天然气净化厂电气设计研究

时间:2022-09-27 02:41:17

天然气净化厂电气设计研究

摘要:大型油气站场“橇装化建站,模块化建厂”的设计理念,不仅对工程建设周期提出了更高的要求,也是对电气设计的巨大挑战。对磨溪天然气净化二厂目前的实际用电负荷进行分析,找出用电负荷偏低的原因,提出负荷计算中系数选取的建议。同时,分析了大型净化厂主体装置区橇装化电气设计的特点,讨论了部分存在的问题及解决措施。其中,橇装化电气设计中创造性地引入PDMS三维设计软件是磨溪天然气净化二厂电气设计的亮点。最后,针对磨溪天然气净化二厂用电负荷分布及总图布置,提出实际工程中变电站电缆夹层的设计方案,分析了该设计方案的优势及存在的问题。磨溪天然气净化二厂电气设计的总结和探讨,为大型油气厂站橇装化电气设计和变电站电缆夹层设计积累了宝贵经验。

关键词:负荷分析;橇装设计;电缆夹层

前言

目前,天然气净化厂规模不断扩大,建设周期紧张,设计中越来越多地采用“橇装化建站,模块化建厂”的设计理念。大型油气厂站的电气设计中主变负载率偏低普遍存在,橇装化电气设计和变电站电缆夹层设计经验缺乏,而工程建设周期短,设计任务重,对净化厂的电气设计提出了更高要求。本文对磨溪天然气净化二厂橇装化电气设计进行了经验总结,有利于大型站场的变压器容量优化以及橇装化电气设计经验的累积。

1供配电系统

作为四川省内最大的天然气净化厂,磨溪天然气净化二厂(以下简称净化厂)的天然气处理规模为3000×104m3/d,分为建产第一阶段(1200×104m3/d)和建产第二阶段(1800×104m3/d)。考虑到净化厂最终的建设规模,在建产第一阶段时,厂内就建成了110/10kV丁家坪变电站。该站110kV电源分别取自三星水电厂和清河变电站,清河变电站为主电源,该站主变容量为2×16000kVA。另外,按照全厂区域及功能划分,以及变电站的站址选择要求[1],全厂分设40×108m3装置区10kV变电站、60×108m3装置区10kV变电站、污水装置区10/0.4kV变电站、锅炉装置区10/0.4kV变电站以及检维修基地10/0.4kV变电站。净化厂供配电系统结构[2]见图1。

2用电负荷计算的准确性分析

大型油气厂站中普遍存在实际用电负荷与初步设计时确定的主变容量有较大差异。通过对大型天然气净化厂进行用电负荷准确性分析,为今后工程合理选择变压器容量提供宝贵依据和经验。实现变压器的安全经济运行,同时实现节省一次投资和降低运行费用的目的。2.1用电负荷情况净化厂按照GB50052-2009《供配电系统设计规范》[3]要求,其用电负荷等级为一级。截至2015年11月24日净化厂装置投运时,实际用电总负荷为9625.7kVA(9017.58kW,3368.64kvar)。随着后续单井及集气站的陆续投运以及净化厂处理能力的增加,净化厂的总负荷还会相应增加。2.1.1初步设计与实际运行负荷对比初步设计阶段,全厂110kV变电站计算总负荷为13264kVA。即使考虑到后期稳产以后负荷的增加,净化厂的实际运行负荷与初步设计计算负荷相比仍然偏小。2.1.2变压器容量选择随着今后负荷的陆续增加,预计净化厂稳定负荷达11000kVA,净化厂主变压器容量(16000kVA)可满足经济运行的要求[4]。2.1.3不同处理量下负荷对比通过110kV变电站后台监控中心与中控室得到的数据,对净化厂不同处理量的用电负荷进行比较,见表1。通过不同处理量下用电负荷统计可知,天然气的处理量和用电负荷基本成正比关系。当全部装置投运后且装置的处理能力达到设计能力的三分之二时,负荷也基本达到主变容量的三分之二。但是由于所有装置已投入运行,即使处理能力后续增加,瞬间负荷最大也不会超过12000kVA,略小于初步设计负荷。由此可见,净化厂用电的实际运行负荷与初步设计计算负荷相比偏小。2.2用电负荷分析对净化厂用电的实际运行负荷偏小的原因展开分析,首先从大型电机的额定电流以及不同工况下大型电机的运行情况角度展开讨论。变电站后台监控系统采集的数据见表2。由表2可知,除了空压机主电机外,其他大型电机的运行电流与电动机铭牌标注的额定电流相比普遍偏小。这是造成实际负荷较设计负荷偏小的原因之一。其他小型电机运行电流偏小的情况也普遍存在。由此可见,由于电机额定电流为满载时电流,影响电机电流大小的因素很多,如电机效率及功率因数的选取等。另外,净化厂工程供货商不完全了解工程情况,导致电机配置不合理,造成电机实际输出功率偏小,即“大马拉小车”,这是电机实际电流偏小的主要原因。另外,空调、照明以及电动阀等负荷属于受季节和时间影响较大的间歇性或短时负荷,初步设计阶段负荷计算时需要系数选取偏大,造成计算负荷偏大。同时,在净化厂负荷统计尚未最终完成时,净化厂建成的110/10kV丁家坪变电站主变压器已提前定制,这也是计算负荷偏大,主变容量选择不合理的因素之一。净化厂部分大型电机运行情况与设计对比见表3。最后,正常工况条件下,通过对净化厂大型电机运行情况的调查,循环水泵电机、锅炉鼓风机等大型电机实际运行台数较设计运行台数少,这是造成实际负荷较设计偏小的另一原因。2.3用电负荷计算的推荐做法目前,初步设计阶段负荷统计基本采用需要系数法[6-8]。针对目前净化厂实际功率和电流偏低的情况,可以适当调整需要系数和功率因数。初步设计中,装置区主要电机的需要系数和功率因数均取值0.85,在SY/T0011-2007《天然气净化厂设计规范》[9]中,也没有针对不同类型的泵所带电机的需要系数和功率因数做出分别的取值。因此在今后的项目中负荷计算时,可以适当降低需要系数,提高功率因数。

