则顶事件不发生,即系统正常。

3.2 或门结构函数

如果一个或门故障树,=1,而其它=0,则其结构函数为(x)=1,表示当一个零部件发生故障,则系统就发生故障。反之,全部=0,则(x)=0,表示所有零部件不发生故障,则顶事件不会发生,即系统正常。

4 故障树的定性分析和定量计算

4.1 定性分析

对故障树定性分析的主要目的是:寻找导致与系统有关的不希望事件发生的原因和各种原因的组合,即寻找导致顶事件发生的所有故障模式。从中确定系统的最薄弱的环节,从而采取相应的措施,予以补救。比如对关键的零部件采取故障监测与诊断的措施就可以减少排除故障的时间。

割集是导致故障树顶事件发生的若干底事件集合。一个割集代表了系统故障发生的一种可能性,即一种失效模式。若将割集中含底事件任意去掉一个就不成为割集,则称此为最小割集。路集是故障树中一些底事件的集合。若将路集中所含底事件任意去掉一个就不能称为路集,而称为最小路集。由于一个最小割集是包含有最少数量而又最必须的底事件的集合,而全部最小割集的完整集合则代表了给定系统的全部故障。因此,最小割集的意义在于它描述出处于故障状态的系统中所必须排除的故障,显示出系统中最薄弱环节。对故障树进行定性分析的主要目的是查清系统出现某种故障有多少种可能性,从而确定系统的最小割集,以便发现系统的最薄弱环节[2]。

4.2 故障树的定量计算

故障树的定量计算就是利用故障树这一逻辑图形作为模型,计算或估计顶事件发生的概率及系统的可靠性指标,从而对系统的可靠性及其故障进行定量分析。

一般情况下,故障分布假定为指数分布,根据底事件的发生概率,按照故障树的逻辑结构逐渐向上运算,即可计算出顶事件的发生概率。假设事件,,…,的发生概率为,,,由这些底事件组成的不同逻辑门结构及其顶事件发生的概率可按照下列公式进行计算:

(1) 与门结构事件发生概率

(2) 或门结构事件发生概率

(3) 顶事件发生概率

如果某故障树的全部最小割集,,…,,并假设不考虑同时发生两个或两个以上零部件故障,各最小割集中没有重复出现的底事件。在此前提下,顶事件发生概率为:

式中,为在t时刻第j个最小割集存在的概率;为t时刻第j个最小割集中第t个部件的故障概率;为最小割集数;为顶事件的发生概率,即系统的不可靠度。

5 故障树分析法分析飞机故障举例

5.1 PACK出口超温故障分析

当PACK组件出口温度传感器探测到PACK的出口温度大于 95℃时,此故障就会被激发。此故障出现时,一般只有ECAM的警告信息和ECS报告。和压气机超温故障一样,在出现此类故障时,都应该先检查CFDS上有无相关信息,如果有,直接根据CFDS上的提供的信息进行排故。当CFDS上没有信息时,也要检查ECS的报告。PACK出口超温故障会导致空调系统中区域温度控制部分出现问题,因此出现此类故障时,必须马上排除。下面就针对PACK出口超温故障进行故障树的分析[3]。

5.2 故障树的建立

(1)顶事件。在空调系统中,PACK出口超温故障会导致客舱或驾驶舱的温度不能调节,飞机客舱不能进行正常的增压,飞机驾驶舱的仪表和电子设备舱的设备得不到正常的冷却,在故障等级中属于危险性的故障,要求飞机设计时发生此类故障的概率为10-7每飞行小时。一旦发生此类故障,将极大地降低飞机的安全裕度,极大地加重了机组的负担与压力,使其无法正确完成操作,有可能引起飞机损坏或人员伤亡。建立此故障树的边界条件为:不考虑导线故障、环境因素和人为因素造成的故障,只考虑空调系统自身的故障。

(2)中间事件。参考A320ASM手册21-61-00(PACK组件温度控制)可以看出,PACK出口温度超温故障的触发要使PACK出口温度传感器感受到95℃才会激发警告。因此,除了PACK出口温度传感器本身故障以外,只有可能是从防冰活门或旁通活门出来的热引气才会使PACK出口温度出现超温。

(3)底事件。根据A320的ASM手册21-61-00可以知道,如果旁通活门位置非正常的打开,那么引起此现象的原因是旁通活门机械故障或控制它的PACK 控制器发出错误的控制信号。如果是防冰活门非正常打开造成,那么引起防冰活门不正常打开的原因一般有两个,一个是防冰活门本身故障,二是控制防冰活门的气动传感器有故障。

5.3 定性分析

通过以上的PACK出口温度传感器、防冰活门机械故障、旁通活门机械故障的分析,可以得出PACK组件出口超温的故障树如下图1所示。表1列出了故障树中各符号的具体含义。

6 结语

故障树分析法是系统可靠性研究中常用的一种分析方法。故障树分析法是在弄清基本失效模式的基础上,通过建立故障树的方法,找出系统故障原因,分析系统薄弱环节,以改进原有设备,指导维修,防止事故的发生。故障树分析法本身作为故障分析的一种行之有效的方法与飞机现有的故障监控系统相结合,可以弥补飞机内部故障监控系统无法将环境因素与人为因素计算在内的缺陷,提高维修能力,为提高航空公司的竞争力提供了强有力的技术支持。

参考文献:

[1]虞和济.故障诊断的基本原理.北京:冶金工业出版社,1991.

[2]朱继源.故障树原理和应用.西安:西安交通大学出版社,1989.

