卫星通信范文

时间:2023-12-08 04:43:11

卫星通信

卫星通信篇1

“印星-4D”通信卫星

印度通信卫星发射的成功率极高。1982年4月10日,印度第一颗通信卫星“Insat-1A”号发射,到现在已发射21颗,只有2006年7月10日发射的“Insat-4C”号卫星失败。目前,还有11颗通信卫星在轨运行。

2011年内,印度还有5颗以上通信卫星即将发射,计划在第11个五年计划内将转发器数量提高到500台。印度通信卫星C频段的转发器分为普通转发器和扩展型转发器。转发器频段有C频段、Ku频段、S频段、C/S频段、S/C频段。印度是较早开展MSS移动卫星业务的国家。“印星”系统的总体协调和管理由印星协调委员会负责。

“印星”通信卫星

2010年10月,印度将在萨迪什・达万航天中心发射“GSLV-MK1”运载火箭,搭载“印星-4D”卫星升空。“印星-4D”是印度第4代通信卫星,又名为“GSat-5”。它的发射重量2250千克,装载了440型液体火箭发动机,设计寿命12年。

“印星-4D”通信卫星采用“I-2K”卫星平台,是一颗全C频段卫星。卫星携带12台C频段和6台增强C频段转发器。“印星-4D”将定位于东经82°。卫星共装载18台转发器,容量为11 Giga Bits。12个转发器将运行在普通的C频段上,可对亚洲、非洲和东欧进行宽波束覆盖,也可提供区域覆盖,最小EIRP为35dBw。6台扩展转发器运行在C频段,覆盖范围为整个印度,EIRP为41dBw。印度已将有效载荷进行配置, 转发器增加了一个南极洲波束,并有计划采用L频段。宽波束将覆盖亚洲,包括中国。

现在,全球通信卫星拥有6000多台转发器。目前,印度通信卫星的在轨使用的转发器已经达到210多台。印度空间研究组织计划在第11个5年计划,即2012年3月将印度通信卫星的转发器达到500台。如果“印星-4D”等卫星都发射成功,2010年可达到250台以上,2011年达到300台以上。特别是“GSat-11”卫星装载了40台Ka/Ku转发器,强大的转发能力相当于多达220台普通转发器。

荣耀与风险同在

目前,印度萨迪什・达万航天中心已经做好发射前的最后准备。“地球同步卫星”运载火箭(GSLV)即将进入倒计时。“地球同步卫星”是印度研制的重型系列运载火箭。印度的同步火箭现在有3种型号,发射不同高度的航天器:“GSLV-Mk1”、“GSLV-Mk2”、“GSLV-Mk3”。“GSLV”运载火箭属3级火箭,长49米,直径2.8米,4枚助推火箭直径各2米,重量402吨,最大特点是不寻常的级别,不同类型的组合。

印度的“GSLV -Mk1”火箭采用俄罗斯“KVD-1M”型低温发动机。“KVD-1M”型低温发动机最初是俄罗斯“质子”号运载火箭研制一种低温发动机。液氢液氧燃料,燃烧时间720秒推力69千牛,比冲460秒。

荣耀与风险同在。从2001年4月20日起,“GSLV”系列运载火箭共进行过5次“GSLV-Mk1”运载火箭的发射,2次成功,2次失败,1次部分成功。“GSLV-Mk2”首次发射就遭遇失败。2010年4月15日,“GSLV-Mk2”运载火箭从印度萨迪什・达万航天中心发射,准备将“GSat-4”送入静止轨道。印度空间研究组织飞控中心报告:火箭运行正常。大约5分钟,第二级火箭的箭载计算机按飞行时序准确分离。印度制造、首次发射的第三级“Mk-2”型低温火箭按时点火。

飞控中心数据显示:低温发动机点火了。最终是否点火,需要对数据进行详细分析后才能确认,但是,地面人员根据跟踪曲线显示:火箭大约上升到140千米,速度为17700千米/秒时,火箭翻滚失控。第三级火箭点火之后数秒就停止上升,随后坠落、燃烧、爆炸。几分钟后,飞控中心已经丢失火箭的跟踪数据。最后的跟踪数据显示:火箭在印度东海岸萨迪什・达万航天中心西南1600千米,高66千米的印度洋上空烧毁。

卫星通信篇2

关键词:卫星通信; 现状; 问题; 发展

1 卫星通信发展现状

   随着科学技术的不断进步,卫星通信得到了快速发展。卫星通信根据不同业务可将其划分为卫星固定通信、卫星移动通信和卫星直接广播等,本文主要通过这三个方面的阐述来体现卫星通信发展现状。

1.1 卫星固定通信现状

全球卫星固定通信要占全球卫星数的一半以上。针对中国而言,中国在2005年时就已经建有国际、国内通信广播地球站80多座,中国已经建成国内卫星公众通信网,使中国边远地区的通信问题得以解决。

1.2 卫星移动通信现状

卫星移动通信是传统的卫星固定通信与地面移动通信交叉结合的产物。卫星移动通信所利用的卫星既可以是静止轨道卫星,也可以是非静止轨道卫星。“国际海事卫星”系统是由国际移动卫星公司经营的全球卫星移动通信系统。该系统自1982年使用以来经历了四代。此系统的应用将用户终端进一步小型化,进一步提高通信数据速率,实现了高清视频直播移动通信。作为国际海事卫星组织的成员之一的中国,其已经建成覆盖全球的海事卫星通信网络,跨入了国际移动卫星通信应用领域的先进行列。

1.3 卫星直接广播现状

卫星直接广播分为电视直接广播和声音直接广播。在卫星电视广播业务中,中国已经坚持覆盖全球的卫星电视广播系统和覆盖全国的卫星电视教育系统,全国共有34座卫星广播电视上行站,卫星电视广播接收站已经超过20万座。中国利用卫星传送广播电视节目是从1985年开始,目前已经有占用33个通信卫星转发器的卫星传输覆盖网形成,其主要对总共47套的中央、地方电视节目和教育电视节目负责。卫星广播电视业务的开展,扩大了农村地区广播电视的有效覆盖范围。2008年6月9日, “中星9号”直播卫星发射升空。该卫星可满足广播电视客户的多层次的需求,在2008北京奥运会期间成功为广大观众传输数量丰富、清晰可靠的广播电视节目。

2 卫星通信发展问题和难点

2.1 高速数据业务需求

随着数字化进程和分组交换技术的快速发展,传输高速数据业务的需求越来越高,传统的基于频分多址和码分多址的卫星通信已经难以满足其要求。由于卫星通信长时延的存在,在WAN和LAN中基于竞争的多址方式及差错控制协议均不再适用,因此,位于远地点的LAN利用卫星通信网络进行互联必须要有快速有效的转换协议,还需将时延对实时通信的影响得以减少。

