废水治理范文

时间:2023-02-27 15:00:50

废水治理

废水治理范文第1篇

关键词:皮革废水;废水处理;清洁生产

Abstract: Tannery pollution, mainly from the leather production process in the discharge of sewage, the sewage volume of large, complex composition, high concentration. This paper summarizes the source, leather wastewater characteristics, and main technical processing method.

Key words: leather wastewater; wastewater treatment; clean production

中图分类号:[TE992.2]文献标识码:A文章编号:

前言

制革工业废水是一种对水源生态环境严重污染的废水。它的生化需氧量高,悬浮物多,带有色泽及臭味,并含有硫化物、铬、植物鞣剂及酚类合成鞣剂等有害物质,是一种较难治理的工业废水。我国制革工厂目前有500多家(不包括乡镇企业),以生产猪、羊、牛皮产品为主。猪皮生产占80%,每年生产猪皮6000-8000(万张),牛皮800-900(万张),羊皮2000-3000(万张)。制革行业每年排放废水7000万吨,约占全国工业废水总排放量的0.3%。据调查统计,目前只有30%的制革企业不同程度的简单处理了废水,其余的70%产生的废水未经任何处理,自然排放。对环境造成严重污染,对生态带来破坏。

1.皮革废水的来源

皮革生产过程中产生的废水主要来自鞣前工段(包括浸水去肉、脱毛浸灰、脱灰软化工序)、鞣制工段(包括浸酸、鞣制工序)、整饰工段(包括复鞣、中和、染色、加脂工序)。鞣前工段是皮革污水的主要来源,污水排放量约占皮革废水总量的60%以上,污染负荷占总排放量的70%左右;鞣制工段污水排放量约占皮革废水总量的5%左右,整饰工段污水排放量则占30%左右。

2.皮革废水的特点

废水主要来源于鞣前准备,鞣制和其他湿加工工段。污染最重的是脱脂废水、浸灰脱毛废水、铬鞣废水,这3种废水约占总废水量的50%,但却包含了绝大部分的污染物,各种污染物占其总量的质量分数为:CODcr80%,BOD575%,SS70%,硫化物93%,氯化钠50%,铬化合物95%。

制革废水的特点表现在以下几方面

①水质水量波动大;

②可生化性好;

③悬浮物浓度高,易腐败,产生污染量大;

④废水含S2-和铬等有毒化合物。

3.皮革废水处理技术

3.1单项处理技术

3.1.1脱脂废水

脱脂废液中的油脂含量、CODcr和BOD5等污染指标很高。处理方法有酸提取法、离心分离法或溶剂萃取法。广泛使用的是酸提取法,加H2SO4调pH值至3~4进行破乳,通人蒸汽加盐搅拌,并在40~60℃下静置2—3h,油脂逐渐上浮形成油脂层。回收油脂可达95%,去除CODcr90%以上。一般进水油的质量浓度为8—10g/L,出水油的质量浓度小于0.1g/L。回收后的油脂经深度加工转化为混合脂肪酸可用于制皂。

3.1.2浸灰脱毛废水

浸灰脱毛废水中含蛋白质、石灰、硫化钠、固体悬浮物,含总CODcr的28%、总S2-的93%、总SS的70%。处理方法有酸化法、化学沉淀法和氧化法。生产中多采用酸化法,在负压条件下,加H2SO4调pH值至4—4.5,产生H2S气体,用NaOH溶液吸收,生成硫化碱回用,废水中析出的可溶性蛋白质经过滤、水洗、干燥变成产品。硫化物去除率可达90%以上,CODcr与SS分别降低85%和95%。其成本低廉,生产操作简单,易于控制,并缩短生产周期。

3.1.3铬鞣废水

铬鞣废水主要污染物是重金属Ce3+,质量浓度约为3-4g/L,pH值呈弱酸性。处理方法有碱沉淀法和直接循环利用。国内90%的制革厂采用碱沉淀法,将石灰、氢氧化钠、氧化镁等加入废铬液,反应、脱水得含铬污泥,用硫酸溶解后可再回用到鞣制工段。反应时pH值在8.2-8.5,温度在40℃沉淀最好,碱沉淀剂以氧化镁效果最好,铬回收率为99%,出水铬的质量浓度小于1mg/L。但此法适用于大型制革厂,且回收铬泥中的可溶性油脂、蛋白质等杂质会影响鞣制效果。

