卫星通信论文范文

时间:2023-10-13 15:49:12

卫星通信论文

卫星通信论文篇1

空军第二飞行学院

空间环境中影响CTE特性的重要参数包括辐射源粒子注量(辐射强度)、温度、CCD的类型以及掺杂情况、信号数据包大小、CCD的偏置状态等等,这里主要针对不同辐射源、不同沟道类型以及不同偏置状态展开具体的讨论分析。

不同辐射源对CTE的影响

空间环境中存在的可能对CCDCTE造成影响的粒子主要包括质子、电子、中子、x射线、γ射线以及各种重离子。x射线和γ射线主要造成CCD器件的电离损伤效应,对CTE影响较大的有质子、中子、电子等高能粒子。Norbert等人选取质子和中子作为辐射源,对XMM系统中工作于深耗尽状态的PN结CCD进行了空间辐射特性测量,测量结果如图8所示[13]。从图中可以看出,CCD的CTI特性具有较强的温度依赖性,并且在120K左右出现了CTI的极大值点,这对应着CCD的一个典型体缺陷,即A中心(或者叫氧空位缺陷),其对应的缺陷能级距离导带约0.17eV;CTI的量级较地面实验要小得多,这主要是因为空间中的粒子注量比实验中要小得多,并且在轨运行中的CCD器件增加了屏蔽层,大大提高了CCD的抗辐射性能;电子较质子对CCD造成了更大的位移损伤,其CTI较质子高约一个量级左右。由此可见,不同的辐射源可以对CCD的电荷转移效率造成不同的影响。

不同沟道CCD对CTE的影响

大量的实验和理论研究结果表明,埋沟型CCD较表沟型CCD具有更高的电荷转移效率以及空间抗辐射性能。根据沟道掺杂介质的不同可以分为P沟道和N沟道两种类型,受空间高能粒子辐照后,P沟道CCD多产生双空位(V-V)缺陷,而N沟道CCD则主要产生磷空位(P-V)缺陷。在某些情况下,P沟道CCD的空间抗辐射性能要优于N沟道CCD。已有研究大多针对某种沟道CCD的空间辐射特性展开,少有对两种沟道CCD的对比分析[14]。我们对已有实验结果进行归纳总结,得到不同沟道CCD受质子辐照后CTI随质子辐照注量的变化关系,如图9所示。从图中可以看出,在同样的质子辐照条件下,P沟道CCD的CTI劣化较小,这主要是因为双空位缺陷对CTE的影响较小,在大多数情况下,磷空位缺陷(E中心)是CCD器件体缺陷的决定因素。由此可见,作为卫星光通信系统的信标子系统,更应该倾向于选择抗辐射性能较高的P沟道CCD。

不同偏置状态对CTE的影响

卫星通信论文篇2

1.1舰队终端舰队终端主要包含3部分功能:接收来自RS232接口的信息,通过信息传输模块传输数据和图像信息,包含GIS终端访问GIS系统。经过多年的研究和开发,海上图像采集系统[3]已经逐渐成熟,并被如UTM这样的机构广泛使用。类似于海上图像采集系统、雷达等这样的装置,能够提供船舶和舰队的位置、航向、航迹等多种信息,并通过相应的协议,如RS232,传输给部署于船舶之上的系统终端。通常情况下,这类信息分为2种:一种是较为简单的数据信息,如航速、经纬度等;另一种是较为复杂的图像信息,如船用摄像机拍摄的图像等。对于数据信息来说,使用UDP协议传输较为合适,该协议使用较为简单,可以降低舰队终端的实现复杂性,同时由于其无连接的特性,能够更好的适应舰队的移动特性。而对于图像来说,其发送和接收分别采用wget[6]和rsync[7]应用接口,这2种接口被广泛应用于传输船舶摄像机采集图像的传输,相比与其他传输模式和接口,其更加适合于图像更新等任务。GIS终端具有较大的灵活性,当前的GIS应用有多种形式,因而GIS终端可以使用专用的系统应用,采用加密信道访问专门的GIS系统;也可以使用通用的个人计算机,通过访问Web端的地理信息系统查看舰队信息;甚至可以使用智能手机配合相应的APP,实现对于GIS系统的访问。则可以看出,本文提出的系统与传统的专用系统相比,采用外部、成熟的GIS系统,大大降低了实现的难度以及使用的成本。

1.2卫星通信网实现舰队终端与卫星通信网的互联,主要采用甚小口径天线地球站(VSAT)实现,通过VSAT能够将舰队终端接入SEAMOBIL和HISDESAT卫星通信网络,这2种卫星通信网在海事、通信等领域,均已得到广泛的应用,具有大量的地面卫星站,并覆盖了除两极之外绝大多数的地球表面,如图2所示。VSAT通信采用C波段或X波段,相比与国际海事卫星(INMARSAT)终端,VSAT能够提供更好的数据传输容量。同时INMARSAT采用舰队船舶共享连接的方式,为每艘船舶提供的带宽有限,而VSAT则采用的是专用信道,能够提供给船舶和舰队更加稳定的传输信道和更高的传输质量。另外,与INMARSAT相比,VSAT具有更低的获取成本和使用成本,因而使用VSAT具有更好的经济性。通过以上介绍的卫星通信网,使得舰队终端和岸基服务器之间能够建立持久稳定的网络连接,从而可以提供实时的、高信息刷新速率的数据服务。