2.2 卫星通信用用宽带IP

   目前,基于ATM的传输技术是宽带IP卫星系统所普遍采用的技术。对于ITU-TG.826和I.356的性能指标要求,ATM性能都能满足,这个结论是通过欧美等对卫星ATM层和物理层性能研究测试所的。如果卫星链路要想达到准光纤链路质量,需要系统采用RS块状编码、FEC技术等,并且ATM也可作为卫星系统的数据传输技术。但是事实上,卫星ATM实现起来是比较困难且复杂的,其与现存的卫星传输技术相差较大。

3 卫星通信关键技术

3.1 数据压缩技术

目前,数据压缩技术已经在数据处理中运用地非常成熟。数据压缩可分为静态数据压缩和动态数据压缩,无论是哪种数据压缩,其在时间、频带、能量上给通信系统带了比较高的效率。MPEG62设计采用了面向对象的方法,目前已被多媒体卫星通信系统普遍应用。

3.2 智能卫星天线系统

   通常情况下,根据需要要求通信系统的带宽在2500MHz以上,因此,Ku甚至Q和V波段都被多媒体通信系统的使用。但是,雨衰比较严重的就是K以上波段,此时卫星功率受到限制。因此,对智能高性能天线的研究是非常重要的,采用多波束快速跳变系统,能够构成较大范围的多波束覆盖。蜂窝式天线覆盖图可在低轨道系统中地面接收天线做同频再用使用,并且具有跟踪功能。同步轨道系统形成蜂窝式覆盖图可用多馈源或相控阵天线类进行。

3.3 卫星激光通信技术

   未来对卫星通信数据率要求较高,要求其达到数百或数千Mbit/s,因此,激光通信技术在此时是非常重要的。激光通信技术主要在卫星网星际互联中应用。由于星际通信工作是在外层空间,可以将其激光的优点充分发挥出来,星际通信是不受大气层影响。全球卫星通信中“双跳”法能够带来信号长时延,为了减少这一状况,采用“星际激光链路”技术。卫星激光通信技术将为未来的卫星带来较快的发展。

4 卫星通信发展方向

4.1 未来卫星固定通信发展的趋势

为实现国际卫星固定通信的重大变革并为适应高清电视传输和因特网接入需求,卫星宽带通信业务已成为卫星固定通信业务的主要发展方向。使用宽带网用户只需安装一个终端,既可收看高清电视,也可接入宽带因特网上网操作。当前,国际上卫星宽带通信业务发展主要表现在两方面:一方面是在传统的VSAT技术基础上开发新产品并利用现有的C频段和Ku频段卫星资源,快速地建立起宽带通信系统,以满足用户急需,并与快速发展的地面宽带通信业务竞争中争取生存空间;另一方面是发展频率更高的Ka等频段新型卫星宽带通信系统,以适应新业务的需求,并力争与发展中的地面宽带通信系统相适应,起到应有的补充和延伸作用。

4.2 未来卫星移动通信发展的总趋势

从便携式用户终端向手持式用户终端扩展;从单一的话音业务向多种业务发展;从窄带业务向宽带业务发展;从单独组网到多网互连发展。这里的多网互连即借助地面通信网的优势,实现与地面通信网的互连互通和在多制式网络中的相互漫游。最后与地面通信网络组成无缝隙覆盖全球的个人通信系统。

4.3 未来卫星直播通信发展的总趋势

DBS业务与DTH业务融合,信源编码和信道传输调制采用新技术和新体制,以改善系统的传输性能,提高卫星转发器带宽和功率利用率。在标清数字电视基础上,发展高清数字电视直播业务;建立太空电影院,直播数字电影,促进电影业发展。为扩大容量更好地为高清电视服务,由使用频率较低的S、C频段和较高的Ku频段已发展到使用频率更高的Ka频段。利用大波束播放全国性节目或其它节目,点波束播放地方节目。采用多颗卫星异频段和同频段于同一轨位工作,以扩大空间段容量和提高为用户服务的可能性。同一幅用户站接收天线,在不改变指向下接收来自多个轨位上卫星的电视节目。用户终端由单向接收式发展为双向交互式,以提供用户点播等 服务。随着卫星电视直播和声音直播移动接收方式发展,它标志着卫星直播业务已从固定接收方式扩大为移动接收方式。从而使其用户主要为企、事业单位和家庭扩大为个人和各种移动载体。

随着卫星固定通信、卫星移动通信、卫星直接广播三种通信方式融合,地面电信网、计算机网和有线电视网三网融合,各种卫星通信网与各种地面通信网互连互通,未来的通信网,必将是一个包括地下的光缆,地面的微波和蜂窝移动通信,低轨道、中轨道以及静止轨道的通信卫星系统组成的服务于全球的混合通信网。它们之间既可以单独组成通信系统,又可以在不同系统间互连互通,真正构成全球无缝隙覆盖的天地一体化的海、陆、空、天共用的能够提供各种带宽和多种业务的综合通信网。在此种综合通信网中,任何个人可在任何地点、任何时间、与任何对象互通任何信息,它将标志着真正个人通信时代的到来。

参考文献

[1] 黄飞. 低轨卫星通信接入与切换研究. 成都,成都电子科技大学抗干扰实验室,2009.

[2] 肖跃,秦红祥. 国内外卫星通信产业技术应用现状和发展趋势. 卫星与网络,2010(96):20-25.

[3] 王秉钧,王少勇,田宝玉,等. 现代卫星通信系统. 北京,电子工业出版社, 2004.

卫星通信篇3

1、消费对卫星服务业的增长贡献最大。卫星直播(DBS/DTH)在卫星服务业中的比重高达80%,接近卫星通信消费总收入的95%。高清电视(HDTV)发展较快有两个原因:一是高清用户越来越多,二是卫星电视和有线电视运营商分销渠道的大力推动。高清电视快速发展,促进了转发器租赁收入的增加,加大了卫星电视消费,同时带动了地面设备采购。

2、2004—2012年的8年间,卫星通信消费市场比重增加最多,年均增长5.9个百分点;2012年卫星宽带通信增长最快,为25个百分点。虽然市场主要在美国,但代表着行业发展的新趋势。

3、2004—2012年的8年间,卫星直播增长最快,广播和电视年均增长分别为10.3和6.5个百分点。

4、卫星转发器租赁(转发协议)增长最慢,2004—2012年的8年间年均仅0.8个百分点,比重减少也最多,为4.5百分点,这也许是很多国家将卫星托管或合并给国际或洲际公司组织的原因所在。