此外,国外研究出一些新型的处理铬鞣废水的技术。A.I.Hafez用反渗透(RO)膜技术处理铬鞣废水并回收铬,研究证明,RO膜技术能够高效得将铬从铬鞣废水中分离出来,铬的去除率高于99%,但NaCl的浓度过高会影响铬分离。当NaCl的质量浓度低于5000mg/L,此时RO膜技术的成本低,用于小制革厂分离回收铬比碱沉淀法要经济。Sevgi Kocaoba使用离子交换树脂技术去除回收铬,找到了其回收铬的最优条件:铬离子的质量浓度为10mg/L,pH值为5,搅拌时间20min,树脂数量250mg,铬回收率在99%以上,与传统方法相比具有操作简单、效率高等优点。

3.2综合废水处理技术

制革废水中污染物组成复杂,综合废水的处理方法也很多,有生化工艺和物化等方法。国内制革工业通常采用物化处理和生化处理相结合的方法,此法投资省,运行费用低,能够稳定达标排放。

3.2.1生化处理工艺

(1)预处理系统:主要包括格栅、调节池、沉淀池、气浮池等处理设施。制革废水中有机物浓度和悬浮固体浓度高,预处理系统就是用来调节水量、水质;去除SS、悬浮物;削减部分污染负荷,为后续生物处理创造良好条件。

制革废水中含有较多的柔软剂、渗透剂和表面活性剂等高分子化合物,这些物质比较难以生物降解。P.A.Balakrishnan 等研究在生物处理前,用臭氧来氧化废水,将这些高分子有机物转变成低分子形式,甚至是容易消化的简单的生物机体,从而提高生物的可降解性。一般用硫酸亚铁或碱式氯化铝,投加量为0.03%-0.05%,可去除CODcr与BOD5约50%,S2-70%以上,SS与色度80%以上。

(2)生物处理系统:制革废水的ρ(CODcr)一般为3000—4000 mg/L,ρ(BOD5)为1000—2000mg/L,属于高浓度有机废水,m(BOD5)/m(CODcr)值为0.3—0.6,适宜于进行生物处理。目前国内应用较多的有氧化沟、SBR和生物接触氧化法,应用较少的是射流曝气法、间歇式生物膜反应器(SBBR)、流化床和升流式厌氧污泥床(UASB)。

目前用于处理制革废水的比较成熟的工艺是氧化沟、SBR和生物接触氧化法,其技术参数比较全面。制革废水水量水质波动大,含有较高浓度的Cl-和SO42-,以及微生物难降解的有机物及铬和硫化物带来的毒性问题,因此生物处理工艺必须具备耐冲击负荷,且能适应高盐度对微生物产生的抑制作用,又能在较长时间内使难降解有机物得到降解和无机化。

3.2.2物化处理工艺

目前国内用于处理制革废水的物化处理法有投加混凝剂、内电解等技术。用混凝剂物化处理,设备简单、管理方便,并适合于间歇操作。此法的显著特点是混凝沉降速度快,污泥体积小,处理废水费用低。

内电解法对废水的处理是基于电化学反应的氧化还原和电池反应产物的絮凝及新生絮体的吸附等的协同作用。河南省夏邑县某皮革制品有限公司,日排放量100—120m3,采用以内电解为主的工艺,内电解塔为固定床,阳极的铁屑填料经特殊处理后,既增加填料的活性,又防止铁屑结块,使运行效果更加稳定,运行中对pH值要求非常严格。经过1年的运行,效果良好,CODcr,BOD5,SS总的去除率分别为88%,89%和95%。此工艺特别适合间歇生产的中小型制革企业,操作简便,运行稳定,脱色效果好,投资低,出水水质能够稳定达到二级排放标准。

