现代地质测绘技术发展状况

时间:2022-03-09 06:32:12

现代地质测绘技术发展状况

摘要:随着测绘技术的现代化,地质测绘的技术方法和技术手段也将逐步更新换代。文章首先分析了工程地质测绘的相关概念,继而详细分析了常用的几种现代地质测绘技术:。

关键词:地质;测绘;技术

1.地质测绘的基本概念及传统地质测绘的特点

地质测绘是借助一定的勘测工具来对特定区域的地质环境进行初步勘查及分析其可行性程度的过程。地质测绘被运用到工程、水利、交通等众多行业,为各个中大型项目的建设提供了科学的依据。地质测绘是项目所涉及的诸多勘察程序的先行者,地质测绘分为两个部分:测量和绘制。所谓测量即是指通过对地质进行观察、描写、测量来得到项目地质环境的各个数据。而绘制则是把项目的各项地质因素用不同的颜色、符号,按照精度要求标绘在一定比例尺的地形图上,以直观明了的文件形式保留。其所测量的数据、绘制的图样是日后项目设计及建设的基础,可以预估其组成部分的分布、成因、发展演化规律等关键因素,还可当做资料来分析项目实施可行性的程度、难度,以及项目的稳定性及适宜性。

传统的地质测绘都是建立在地质学的基础上开展作业的,是以基础测量工具为媒介,以测量人员人工测量、记录、分析为流程来展开作业的。人为因素是作业的基础,因此无需耗费大量物资购置设备,测量成本较低。但是,人为测绘不能长期驻点测量、采取数据,就注定了测量深度、广度的局限性,以及对拟定项目的考核测量的短周期性。由此传统地质测绘的测量数据的精确程度往往稍欠佳。

2.工程地质测绘

工程地质测绘是岩土工程勘察的基础工作,在诸项勘察方法中最先进行。按一般勘察程序,主要是在可行性研究和初步勘察阶段安排此项工作。但在详细勘察阶段为了对某些专门的地质问题作补充调查,也进行工程地质测绘。工程地质测绘是运用地质、工程地质理论,对与工程建设有关的各种地质现象进行观察和描述,初步查明拟建场地或各建筑地段的工程地质条件。将工程地质条件诸要素采用不同的颜色、符号,按照精度要求标绘在一定比例尺的地形图上,并结合勘探、测试和其他勘察工作的资料,编制成工程地质图。这一重要的勘察成果可对场地或各建筑地段的稳定性和适宜性作出评价。

3.新时期地质测绘技术的特点

3.1 全球定位系统(GPS)的发展

全球定位系统(Global Positioning System-GPS)卫星定位技术的发展已运用到航天、航海、汽车、地质测量等多个领域。GPS卫星定位测量是指通过GPS卫星定位来勘测地质情貌,是现代科学技术发展的产物,给测绘行业带来了新的契机,是新时期测绘行业做为重要的一种测量方法。地质测量由于作业环境限制,有着强度大,效率低,周期长的特点,而GPS在地质测量行业的运用,大大缓解了这一问题。GPS定位技术摒弃了传统的测角、测距等为主体的地面定位技术,可直接通过高速度、高精度的锁定目标的三维坐标。GPS全球定位系统还可长时期对拟定项目进行监测,但每次观测周期相对于传统地质测绘方法来说要短的多,且测量的数据精确程度更高。GPS全球定位系统适用于大地控制网、桥梁、隧道、工程等项目的测绘,其具体操作流程为通过基准站以及移动站之间安放的接收机,同步接收四颗以上的卫星,并通过无线电连接各接收机,来采集数据。

RTK(RealTimeKinematic),即实时动态卫星全球定位,是GPS基础上发展起来的科技产品。RTK可以以高精度、快速地测定图根控制点、界址点、地形点、地物点的坐标,再利用测图软件可以在野外一次生成电子地图。同时,也可以根据已有的数据成果快速的进行施工放样。GPS RTK技术在测量中的有三种主要应用模式:快速静态定位测量、动态定位测量和准动态测量。三种定位模式各有优势,也可相互交叉使用,在地质工程测量中被广泛使用,可覆盖到包括施工前的测量、地图绘制到施工期间的监理和地理信息系统前端数据采集等众多环节。