5、全球卫星运营业发展很快,但区域差别仍较大,卫星转发器服务也不平衡。例如,美国每30万人有一个转发器,在欧洲是万人一个,而在亚洲,是600万人一个。近几年,后发国家发展较快,排名有所提前,但前四位的排名变化不大,营业收入仍占64%,可用转发器占60%,商业C波段和KU波段转发器容量占61%。前四名分别是国际通信卫星组织(Intelsat)、欧盟SES全球卫星通信公司、法国的欧洲通信卫星公司(Eutelsat)、加拿大电信卫星公司(Telesat)。

二、全球卫星电视用户市场分析

截止到2012年底,全球电视用户至少有11.72亿,家庭普及率53%,数字化率43%、付费用户率66%;卫星电视覆盖97个国家和地区;卫星直播用户(含政府付费)至少有2.88亿,用户率25%左右,少于有线电视。全球卫星电视直播市场大体可分为四个区域,亚太地区欧洲地区,美洲地区,中东和非洲地区。整个美洲是全球最成熟的市场,高清率最高,全球近60%的HDTV频道服务于美洲。欧洲是传统市场,高清率低于美国,卫星宽带有待发展。亚太地区是蓬勃发展的新兴市场,亚太地区日本技术上暂时领先,中国发展速度惊人,按照卫星转发器收入计算,中国卫通从名不见经传一跃排名第13位。全球卫星电视直播市场最大的是亚太地区,用户至少8500万,其中中国用户5430万、印度880万、韩国660万,日本天空用户超500万。但是,中国人口世界第一,占全球人口的19%多,家庭众多,卫星直播家庭普及率还很低。第二是欧洲地区,用户至少有8256万,卫视用户率34%。德国1807万、英国1205万、法国约500万。第三是中东和非洲,大部分属于免费,用户有6177万,卫星电视渗透率为67%。在海湾国家,用户大多是通过双天线或双高频头接收卫星信号。第四是美洲,付费用户占大部,用户至少有5845万,其中美国3403.4万,南美加美国外的北美有2100万。近年来,全球卫星电视直播市场呈现跨越式发展态势,亚太地区迅速崛起,成为耀眼的新秀。尤其是2006年以来,亚太卫视用户快速增加,成为全球最大的市场。2010年,全球新增近2500个卫星付费电视频道,其中超过四成来自亚太市场。由于亚太地区经济发展水平落后于欧美,卫星电视运营商多采用低价战略,迅速占领市场、扩展用户,以求后期获得利润。如印度卫星电视收费标准为每月5美元或更低,这促使数量迅速攀升,直追美国。中国“村通”工程定位于公益平台,免费接收。这些措施,成就了亚太卫星电视市场迅速发展。但是,亚洲卫星电视运营商还不能用更多的资本促进市场成熟,暂时还难与欧美匹敌。

三、卫星通信广播发展的趋势

1、拥有固定通信卫星国家(地区)在减少。

2005年有固定通信卫星公司的国家和地区有33个,现不到30个。近些年,美国和欧洲的一些卫星公司先后托管或合并于国际或洲际卫星公司组织,如美国泛美卫星和回声卫星公司(故据2012年固定通信卫星排行榜合并列出);欧洲国家多参与欧洲SES全球卫星公司,有荷兰的新天空卫星公司、挪威的电信卫星广播公司、瑞典的天狼星公司、土耳其欧亚卫星公司等。拥有自己卫星公司的国家和地区减少的主要原因,可能是发射和运营固定卫星成本,与收入相比,投入和产出比不高。

2、地面和空间运营结合的模式有扩展的趋势。

卫星通信运营商可分为三类:第一类是以卫星空间段为主的运营商,如国际通信卫星组织(IntelSat)、欧盟SES全球通信卫星公司等。第二类是空间和地域段结合的运营商,如美国DirecTV公司等。由于地面运营比空间运营经济效益高很多,第三类是以地面运营为主的公司,如康卡斯特(Comcast)有线通讯公司。以上三类公司的业务收入各相差一个等级。2012年收入,空间运营最大的国际通信卫星组织为26.99亿美元,空间和地面结合运营的DirecTV公司是前者的11倍,达297亿美元。有线电视运营为主的康卡斯特公司,世界2000强排56位,营业收入626亿美元,是第二类的2.11倍。所以,后发展国家和地区,主要采取租用卫星,重点发展地面业务。

3、天地网络不断融合。

即卫星通信与有线电视、宽带互联网、移动互联网等四业融合。目前,有线电视、宽带互联网、移动互联网在数字媒体、信息服务行业已经占主流地位,其主要原因是地面网络天然具有互动性和社交功能,而卫星通信则以单向广播见长。但是,它们之间具有明显的互补性。这为它们的相互融合提供了基础。毕竟,卫星通信、有线电视、宽带互联网、移动互联网都属于信息服务业,相互融合是共同的发展趋势,全网络、全终端、全内容是共同的发展战略。

4、新技术广泛运用。

卫星通信业是典型的技术密集性行业,技术进步是卫星通信行业发展的主要推动力量。如直播技术、Ka频段多点波束、卫星移动通信技术等。此外,地面移动通信的成果也在不断被卫星通信所应用。卫星通信与地面移动通信都属于无线通信,使用相近的频段。在很多情况下,卫星移动通信与地面移动通信需要相互补充使用,以实现无缝覆盖,这决定了它们可以共享很多技术,如空中接口、多址接入等。目前,卫星移动通信采用了所有的地面移动通信多址技术,如FDMA、TDMA、CDMA、SDMA。例如,基于第二代GSM系统(TDMA)的GMR-1标准已被Thuraya采用,GRM-2则被ACeS和Inmarsat-4采用。

卫星通信篇4

1.1卫星通信系统组成卫星通信系统由两段组成,即地面段和空间段。

1.1.1空间段空间段包括通信卫星以及地面用于卫星控制和监测的设施,即卫星控制中心,及其跟踪、遥测和指令站,能源装置等。

1.1.2地面段地面段包括所有的地球站,这些地球站通常通过一个地面网络连接到终端用户设备,或直接连接终端用户设备。地球站的主要功能是将发射的信号传送到卫星,再从卫星接收信号。地球站根据服务类型,大致可分为用户站、关口站和服务站3类。

1.2卫星通信系统的工作过程卫星通信系统地球站中各个已调载波的发射或接收通路经过卫星转发器转发,可以组成多条单跳或双跳的双工或单工卫星通信线路,整个通信系统的通信任务就是分别利用这些线路来实现的。单跳单工的卫星通信系统进行通信时,地面用户发出的基带信号经过地面通信网络传送到地球站。在地球站,通信设备对基带信号进行处理使其成为已调射频载波后发送到卫星。卫星作为中继站,接收此系统中所有地球站用上行频率发来的已调射频载波,然后进行放大和变频,用下行频率发送到接收地球站。接收地球站对接收到的已调射频载波进行处理,解调出基带信号,再通过地面网络传送给用户。为了避免上下行信号互相干扰,上下行频率一般使用不同的频谱,尽量保持足够大的间隔,以增加收发信号的隔离度。