1.3岸基服务器岸基服务器是整个系统的核心,由图1显示的岸基服务器与舰队终端之间的交互过程,可以看出整个系统是一个中心化的结构。岸基服务器共有3个主要功能:接收卫星通信网传输的数据和图像信息;根据接收到的信息融合并计算生成KML文件;通过HTTP协议栈[8]将KML传输给相应的GIS服务器。根据第1.1节的叙述,岸基服务器具有2种不同的数据接收接口,其中UDP协议栈负责接收舰队终端传输的数据信息,而“rsync”应用接口负责接收传输的图像信息。这2种接口与舰队终端接口类似,均可使用软件实现,并已得到广泛应用。岸基服务器中的KML文件产生模块是岸基服务器的关键功能,其能够根据实现定义的KML文件格式,和各种信息的内容,将信息嵌入KML文件模板中,产生正确可用的KML文件,进而通过HTTP协议,将其传输给绑定的GIS服务器。

2KML文件的格式与生成

KML文件时当前GIS系统广泛使用的地标文件,由于KML由XML发展而来,因而KML文件的格式和定义方法集成了XML的特点。

2.1KML文件的格式与一般基于XML的语言类似,其广泛采用标记定义各种数据块。其主要含有以下几个部分:位置数据、模型数据、航迹数据、图像数据和字节数据。各个部分的格式如下所示。通过以上的KML文件格式,可将不同类型的信息嵌入其中形成KML文件。

2.2KML文件的生成KML文件生成的过程,就是根据KML文件格式,不断分析与填充相应数据的过程[9]。KML文件生成的流程图如图3所示。KML文件的生成过程应遵循以下步骤:首先,KML文件产生模块需要根据信息来源判断和识别船舶的信息;然后根据导航信息生成基本的数据,之后再根据信息中包含的媒体信息和其他信息[10],对KML文件进行完善;最后形成完整的KML文件,并使用HTTP协议进行传输。

3系统实现与仿真

最后,本文在OPNET中构建模拟的卫星通信网,并仿真实现了舰队终端和岸基服务器,模拟了舰队终端与岸基服务器之间的交互过程,并利用GoogleEarth证明了生成KML文件的正确性。在OPNET中的实验拓扑图如图4所示。

3.1系统功能实现通过舰队终端产生的信息,仿真宽带卫星通信网络,UDP流量约为25~36kb/s,持续时间约为20s,丢包率小于1%。而传输图像数据的速率约为80~120kb/s,持续时间约为15s。根据以上仿真可知,本系统中采用的通信接口和链路,其带宽能够满足系统信息的传递以及更新需求。按照第2.2节中方法,生成KML文件,并在GoogleEarth中导入,生成的实时监视状态图,如图5所示。通过图5可看到,KML文件可以在通用的GIS系统中得到显示和应用,不仅包含了船舶的位置、航向等,还能够根据需求显示详细的航迹信息及其他信息。

3.2负载测试在系统的实际使用过程中,由于本系统结构采用中心化的结构,因而岸基服务器将承担较大的负载。本文将利用图4所示拓扑,继续对岸基服务器的工作负载进行测试,主要测试内容是KML文件产生时,对服务器资源的占用。在仿真中,采用通用X86计算机模拟服务器,采用Corei3双核处理器,4G内存,运行Win7(64bit)操作系统,采用软件实现KML产生模块,设计各个舰队终端的信息到达服从泊松分布,在第3.1节中研究的信息通信负载下进行测试,最终得到CPU的占用率如图6所示。通过以上测试结果可知,在实际使用过程中,当带宽满足系统传输要求时,CPU的占用率约为16%~22%,证明岸基服务器能够满足本系统用户的实际需求。

4结语

图形化的舰队实时监视系统,是近年来出现的船舶及舰队用助航设备,凭借其自动化和图形化的特点,迅速得到了广泛的应用。然而由于设计的缺陷和技术的制约,当前使用的船舶及舰队状态监视系统,仍有许多不足,无法完全满足用户的需求。本文针对以上问题,提出了一种基于卫星通信与GIS的舰队实时监视系统,对该系统的整体框架进行了设计,并对各个主要模块进行了功能描述,设计了KML文件的格式与生成算法。最终对系统功能进行了实现和仿真,在通用的GIS平台上验证了本文提出方法的正确性和可用性,并在OPNET仿真平台上,测试了系统核心模块的工作负载,证明了本系统的高效性和可靠性。

卫星通信论文篇3

1.1卫星通信CDMA技术卫星通信CDMA技术是根据用户需要和卫星的特点,用功率控制的手段实现导频信号的幅度变化,降低用户对星上功率的要求,减少多址干扰。卫星通信CDMA技术可利用多个卫星分集接收信息实现网络传递,大大降低了系统内耗和干扰的出现,改善了上星通信信息传输的可靠性。卫星通信CDMA技术具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便等特点,使之成为卫星通信中关键的技术核心。

1.2卫星通信MPLS网络体系MPLS网络体系可以将IP路由的控制和第二层交换无缝地集成起来,是目前最有前途的网络通信技术之一。卫星通信MPLS体系结构分为用户层、接入层、核心层三部分,其中,用户层包括卫星手持移动终端、小型专用局域网用户、其他网络用户等。各结构和网络体系将信息有效绑定、标注和转发,实现卫星的通信功能。