故障树分析范文第5篇

关键词:液压挖掘机;故障树;数据库;诊断系统

中图分类号:TB

文献标识码:A

doi:10.19311/ki.16723198.2017.01.093

1挖掘机诊断技术的现状和特点

汽车故障诊断方式已经把车外诊断和随车自诊断相融合,并且把故障综合检测仪的数据通信功能和诊断系统的分析诊断功能完美匹配,运用飞速发展的计算机技术在神经网络、模糊诊断、人工智能以及面向决策的数据库最新研究成果,是当当今汽车诊断技术的发展方向。

相对而言,挖掘机的故障诊断系统的开发还比较单一和片面,目前市场上使用的诊断系统的研究方向大多利用各种分析方法建模,如BP神经网络,模糊数学,改进粒子群及贝叶斯网络等等,开发的系统如发动机故障诊断专家系统及液压故障诊断专家系统等,这些系统对于技术熟练的维护人员需要在诊断前进行故障的初步判断,如若判断不准,将会给维修工作带来技术和工作效率的下降,进而影响维修人员快速准确判断。

挖掘机结构复杂、零部件精密、自动化程度高,尤其是近年来其所装备高压共轨发动机技术的普及,致使故障类型复杂交织,加上其作业现场分散、使用强度大、故障发生率高、施工时间紧迫等,所以要求故障诊断要迅速、准确。经过大量的资料查阅和施工现场调查,得出挖掘机最常见的故障是憋车,大概占到挖掘机全部故障的60%,所以,本文针对挖掘机系统的故障特点,依据故障树诊断理论,开发出快速准确的故障诊断系统,推动了挖掘机故障诊断与排除系统向着智能化网络化等方向发展。

2建立故障树模型

故障树诊断法是用事件符合逻辑门符号和转移符合描述系统中各种事件之间的因果关系,是一个对系统的故障进行深入认知的过程,其要求分析人员利用特定的分析思路把握故障的内在联系,弄清各种潜在因素对故障发生影响的路径和程度,并利用部件的逻辑关系与各级事件的发生概率,以快速确定系统最薄弱环节,找到故障所在。

挖掘机系统的故障分析模型有3层,顶层为主系统,即挖掘机工作系统,第二层为3个子系统,是依据功能分类的层次;第三层为各个子系统的典型频发故障。大量的资料和市场反馈信息表明,挖掘机发动机的典型故障有憋车(发动机过载)、动作慢或无力、不能起动、起动困难、冒黑烟、冒白烟、冒蓝烟、怠速不稳和功率下降等等。

本文以某公司200-8挖掘机最典型的憋车故障为例说明建立故障树模型的过程及分析方法,系统涉及的其他的故障以此类推,本文不再累述。

2.1建立故障分析子系统

通过查阅大量的挖掘机故障诊断资料以及充分的市场调研,对挖掘机的故障进行归纳总结,最终确定,本诊断系统的子系统的事件有二级:

第一级:顶层事件为挖掘机憋车。

第二级:导致挖掘机憋车故障的主要原因分为以下四个方面:

(1)发动机故障。

当发动机存在混合气过稀或浓时出现燃烧不足,功率下降,转矩不足以克服载荷,将导致挖掘机憋车事故发生。

(2)液压故障。

当液压泵出现故障时,如工作压力不足,传动效率下降,阻力矩过大等,都将导致憋车。

(3)电气故障。

当电源没电,泵电磁阀,电磁阀控制电路出故障时候也可能造成憋车事件。

(4)机械故障。

挖掘机的工作执行机构的机械部件的失效或断裂所造成的顶级事件。

综合以上分析,该故障树第二级归纳为发动机故障、液合低彻收稀⒌缙系统故障和机械系统故障,其中任一故障的发生都会导致顶事件(挖掘机憋车)的发生。

憋车的原因可能是油气混合气过稀或者过浓所致。混合过稀主因是喷油量过少,原因有高压或低压油路油压不足或者发动机进入应急状态,造成油压不足的原因很多,比如喷油器脏堵、电磁阀失效、油路堵塞、喷油泵磨损、喷油被积碳吸附以及传感器检测失灵等,发动机进入应急状态是相关传感器损坏或者线路问题所致,发动机为了降低功率采取减少喷油的自我保护措施。混合气过浓可能是空气少或喷油多造成燃烧不足,进而导致发动机功率下降,空气少可能是空气滤清器脏堵、进气道堵或者漏、气缸漏气等等所致,其中气缸漏气可能是气门密封不严或者活塞与缸套或活塞环磨损所致,喷油过多可能是喷油器滴漏或喷油针阀卡死所致。综合以上分析,建立故障树分支,用G0表示,以机械故障及电瓶电量不足等等故障为最底层事件,用Xi表示如,图1所示。

2.2故障树的定性分析

求故障树最小割集的方法有上行法和下行法。故障树的定性分析主要任务是找到导致顶事件发生的所以可能失效模式,也就是找到全部的最小割集。

2.3故障树分析思路

建立挖掘机故障树模型后,根据以上建立的故障树结构,用流程图的方式分析故障诊断流程。在分析制定故障诊断流程时,应通过大量充分的市场调研以确定各子故障的诊断顺序,确定顺序时候应考虑两个因素,即诊断原则和故障率,通过定性分析,即可得到底端事件,实现快速高效的故障排除。

诊断原则是由外而内,先简后繁,先易后难。对于外在的容易检查和易于采用检测方法的系统应优先排查,对于诊断流程相对简单的也实施优先诊断原则。然后,再依据挖掘机故障排查应具备的专业知识和大量的市场调研经验数据库,最终确定本事件的故障率大小,按照从大到小的优先顺序排查故障率大的事件。