4.清洁化生产

目前,虽然皮革废水的处理已经有许多成熟有效的工艺,但从经济和环境的双重角度考虑,清洁生产才是最为理想的选择。清洁生产转变了传统的先污染后治理的污染控制模式,强调在生产过程中提高资源、能源转换率,减少污染物的产生。在皮革生产过程中可采取的清洁生产技术包括高吸收铬鞣工艺,无硫、少硫脱毛工艺,无盐、少盐浸酸工艺,白湿皮剖层工艺,无氨氮脱灰工艺等。

5.结语

各类皮革废水处理技术正在不断发展和完善,新技术越来越多地被运用于实际的废水处理过程中。皮革厂应根据本厂废水特征及其它实际条件,选择效果好且经济可行的处理技术及工艺。从经济和环境的角度考虑,清洁化生产是最为理想的发展趋势,也是皮革工艺可持续发展的唯一出路。

参考文献

【1】罗建勋,李书卿,蓝振川,张松林.清洁化制革研究的进展与所面临的困难【J】.2010年全国皮革化学品会议论文集.四川大学生物质与皮革工程系.四川成都,610041

【2】单志华,邵双喜.我国清洁制革工业材料的开发展望【J】.精细化工,2006,23(10)-1001·1006

废水治理范文第2篇

【关键词】碱性废水;烟道气;脱硫;除尘;循环回用

一、废水处理工程运行管理

城市废水处理厂由于地域、水源和水质要求的不同,采用的工艺也各不相同。特别是近年来,由于新的工艺和方法的不断出现,废水处理厂从结构到处理过程出现了极大的变化,充分了解城市废水处理厂的工艺特点是成功治理废水的前提,皂化废水含碱性物质、油和有机物,COD高达2~H、i艺流程与主要设计盎数6万mg/L,PH值大于 12,皂化废水由于有机物浓度高,如单独进行生化或物皂化废水先进入预处理地进行沉淀分层,上层皂脂化处理都很难达到工业废水排放标准,且单独采用生化回收利用,下层底泥用来制脱模剂,中层废水用泵打入法废水处理费用高,设施占地面积大,脱硫除尘后的这种废水都是直接排入自然水系,不仅污染生态环废水经过筛式滚动微滤机分离出大颗粒碳粒和部分悬境,而且浪费了大量有用物质,大部分废水返回锅炉脱硫系统回用,少部分盈余采用湿式水膜废水先经过二级射流气浮除去大部分有机物,然后与冲除尘装置除尘,除尘效率达95%,治理关键是消除废水中钙、镁离子和高氟离子。中小型锅炉湿法除尘废水循环系统一般沉淀池容积小,废水沉降不完全,且由于废水循环周期短,SO2被除尘水吸收而生成的HSO离子来不及与烟尘中碱性物质中和,使得废水pH值小和悬浮物过多,造成对循环系统的严重腐蚀和堵塞,治理并保证循环系统正常运转的关键是采用中和技术降低废水中HSO离子以及采用净化工艺降低废水中悬浮物浓度。

二、废水中和处理技术

对于中小型锅炉湿法除尘废水治理来说,最常用中和处理工艺还是投放石灰,主要原因是石灰价廉,来源广泛,对于各种酸性废 水适应性强。但石灰的缺点也是显而易见的,由于石灰在水中的分散性差,形成浆液后流动性不好,在中和反应过程中石灰接触废水中二氧化硫后,较易被生成而不能继续反应的CaSO4所复盖,此外,烟气中的 CO2也减缓二氧化硫中和反应的进行,这一切都造成石灰对酸性除尘废水中和反应效率差。由于石灰中和反应后的泥渣量大,以及对其保管、操作复杂等方面的问题,都影响了石灰的应用。采用工业碱在上述方面优于石灰,但限制真使用的是其价格问题。我国每年排放大量碱性工业废水,各地还直接采用碱性工业废水稀释后作为除尘用水进入锅炉除尘系统直接洗涤燃煤烟气,可以取得较高的烟气脱硫和除尘效率,且排放后的废水pH值达6~7,达到以废治废,燃煤烟气脱硫除尘和除尘废水及工业废水同时治理的目的。脱硫除尘后的废水由于含有部分原碱性废水的污染物,必须进行净化理后才能继续循环回用或排放,各地采用的处理工艺大多以炉渣过滤为主,也有的采用混凝气浮或进入生化处理,尽管这样一来提高了除尘废水的处理费用,但以烟气脱硫和除尘后循环回用及碱性工业废水联合处理的综合效益考虑,还是十分合算的。