1.3卫星通信的抗干扰技术卫星运行在外太空,电磁环境复杂,统一受到太阳风、强磁暴等空间环境影响,导致出现信息干扰和信息失真,卫星通信的抗干扰技术主要依靠卫星传输链路中不同的抗干扰设备和系统完成其功能,抗干扰设备和系统主要有DS/FH混合扩频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、自适应信号功率管理、自适应调零天线、多波束天线、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。在软硬件共同的作用下阻断电磁干扰、过滤杂波、屏蔽信号污染、实现程序监视等功能。

2卫星通信技术的发展趋势

2.1通信卫星体积的发展趋势通信卫星体积正在向大型化和微型化两个方向发展。其一,各国把通信卫星体积建造得越来越大,以便实现高灵敏和强处理能力。其二,各国推出小型通信卫星,用多颗小卫星组网构成卫星通信网络代替单颗大卫星,具有方便发射和成本低廉等优点。

2.2卫星移动通信技术方兴未艾卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信。随着频谱扩展、数字无线接入、智能网络技术的不断发展,卫星移动通信在向卫星个人通信方向演进,用手持机可实现方便接入卫星移动通信网,进行卫星移动通信。

2.3卫星互联网技术兴起将卫星通信网络转化为互联网中数据上下交换的链路,可将电话拨号、局域网等其他通信链路作为上行数据链路,还可以将下载和传输作为下行数据链路,利用卫星的特点实现地面随时连接互联网络。

2.4卫星通信向宽带化发展为了满足卫星通信系统用户对大数据量和高负荷的需求,卫星通信技术已向拓展直EHF频段发展,扩大频段的容量,大大减轻现有频谱拥挤现象,减少受电磁现象影响引发的信号闪烁和衰落,提高了卫星的抗干扰能力。使卫星通信部件尺寸和重量大大缩小和减轻,方便卫星搭载更多的通信设备。

2.5卫星通信光通信化发展卫星光通信是利用激光进行卫星间通信,达到降低卫星通信系统设备质量和体积,提高卫星通信保密性等目的。

3结语

综上所述,卫星是一种在高空运行,在独特角度进行通信、测量、遥感等诸多科学的研究和服务社会的工作。卫星通信技术具有通信容量大、传输质量高、覆盖面积广、方便组网和抗地理环境制约能力强等诸多优点,成为新时期通信行业发展的一个主要方向,卫星通信技术方便建立与外界的通信联系,通过数据、视频信息和语音信息的传输实现信息的交换,增加通信的能力、提高通信的质量,满足不同用户的差异性通信需要。卫星通信技术主要包括:CDMA、MPLS和抗干扰等主要技术,做好卫星通信工作必须从上述的技术入手,在把握卫星通信技术发展的大方向的前提下,才能做好卫星通信的相关工作。

卫星通信论文篇4

信标机提供串行通信接口,通过串口服务器,将串行通信做协议转换为网络通信协议,再通过一根网线与交换机连接,最终与控制计算机进行数据交换。设备连线后,在计算机上要进行虚拟串口映射,即把串口服务器的串口映射到计算机上,映射成功后,就可以把这些虚拟串口作为计算机上的串口使用,解决计算机本身无串口的问题。载波的发射状态是通过改变调制解调器参数来实现的,控制载波发射状态实际上通过控制调制解调器的发射状态继而达到控制载波状态的目的。调制解调器提供网络接口,通过交换机最终与控制计算机进行数据交换。控制软件实时监视信标机和调制解调器的工作状态,以此作为发送控制指令的依据。

2信号处理

通过监控软件完成,为了不占用更多的主线程资源,监控软件分别建立两个独立的线程CThreadBeacon信标机线程类和CThreadModem调制解调器线程类,通过这两个线程的通信处理载波的关闭与开启。当确定天线进入遮挡区后,CThreadBeacon信标机线程根据当前的信标强度和调制解调器载波发射的状态,发送打开或关闭载波的消息给CThreadModem线程。CThreadModem线程主要有两个作用,一是读取调制解调器当前的参数,明确设备的工作状态,二是负责接收由CThrea-dBeacon线程发送过来的消息,根据消息的具体内容,向调制解调器发送相应的控制指令。车载站在载波发射的行进中,如遇到高大的货车或小面积的建筑遮挡瞬间遮挡时,这时关闭载波是不必要的,故在信标机线程中,设定当遮挡超过10s后发送关闭消息给调制解调器线程,进而关闭载波发射。同样在离开遮挡区超过5s后发送开启消息给调制解调器线程,进而开启载波发射。具体流程见图1“载波自动关闭流程图”。