2卫星通信所使用的频率

卫星通信所用的频率大多是C频段和Ku频段,但是由于业务量急剧增加,这两个频段乃至1—10GHz的频段都显得过于拥挤,所以必须开发更高的频段。现已开发出Ka(26—40GHz)频段,其带宽是3—4GHz,远大于上述两个频段。

3卫星通信的基本参数

3.1有效全向辐射功率:也称等效全向辐射功率,其定义为发射机发出的功率与天线增益的乘积。

3.2噪声系数和等效噪声温度:噪声系数,定义为接收机的输入信噪比与输出信噪比的比值,它用来表示接收机噪声性能的好坏。根据噪声理论,电子元器件内部的电子热运动和电子不规则的运动都将产生噪声,而且温度越高,噪声越大。所以接收机的噪声可用等效噪声温度来衡量。等效噪声温度是假设接收机输入端接一等效电阻,该电阻在一定温度下与该系统实际产生的噪声温度相同的热噪声。

3.3载噪比:卫星通信线路中的载波功率与噪声功率之比,是决定卫星通信线路性能的最基本的参数之一。

3.4地球站的品质因数,定义为接收机天线增益与接收端系统噪声温度之比。

3.5卫星转发器饱和通量密度:表示卫星转发器的灵敏度,其基本含义是,为使卫星转发器单载波饱和工作,在其接收天线的单位面积上应输入的功率。

3.6门限载噪比:为保证用户接收到的话音、图像和数据的质量达到一定要求,接收机所必须得到的最低载噪比,也是门限载噪比的含义。

4卫星通信与互联网

互联网是全球最大的多媒体商用网络、信息库和数字媒体。互联网和数字技术的发展使得所有信息内容都在网上实现,特别是数字音视频技术使得可以在互联网上看电视听广播[3]。由于卫星通信具有三维无缝覆盖能力、远程通信、广播特性、按需分配带宽,以及支持移动性的能力,成为互联网摆脱自身诸多问题的一个重要途径,也是向全球用户提供宽带综合互联网业务的最佳选择[4]。基于卫星的互联网是卫星直播、数字音视频、互联网的有机结合,作为一个开放、宽频、实时广播的网络平台,可以提供以下服务。

4.1宽带互联网接入,可根据使用者的需求,通过地面网络和卫星线路回传。

4.2多媒体服务,比如网页内容投递、内容镜像、缓存、数字电视、商务电视、流式音视频、软件分发(更新)、远程教学、信息商亭等。

4.3交互式应用,如视频点播、网上学习、网上游戏等。卫星通信与互联网结合能够带来很多益处,同时也应注意到,卫星系统和现有互联网地面基础设施之间的结合存在着互操作性问题,再设计和实现基于卫星的互联网时还存在许多技术挑战。

5卫星通信与导航定位系统

该系统是以人造卫星为导航台的星基无线定位系统,其基本作用是向各类用户和运动平台实时提供准确、连续的位置、速度和时间信息。目前该技术已基本取代无线电导航、天文测量和大地测量,成为普遍采用的导航定位技术。拥有此技术及能力,国家就会在政治、军事和经济等诸多领域占据主导地位,因此世界各大国不惜花巨资发展这一技术。1958年美国为解决北极星核潜艇在深海航行和执行任务中的精确定位问题,开始研究军用导航卫星,命名为“子午仪计划”,从1960年起就取消了无线电导航,第二代导航系统即———GPS(GlobalPositioningSyitem)便应运而生。俄罗斯的GLONASS(GlobalNavigationSatelliteSystem)是继GPS之后又一全球卫星导航系统,欧盟与欧空局也开发了新一代卫星导航系统———伽利略(Galileo)系统,习惯上称其为3G(GPSGLONASSGalileo)系统。我国的导航定位技术始于GPS,从2000年10月开始,我国发射了多颗导航卫星,命名为北斗卫星导航系统,现已覆盖我国及周边地区,预计2020年前后覆盖全球。

6卫星与激光通信

卫星与激光通信是利用激光光束作为信息载体在卫星间或卫星与地面间进行通信。经过多年探索,卫星激光通信已取得突破性进展,逐步成为开发太空、利用广阔的宇宙空间资源提供大容量、高数据率、低功耗通信的最佳方案,对于国防及商业应用都具有极大的价值。其原理是信息电信号通过调制加载在光波上,通信双方通过初定位和调整以及光束的捕获、瞄准和跟踪建立起光通信链路,然后在真空和大气中传播信息。其组成有激光光源子系统、光发射/接收子系统、APT子系统和其他一些辅助系统,其工作过程如下:

6.1发射过程。使用不同的激光器,产生信号光和信标光。经准直系统对激光进行光束准直后,具备了合适的发射角,2束光由合束器合成1束光,然后经分光片、精对准机构和天线发射出去。

6.2接收过程。接收到的光经过天线和分光片后,信标光一部分到达粗对准探测器,由粗对准控制器控制和驱动电路控制粗对准机构,完成粗对准和捕获;信标光另一部分经精对准机构、分光片、分束片到达精跟中踪探测器,由精对准控制器控制精对准机构,完成双方的精确对准和跟踪。信号光由信号光探测器检测。

7卫星与量子通信

卫星搭载量子通信技术,能够使人们借助外太空的卫星平台,建立星地高效自由空间量子信道,实现量子保密通信、星地量子纠缠分发、量子隐形传态实验。我国拟在近期发射量子通信卫星,在卫星平台应用量子技术的能力将达到世界领先水平。

7.1星地量子通信通过自动跟踪瞄准系统在高速相对运动的地面站和卫星终端之间建立高效稳定的量子信道,地面站随机发送H/V和+/-四种偏振状态的单光子信号;接收端接收量子信号,并随机选择H/V或+/-基矢对单光子信号进行测量;测量到足够的量子比特后,接收端将通过经典信道通知发射端其每次测量所用的基矢,抛弃所用基矢不一致的测量结果;接收端再将基矢选择一致的测量结果取一部分在经典信道公布出来供发射端校验。通过这一过程就可以在星地之间建立安全的量子密钥。

7.2星地纠缠分发将纠缠光源放在卫星上,通过搭载在卫星平台上的望远镜系统和自动跟瞄系统同时与两个地面站之间建立量子信道。将纠缠光子对的两个光子分别发送给两个地面站,两站在满足类空间隔条件下分别对纠缠光子对进行独立测量,观测量子纠缠现象。