三、中国烟气治理的发展现状

近几年经过治理,电力工业燃煤排放的二氧化硫等污染物已有相当改观,但按国家规定的排放标准,仍有相当部分燃煤机组属超标排放。就拿拥有全国燃煤机组近一半的原国家电力公司系统来说,目前就有约10%的燃煤机组污染为超标排放。要在今后几年燃煤机组继续增加、发电量继续增长的情况下实现污染物达标排放和减排,任务十分艰巨。此外,要减少火电机组污染物的排放,电力工业还需解决环保治理投资大、时间紧的问题。脱硫任务重的火电厂大都集中在我国中、西、南部等经济欠发达地区,资金筹集难度大。

四、控制锅炉烟气污染的对策

1.天然气是一种高品位的优质能源,把它用于发电燃料时,不能单纯的将现有燃煤锅炉改为燃气锅炉,而应在锅炉前增设燃气轮机,做功后的尾气再进锅炉,提高整个发电机组的效率,增加发电量,以消纳一部分因燃料价格不同而造成的发电成本的增加,减轻用户的负担。采用天然气发电后,其环保效益从减少排放总量来说,烟尘和二氧化硫的排放量将大幅度减少,氮氧化物的排放量也会有不同程度地减少。其效果是十分显著的。就其对城市大气环境质量的影响来看,由于电厂大多建在城区,又是高烟囱排放,有利于扩散,加之污染治理设施较为完善,其影响程度可得到有效控制。因此,在发展天然气发电时,因根据不同地区的环境要求、天然气来源及其价格、发电厂所处的地理位置等诸多方面因素进行合理性分析,以取得全社会环境效益事半功倍的效果。

2.在全国建立一批以动力煤的洗选、配煤、型煤、水煤浆等综合加工配送工程,按燃煤用户的需要,提供质量优良的加工产品;结合电力、工业和民用燃煤设备的规模和特点,通过技术和经济分析、分期、分区域对燃煤设备进行技术改造和设备更新,尤其应强化对中小型燃煤设备的技术改造和更新工程,推广应用低硫煤和层燃燃煤设备燃用筛选块煤等节能减污技术;在已有水煤浆技术成果的基础上,为完成“十五”期间的节油目标,应进一步完善水煤浆代油技术,通过工程示范,积累经验,为大型燃煤设备的应用创造条件。

3.为促进火电厂烟气脱硫国产化,必须研究制定相配套的鼓励政策,如向承担建设火电厂烟气脱硫国产化的企业和承包火电厂烟气脱硫工程的工程公司提供长期低息优惠贷款政策;对进口烟气脱硫成套设备分阶段合理征税,引导和鼓励企业使用国产烟气脱硫设备的政策;鼓励烟气脱硫国产化依托工程所在的电厂多发电,提高其经济效益的政策等等。政策是否配套,影响到规划目标能否如期实现。国家有关部门应研究制定火电厂烟气脱硫关键技术和设备国产化的政策,逐步形成促进火电厂烟气脱硫国产化和产业化的配套政策体系。

结束语

中国燃煤SO2排放量连续多年超过2000万吨,电厂锅炉和燃煤工业锅炉SO2排放量约占全国SO2排放量的70%。对“十五”期间中国燃煤锅炉治理技术的市场需求、研究和应用现状、行业发展状况进行了综述。从调整能源结构、合理利用天然气,积极发展和实施洁净煤技术,制定促进火电厂脱硫国产化的配套政策三方面对燃煤锅炉烟气污染治理具有积极的意义。

参考文献

[1]中国环境科学研究院标准所.大气污染达标技术指南,1997

[2]《中国环保科技及产业研究》课题组.中国环保科技及产业研究.2000

[3]刘精今.利用碱性废水进行锅炉烟气脱硫除尘技术经济分析.重庆环境科学,1997,

废水治理范文第3篇

关键词:电镀混排;废水治理;正交试验;工艺

中图分类号: X78111文献标识码:A 文章编号:1672-3791(2016)04(c)-0000-00

1 概述

电镀在生产过程中排出的废水含有铬、镍、铜、镉等多种重金属,并且含有氰废水和酸碱废水,是最难处理的工业废水之一。电镀废水中的配位体常见NH3、CN-、EDTA、柠檬酸、酒石酸等等,作为电解质溶液其电离平衡常数较溶解平衡常数要大得多,也就是其存在状态会更为稳定。因此,需要确定最佳工艺参数,以使重金属浓度达到排放标准,并重点设计处理含重金属废水的优化工艺,作为工程改造和调试的依据。