3实现过程

软件以visualc++6.0作为开发编译环境,在基于对话框的应用程序界面中,运用多线程串口通信编程和SNMP网络编程方法,利用线程间通信机制,完成载波自动关闭功能。软件启动时,建立CThreadBeacon线程并启动运行,运用串口通信编程,在InitInstance函数中,初始化串口参数,线程中使用定时器,频率为300ms,按照通信协议格式,以查询方式读取信标强度,经过适当处理后,以浮点数显示在监控界面上,范围是0~10,根据浮点数的大小,来判定天线是否进入遮挡区,如当信标强度小于3时,确定天线进入遮挡区,再以PostThreadMessage的方式发送消息给CThrea-dModem线程。建立CThreadModem线程,运用SNMP网络编程,在In-itInstance函数中,初始化调制解调器SNMP相关参数,创建两消息响应函数OnGetParam_Modem用来获取设备当前状态,和OnSetParam_Modem用来接收由CThreadBeacon线程发送过来的消息,根据消息的附加参数和当前调制解调器的状态,确定发送关闭或开启载波的指令。

4结语

车载站在进行移动卫星通信过程中,如果天线偏离目标卫星,对周围的环境同样产生辐射危害,及时关闭发射载波也是至关重要,本文阐述的载波自动关闭系统同样适用于天线偏离目标卫星的情况。软件使用方便,已经成功用于多套车载站项目。

卫星通信论文篇5

关键词:卫星通信 实验教学 卫星广播电视

中图分类号:G42 文献标识码:A 文章编号:1674-098X(2016)07(c)-0152-02

Abstract:According to the problem that the experimental equipment cost limit the development of the satellite communication experiments course,the characteristics of two kinds of teaching object:undergraduate and graduate students are analyzed,and content of the satellite communication experiment course and the experiment conditions construction are explored and discussed.Undergraduate experiment teaching adopts the design of low cost experimental equipment,and emphasizes the perceptual knowledge;while the graduate experimental course extrudes the learning autonomy,and guides students to find problems,to stimulate students’interest in learning.The exploration has achieved good results in practical teaching.

Key Words:Satellite communication;Experimental teaching;Satellite broadcast TV

截至2015年底,中国在轨运行的卫星数量已超过140颗,仅次于美国,位居世界第二。然而,伴随着卫星数量的突破,我国的卫星产业发展却相对滞后,尤其是地面应用系统的发展还不够。除投入不足外,人才缺乏也是一个重要原因。卫星通信课程作为高校电子通信类专业的主干课程在激发学生对卫星通信领域的学习兴趣、培养卫星通信领域的人才等方面有着不可替代的作用。

1 实验课程开设背景

由于卫星通信设备昂贵、通信卫星资源紧缺,传统的本科《卫星通信》课程主要以理论教学为主,以实验演示和参观观摩为辅,实践教学的比例非常少。卫星通信的频率很高,常规的仿真平台很难实现全系统仿真,因此,有条件的院校开设的仿真实验仅限于卫星通信的中频部分[1],让学生观察信号在中频部分的处理与传输过程,深化学生对通信基本理论的认识,但这些改善无法让学生体会到真正的卫星通信过程,也很难激发学生对卫星通信领域的学习热情和兴趣。另外,随着卫星通信技术的迅速发展,《卫星通信》课程的教学内容需要不断更新,与工程实际结合也更加密切,实验教学的重要性越来越突显。与理论教学相比,由于学时有限、实践环节组织困难,实验教学已成为卫星通信教学改革与发展的瓶颈。

2 实验教学内容设计

为提高卫星通信课程的教学质量,激发学生的学习热情,对卫星通信课程实验教学的内容和方法进行了探索,在教学实践中取得了一定效果。

具体而言,该校在通信工程专业的本科生教学中开设了《卫星通信》课程,在研究生教学中开设了《现代通信新技术》(其中包含了卫星通信的相关内容),针对不同的培养对象,教学的内容、方式方法有很大差异。

2.1 本科实验教学

本科教学中学生数量众多,传统的《卫星通信》实验课程受限于实验设备的成本,只能让学生进行卫星通信的演示和观摩,无法让学生切身体会卫星通信的过程。随着技术的发展,作为一种最廉价的卫星通信方式之一――卫星广播电视已进入千家万户,它主要由天线(及其支架)、卫星电视接收机、电视机以及电源等设备组成。该系统属于卫星通信中的单向接收地球站,而卫星通信中的反向发射链路与接收链路相似,因此,该系统完全可以作为学生体验卫星通信过程的实验设备。然而,虽然电视机在该系统中仅作为通信的终端设备,与卫星通信实验课程的教学目的关联性不强,但电视机的成本却占据该套实验系统的70%以上;另外,卫星广播电视实验的开设通常需要在室外开阔地域进行,此时系统的室外供电也将成为课程开设必须考虑的因素;上述两个原因导致卫星电视接收系统在《卫星通信》实验课程的开设过程中无法得到推广。

为解决该问题,通过市场调研,将卫星电视接收机和电视机的功能改由寻星仪来实现。寻星仪是融合了卫星电视接收机、电视机以及频谱仪简易功能的一体化设备,采用锂电池供电,不需要市电,便于室外实验的开设。整套系统成本低于1 000元,其简易的频谱仪功能还可以开设卫星信标的接收实验。

寻星仪的操作界面与常规的卫星电视接收机完全相同,可以设置卫星名称、高频头本振、接收频率、符号率、极化方式等参数;连接卫星电视接收天线后,当天线对准目标卫星时即可接收到该卫星上的信号(即接收的信号强度和信号质量高于卫星接收机门限);若目标卫星上有公开的电视节目,还可以直接使用该终端收看卫星广播电视。在该系统上开设的实验课程可以让学生熟练掌握卫星通信中天线对星的基本流程与操作技巧,明确天线三维指向的参考基准与天线精确对准卫星的判断标准,使学生对卫星通信的整个过程进行全面、整体认知,锻炼和培养学生的实践动手能力。