3故障诊断系统的实现

3.1系统的设计思路

诊断系统有三个层次:系统界面为第一层,判别故障类型为第二层,终端层分发动机、液压和电气诊断三部分,其中设计判别故障类型起着承上启下的作用,是整个系统的核心部分,终端层设计最难,内容多且复杂。完成三个层次的衔接之后基本实现诊断系统的功能模块,本设计开发的诊断系统一共采用14个窗体和一个模块。

3.2系统的实现及使用

根据故障现象进一步判别故障类型是发动机部分、液压部分还是电气部分,使诊断过程更迅速、更精准。对于故障现象采用下拉式菜单方便于用户输入,信息管理是对故障进行管理如删除、添加和修改等等,帮助部分是对系统的使用进行说明。

图2为故障类型判别界面,是目前市场上使用的大多数挖掘机故障诊断系统所不具备的,这个功能也是本系统的特别之处。在下拉菜单中选择故障“憋车”,点击确定后,系统提示选择故障现象为“是”或“否”,如果选择“是”则给出分析,“否”则提示进入下一步的诊断界面,点击“故障类型”命令框对应选择项继续进行底端事件的查询。

4结论

本文从挖掘机故障诊断技术的现状及存在的问题入手,针对挖掘机新型的动力系统结构和故障特点,以某厂的200-8机型为代表,经过充分的资料收集和大量的市场调研,依据故障树分析理论和推理方式,形成诊断系统的知识库,并利用人机对话的运行模式,编制出快速准确的故障诊断系统,补充了装备新型动力的挖掘机的故障诊断系统对从业人员的技术全面要求之不足,实现了故障排除的迅速精准。该系统方便易用,有良好的界面和编辑功能,可以添加机型和分支,可扩展性好,有良好的市场应用前景。

参考文献

[1]黄啸,周文华.柴油机高压共轨燃油喷射压力故障诊断及保护[J].农业工程学报,2013.

[2]李国平,张庆伟.基于BP神经网络的液压挖掘机故障诊断的研究[J].机床与液压,2011.

[3]陆新,赵翠萍,周明康.厢式压滤机液压系统的模糊故障树诊断研究[J].液压与气动,2011.

故障树分析范文第6篇

【关键词】飞机氧气系统 故障树分析法 可靠性

对民用飞机而言,氧气系统一旦发生故障就有可能导致航班延误影响正点率,更严重的可能会危及飞行安全以及机组人员与乘客生命安全。因此,对飞机氧气系统的常见故障进行分析,提高飞机氧气系统的可靠性、安全性和有效性就具有非常重要的现实意义。

一、A320氧气系统

飞机的氧气系统作为飞机主要系统之一,它的任务就是在飞机座舱增压失效时为机组,乘务员和乘客提供生命活动所必需的氧气,保障生命安全。飞机氧气系统可分为机组氧气系统,旅客氧气系统和便携式氧气系统。如果驾驶舱压力突然减少或者有烟雾以及危险气体时,机长,副驾驶和观察员可以在任意时刻根据自身的需要选择是否使用氧气面罩;而只有在座舱失压时,乘务人员和旅客才能允许使用氧气面罩。便携是氧气系统主要用于急救和一些特殊需求的人员。下图为A320机组氧气系统原理图。

二、故障树分析法

故障树分析法(Fault Tree Analysis)简称FTA,是目前我们在研究系统可靠性中一种比较常用的方法。1961年由美国贝尔电话研究室的华特先生提出,其后在航空领域,原子反应堆等复杂动态系统中得到了充分利用。FTA是一种从系统到部件,再到零件的分析方法。它将系统失效和各种硬件软件因素用恰当的逻辑符号连接起来,构成一幅倒立树状图形,来分析系统失效发生的概率。FTA不仅可以对系统失效做出定性分析同时也可以做定量的分析,定性分析即找出各种底事件对系统失效的传播途径,而定量分析则是根据底事件对整个系统影响的轻重程度来计算系统失效的概率。

首先要确定顶事件,即导致系统失效的故障状态。确立好顶事件后,对其进行分析从而找出引起它发生的直接原因,并将所有找出的直接原因与顶事件用恰当的逻辑符号联系起来。然后分析每一个造成系统失效的直接原因,若还能进行进一步分解,则将其作为下一级的输入事件,如果对顶事件那样进行分析处理寻找其间接原因。循环往复逐级向下分解直到所有输入事件不能再分解为止,就构成了一幅完整的故障树图。

三、A320飞机氧气系统典型故障的分析

本文以A320的氧气系统为例,来进一步说明故障树分析法在飞机氧气系统失效时排除故障的具体方法。通过对A320氧气系统的工作原理和故障原因进行综合分析后,总结出氧气系统故障可以分为下列几种情况:首先,故障可分为机组氧气系统故障和旅客氧气系统故障;其次,机组氧气系统故障又可分为机组氧气系统丧失供氧能力和氧气管道压力低且警告系统失效两种情况:而旅客氧气系统故障可分为座舱失压氧气系统无法供氧和单个旅客服务组件(PSU)故障。机组氧气系统丧失供氧能力故障树见图1。

如图1所示,该故障树清晰明了的表达在机组氧气系统丧失供氧能力和两个中部时间以及四个底事件之间的逻辑关系。此时,对飞机而言,会导致其失去控制而损毁;对于机组而言,飞行员可能由于高空缺氧造成晕厥,甚至窒息死亡;而对于乘客来说,绝大多数无法幸免。从上图可以看出,造成该故障的主要原因为氧气渗漏及氧气瓶组件故障,对于驾驶舱氧气面罩无法使用的问题,其发生的概率是比较小的,所以应根据AMM35-12-41PB401中的规定排除故障。