2 废水水质水量:该水站处理6个车间的排放水,总设计2000m3/d,其中分为六股水,有含铬废水,含镍废水,综合废水,含氰废水,混排废水和前处理废水,分别对应车间镀件的工艺要求和排放需求。

3 处理工艺与原理

3.1工艺流程:根据废水水质水量统计处理可以看出电镀工艺、镀种以及镀液的不同,其中的污染物也比较复杂水中主要污染物是重金属离子,如铜、镍、铬等;其次为氰化物、酸碱类物质,另外,在电镀前处理抛光除油等工序中清洗下来的尘土与油脂等物质也进入了电镀废水,电镀废水的成分就变得尤其复杂。针对电镀废水这一特性,对废水进行分类收集与分类处理。

工艺混排废水与反渗透浓水预处理工艺出水经pH调整后进入A-A-O-A-O 系统,去除有机物并脱氮除磷,后进入斜管沉淀池实现泥水分离,出水经臭氧进一步氧化,分解部分难生化降解有机物,出水再进入曝气生物滤池去除氨氮及有机物。

3.2正交试验分析:为了考察不同的双氧水投加量、浓度比以及pH值、亚铁投加量对铜去除率的影响。进而寻找最佳的反应条件,并确定各因素的影响顺序。

通过分析确定了铜去除率最大时的各单因素的参数,于是在各个最佳单因素参数附近选择一个水平范围。双氧水的投加量在0.3-0.45mg/L之间变化时,铜离子的浓度逐渐降低,出于对处理效果和经济效益的综合考虑,正交试验取铜离子浓度降低阶段时的双氧水投加量水平值为0.3g/L,0.375g/L,0.45g/L。当浓度比为1/4时,铜离子的去除率达到最高,正交试验取最佳值附近的水平值,其浓度比为1/3,1/4和1/5。原水pH值在2-6之间递增时,铜离子浓度先降低后升高,当pH为3.0时铜去除率最高,取pH值的水平值为2.0,3.0,4.0。亚铁投加量对溶液中铜离子含量的影响表现为,当亚铁投加量增加时,铜离子浓度降低,但当亚铁投加量增大时,铜离子浓度降低缓慢,考虑到各方面因素,正交试验亚铁投加量取5 mmol・L-1,10 mmol・L-1和15 mmol・L-1三个点进行。

3.3响应面法分析:在本文当中将双氧水投加量、浓度比以及PH值作为三个因素,具体结合前面的实验得知,不同的因素具有几个不同的水平。本文主要选择最佳水平左右各一个因素作为响应面法处理,并将每一种选择的水平进行分级。例如双氧水投加量三个水平为:0.3g/L、0.375g/L、0.45g/L;浓度比三个水平为:1/3、1/4、1/5;PH值三个水平为:2、3、4。

根据Box-Behnken响应曲面法对去除率的提取工艺进行优化,结果设计17组试验。应用Design-Expert.8.05b软件分析数据,得到了多元二次回归模型方程如下所示:

R1=-80.41350+4.48115A+0.53330B+0.60420C+8.00000E-003AB-1.45000E-0034AC-5.5000E-004BC-0.074240A2―0.017840B2-4.48500E-003C2

方程式中R1为去除率,A为双氧水投加量,B为PH值,C为浓度比。

应用响应面法得到的数据如下:

结合上述的响应面法的结果可知,去除率最高的为第5组实验,这一组实验结合其实验提取的水平为选择双氧水投加量为0.45g/L,选择浓度比为1/4,选择PH值为3,与前文正交试验结果一致,提取的效率达到了90.12%。