本科生的实验教学重点在于突出学生的感性认识,通过卫星实验,使学生能够掌握卫星通信的基本原理,明白卫星通信中对星的标准是什么,并掌握对星的常见技巧。对于学有余力的学生,启发他们更深入了解卫星通信发展的新技术、新方向。

2.2 研究生实验教学

与本科生相比,研究生具有更大的学习自主性,理论讲授不仅要细而专,还要广而泛。在本科现有卫星通信内容的基础上,重点讲授与卫星通信相关的天线技术、阵列信号处理技术以及通信技术等的发展现状,为研究生下一步的课题选择提供参考。

作为小班教学,研究生的卫星通信实验课可以采用完全自主的形式――将固定卫星地球站、便携式地球站、卫星动中通地球站以及宽带无线通信系统、无人机视频采集等设备交给学生进行自主组合,按照系统搭建由简单到复杂,地球站由固定到移动,通信业务由话音到视频的渐进过程,让学生体会卫星通信在实际生活中的各种应用场景以及还存在亟需解决的问题,激发学生投身卫星通信领域技术研究的兴趣。

3 结语

卫星通信实验课程的开设可以强化学生对卫星通信基本原理的理解和掌握,激发学生对卫星通信领域的学习兴趣。该文针对本科生和研究生两种教学对象,对卫星通信实验课程的开设内容以及实验条件建设进行了探讨与摸索,在实际的教学过程中取得了良好效果。然而,适合于不同对象、不同接受能力的实验内容和教学方法的改革是永无止境的,如何取得更好教学效果还需要与广大高校的卫星通信课程教师共同探讨。

参考文献

卫星通信论文篇6

关键词:多媒体,卫星通讯,作用,联系

自1945年英国空军雷达军官、科学家亚瑟克拉克(Arthur C,Clarke)在“无线世界”(Wireless World)杂志上发表了 “地球外的中继”(Extraterrestrial Relaying)一文、提出了三颗GEO卫星可按120o 轨道间隔进行覆盖全球的通信这一革命性概念以来,卫星系统作为一种新兴的技术与业务手段,无论从越洋通信至区域、国内乃至个人通信,无论从GEO/MEO/ LEO固定/半移动/移动通信、DBS/DTH/DAB广播、DVB-IP多媒体、GPS/RNSS/RDSS导航定位,至GMDSS应急援救、RSS遥感乃至气象/地震预报、远程医疗/教育、空间探测/科学试验等各行各业的各类应用,无论从各类空间段卫星制造、星际链路构成,至商业火箭发射与保险, 乃至地面段各类VSAT/USAT甚至微型个人终端的诞生,真可谓创建了五十余年人间科技辉煌与卓越的社会政治、经济贡献。

作为迈进21世纪的新时代人类,可以说分分秒秒离不开通讯网络,我们的日常活动中,几乎每一天都在卫星通讯的作用下进行工作和学习,我们也没有一天离开过多媒体的应用,比如电脑、电视等等,由此可见多媒体和卫星通讯在生活中的重要地位,那么多媒体在卫星通讯中到底发挥着什么样的作用,又如何来解释他们的概念以及发展前景如何是我们要探究的重点。

一、多媒体的概念

什么是多媒体?所谓的多媒体,也许大家都觉得耳熟能详,上课的时候要用到多媒体,证券大厅里也用到多媒体,网络会议等等也需要用到多媒体,但是关于“多媒体”概念的标准定义,到目前为止还没有实现统一,我们一般将它诠释为“多种媒体的综合”运用的设备,而多媒体技术也就是相当于是多种技术的综合体。这由此可见多媒体是由多种媒体相互关联,有机的整合在一起的新型传媒方式。

二、多媒体技术在通讯中的应用

在人均生活水平逐步提高的今天,人们对信息的渴求与日俱增,无论是生产和生活都与多媒体这个终端平台息息相关,那么多媒体作为卫星通讯与我们之间的媒介,其影响是十分深远的。多媒体技术在通讯中的大量使用,其对卫星通讯功能作出了最终端的表现,也就是说,卫星通讯技术能送到每个人的面前,真正作用于每个人的生活,多媒体技术发挥着不可替代的重要作用。

在计算机和通信领域中,我们说很多东西都可以称之为媒体,比如图像、声音、动画、图形、文本等等,都可以称之为是媒体这些具象的媒体在生活中应用广泛,但从通讯技术和计算机数据处理的角度来看,我们可以将音响、动画、声音、绘画、数据、有声的语言、文字、图像等等,如动态的电影、静态的照片以及电视和录像等信息,这些和我们最基本的交流方式,作为图、文、声三种媒介来看待。在我们对世界上多种图、文、声等信息有大量需求的时候,我们通过卫星通讯技术将数据传送到我们的多媒体,我们便可以不出家门而更好的了解世界。其给生活和工作带来的方便是不言而喻的。