3橇装装置中电气设计

3.1主体装置橇装化电气设计净化厂主体装置(含脱硫、脱水、硫黄回收、尾气处理及酸水汽提装置)采用模块化建厂模式,所有橇块在工厂预制完成。在完成工艺橇块的拼接工作后,需在现场完成桥架、配电箱、操作柱、灯具以及相关电气接线工作。这种全新的建厂模式,节约了建设周期,但对电气设计提出了更高要求,需要在橇块预制阶段提前对电气设备的安装布置、桥架电缆走向完成合理的规划。3.2蒸发结晶装置橇装化电气设计净化厂首次将蒸发结晶装置引入到污水净化设计中。该装置采用模块化橇装设计,与主体工艺装置电气设计不同,该装置大部分电气设备均在工厂安装完成,现场只需完成组橇工作,极大地减少了现场安装工作量,缩短了现场建设工期。该装置的区域属于非爆炸危险区域,但装置具有高盐高腐蚀的特点,因此灯具、配电箱等设备在选型上采用了室外防腐型设备。考虑到运输过程中照明灯具易发生磕碰损坏及施工难度等问题,采用在现场安装完成。另外,电机及操作柱的动力配电及橇体的接地也在现场安装完成。3.3电气三维设计的应用工艺装置电气设计利用了PDMS三维设计软件,采用了三维协同设计与平面图设计相结合的方式[10]。由于电气设计采用了三维协同设计,配电箱、操作柱、桥架、照明灯具、保护管、电缆等均在三维平台上建模,避免了现场实际配管及安装过程中发生“碰撞”现象;本次PDMS设计引入了电缆和桥架的数据库辅助三维建模[11-12]。电缆和桥架数据库在原有系统自带数据库的基础上,结合工程实际需要,对数据库进行了扩充工作。引入数据库后,能够准确进行电缆和桥架的材料统计,降低了平面制图的人为工作量。因此,电气设计中PDMS三维软件的引入对装置橇装化设计是重要的补充和辅助。灯具和操作柱的PDMS三维电气设计的应用见图2~3。3.4橇装化电气设计问题及改进3.4.1存在问题1)仍然不能完全避免“碰撞”现象:在三维设计过程中,专业间的交接过程存在问题,因此现场实际配管过程中,虽然“碰撞”现象有所减少,但仍有多处桥架出现碰撞。在三维协同设计中,应做到专业间真正的协调配合。2)橇体接地设计问题:设计之初,工艺主体装置橇上设备的接地[13-15]考虑在橇体上设置接地端子板,橇上所有电气设备均采用接地软线与端子板连接,最终通过端子板接地。但施工过程中,由于橇体上设备密集,接地软线需穿钢管保护等问题,造成整改方案实施难度较大。3.4.2改进在橇体已整体可靠接地的情况下,橇上的电气设备只需就近与橇上结构柱接地螺栓相连即可,这样既满足设计规范,也节约了材料。装置区操作柱接地见图4。GB/T50065-2011《交流电气装置的接地设计规范》[16]第3.2.2条规定,安装在高压电气装置和电力生产设施的二次设备等的下列金属部分可不接地:安装在已接地的金属构架上。同时,GB50058-2014《爆炸危险环境电力装置设计规范》[17]第5.5.3规定,在爆炸性环境内,安装在已接地金属结构上的设备仍需接地,即使GB/T50065-2011《交流电气装置的接地设计规范》规定不需要接地。由此看出,爆炸危险区和非爆炸危险区内电气设备的接地的做法是有区别的。但应注意的是,GB50257-2014《电气装置安装工程爆炸和火灾危险环境电气装置施工及验收规范》[18]第7.1.2条规定,在爆炸环境1区、20区、21区内所有的电气设备,以及爆炸性环境2区、22区内除照明灯具以外的其他电气设备,应增加专用的接地线。该接地线若与相线敷设在同一保护管内时,应具有与相线相等的绝缘。在净化厂工程中,主体装置区橇上电气设备供配电均采用了TN-S接地系统,设有专用的PE线,该PE线与相线敷设在同一保护管内时,具有与相线相同水平的绝缘水平。因此,由PE线接地是允许的,并不需要再设接地线,改进后的接地方式也完全满足规范要求。