4 工程调试与处理效果

4.1 工程调试和运行:该处理系统经过调试后,运行效果良好。处理后排放口主要污染物出水水质为:pH为6.8~8.5,COD

4.2效益分析:本区废水处理运行费用包括人工费、药剂费、电费等,经折算后人工费为0.313元/m3,药剂费为13.726元/m3,电费为2.816元/m3。废水处理总的运行费用为16.855元/m3。

结论

本工程考虑了电镀园各电镀企业镀种与电镀工艺的复杂性,将各企业的废水按含镍废水、含铬废水、综合废水、含氰废水、前处理废水、混排废水进行分类收集,保证了各种污染物都得到了有效处理。

参考文献

[1]张长路,楼海婷,高航.表面处理电镀废水设计方案技术研究[J].山西建筑,2013,39(5):103-105.

[2]段光复.电镀废水处理及回用技术手册[M].北京:机械工业出版社,2010:353-368.

废水治理范文第4篇

1制革废水COD的来源及特征

制革企业排放的污水主要来自制革生产的准备、鞣制和其它湿加工工段。关于鞣前准备工段废水的COD特征,以山羊革加工为例,详细分析了各工段废水中COD的分布情况。浸灰工段废水的COD浓度高达13740mg/L,主要是由脱毛浸灰废水中大量的蛋白质、毛渣、硫化钠和油脂降解物形成。其次是染色加脂工段,该工段废水的COD浓度为13012mg/L。浸灰和复灰工段产生的COD量占总量的52.63%[6]。实事证明,污水排放量约占制革总水量的70%以上,是制革污水的最主要来源。鞣制工段的污水排放量约占制革总水量的8%左右,而鞣后湿整饰工段的污水排放量约占制革总水量的20%左右[3-4]。皮革加工过程中,大量的蛋白质、脂肪转移到废水和废渣中,采用的酸、碱、盐、石灰、硫化钠、铬鞣剂、染料、加脂剂等化工原料,相当一部分也进入到废水,使得制革废水具有耗氧量高、悬浮物多、碱性强、色度值高等特点。最为显著的是,制革生产中,为了去除生皮中毛、表皮、脂肪、纤维间质等,浸灰脱毛工段使用了大量的硫化钠和石灰,结果导致大量蛋白质、碱性化合物、硫化物等进入水中,产生的污染物以COD计约占废水总负荷的40%[5],此外在加脂、染色等工艺中,又有大量合成有机物进入废水中,这些都属于难降解的有机物,更增加了废水的组成成分和处理难度。

2制革废水COD常见处理方法及特点

2.1物理化学法

2.1.1萃取法

萃取法是使溶于废水中的某些污染物质转入至萃取剂中,与废水分离,从而达到废水净化和回收有用物质的目的。萃取法具有处理水量大,设备简单,便于自动控制,操作安全,成本低等优点。常用于制革废水中脱脂废水和铬鞣废水的预处理。

2.1.2吸附法

吸附法是利用多孔性的固体物质,使废水中的一种或多种物质被吸附在固体表面而去除的方法。污水处理中使用最多的吸附剂是活性炭、炭纤维、氧化硅、硅藻土、硫化煤、矿渣以及吸附用的树脂等。此方法经济廉价效果良好,不但能够去除那些难分解的有机物,降低COD,还能使废水脱臭、脱色,达到可重复利用的目的。用1.0mol/L的硫酸与粉煤灰混合反应,制得改性粉煤灰,并研究了其对制革废水的处理效果及其影响。试验结果表明:改性粉煤灰粒度在180目以下,投加量为40g/L,在30℃下搅拌反应30min后处理效果最理想,废水中的COD的去除率为72.6%[6]。