图2显示为飞机氧气管道压力低且警告功能失效,这种情况与机务在航前检查时没有仔细检查氧气管路是否渗漏有关,会降低紧急情况下机组的工作能力,直接影响了安全飞行裕度。对于渗漏和氧气瓶组件故障,可以按照图1方法进行排故;对于低压开关故障,应按IPC35-32-09-10检查开关,重新安装后,测试是否正常。

故障树图3显示,单个PSU故障是由氧气面罩不能收放,氧气化学发生器故障和输送电缆及连接器故障造成的。氧气化学发生器故障通常是旅客在使用完氧气面罩后,机务人员应及时参考IPC35-32-09-33更换新氧气瓶及面罩,依据AMM35-32-42-210-001/002对氧气瓶以及压力检查,对其充氧使其压力达到规定水平;对于面罩不能收放,应依据AMM35-21-00重新整理和收纳氧气面罩,并检查其容器。对于A320来说,全机共有54套PSU,其中26套有3个氧气面罩,28套有4个氧气面罩,总共有190个氧气面罩可供使用,而A320客舱座位数为150个,根据CCAR25(运输类飞机适航标准)规定的客舱氧气面罩的总数必须比座位数多10%以上。也就是说在A320客舱中,比规定值10%还要富裕17%,即不会造成灾难性或危险事件的发生。

四、结束语

通过对飞机氧气的典型失效形式用故障树的方法进行分析,显而易见,故障树分析法与传统的排故方法相比,具有其独特的优势。传统的维修方法是在其发生故障后,一一检查所有可能失效的部件,而故障树分析法则是根据故障形式及故障原因直接找出最根本的失效事件,节约了维修的时间和成本,提高了排除故障的速度和精度。综合故障树分析在飞机氧气系统中实践的成功性,建议可以将这种分析方法用在更多的复杂动态系统中。

参考文献:

[1] AMM操作手册[M]. ATA-35.2004.

[2] 陈,王晓春. A320 飞机机组氧气系统[J].科技资讯,2012(27):44-45.

[3] 李洪宁.基于CBR与FTA的飞机故障诊断专家系统的研究与设计[D].山东:青岛科技大学,2012.

[4] 汤旭. 民用飞机氧气系统故障树分析[J]. 民用飞机设计与研究,2012(S1):174-177.

[5] 施兴灿,雷鸣俊. 民用飞机旅客氧气系统研究[J].科技信息,2011(22):429-430.

故障树分析范文第7篇

Abstract: Failure Tree Analysis(FAT), also known as falut tree analysis, is a method to analyze the causes of the system failure from whole to the parts according to the tree structure step by step. From the systemic point of view, the failure may be caused by defects and performance of specific components(hardware), or caused by software, for example, the procedural errors of automatic control devices. In addition, the improper operation of operators or not attentive operation also can cause failure. Therefore, we should apply this method to analyze and diagnose the common fault of the diesel engine system.

关键词:故障树;发动机系统故障;柴油发动机

Key words: fault tree;failure of engine system;diesel engines

中图分类号:TM31文献标识码:A 文章编号:1006-4311(2011)13-0042-02

0 引言

故障树分析法简称FTA(Failure Tree Analysis),是1961年为可靠性及安全情况,由美国贝尔电话研究室的华特先生首先提出的。其后,在航空和航天的设计、维修,原子反应堆、大型设备以及大型电子计算机系统中得到了广泛的应用。目前,故障树分析法虽还处在不断完善的发展阶段,但其应用范围正在不断扩大,是一种很有前途的故障分析法。故障树分析(FAT)是一种适用于复杂系统可靠性和安全性分析的有效工具,是一种在提高系统可靠性的同时又最有效的提高系统安全性的方法。当前,超大型工程的建设,对可靠性,安全性提出了更高的要求,因此,故障树分析法已经广泛的应用到宇航,核能,化工,电子,机械和采矿等各个领域。

1 故障树分析法的特点

它是一种从系统到部件,再到零件,按“下降形”分析的方法。它从系统开始,通过由逻辑符号绘制出的一个逐渐展开成树状的分枝图,来分析故障事件(又称顶端事件)发生的概率。同时也可以用来分析零件、部件或子系统故障对系统故障的影响,其中包括人为因素和环境条件等在内。它对系统故障不但可以做定性的而且还可以做定量的分析;不仅可以分析由单一构件所引起的系统故障,而且也可以分析多个构件不同模式故障而产生的系统故障情况。因为故障树分析法使用的是一个逻辑图,因此,不论是设计人员或是使用和维修人员都容易掌握和运用,并且由它可派生出其他专门用途的“树”。例如,可以绘制出专用于研究维修问题的维修树,用于研究经济效益及方案比较的决策树等。

2 故障树的建立

故障树是实际系统故障的组合和传递关系正确而抽象的表达,建树是否完整会直接影响定性,定量分析的结果,是关键的一步。建树方法分为人工建树和计算机辅助建树,建树就是按照严格的演绎逻辑,从顶事件开始,向下逐级追溯事件的直接原因,直至找出全部底事件为止。根据故障树分析方法确定顶事件是发动机无法正常运转。而引起的原因主要为:飞车故障,缸体故障,烧瓦故障,曲轴故障,飞轮碎裂,气门落缸等(其中任意原因都可导致发动机故障)。以这几项作为次要事件,逐渐往下分析其原因,层层深入,最终建立起柴油发动机的失效故障图。见图1。