另外,我们不能忽略多媒体的互动性,我们看电视也只是单纯的接受信息,这种媒体不能称之为是真正的多媒体系统,我们要能双向地,可以主动地进行信息处理,这便是多媒体的互动性。我们利用多媒体在卫星通讯中的可互动性,可以进行可视电话、远程教育、远程会议、因特网互联、全球即时通讯等等,大大的缩小了世界的范围,将世界一体化成为可见的现实成果,可以说,多媒体与卫星通讯技术的关系的唇齿相依的,卫星通讯系统利用多媒体可以更好的发挥作用,而多媒体也可以依托卫星通讯技术实现自己的最大价值。

三、多媒体技术作用于卫星通讯的意义和前景

多媒体技术作为一种新型的且独具特色的传播媒介日趋受到了大家青睐,将多媒体技术作用于卫星通讯中的意义是深远的,我们研究两者相互间的关系,对社会和科学的发展具有良好的推进作用。多媒体卫星通讯的发展前景取决于市场规模、应用前景还有国际环境,有以下几方面的具体因素:

(一)多媒体卫星通讯技术应用范围广,卫星因特网、DTH和DBS业务、远程医疗、全球无缝通讯、远程教育等都是新时代的经济增长点和持续热点,多媒体卫星通讯系统在这些领域的发展中将起着不可替代的重要作用。

(二)全球经济一体化的大背景下,更多的国家走向世界,世界间的文化和贸易交流频繁,导致对信息的传输量迅猛增长,无论是生活还是经济都需要多样的信息服务,其中包括远程应用、多媒体、交互式、无缝隙等。如今,没有信息传输技术的快速发展,就没有全球经济的蓬勃兴盛,在全球信息高度发达的今天,多媒体作用于卫星通讯技术的应用不可取代。

(三)因特网的大范围普及,世界上目前已经有一百八十多个国家加入了因特网的队伍,而如此多的互联网用户对信息娱乐、网上冲浪的要求逐步的增加,这时多媒体最为卫星通讯的终端表现,受到人们的强烈追捧。就目前看来,如果一个普通的互联网用户,以一台计算机来计算,通过多媒体与卫星通讯而获得的语音、视频和数据等服务其数量已经是十分可观的,所以在未来的互联网空间中,多媒体与卫星通讯技术的有效结合具有十分良好的市场前景。

四、总论

多媒体技术在卫星通讯中具有至关重要的作用,将二者有机的结合,合理的去使用此类资源,不仅可以方便人们的生活,提高人们的生活质量,促进教育、金融商贸领域的蓬勃发展,甚至对于社会科学和人文科学的发展都具有良好的助力的作用。当今卫星技术发展迅速,市场竞争也日趋激烈,时代要求我们要对新形势、新产品去积极的研究和分析,以超越现实水平,跟随国际技术发展的时代大潮。

参考文献:

【1】胡晓峰.《多媒体技术原理及应用》.人民邮电出版社.2009(5).

卫星通信论文篇7

【关键词】 选址 对星策略 便携站

一、便携站天线对星原理

1.1 选址

便携站天线要准确对星,其选址很关键。站址应选择在无遮挡、平坦开阔的地方,在便携站天线指向上不应有遮挡物(如电力线、树、建筑物等);不应有微波接力通信线路,否则卫星通信和微波接力通信相互干扰。

1.2 方位角、俯仰角和极化角

便携站天线要准确对星,必需计算出便携站天线对星的方位角、俯仰角和极化角。(1)方位角:一般定义为从便携站正北方向起(0°),顺时针旋转到天线指向方向的水平夹角。由于同步卫星轨道是处在赤道上空且是东西方向的,我国又处于北半球,便携站面对的同步轨道是在正南方向,便携站天线指向应是南方。(2)俯仰角:是指天线指向方向与当地水平面间的夹角。俯仰角为90°时与水平面垂直,俯仰角为0°时与水平面平行,天线的正常工作俯仰角一般在5°~90°之间。当天线俯仰角低于5°时,地面噪声将大幅增加。(3)极化角:是指卫星发出的线极化波到达接收地后其相应极化方向与当地水平面或铅垂线偏差的角度。电磁波的电场矢量方向可按旋转或线性方式变化,对应的两种电磁波分别被称为圆极化波和线极化波。线极化包含相互正交的水平和垂直两种极化方式,常见的卫星信号大多采用线极化方式传送,其电场矢量方向与赤道面平行即为水平极化,与赤道面垂直即为垂直极化。

1.3 对星原理

根据站址的地理位置,由下列公式可以计算出便携站天线的方位角、俯仰角和极化角。

天线俯仰角:

天线方位角:

天线极化角:

当(Φs-Φ0)>0时,P取“-”,当(Φs-Φ0)

便携站地理坐标的经度φs、纬度θ,可利用GPS或北斗设备获取,所对卫星的星下点经度φ0可查表获取。将以上三个公式输入EXCEL软件,通过软件可以直接计算出来。利用地磁罗盘得出天线的当前实际指向(方位角和俯仰角――实际值),比较理论值与实际值,若两者不等,则调整天线位置,使其方向、俯仰角与计算值相等,天线对准卫星[3]。

