高中生物学教学中的模型建构实例

时间:2022-03-27 06:06:13

高中生物学教学中的模型建构实例

摘要:通过模型建构活动,让学生的探究活动中,更好地理解和把握生物学的核心概念;通过模型建构活动,让学生理解模型方法的重要作用,并学会适当应用这一重要方法,从而提高每个高中学生的生物科学素养。

关键词:生物学教学 生物学模型建构

模型方法是指人们为了认识自然界中某一复杂的对象(如非常庞大的太阳系或非常微小的细胞),或事物发生的过程、规律等,用形象化的具体实物,或抽象的语言文字、图表、数学公式等对认识对象进行模拟或简化描述的一种方法。模型的种类很多,一般所说的模型主要有物理模型、数学模型、概念模型等。[1]建立模型的过程,是一个思维与行为相统一的过程。在中学生物学科教学中,通过模型建构活动,让学生的探究活动中,更好地理解和把握生物学的核心概念;通过模型建构活动,让学生理解模型方法的重要作用,并学会适当应用这一重要方法,从而提高每个高中学生的生物科学素养。

1、物理模型

物理模型就是以实物或图画形式直接表达认识对象的特征,细胞立体结构图,细胞膜结构的实物模型,就可以看做物理模型。建构物理模型使抽象的知识具体化、形象化。

在学习人教版《分子与细胞》中“细胞器──系统内的分工合作”时,我布置学生8人为一个小组,其中4小组构建动物细胞模型,4小组构建植物细胞模型。我要求学生利用周末时间完成,周一课上展示各小组的模型并进行点评。

周一课上交上来的模型中,有的同学用白色橡皮泥捏成半圆做成细胞质,有的同学则用面团,有的同学则用琼脂来做细胞质基质。细胞膜的材料也是多种多样,如塑料袋、纱布、弹力布等。细胞核的制作也是各式各样,有的同学在细胞质中央挖一个小圆,放上一个圆形彩泥;有的同学则用一个乒乓球代替,也有的同学用半个蛋壳倒扣在细胞质中表示。细胞器的制作,大部分同学采用了各色彩泥,捏制成各种细胞器之后,用大头针固定于细胞质基质上。如内质网是捏一条扁平的彩泥之后折叠在一起而成;高尔基体则用几个扁平的彩泥和三个小球表示;核糖体则用若干红豆表示,有的放于细胞质中,一部分固定内质网上。也有同学用各色彩纸折成各种细胞器。在课上,我让各个小组派出代表,展示本组的作品,并介绍一种细胞器的结构与功能,其他小组同学有不清楚的问题提出后由负责介绍的小组同学负责解答。通过小组间的建模、模型展示与释疑,同学们不仅对目标知识掌握的非常透彻,而且还没明白了制作动植物细胞模型时要考虑细胞器种类,细胞核、细胞器大小比例,如何体现细胞器之间的协调配合等等。

2.概念模型

概念模型指通过分析大量的具体形象,分类并揭示其共同本质,将其本质凝结在概念中,把各类对象的关系用概念与概念之间的关系来表述,用文字和符号突出表达对象的主要特征和联系。

2.1构建概念模型提高了读图能力

例如,用光合作用图解描述光合作用的主要反应过程,就是一种概念模型[2]。

在学习光合作用的过程及影响因素时,我经常运用概念模型进行教学。我让学生把课本合起来,和我一起思考、动手:首先,光合作用是否需要光,谁吸收光,在哪吸收光,吸收的光能用来干什么?由此一步步就完成了光合作用第一阶段的知识建构。其次,有光合作用第一阶段的产物[H]和ATP的用途想到第二阶段的两个反应即CO2的固定和C3的还原以及场所条件等进而完成了第二阶段的知识建构。第三,通过建构的光合作用过程图,轻易的就能理解两阶段间的物质联系和能量关系。用一个椭圆将进入反应体系的物质和光圈在外面,这样就可以把椭圆内看成叶绿体,也就容易掌握了光合作用的原料和产物以及影响光合作用的因素,还能进一步掌握提高光合作用效率的方法。通过多次这样的概念模型的构建,学生养成了一种思维习惯,凡遇抽象的结构或过程,都会尝试用简易的图画帮助理解、思考。

2.2构建概念模型,整合零碎知识

例如,在学习《分子与细胞》模块的细胞结构内容后,我利用学案中事先设计好的框架,让学生构建了概念模型,将课本中细胞壁的成分、结构、功能、特点,细胞膜的成分、结构、结构特点、功能及功能特性、物质跨膜运输方式,细胞核的结构、各部分结构的功能、染色体、DNA等知识整合在一起,使零碎的知识完整化。模型如下:

构建这样的概念模型,有利于学生对某个单元、某个模块知识进行加工、理解、储存,全面系统地掌握和记忆知识要点,有利于学生形成完整、清晰、系统、科学的知识体系,同时也促进了学生感知、记忆、想象能力的发展,使学生更系统地掌握、理解生物学知识。

3.数学模型

引导学生建构数学模型,有利于培养学生透过现象揭示本质的洞察能力;同时,通过科学与数学的整合,有利于培养学生简约、严密的思维品质。例如,用Nt=N0λt表示种群的“J”型增长,就是一种数学模型。

高中生物学中概念较多,学生易混淆。用适当的数学模型可以帮助学生理清概念。如减数分裂中同源染色体、四分体、染色体等之间的关系就可以用数学模型来表示:1个四分体=1对同源染色体=2条联会的染色体=4条染色单体=4个DNA分子=8条脱氧核苷酸链,学生通过构建这样的数学模型,很容易地掌握了这几个极易混淆的概念。再如,DNA经n次复制所需游离的某种脱氧核苷酸数和第n次复制所需游离的某种脱氧核苷酸数的区别,学生常常混淆不清。课上,通过图解分析,师生一起构建了数学模型:n次复制所需游离的某种脱氧核苷酸数=(2n-1)m和第n次复制所需游离的某种脱氧核苷酸数=2n-1m(注:m为1个DNA分子所含某种脱氧核苷酸数),难题迎刃而解。

模型方法是人们认识自然界的一种重要方式,也是理论思维发展的重要方式。在进行具体的课题研究时,模型方法在人们理解事物的本质、探索未知规律的过程中,都起着重要作用。中学生物课中的模型建构活动,一方面是能让学生通过模型建构活动,理解模型方法的重要作用,并在以后的学习和生活中懂得适当应用这一重要方法;另一方面,也可以让学生通过探究活动,更好地理解和把握生物学的核心概念。

参考文献:

[1]朱正威赵占良主编普通高中课程标准实验教科书生物3稳态与环境教师用书,2007

[2]朱正威赵占良主编普通高中课程标准实验教科书生物1分子与细胞学生用书,2004

上一篇:浅谈初中生物实验教学的意义 下一篇:浅析初中化学探究性教学的探索