图1中,方框的事件代表结果事件,它又分为顶事件和中间事件,是由其它事件或事件组合导致的事件。圆圈事件表示底事件,是基本故障事件或不需再探明的事件,但一般它的故障分布是已知的,是导致其他事件发生的原因事件。

其中,各个数字和字母代表的含义为:①“飞车”故障,②“粘缸”故障,③“烧瓦”故障,④“曲轴”故障,⑤“活塞敲缸”故障,⑥飞轮碎裂,⑦“拉缸”故障,⑧气门落缸。

A:燃油超供 a1:喷油泵柱塞被卡,a2:拉杆及调速器的活动部位卡滞,a3:调速器系统故障

B:窜烧机油 b1:空气滤清器油盘油面过高,b2:曲轴箱,b3:回游孔堵塞

C:散热系统工作不良

D:机油压力过大 d1:机油质量不好,d2:油流动磨损,d3:轴瓦卸油,d21:机油泵磨损,d22:曲轴油道工艺脱落

E:轴瓦预金紧高度不合要求

F:机油问题f1:机油品质不佳,f2:机油压力过低,f3:机油滤清器使用不当

G:轴瓦和轴颈装配间隙过小

H:曲轴问题h1:曲轴轴颈两端圆角过小,h2:曲轴自身质量差,h3:曲轴装配间隙过大,h4:曲轴不良

I:供油时间和供油量出错

J:主轴瓦不同轴

K:活塞的装配问题k1:活塞与汽缸配合间隙过大,k2:活塞方向装反或活塞变,k3:汽缸垫过薄,k4:连杆装配不好或连杆弯曲

L:燃烧不良l1:燃烧室内积碳严重,l2:可燃气体燃烧过快

M:喷油提前角过大

N:制造加工或装配不当 n1:飞轮壳紧固螺栓松动,n2:曲轴轴向或径向间隙过大,n3:曲轴与飞轮壳同轴度较差

O:传动组件平衡超差

P:使用不当因素p1:油使用不当,p2:发动机温度过高,p3:填压器窜油,p4:严重超载,p21:冷却添加不足,p22:点火时机不正确,p23:节温器工作不良

Q:装配和加工因素q1:活塞装配间隙过小,q2:活塞环开口间隙太小,q3:活塞纬度影响

R:气门杆折断

S:气门弹簧折断

T:气门弹簧座开裂

U:气门锁靠拢夹脱落

3 定性分析

故障树的定性分析主要任务是寻找导致顶事件发生的所有可能的失效形式,也就是要找到故障树的最小割集或全部最小割集。割集代表了该系统发生故障的可能性,最小割集(MCS)是底事件不能再减少的割集。一个最小割集代表引起故障树顶事件发生的一种模式,最小割集发生时,顶事件必然发生。最小割集指出了处于故障状态的系统所必须修理的基本故障,指出了系统的最薄弱环节。求解最小割集的方法有上行法,质数法和下行法。这里主要介绍下行法。下行法(fussell-vesely法)特点是从顶事件开始从下逐级进行,遇到与门就把与门下面的所有输入事件均排列成同一行;遇到或门就把或门下面的所有输入事件均排列于一列。往下一直到不能分解为止。从而找出全部最小割集。最小割集是包含了最小数量而又必须的事件的集合,其含义在于它描述了处于故障状态的柴油发动机系统所必须修理的基本故障。通过对最小集合的分析,可以找到发动机系统的薄弱环节以提高工作的可靠性。

4 结论

4.1 文中给出的柴油发动机机故障书能够较全面清晰的反映发动机系统故障成因,故障之间关系,以及各种可能故障传递途径。

4.2 故障树为设计,检测,维护和维修柴油发动机提供了一种形象图解,指导人们去查找故障,改进和强化系统的关键部分。为柴油发动机系统的可靠行提供了有效的定性分析和定量评价方法。

4.3 在柴油发动机的实际工作中,经常遇到不同故障程度的底事件,将其计算并求出最小割集,有助于掌握柴油发动机故障的规律和特征。故障树分析理论可以进一步将常规的故障诊断方法和计算机程序技术有机的结合起来,形成专家系统,这样可以方便和快捷的进行故障诊断。

参考文献:

[1]涂玉芬,王德洪.故障树分析法在机车柴油机故障诊断中的应用[J].广西轻工业,2009,(03).

故障树分析范文第8篇

关键词:船舶主机系统;故障诊断;故障树分析法

船舶主机系统包括多项设备、多重装置,船舶系统故障来自于多方面,必须加大对船舶系统故障的分析力度,采用科学的故障分析法,便于及时发现故障,找到故障成因,进而采取措施来解决问题、解除故障。故障树分析法能够为船舶主机系统故障诊断提供科学的措施和方法,通过画出故障树形图,其中划分为树干与树梢,各类故障以及对应的成因分布其中,对船舶主机系统进行全方位的故障分析。

1 故障树分析法

故障树分析法是专门针对故障通过绘制树形图谱来分析故障的过程,属于可靠性设计的科学方法,属于从结果到原因的全方位分解与剖析。设置一个故障可能性层列,其中最不可能出现或结果最坏的事件被叫作“顶事件”,立足于该事件从中分析造成此事件的众多因素和原因,将其纳入故障树的第二级,再对应发现造成二级故障的原因,称之为三级故障,逐层剖析、逐步分解,最后获得一个最底层引发故障的因素,被叫作底事件。将分布于顶部和底部中间的一系列故障叫作中间故障事件,从顶部到底部逐层链接最终将形成一个从上到下的树形结构,也就是人们所称的“故障树”。