二、对星策略

便携站天线对星分七步进行:(1)获取便携站架设地点的经、纬度数据:利用GPS或北斗相关专业工具实测便携站架设地点的经、纬度数据,也可参考最近的城市的经、纬度数据。通常县级以上地区的经、纬度数据都可以通过查表获得。(2)计算天线对星数据:利用对星理论公式计算出天线对准目标卫星的方位角A、俯仰角E和极化角P(理论值)。(3)调整极化角:先调整极化角P,转动馈源组件,粗调极化角至理论值附近。(4)调整俯仰角:再调整俯仰角E,利用地质罗盘将卫星天线仰角调整至理论值。用地磁罗盘大致确定俯仰角度,俯仰调整时靠转动俯仰轴上的支撑杆来完成,注意不能将俯仰丝杠旋出,否则可能损坏天线。(5)调整方位角:最后调整方位角A,先大范围缓慢转动便携站天线方位角,在理论值附近寻找目标卫星的信标信号,注意进行全面仔细搜索,保证方位角停留的位置是信标信号的最大值,通过观察便携站的信噪比EB/NO的大小来决定。(6)微调:方位角A和俯仰角E微调,反复交替调整方位角A和俯仰角E,使信标信号最大,即EB/NO达到最大值。(7)完成对星:锁定方位、俯仰丝杠,转动极化角,使接收到的信标信号电平值最大,从而完成便携站天线对星。对星完毕还需进行通信联络论证,确保通信畅通。

三、小结

卫星通信论文篇8

关键词:移动雷达;应急通信;卫星通信

Thesatellitecommunicationofmobilemeteorologicalradarsystem

DouYiwen(BeijingmeteorologicalBureau,Beijing100089)

Abstract:Inordertotranslatemobileradar'sdatatoserverofBeijingmeteorologicalBureau.Thistextcomparedadvantagesanddisadvantagesofwirelesscommunication'smethod.Theaboveanalysisnaturallyleadsustothesystemofthesatellitecommunicationcreated.Theresultsshows:thesystemcansatisfythecommunicationrequirementofmobileradar.Thesystemhasagoodexampleforcreatingemergencycommunication.

Keywords:Mobileradar;Emergencycommunication;Satellitecommunication

1引言

随着气象信息自动采集的不断发展,自动采集数据越来越成为气象信息采集的主流。新一代天气雷达系统,可以进行较大范围降水的定量估测,获取降水和降水云体的风场信息等,在短时灾害性天气预报和应急服务中发挥巨大的作用,特别是对风害和冰雹相伴随的灾害性天气的监测和预警[1]。为了把移动雷达实时数据传输到北京市气象局,通信方式的选择成为信息采集的重要环节,目前气象应用通信方式有很多种。如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等,还有下面要讨论的基于亚洲卫星通信线路。移动雷达对通信的主要需求是网络质量可靠;带宽至少要达到双向2Mbps;移动雷达采集数据地点不固定。如何满足移动雷达的要求是本系统需要解决的问题。

2通信方案的设计

2.1气象信息传输通信方式对比分析

目前气象应用通信方式有很多种,如CDMA/GPRS/3G、北斗卫星、无线局域网(WLAN)、专线等。由于天气雷达数据量大,要求网络质量高,固定地点天气雷达的数据传输一般都是利用专线传输。表1是常用无线通信方式传输气象数据的对比。无线局域网传输距离短,安全性差,一般只能作为数据的传输中继;北斗卫星是我国自主研制的卫星导航定位系统,安全性高,用于传输字节少如自动站等的数据比较适合;CDMA/GPRS,运行成本低,但是其通信速率要求低,不能满足雷达数据传输要求;3G下行速率理论值是2.8Mbps,实际传输效果没有达到此值,而且网络质量与基站覆盖有很大关系。天气雷达如果地点固定,而且在市内或县城内,使用专线较好,有充足的时间建立专线的话,应用2Mbps专线传输雷达数据是一种好的选择。卫星通信作为天气雷达数据的备份是一种最佳选择,因为它的网络带宽、移动性、实时性、开通周期等方面都能满足要求。

2.2卫星通信特点分析

卫星通信是以人造通信卫星作为中继的一种微波通信方式。卫星通信的优点:通信距离远,建设成本与通信距离无关;不受地理环境影响;广播方式,卫星覆盖区域内的任何点可实现通信;通信容量大;可自发自收。卫星通信的缺点:信号极弱(毫微微瓦级),对技术和设备的要求较高;时延;多址问题;存在单一故障点;雨衰。

3卫星通信的应用

综合考虑雷达数据传输的速率在2Mbps以上,支持视频、移动、应急等方面的要求,选择亚洲卫星通信是本系统的最佳选择。本系统采用等效口径为0.95m的偏馈型椭圆抛物面天线,天线面使用四片碳化纤维面板组成。天线系统工作在Ku频段。天线控制系统内置高性能信标接收机,可在5分钟内自动对星,通过对中卫一号、亚洲二号、亚洲三号、亚洲四号四个卫星两种极化方式的上百次测试,寻星准确率100%,配置40W功放时具备传输速率大于等于3Mbps,保证传输速率大于等于2.048Mbps,完全具备传输多路话音、2路视频图像、2路数据的业务能力。图1就是本系统建立的移动雷达卫星网络结构图。从图中可以看到移动雷达系统采集数据到数据处理服务器(192.168.3.5/24)或模拟语音经过语音网关,通过网络交换机和IP加速器(192.168.3.3/24),由调制设备(192.168.3.2/24)调制信号传输到卫星,再由卫星接收站传送到地面,通过调制解调器(192.168.3.10/24)和IP加速器(192.168.3.11/24)指向路由器(192.168.3.1/24,192.168.2.1/24),由路由器转发到防火墙(192.168.1.1/24),在防火墙上作语音网关和数据服务器NAT地址转换。最后在服务器(192.168.2.254/24)上可以看到雷达系统上传的数据,在电话终端上可以进行语音通话。这个网络是双向的,不仅数据可以双向传输,而且在北京市气象局可以监控到卫星通信系统的状态。本系统因为经费有限,建立了电话通信模式,并留有视频接口。