7.3星地量子隐形传态地面量子信源产生一对纠缠光子,其中一个光子通过地面发射端传输给卫星,另一个放入量子存储器中存储起来。空间量子通信平台将接收到的光子态和未知量子态进行联合Bell态测量,同时将测量结果通过经典信道传输给地面系统。地面系统将另一个纠缠光子从量子存储器中读出来,并根据空间量子通信平台的测量结果进行相应的幺正变换,从而得到空间量子通信平台的未知量子态。

通过利用空间平台中转,我们可以在地球上的任意两点之间建立量子信道。在传输过程中,光子的传输距离可达数万公里甚至更远。只要能够实现将纠缠光传出大气层,配合星载平台技术和光束精确定位技术,就可实现覆盖全球的量子通信系统。卫星通信是通信技术、计算机技术和航天技术相结合的重要成果,在国际通信、国内通信、国防通信、移动通信以及广播电视领域均有广泛应用,已成为最强有力的现代通信手段之一。

卫星通信篇5

跟踪系统由基本形式均由天线、馈源、接收设备(或计算机)、伺服控制单元等组成。按照天线跟踪目标的方式分类有:①手动跟踪②程序跟踪③自动跟踪

1、手动跟踪

手动跟踪是指根据经验或预知的目标位置数据(如卫星轨道位置)随时间变化的规律,用人工按时调整天线的指向,或者是根据收到信号的大小用人工方式操纵跟踪系统,使其接收最强的信号(用频谱仪或接收机监视)。手动跟踪可以每隔一段时间进行一次。手动跟踪系统由天线、频谱仪(或接收机)、伺服控制器等组成。手动跟踪设备最为简单,可应用于地面站小口径天线对同步卫星的跟踪等指向精度和实时性要求较低的场合。

2、程序跟踪

将卫星的星历数据和天线平台地理坐标和姿态数据一并输入计算机,计算机对这些数据进行处理、运算、比较,得出卫星轨道和天线实际角度在标准时间内的角度差值,然后将此值送入伺服控制器,驱动天线,消除误差角。不断地比较、驱动,使天线一直指向卫星。程序跟踪可以应用在地面或车载小口径天线对卫星的跟踪。由于地球的密度不均匀和其他干扰的影响,星历数据会随着时间有小的变化,一般很难计算出长时间的精确轨道数据。从而进行长时间的跟踪会有积累的误差。

3、自动跟踪

自动跟踪是指根据地球站天线接收到卫星所发的信标信号,通过变频、放大输入跟踪接收机,检测出俯仰和方位误差信号,根据误差信号大小和方向由伺服控制器驱动天线转台系统,使天线自动地对准卫星。这种跟踪方式没有误差积累,可以长时间连续跟踪。由于卫星位置受影响的因素太多,无法长期预测卫星轨道,故目前大、中型地球站主要采用自动跟踪为主,手动跟踪和程序跟踪为辅的方式。按照自动跟踪原理和设备组成,自动跟踪可以具体分为三种体制:步进跟踪、圆锥扫描跟踪和单脉冲跟踪。

3、1步进跟踪

步进跟踪是指天线指向以一定的步进向接收电平增大的方向进行不断调整。步进跟踪是开环方式,跟踪精度较低,跟踪速度较慢。步进跟踪适用于要求跟踪速度较低的系统中,如漂移速度较慢的同步卫星的跟踪。其优点在于实现较为简单。

3、2圆锥扫描跟踪

圆锥扫描跟踪是把馈源绕天线对称轴作圆周运动,或把副面倾斜旋转。这样天线波束呈圆锥状旋转,当天线轴对准卫星时,地球站接收到的信标电平是一恒定值;当天线轴偏离卫星时,接收电平将有一个低频幅度调制。根据调制信号的幅度和相位检测出天线波束的指向误差。这种工作方式的优点也是设备较简单,缺点是馈源永远偏离抛物面的焦点,使天线增益下降。同时需要馈源持续的圆周机械运动,可靠性较差。跟踪时要得到一系列回波脉冲后,才能得到角误差信号,实时性稍差。

3、3单脉冲跟踪

单脉冲跟踪方式由天线馈源输出和信号与差信号,和、差射频信号经射频前端变换处理后送至跟踪接收机,并由跟踪接收机输出两路与天线电轴偏离卫星角度成正比的方位误差信号与俯仰误差信号到伺服控制单元,控制天线运动,完成对卫星的实时跟踪。单脉冲跟踪能从每个接收脉冲中得到完整的角误差信息,这种跟踪方式是一个闭环系统,具有实时性好,跟踪精度高的优点。根据通道数量的不同有单通道、双通道、三通道等三种不同的实现方式。三通道方式中天线接收到的信号,经过和、差网络处理后,产生和信号、方位差信号与俯仰差信号。通过三个通道传送到跟踪接收机进行跟踪处理。双通道方式是方位差信号与俯仰差信号正交相加后合成一个差信道,或者是采用高次模方式产生差信号,与和信道一起构成双信道。单通道方式是在双通道的基础上对差信号进行调制,调制后的差信号与和信号合路形成一个通道。

二、各种方式的比较与应用

在实际应用中,它构成由航天控制中心、测控站和专用通信网为主要内容的.对在轨航天器进行跟踪、测量、控制的综合专用技术网络,包括跟踪、遥测、遥控、实时计算、数据处理、监控显示和通信系统等。其功能是:对航天器进行跟踪测量,获取其运动参数和内部的各种物理、工程、宇航员生理以及侦察参数,监视其飞行和内部工作状态,为指挥、控制提供信息;对导弹和运载火箭实施控制,确保试验安全:对卫星实施控制,支持其正常运行;通过对实测数据的处理、分析,为评价航天器的技术性能和改进设计提供依据。

1、卫星地球站同步卫星的跟踪

在理想的条件下同步卫星的相当于地面的位置是固定的。但由于摄动的原因,卫星轨道存在漂移。为了能实时跟踪卫星的漂移,卫星地球站必须要使用跟踪系统。根据安装位置不同,地球站分为固定站、车载站、船载站和机载站,可以使用单脉冲(或圆锥扫描)跟踪和程序跟踪或同时使用。

2、低轨卫星及移动目标的跟踪

卫星通信篇6

>> 国外卫星激光通信系统技术及新进展 激光通信技术的前景及应用 无线光通信技术 空间卫星光通信链路关键技术与方案的研究 论述卫星光通信技术的发展与应用 关于卫星光通信技术发展及其影响因素的研究 激光通信中平台扰动抑制技术的研究 无线激光通信中的图像去噪处理技术 空间激光通信技术最新进展与趋势 试论空间激光通信技术最新进展与趋势 光通信技术现状和发展 无线光通信技术概析 无线光通信技术的应用 为什么说激光通信最保密 激光通信系统噪声分析和处理方法 潜艇激光通信的数值模拟 空间激光通信研究及发展趋势 空间光通信 光通信技术在宽带通信中的应用 光通信未来发展的热点技术展望 常见问题解答 当前所在位置:.