2 船舶主机系统故障诊断中故障树的创建

主机作为船舶系统内部一项重要设备,由于长时间运行,如果检修不到位、运维不合理或者检修人员的水平有限等都可能酿成多种故障问题,对此则需要高效、精准地判断故障成因,再结合主机系统的相关资料以及故障分析中的相关数据等来判断故障类型,再有针对性地采取措施来解除故障。

船舶主机系统不同于普通的机电设备,其主机设备内部构造复杂,存在众多影响主机运行的不良因素、不良因子。有必要围绕主机系统创建一个故障树,利用故障树分析法来逐层分析与分解船舶主机系统的故障和问题,理论与现实相互配合的方式来深入剖析故障,结合主机系统实际的运行原理以及相关工作经验等来创建一个故障树示意图。实际的故障树分析法主要可以采用定性与定量分析相结合的方式,每一类方法都有自身的优势和特c。

2.1 定性分析

定性分析是故障树分析法的一个必备方法,依照最小割集法原理,可以得到故障树最小割集,如图1所示。

2.2 定量分析

船舶主机系统不同类型故障的相关数字、数据统计对应见表1。

参照上表分析,船舶主机系统长时间运转对应将得到监测到一系列故障,对应形成以上数据,采用定量计算的方法来对应分析出船舶主机系统无法常规运转状态下的有效度。所谓的“有效度”指的是船舶机械以及船舶相关的装备系统无法在常规状态下运行,以及出现故障问题以后,在一个特定时间范围内可以被维修、恢复功能的效度,在这一过程中船舶依然可以按照常规运转,其生产概率不会受到影响,对此可以利用以下公式来计算得出船舶系统的效度:

按照上面的公式,其中λ=a×10-4对应各自算出故障系统的一系列效度值,经计算能够得出船舶主机系统无法常规运行故障概率为18.09,系统被修复的概率:0.62,将以上数值带入公式,得出效度值:A=0.9945,以上数据数值说明船舶主机系统中的各项故障都能被有效修复,维持主机系统的常规运行。

3 船舶系统的故障树形分析

船舶主机系统有着自身的结构构造,具体包括:油管系统、冷却系统、泵系统以及贮存性零部件等。其中某一部件出现问题,则将使得系统整体上走向故障状态,其中冷却系统又可能发生以下方面的故障:温控故障、海水管故障等,泵系统又包括两个型号的泵体,当它们共同处于故障状态时,则将导致主油泵系统出现故障问题,对此可以尝试创建一个故障诊断树形图来深入分析主机系统故障。

4 故障树有利于故障的排除

故障树形图为故障的诊断与排除创造了条件,可以参照此树形图来高效地判断、识别故障,同时,根据机器设备以及系统等的工作状态、运行状态来逐步、逐层来测试、分析系统中各项仪器、设备等的运行情况,从而高效地识别故障的成因,围绕故障成因来判断故障发生概率,再结合造成故障的原因来采取措施及时排除故障。

故障树形图为故障的判断、分析与诊断创造了条件,使得故障分析者能够从树干出发再逐渐过渡到枝杈部分,对应来分析故障成因,为船舶主机系统故障的查找提供了一个更加便捷、直接的通道,能够提升故障查找工作效率,确保更多故障能够被精准、高效地查找。

5 结束语

故障树分析法能够为船舶主机系统故障的诊断与分析创造条件,为其提供了更加直接、有效的方法,及时发现故障,科学分析故障的成因,以及各类故障之间的关系等,是一项需要深入提倡与运用的科学方法。

参考文献

[1]朱继洲.故障树原理和应用[M].西安交通大学出版社,1989.

[2]吴恒.船舶动力装置技术管理[M].大连海事大学出版社,1999.

故障树分析范文第9篇

关键词:故障树 故障树分析 故障诊断

中图分类号:U292 文献标识码:A 文章编号:1674-098X(2016)11(b)-0078-02

1 故障树分析方法概述

1.1 故障树分析法简介

故障树定性分析就是将致命性故障或灾难性危险等产生的原因由树干到树枝逐级细化,进而分析致命性故障或灾难性危险与其产生原因之间的因果关系,进而找出所有可能的风险因素。故障树定量分析是由下至上依据底层事件发生的概率以及逻辑门关系,算出系统总事故的概率,并且还能将底层事件风险依据概率大小排序,并针对性确定风险控制措施和方案。其一般流程为:选择顶事件+构造故障树+定性识别出导致顶事件发生的所有底层事件+定量分析计算顶事件发生概率及底事件的重要度+提出各种风险控制措施和方案。

在轨道车辆工程中,可运用故障树分析车辆已暴露的故障,进而获得影响车辆正常工作的关键要素,并进行针对性质量控制,也可以在车辆研制的初始阶段对其进行建树分析,进而确定设计中的薄弱环节,提出改进措施。

1.2 故障树的建立

在故障树分析中,位于故障树顶端的是故障树分析的目标和关心的结果事件,定义为“顶事件”,将所分析系统的各种故障和失效、不正常情况等定义为“故障事件”,用“成功事件”定义所分析系统各种正常状态和完好情况。将位于顶事件与底事件之间的中问结果事件定义为中间事件。常用的符号包括事件符号、逻辑门符号和转移符号等。