4变电站电缆夹层的设计方案

考虑到净化厂的平面布局,装置区变电站采用三层设计,第一层为低压配电间、变压器室及机柜间,第二层为电缆夹层,第三层为高压配电间及应急电源室。装置区变电站电缆夹层见图5。4.1设计思路低压出线电缆利用第一层的低压配电间桥架向上引至电缆夹层,同时高压电缆利用第三层10kV配电室盘柜底部的电缆预留洞向下引至电缆夹层。第二层电缆夹层通过电缆桥架引出至室外。4.2注意事项电缆夹层的桥架走向应使电缆走向均匀分布,避免桥架引上、引下及转弯电缆布置处“拥堵”。所以电缆夹层处应合理设置引上及引下处,尽量达到夹层桥架的合理化设计。4.3存在问题及推荐做法净化厂装置区变电站的电缆夹层设计由于上层设备布置以及电缆出线方向等原因,桥架在夹层内形成环形,没有充分考虑10kV变电站电缆夹层的疏散通道。关于电缆夹层疏散通道的设置,GB50217-2007《电力工程电缆设计规范》[19]第5.5.1条规定,电缆的配置应无碍安全运行,满足敷设施工作业与维护巡视活动所需空间;电缆夹层室的净高不得小于2000mm,但不宜大于3000mm。民用建筑的电缆夹层净高可稍降低,但在电缆配置上供人员活动的短距离空间不得小于1400mm。针对净化厂变电站平面布置的存在电缆夹层部分区域无疏散通道问题的实际情况,采用了在环形桥架处设置活动爬梯的方式来解决该问题。今后可通过设计优化变电站平面布置避免“环形”桥架。在满足电缆夹层净高的基础上,利用夹层顶部设置支架的方式吊装桥架,在桥架下方预留人员疏散通道[20]。

5结论

本文总结了磨溪天然气净化二厂电气设计的成果和问题。首先,讨论的负荷计算中需要系数法中系数的取值,系数经过调整后,能使计算负荷更加接近于实际用电负荷,有利于更合理地选择变压器容量以及节省投资。另外,讨论了橇装化电气设计中PDMS软件在三维协同设计中的应用以及橇装设备的接地问题,为今后橇装化工程的电气设计提供借鉴。最后,结合规范要求,对变电站电缆夹层疏散通道进行了案例分析,提出电缆夹层可采用“顶部吊装桁架”的设计方案。

作者:刘锐 余颖鸿 沈泽明 李唯 单位:中国石油集团工程设计有限责任公司西南分公司

上一篇:高中数学教学及学生自主学习能力培养 下一篇:模糊综合评价在天然气长输管道的应用