[3]C.Moore,H,Burris,etc. Overview of NRL's maritime laser communication test facility [J].SPIE Vol 5892:58920601-58920612.

[4]Lawrence Robertson. A Multi-Access Laser Space Terminal System for Transformational Communication [R]. .

[5]Robert Lange ,Berry Smutny, etc.142km ,5.625Gbps Free-Space Optical Link based on homodyne BPSK modulation[J].SPIE Vol 6105:6105A01-6105A09.

[6]王红亚,谢洪波.高速大气激光通信收发模块设计[J].电子测量技术,2005.3:94-95.

[7]赵尚弘,吴继礼,李勇军,等.卫星激光通信现状与发展趋势[J].激光与光电子学进展,2011(48).

[8]柯熙政,席晓莉.无线激光通信概论[M].北京:北京邮电大学出版社,2004.

[9]Tzung-Hsien HoStuart,D. Milner, Christopher C. Davis. Pointing, Acquisition and Tracking System with Omnivision [J].SPIE Vol 5892:589201-589212.

[10]Yushan Li, Hazem Refai1, etc. Positioning and Tracking Control System Analysis for Mobile FreeSpace Optical Network [J].SPIE Vol 5892:58921D01-5892D12.

卫星通信篇7

卫星通信具有覆盖的面积较为广泛,通信的距离较长;通信成本跟通信距离的长短没有太大的关联,不会轻易受到陆地灾害的影响,可靠性较强;通信较为灵活,不受地理条件限制;通信的频带宽,通信容量大,能够适应多种通信业务等优点,因而在应急通信中被广泛的运用。

1应急通信的定义

所谓应急通信,即是发生自然或者人为的突发性紧急情况时,将不同的通信资源综合的利用起来,以确保救援和紧急救助工作能够及时开展而用到的必须的通信手段跟手法。而应急通信是一种由多种通信技术、通信手段综合运用的一项新技术,不是独立存在的,当遇到紧急情况时,应急通信不单单只涉及到技术问题,更多的还会涉及到管理问题,这也是应急通信的核心所在。此外,由于应急通信系统具有很多不确定因素存在,所以对于通信网络或者设备就会有许多特殊的要求,以便从技术方面为通信技术提供保障。然而在对应急通信进行管理时,相应的应急通信管理体系也要同时建立起来,不同的场景应用不同的响应机制,协调调度最合适的通信资源,提供最及时有效的通信保障。应急通信场景示意图见图1。

2突发事件特点及对卫星通信要求

突发事件有以下四个特点:①事件类型缺乏稳定性,任何一种突发性公共事件都有可能发生;②无法准确预测事件发生的具体时间,没有办法提前预知到地面网络发生故障的具体时间;③无法确定事件发生时的所在地点,交通、地形与气候状况等因素影响具体的地点的探测;④无法知晓事件产生的影响程度,地面通信网络的毁坏程度和应急通信的储存容量要求不能准确得到真实信息。为了保障突发性公共事件能适应应急通信的要求,卫星系统及其设备对环境要有很强的适应能力,无论在那种气候条件和地理环境中都可以畅通使用;必须便于携带与可移动的功能,在发生紧急事件时,可快速到达现场;能快速的和指挥中心进行通信联络;能合理利用并灵活调整、配置卫星转发器的信息资源;还要具备延伸性,以达到适合处理大业务量和传送大量业务的要求。

3卫星通信在应急事件中的应用研究

3.1功能性角度的应用

从卫星通信的功能性角度来看,可以将卫星通信的应用分为三种方式:①以语音通信为主;②以综合接入;③中继备份。首先以语音通信为主的应用方式一般都是利用移动卫星业务的终端实现信息的传输,能够为通信系统提供相应的语音、漫游、短信、定位以及低速数据等功能,而且不同的卫星通信系统其功能也大不相同。其次利用综合接入的方式能够为应急现场以及指挥中心提供容量较大的语音通信,以及传送大量的数据,或者静止、运动图像。一般来说,利用TCP/IP等基站为卫星站提供综合接入功能的数据和信息。最后中继备份的应用方式支持2Mbit/s以上的中继传输电路,紧急情况下提供应急事件现场与公众通信网络(或行业专用通信网络)之间的中继电路。中继备份所使用的卫星站可以基于IDR(或IBS)系统或者VSAT系统实现。IDR(或IBS)系统提供中等速率电路,支持数据通信和语音通信,通常应用较多的是2Mbit/s和8Mbit/s速率。VSAT系统目前多数基于IP实现,通常可支持2~8Mbit/s数据速率。

3.2机动性角度的应用

通常来讲,能在卫星站进行紧急通信工作的叫卫星站机动性。从这种角度,卫星站分为两种:便携站与车载站。每个设备与地面站或其他移动站间的通信是靠卫星链路来实现的,可以手持终端并且能允许两人以内行动的卫星站指便携站。它的系统容量不大,主要有语音通信和综合接入两种应用,以保障每级事件的通信完成。便携站使用集装箱的方式,一般利用飞机进行运输,它的尺寸、重量与抗震要求及其包装的方式可以按照相关规定与标准进行处理。集装箱必须预留通信接口,以便与其他设备进行通信连接,实现现场紧急处理工作。便携卫星站应在30min内完成抵达现场后的组装,并建立卫星通信。便携站的重量一般在200kg以下。一旦发生了特别严重的突发事件,当地的应急通信保障能力不够或者地面道路的条件不够好时,就可以使用便携站空运或空投至应急现场;而当突发事件发生但对于通信的需求较小时,亦或是通信需求大而应急车辆不能够第一时间赶到现场,就可以使用手持终端或人工搬运的便携站。此外,为了能够为综合接入以及备份业务提供方便,可以在应急车辆上安装车载卫星站或者用车辆将车载卫星站运到现场,到达现场10min后,建立好卫星通路,这样的方法对于那些特大、重大突发事件以及举行重大活动提供应急通信保障有很大的帮助。