在建立故障树前,首先要对系统进行全面深入的了解。系统的设计、制造、安装调整、使用运行、维修保养等方面的技术文件和数据资料等都要被分析和研究。除了要考虑系统本身的因素外,还要考虑人为因素及环境因素的影响。对系统及单元的功能和失效以及人为因素及环境因素,应给予明确的定义。在故障树分析中,将由单元本身引起的事件称为“一次事件”,将由人的因素或环境条件引起的事件称为“二次事件”。建立故障树的具体步骤如下。

1.2.1 确定顶事件

通常将所分析系统最不希望发生的致命性故障或灾难性危险作为该系统故障树分析的顶事件。因此,对一个系统而言,顶事件并不唯一,可以有多个。任何需要分析的系统故障或灾难性危险,只要是可以分解且有明确定义,则都可以作为该系统故障树的顶事件。

1.2.2 确定其他层级事件

确定了系统的顶事件之后,把顶事件作为起始端向下建立故障树。先是找出导致顶事件发生的所有可能直接原因,将其作为第一级中间事件。用相应的事件符号表示第一级中间事件,再选取恰当的能表达中间事件与上一级事件逻辑关系的逻辑门符号连接中间事件与上一级事件。依此逐级向下建立故障树,直到找出所有能够引起系统故障的无法再向下追究的原因为止,将最末层事件作为底事件,至此,建树完成。

1.2.3 需注意的问题

建立故障树的过程中需要注意以下几个方面的问题。

一是通常采用以系统的功能为主线来确立故障树各层级事件进而建立完整故障树,建树过程始终按照演绎的逻辑进行。同时要注意到复杂系统通常有多个流程分支,主流程不唯一,因此在建树时要依据具体系统情况而定。

二是在建立故障树前要合理地选取和设定所分析系统及单元(部件)的边界条件。所谓边界条件是指系统和单元(部件)的若干变动参数,参数设定合理,将有助于在建故障树过程中抓住主线和明确范围。

三是故障树各层级事件的定义要精确唯一,不易造成歧义。

四是故障树各层级事件间有清楚、严谨的逻辑关系。

五是应注意逻辑多余事件的删减,尽量简化故障树,且故障树应便于定性和定量分析。

2 故障树定性分析实例

故障树定性分析某型轨道客车系统的目的是要找出该型轨道客车故障的全部可能原因,并定性地识别该型轨道客车系统设计、制造、安装调整、使用运行、维修保养等方面的薄弱环节。

在用故障树定性分析某型轨道客车系统时,最为关心的是最小割集,即导致顶事件发生的必要而充分的底事件的集合。仅当最小割集包含的底事件都同时存在时则顶事件发生,或者是只要最下割集中有任何一个事件不发生,则顶事件不发生――最小割集的性质。如果系统出现了故障事件,则必然至少有一个最小割集发生。系统的一种故障模式可以用一个最小割集表示,系统的故障谱即可以表示为全体最小割集。因此,防止所有最小割集发生是保证顶事件不发生的可靠措施。在轨道客车的设计中要采取必要的措施降低最小割集发生的概率,在轨道客车的运转中要努力确保不使最小割集发生。

3 故障树定量分析实例

故障树定量分析某型轨道客车系统的任务是,在已知底事件发生概率的条件下,利用故障树作为计算模型,求解出顶事件即某型轨道客车系统故障或失效发生的概率,从而可以评估出该轨道客车系统的可靠性、安全性及风险性。

假定故障树的顶事件及相互独立的全部底事件均只有“不发生”和“发生”,亦即“正常”和“故障”两种状态,则根据底事件发生的概率,由下往上按故障树的逻辑结构逐级运算即可求得顶事件发生的概率。

其中底事件发生概率的定量分析来源于单元或部件失效数据的收集和统计分析。失效数据是故障树定量分析的基础,直接影响系统可靠性、安全性及风险性分析的精确性和适用性。由于来源于寿命试验产生的失效数据受到财力、物力和人力等方面因素的限制,数据来源很少。而来源于生产现场的寿命试验,虽然条件现成、真实,失效数据来源多,但受限于不够重视现场失效数据的搜集,或者失效数据丢失,或者失效数据记录不完整或不正确。目前,失效数据不足已经成为影响可靠性定量分析和风险评估的一个难点问题,因此要建立失效数据库是一个长期且重要的任务,要十分重视对轨道客车系统单元或部件失效数据的收集和统计。

4 故障树分析法的注意事项

故障树分析是由一个或多个不希望发生的顶事件开始,向下逐级分析导致顶事件发生的直接原因和潜在原因的方法。在运用故障树分析轨道客车系统时,需要根据故障树分析的特点,注意以下几个方面的问题:一是无论是进行定性还是定量故障树分析,在建立故障树时,都应尽量确保故障树完整、准确,以使故障树不会影响分析结果的准确性。因此在该型轨道客车事故树分析的过程中,采用了由熟悉该型轨道车辆系统的多个工程师共同参与建树的方法,实践证明这种由多个工程师共同参与建树的方法相比于由一个人建立起来的故障树更为有效、完整和准确。二是常用故障树的定性分析法进行系统故障诊断,因此在故障树分析过程中可先求出最小割集,并按照从小到大的顺序将割集排序,进而依据最小割集的阶数进行故障诊断。三是故障树的定量分析法常用于对系统进行安全性分析。通过自上而下的指标分配,可确定对于各底事件的安全性要求指标。通过自下而上的计算,可用于对顶事件的安全性要求进行验证。因此各底事件概率的准确性将影响故障树定量分析的准确性。

参考文献

[1] 俞秀莲,程晓卿,秦勇,等.基于可靠性的城轨车辆预防性维修优化模型[J].计算机仿真,2014(2):225-229.