图1移动雷达卫星网络结构图

4结论

本系统采用的亚洲卫星通信系统具有一键对星功能,天线能够自动展开/收藏,自动定位、自动捕获和自动跟踪卫星,5分钟内完成寻星任务并建立卫星通讯链路。在传输速率、网络安全、天线对星时间、网络接口、应急通信等方面都能满足实时雷达传输数据的要求。

致谢:国家气象信息中心网络室和视频与卫星室、西安瑞兴通信有限公司、北京市人工影响天气办公室、北京市气象信息中心、北京市大气探测技术保障中心在系统建设中给予的大力支持。

参考文献

[1]张海虹,钱建伟.新一代多普勒天气雷达简介[J].科技咨询,2009(18):205-205.

[2]刘霁宇.北斗卫星SCADA通信组网方案[J].黑龙江科技信息,2009(24):50-50.

[3]谈振辉,乔晓瑜.短距离低功率无线通信接入系统[J].2009,15(4):39-43.

[4]罗艳碧,张令通.无线通信网络发展趋势研究与分析[J].科技创新导报,2009(19):238-237.

[5]周治宇,陈豪.未来全球宽带无线通信系统构想[J].空间电子技术,2009(2):1-7.

[6]闵士权.关于构建国家应急卫星通信网的思路[J].航天器工程,2009,18(3):1-7.

[7]周任飞.基于TD-SCDMA的雷达情报数据无线传输研究[J].信息系统工程,2009,9:70-73.

[8]邓玉芬,张博,沈明,等.基于北斗卫星的海洋测量数据传输系统[J].海洋测绘,2009,29(4):67-69.

[9]王毳,赵齐.卫星宽带IP技术研究[J].无线电通信技术,2009,35(4):16-19.

[10]徐江,杨凡,王视环.卫星通信多址接入方式的比较和分析[J].电力系统通信,2004(10):49-53.

征稿启事

《网络与信息》杂志是经国家科技部和国家新闻出版总署批准的国内外公开发行的计算机网络应用类专业媒体,CNKI中国学术期刊全文数据库收录期刊、中国学术期刊综合评价数据库统计源期刊、中国核心期刊(遴选)数据库收录期刊、ASPT来源刊、中文科技期刊数据库全文收录期刊、全球中文电子期刊协会入编期刊、2007及2008年网络传播分类阅读国内外TOP10期刊。

《网络与信息》为月刊,每月9日出刊。大16开全彩色精美印刷,每期定价10元,邮发代号82-58。

国内统一连续出版物号:CN21-1380/TP

国际标准连续出版物号:ISSN1008-0252

主要刊登计算机技术、网络与通信技术、信息化建设、信息管理、工程评估、项目咨询与管理、电子商务、会计电算化、计算机辅助教学及管理、网站开发及管理、无线网络技术及应用、信息安全技术等方面的论文及文章。

投稿须知

1.来稿严禁抄袭,文责自负,切勿一稿多投。凡在本刊发表之作品,如双方无特殊约定,一经发表自动视为作者已将该作品的著作权全部转让给《网络与信息》杂志社。

本刊已被CNKI中国学术期刊全文数据库、中国学术期刊综合评价数据库、中国核心期刊(遴选)数据库、中文科技期刊数据库、龙源期刊网、全球中文电子期刊协会收录,其作者文章著作权使用费与本刊稿酬一次性给付。如作者不同意文章被收录,请在来稿时向本刊声明,本刊将做适当处理。本刊亦有权不予刊登不同意收录的论文。

2.文稿要求层次分明、条理清晰、论点明确、数据可靠、文字准确简练。

3.文稿署作者真实姓名、工作单位、电话、通信地址、邮政编码和电子信箱。

4.来稿请按标题(不超过20字,必要时可加副标题)、作者、单位(外加圆括号)、摘要(不超过150字)、关键词(3-5个)、正文和参考文献的顺序撰稿。若是基金项目,请注明课题全称和批准文号。

5.本刊有权对拟用文稿作文字上的修改、删节处理,对图表有权按规范、标准等要求作技术处理;凡不同意者,请在来稿时申明。

6.杂志每版的字数为2200左右(不包括图表,如有图表则字数酌减)。

7.来稿请注明“投稿《网络与信息》”字样,并以Word格式发送到:,同时注明投稿者姓名、单位、邮编和地址、电话、E-mail,以便联系和邮寄样刊。

8.编辑部收到作者稿件后,5天内给作者反馈稿件处理情况。

联系方式:

电话:024-31318681

地址:沈阳市市府大路187号《网络与信息》杂志社

上一篇:国际私法论文范文 下一篇:电力论文范文