4应急卫星通信系统及其建设研究

4.1卫星移动通信系统

如今,我国在开展的卫星移动通信业务时,主要使用的是国外的卫星移动通信系统进行工作,覆盖我国的五个通信系统,分别是:①新亚星系统;②全球星系统;③海事卫星系统;④铱星系统;⑤Thuraya卫星系统。在实际的应用中,可以根据卫星信号的强弱、卫星的使用费用以及卫星的业务能力和卫星的终端小型化这一系列因素,来进行卫星移动通信系统的选择。尽管国外的卫星移动通信能够满足一定的应急移动卫星业务需求,但是其信息的安全以及频率协调度都不能够有所保证,所以通常被应用到那些对于信息的安全度要求不够高的应急现场。卫星移动通信系统是国家一项具有战略性的信息基础设施,对于国家的社会、经济的发展以及国家的安全都有着很重要的影响,所以拥有自己专属的卫星通信系统很有必要,因而现阶段我国正在对拥有专属的卫星移动通信系统进行研究。

4.2宽带VSAT卫星通信系统

由于VSAT卫星通信系统具有以下几个优点:①技术成熟;②可靠性高;③网络结构的样式多样;④设计方法灵活多变;⑤空间频段资源比较丰富;⑥通信系统正不断向国产化发展。而上述的这些因素为信息系统的设计以及建设应急VSAT卫星通信网提供了技术、资源等方面的必要保障,近几年,VSAT系统已经渐渐能够支持宽带应用。在对VSAT卫星通信系统进行设计时,要将网络系统结构、技术体制、网络管理以及跟地面网的互联互通方面进行重点考虑。VSAT的网络结构形式一般有网状网、混合网以及星状网这三种形式。而应急VSAT系统支持的业务类型包括语音、高速数据和图像传送等业务,其中语音业务对时延敏感。按照对我国突发公共事件的处理流程来看,通常会在应急通信现场中不同的卫星站跟应急后方的指挥中心之间使用语音业务;而在应急现场跟后方指挥中心之间常常会使用数据和图像业务。所以,那些各站跟主站之间的星型网状、省内各站之间网状网的混合网结构更适合采用应急VSAT系统。卫星通信体制跟通信系统所采用的基带信号类型一般与五种方式有关:①复用方式;②信道分配;③多址方式;④调制方式;⑤交换制度。当前,VSAT技术体制的选择主要集中在多址方式上,FDMA/DAMA和MF-TDMA方式是应急卫星通信系统最常用的技术体制。采用FDMA/DAMA技术体制组建卫星网操作维护简便,终端的机动性好,非常适合应用在应急通信中。

5结语

总之,应急现场的环境通常都是复杂多变的,难以预测,为了使得突发事件发生时,现场的通信联络能够有所保障,对应急现场进行高效率的指挥,必须确保应急系统足够可靠。信息化迅速发展的时代,要注重于国内外形势相结合,不断对卫星通信中的应急通信系统进行探索和研究,使得应急通信更加完善、更加实用。

卫星通信篇8

为了使构建的卫星通信业务基本框架符合企业运营流程管理逻辑,支撑卫星网络规划建设,提供面向客户的运营服务和保障,卫星通信业务基本框架采用自顶向下的方法,对卫星通信服务进行模块划分、描述和定义,力争构建起一个涵盖卫星通信业务建设、运营、管理完整业务链、全面系统的基本框架。

1.1基本框架的模块设计思路

对于卫星通信企业来说,卫星通信业务是其最根本的核心产品,卫星通信企业是通过向客户销售卫星通信业务产品,以实现满足客户需求、增加客户价值和公司盈利发展。因此,我们首先选取卫星通信业务为切入点,希望采用价值链分析方法对卫星通信业务产品的全生命周期进行细化分解,力争能够理清、认识、理解各组成环节要素及其相互关系,为基础框架的设计奠定基础。如图1所示,在一个卫星通信业务的全生命周期中,主要包括了前期客户需求调查研究、业务规划、产品设计、能力建设,中期的市场营销、业务开通、服务保障、运行维护,以及后期的业务产品退出或转型升级等各环节要素;另外在其各个环节实施过程中还需要企业人力、财务、质量管理、知识管理、品牌建设等运作管理环节进行基础支撑保障。从图1可以看出,卫星通信业务的全生命周期基本上分为两个阶段,第一阶段为前期卫星通信业务规划和能力建设,其主要完成了由战略和业务目标驱动,进行基础设施建设和形成业务产品或服务能力;第二阶段为中后期的卫星通信业务的运营和服务,主要承担了对业务产品进行运营管理并形成服务能力和产生收益。两个阶段之间相互关联、协同发展。业务规划与能力建设工作是运营与服务工作的前提和条件。只有设计出满足市场需求的业务产品,并能够及时具备能力并推出市场,才能够向客户提供满意的服务和可靠地运营保障;另一方面,运营与服务工作是业务规划和能力建设的实现和发展。业务规划和能力建设工作完成之后,必须通过运营和服务来实现产品销售和客户价值增加,在给客户提供服务的过程中不断发现和挖掘客户需求,并能够及时反馈给业务规划与能力建设进行业务产品的改进、提升和开发,从而形成最令用户满意、最具竞争力的优质服务产品。与此同时,两个阶段的各个环节都需要企业管理来进行支撑和保障。对于运营服务型企业来说,其更加关注运营与服务,所有业务规划与建设以及企业管理工作,都是企业为了通过运营服务产生价值、满足客户需求所需不同层面的服务保障工作。因此,为了在基础框架中突出强调卫星通信业务的规划建设和运营服务支撑的两个关键环节,同时体现出企业管理的基础支撑和保障作用,我们从总体上将卫星通信业务基本框架分为三大模块,即,战略与基础设施模块、运营与服务模块和企业管理模块,如图2所示。

1.2基本框架的层次设计思路

客户的卫星通信业务需求分类多种多样,我们可从市场、产品、资源和组织四个关键因素进行分析研究。客户购买的是卫星通信业务产品,而卫星通信企业的核心基础设施所能支撑的仅是企业向客户提品所需要的资源能力,要想将资源能力转化为客户需求实现,还需要通过卫星通信业务产品进行有效衔接。对于卫星通信企业而言就是对各种卫星通信资源和服务能力进行规划、设计和组装,形成了可以独立计价和运维支撑的业务产品。此外,客户所需业务产品多样,卫星通信服务商还需要结合供应商或者合作伙伴的基础设施资源进行有效组合使用,以发挥核心资源的最大效能和满足客户需求实现。因此,客户需求的实现主要由卫星通信企业的市场、业务、资源和供应商等关键因素协同完成。另外一方面,在基本框架的设计中,我们希望构建起能够面向客户的端到端运营服务支撑体系,即以客户需求为引导,业务实现为手段,资源、供应商和组织管理流程为保障的运营服务体系。主要经过市场需求的挖掘、提炼与转达,业务的开发、集成与实施,调动内外部资源,最终实现业务并反馈给用户的过程,如图3所示。该过程中,输入端是市场,输出端也是市场,形成的是一个从市场到市场的端到端的闭环,从而最终实现为客户提供最为优质和满意的服务。综上所述,为了表明客户需求实现过程中四个关键要素及其之间的相互支撑关系,并强调打造端到端的高效运营服务体系,我们在三大模块基础上,又将卫星通信业务基本框架划分为四个层次,包括市场层、业务层、资源层和供应链层,如图4所示。如图4的层次设计,将市场层放在最高层客户紧邻的第一位,突出强调企业是从客户需求出发,以客户需求为根本依据的理念;逐级向下的各层分别为业务层、资源层和供应链层,充分体现了客户需求实现是通过具体业务来实现,业务产品需要资源提供支撑,最底层的供应商和合作伙伴为企业提供除核心资源以外所需配套资源的各要素协同关系。这种层次设计充分体现出卫星通信企业的以客户为中心为市场服务的运营理念。