3.2 地质工程测绘中的遥感(RS)技术

随着空间科学的发展,遥感(RS)技术被广泛应用到地质测绘行业中。我们知道,不同的物体对不频率表不同频率的电磁波的感应幅度是不同的,这也是遥感(RS)技术发挥的基础。遥感卫星、环境监测卫星则是遥感(RS)技术发挥的工具,它根据不同幅度反映的图像来研究地表动态变化的。通过遥感(RS)技术影像可以获得拟建筑项目大小不同比例的地图,并且可及时抓取最新版影像,这点在实际运用中甚是便捷。总的来说遥感(RS)具有大范围、时效性、数据的综合性和可比性及经济性等优势;同时因其数据海量,也具有运算量大,遥感模式识别困难的弊端,这也为遥感模式识别这一传统学科带来了新的问题与挑战,注入了研究与探索的活力。

遥感技术在近一、二十年内飞速发展,这种发展主要表现在新型传感器的研制和应用的日新月异,其发展的特点如下:

a.不断研制新型传感器,既有框幅式可见光黑白摄影、多光谱摄影、彩色摄影、彩红外摄影、紫外摄影,又有全景摄影机、红外扫描仪,红外辐射计、多光谱扫描仪、成象光谱仪,CCD线阵列扫描和矩阵摄影机、微波辐射计、散射计,合成孔径雷达及各种雷达和激光测高仪等。

b.形成多级空间分辨率影象序列的金字塔,以提供从粗到精的观测数据源。传感器的研制在向更高的空间分辨率方向发展的同时,也向全方位的立体观测能力方向发展。

c.可反复获取同一地区影象数据的多时相性。一般是空间分辨率低的而时间分辨率高。遥感多时相性,提供了人们长期、系统和动态研究地球表面的变化及其规律的可能性。

3.3 地理信息GIS系统的发展

GIS也是一门新兴的高科技产品,在测绘、地质矿产、环境监测方面得到了很好的应用。反映到地质测绘行业中,GIS系统则可做为空间信息显示平台,来采集、存储、管理、分析及辅助决策数据信息,为测绘行业提供及时、准确、标准化、信息化如数字化的信息,如此强大功能集一体的优势使得GIS系统脱颖而出。

从系统角度看,在未来的几十年内,地理信息系统(GIS)将向着数据标准化、数据多维化、系统集成化、系统智能化、平台网络化和应用社会化(数字地球DE)的方向发展。Interoperable GIS互操作地理信息系统(InteroperableGIS)是GIS系统集成平台,它实现在异构环境下多个地理信息的系统或其应用系统之间的互相通信和协作,以完成某一特定任务。GIS三维(四维)地理信息系统(3D&4DGIS)目前研究重点集中在三维数据结构的设计,优化与实现,以及体视化技术的运用,三维系统的功能和模块设计等方面。GIS面向对象和构件技术的地理信息系统(ComGIS)是把GIS的功能模块划分为多个控件,每个控件完成不同的功能,通过可视化的软件开发工具集成起来,形成最终GIS应用。GIS基于WWW的地理信息系统(WebGIS)是利用Internet技术在Web上空间信息供用户浏览和使用。Digital Earth它是对真实地球及其相关现象统一性的数字化重现和认识,其核心思想是用数字化手段统一地处理地球问题和最大限度地利用信息资源,从而完成数字地球的核心功能,光缆、卫星通信技术以及计算机网络等技术则完成海量空章数据的传输任务。

3.4 地质测绘中的3S集成技术工程测绘中的

3S集成技术是指GPS、GIS、RS技术的结合。GPS与RS为GIS提供区域信息及空间定位信息,而GIS进行相应的空间分析以便从GPS和RS提供的海量数据中提取有用的信息并进行综合集成,使之成为科学的决策依据,由此三种技术科学组合,互进互利,可为地质测绘行业数据的优化提供更加完善的服务。

上一篇:青青小野菜 养生大学问 下一篇:民心工程――包头市健康水工程的探讨