[2] 周琦钧,赵秋颖,朱明明.基于故障涞暮教觳饪叵低彻收险锒戏椒[J].现代电子技术,2015,38(7):103-109.

故障树分析范文第10篇

关键词:采煤机;行走机构;故障树;分析

一、采煤机行走机构及其故障

采煤机行走机构包括了采煤机的齿轨轮、导向滑靴和刮板输送机的销排等。其中导向滑靴和销排配合,以此来确保采煤机的齿轨轮与销排齿形的正确啮合。在采煤工作过程中,导向滑靴承受着采煤机的重力,齿轨轮主要在采煤机与刮板输送机之间传递牵引力。由于采煤机的工作环境较为复杂,齿轨轮和导向滑靴发生的故障频率较高,进而对采煤产量有着较为严重的影响。其主要的故障有:齿轨轮齿面磨损、崩齿断齿,导向滑靴的导向面磨损等。

二、采煤机行走机构故障树模型

采煤机行走机构故障是指采煤机不能正常运行、工作。要先对引起采煤机行走机构故障的失效因子和故障模式的组和方式进行具体的分析与确定,才能进一步的创建采煤机行走机构的故障树模型。

失效因子直接影响着采煤机行走机构故障树建立的中间事件之间的逻辑关系,并且能借助于已有的失效因子来确定事件在导致故障发生过程中的重要度。在进一步确定失效因子后,开始建立相应的故障树分析模型。

(1)分析逻辑关系。在建立采煤机行走机构故障树分析模型前,相关技术人员要对采煤机系统的组成结构及其各部分之间的逻辑关系进行充分的分析与熟悉,并掌握相关的技术资料及其维修和保养的记录。对采煤机的机械结构、环境因素以及其他潜在的影响因素进行充分的考虑,进而为故障树模型的建立提供数据依据。(2)确定系统的顶事件。顶事件是指采煤机系统在进行采煤工作过程中最不希望发生的事件。而在采煤机行走机构的故障树分析模型中指的是采煤机行走机构在工作过程中发生的故障事件。顶事件对采煤机行走机构的故障树分析模型建立的后续中间事件之间的逻辑关系的确定有着重要的指导作用,因此在建立故障树分析模型之前,相关的技术人员要对行走机构中的顶事件先进行准确的确定。(3)确定系统边界条件。1)已经确定的中间事件必须要有准确定位。2)已经确定的底事件必须要有明确、合理的划分范围限定。(4)建立故障树。在充分确立采煤机行走机构的顶事件和底事件后,即可按照相应的功能流程及其中间事件的逻辑关系来建立逐级向下的顶事件故障分析模式和相互联系的故障树分析模型。(5)分析、整理简化系统。在采煤机行走机构的故障树分析模型建立以后,相关的技术人员则可根据故障树来对采煤机行走系统进行合理的分析、整理和简化,并采用定性分析来寻求最小的割集。其中边界条件的的明确是为了进一步促进底事件和系统失效因素的确定,若边界条件缺失则可能导致某些事件在分析过程中会出现故障因素无限细分,进而导致耗时量大,且难以确定导致故障发生的因素。

三、采煤机行走机构故障树定性分析

故障树的定性分析其主要目的就是为了明确系统故障起因或是导致顶事件失效因子的组合方式,进而来明确采煤机行走机构中的薄弱环节。

明确顶事件发生的最小割集是对采煤机行走机构故障树进行定性分析的首要前提。下面根据上行法对采煤机行走机构故障树进行定性分析。要根据故障树

自下而上的各项中间事件的逻辑关系,逐级带入分析、整理简化,然后再运营事件逻辑关系中的幂等律进行简化,由吸收率运算后,则最终根据顶事件的积和解算,可知采煤机行走机构的故障树分析最小割集为:[D1]、[D2]、[D3]、[D6]、[D8]、[D9]、

[D12]、[D13]、[D15]、[C1]、[C2]、[C3]、[C4]、[C5]、[C8]、[C13]、[C14]。

经统计得出的十七个导致顶事件发生的最小割集,都属于第一阶最小割集,其任何一个事件的发生都会导致顶事件的发生,进而导致采煤机行动机制的故障。如:零件强度的不足,进而导致采煤机行走机构的健、轴和销的故障,进而导致行走机构的故障;齿轮表面效果不足,使得采煤机杂进行高强度工作过程中,齿轮的摩擦力增加,且相对速度加大,进而使得齿面的温度较高,齿面油膜消失,进而导致齿轮的金属面接触发生相互黏结,长此以往则会导致齿轮磨损消失,进而引发采煤机行走机构的故障。

结束语:综上所述,采煤机的行走机构是采煤机系统的重要组成部分,其故障直接影响着采煤机系统的正常运行。本文主要分析了采煤机行走机构的故障,分析确定了行走机构顶事件的失效因素,并根据失效因素、中间事件之间的逻辑关系的联系来建立了故障树分析模型,并对其进行了定性分析,明确了采煤机行走机构顶事件的最小割集,并借此来分析、确定采煤机行走机构的故障因素,同时也能对采煤机系统的薄弱环节进行相应的识别。最后,对采煤机行走机构进行故障树分析,有利于辅助采煤机故障与导致故障产生因素的分析、确定,进而有利于相关的技术人员对采煤机故障进行定性分析,也便于技术人员对采煤机进行故障评价与改善。

参考文献:

[1] 周新建,李龙,乔心州. 采煤机行走机构的故障树分析[J]. 煤矿机械,2014,11:283-285.

上一篇:打印机故障范文 下一篇:汽车故障诊断仪范文