2基本框架各模块的设计

根据前述基本框架结构设计思路,我们对卫星通信业务基本框架各模块进行进一步设计和定义,各模块功能描述如下。战略与基础设施模块设计战略与基础设施模块主要负责指导和支撑运营服务。包括市场战略、资源战略的制定、基础设施规划、基础设施的构筑、产品和服务的开发和管理以及供应链/价值链的开发和管理。其中,基础设施不仅包括空间卫星资源的规划、建造、测控、运营和退役的全生命周期管理,还包括支撑产品运营服务的其他硬资源和软资源,如地面测控系统、客户关系管理、知识共享库,等等。运营与服务模块设计运营与服务模块主要负责客户需求实现和服务保障。包括日常的服务提供、运营支撑准备、质量保障以及销售管理和供应商/合作伙伴关系管理等,其包含所有由客户驱动的直接面向客户的运行和管理工作。组织管理模块设计组织管理模块为完成战略与基础设施模块和运营与服务模块所需进行的公司内部机构组建,包括了任何商业运行所必须的基本的企业或商务支持。

3基本框架各层次的设计

3.1市场层设计

市场层主要包括客户需求挖掘、分析、客户细分、销售和渠道管理、市场营销管理、服务产品和定价管理,以及客户关系管理、问题处理、服务等级协议管理和计费等。在战略与基础设施模块内,市场层提供对企业核心业务产品的规划开发管理,包括制定战略、开发新产品服务、管理现有资源、实施市场及战略等所需职能。在运营与服务模块内,客户关系管理集中考虑客户需求的基础情况和管理。

3.2业务层设计

业务层包括业务的设计开发、业务配置、业务问题管理、质量分析以及业务使用量的计费等。在战略与基础设施模块中的服务开发与管理就是为运营与服务模块提供所需产品或服务能力的规划、开发和建设,它包括服务战略制定、服务的性能管理和评估、确保未来服务需求能力等所必须的功能。在运营与服务模块中业务运行管理聚焦于对客户服务的提供,包括客户需求分析、服务方案设计、和服务保障等客户服务所需的功能性需要。本层的焦点是服务提供和管理,面向客户提供个性化服务。

3.3资源层设计

资源层主要包括基础设施的规划设计、建设和管理,是为支持卫星通信运营服务所需的卫星资源、地面基础设施和软资源等的规划、开发和交付,主要包括卫星资源、卫星测控站、业务监测站、运营服务网络平台、IT系统、知识共享库等,以及新技术的引入与现有资源技术的互相作用、现有资源性能管理和评估,确保满足未来服务需求的能力等所必须的功能。资源管理和运行主要负责卫星资源管控(卫星性能监视、分析和控制)和其他地面基础设资源的运维管理等所有功能性责任,确保各类基础设施资源平稳运转,能够为客户提供所需的端到端服务能力,并直接或间接地响应服务、客户和员工的需求。同时也包括对资源的功能集成、关联和实时数据统计,以便进行信息综合管理和采取提质增效措施。

3.4供应链层设计

供应链层主要包括处理与卫星建造商、设备提供商、集成商和工程服务商等合作伙伴的交互,它既包括基础设施的供应链管理,也包括与供应商和合作伙伴之间关于日常运营的接口管理。

4基本框架的整体设计

综合上述分析,卫星通信业务基本框架模型一方面突出卫星服务商的基础设施规划建设和运营服务支撑的核心重要性,另一方面强调面向客户、聚焦前端提供端到端的服务交付能力,从而我们可以得出卫星通信业务基本框架的整体结构设计,如图5所示。如图5所示,箭头以上半部分代表从卫星通信业务的全生命周期管理和客户需求实现两个维度进行的三个模块、四个层次结构设计思路;箭头的下半部分表示抽象化、可视化的卫星通信业务基本框架结构设计。该基本框架从顶层将卫星通信业务服务商划分为战略与基础设施、运营与服务和组织管理三大模块,并在框架布局上体现出面向客户的服务中战略与基础设施是前提先导,运营与服务是关键实施,组织管理是全过程支撑的运营特点;该框架自上而下的四个层次架构设计,充分体现出卫星通信企业是以客户需求为引导,以业务实现为手段,以资源和供应商为保障的层次递进关系,各层次环环相扣,紧密链接。这种以客户为中心,面向市场的层次设计,确保企业在享用客户需求时更迅速、策略更灵活,大大提供客户满意度,同时能够更优化企业内外部软硬资源的工作效能,以最高效的方式为客户提供最适当的信息服务,真正做到让大市场来主导企业的流程架构。

5结束语

本文自上而下,从顶层设计全面搭建了卫星通信业务基本框架的整体架构。一是总结提炼卫星通信业务建设及运营、管理经验,按照卫星通信业务规划建设、业务运行、经营管理“三大方面”主要任务,构思设计了规划与基础设施、运营与服务、组织管理“三大模块”,突出体现了业务规划与基础设施的核心先导位势、运营与服务的经济中心位势、以及经营管理的支撑保障位势,确立了基本架构的垂直结构。二是结合卫星通信业务分类“四个维度”,以面向市场、服务客户、统筹资源、全球供应为基本设计原则,从端到端将卫星通信业务链条划分为市场、业务、资源、供应链“四个层次”,确立了基本构架的水平层次。三是将“三大模块”和“四个层次”相结合,对规划与基础设施、运营与服务两个模块,分垂直和水平两个方向过程进行设计,并以组织管理模块作为上述业务活动的全面支撑,搭建了卫星通信业务的整体架构,明确了基本框架中各模块、层次的结构关系,实现了对卫星通信业务建设、运营、管理各方面工作的全覆盖。

上一篇:光通信范文 下一篇:电子与通信工程范文