2.1.3混凝沉淀法

混凝沉淀法是指向废水中投加混凝剂,借助胶体颗粒和混凝剂之间产生的电性中和,吸附桥架和卷扫等作用,使废水中分散的胶体和微小悬浮物形成较大的絮凝体颗粒而迅速沉降,从而达到净化污水的目的。在制革废水的处理中,混凝沉淀法多用于预处理和三级处理。预处理可以将废水中一些生物难降解物质去除,提高后续处理的可生化性。三级处理可以进一步去除废水中的固体悬浮物和色素,保证出水的水质达到国家排放要求。这类混凝沉淀法研究较多,如采用聚硅硫酸铝絮凝剂处理制革废水,当Si/Al摩尔比为1∶1,Na2SiO3溶液浓度在5%~15%之间,pH值为1.0~4.0,熟化温度为30~50℃时,PSAS的絮凝效果相对最好,它对制革废水的COD去除率最高值达90%[7];将ZnCl2、ZnSO4分别与聚丙烯酰胺(PAM)按一定比例复合制得A、B型复合混凝剂,并研究它们对制革废水的处理效果及影响。试验结果表明:pH值为12,PAM投加量8.3mg/L,Zn-SO4投加量200mg/L时,ZnSO4-PAM复合混凝剂处理COD,去除率可达71.9%[8];用酸浸的粉煤灰和鼓风炉铁泥所得到的PBS混凝剂,与聚硅酸铝(PSA)絮凝剂配合处理制革废水,COD的去除率达到83.6%[9];用酸浸粉煤灰混凝剂与聚硅酸铝铁絮凝剂配合处理COD为1500~2000mg/L的制革废水,处理后COD、SS和硫化物的去除率分别为93%、95%和92%[10]。

2.2生物法

2.2.1氧化沟

氧化沟是一种改良的活性污泥法,其曝气池呈封闭的沟渠形,污水和活性污泥混合液在其中不断循环流动。近年来,氧化沟技术在我国治理制革废水中广为应用,国家环保总局2000年确认氧化沟处理制革技术为国家重点环境保护实用技术(编号100),其技术成果已在国内大、中型制革企业中得到推广[11]。氧化沟处理制革废水的优点有:实用性强,处理效果的稳定性好,可操作性强,设备可靠,维修工作量少,工程投资和运行费用相对较低。在进水COD平均浓度为1700mg/L时,确保处理后的COD降至150mg/L左右,此时COD的去除率达到92.2%[12],进一步改进能够达到国家《污水综合排放标准》(GB8978-1996)一级标准[13]。即使在严寒地区,氧化沟技术也能够保证生化处理效果,如,Carrousel3000氧化沟处理制革废水的技术[14]。

2.2.2SBR法

SBR是序批间歇活性污泥法的简称。该法的操作模式由进水、反应、沉淀、出水和待机5个基本过程组成。与传统活性污泥法相比,SBR工艺流程简单,不设二沉池,无污泥回流,操作灵活,曝气量和曝气时间可调,不易产生污泥膨胀。近年来,SBR法处理制革废水逐渐被应用和推广。Lefeb-vre等[15]采用SBR法处理制革废水,在水力停留时间5d、有机负荷0.6kgCOD/m3?d、NaCl浓度34g/L的条件下,COD的去除率为95%。在适当的处理条件下,用SBR处理高浓度的有机废水方面具有重要的意义,COD的去除率超过96%[16]。

2.2.3生物接触膜法

生物接触膜法是生物膜法和活性污泥法相结合的方法。在生物反应器内,附着在固体填料表面的微生物群体形成一层生物膜,当进行废水处理时,液相中的有机物不断地被吸附到生物膜上,在微生物的新陈代谢过程中分解有机物,从而到达净化废水的目的。它具有产生污泥量少,不会引起污泥膨胀,对水量的变动和废水的水质具有良好的适应能力,运行管理简单等特点。采用混凝沉降-生物接触氧化工艺处理蓝湿革厂的废水表明,该工艺能有效净化蓝革废水中的污染物,对废水中COD和BOD的去除率均高达94%以上,出水稳定达标[17]。采用加压混凝气浮-生物接触氧化工艺处理制革废水,小试与生产性装置运转均取得较好效果,COD去除率约为80%,BOD去除率在90%以上,对硫化物亦有很好的去除效果[18]。更有效地处理报道是COD去除率达到96%,硫化物去除率达到99.5%[19]。

2.3电化学法

2.3.1电化学氧化法

电化学氧化主要是针对难降解有机物的去除,它分为直接电解和间接电解。直接电解是指通过阳极氧化降解废水中的污染物,使之转化为无害物质;而间接电解是指利用阳极反应产生具有强氧化作用的中间物质作为反应剂或催化剂,使其直接氧化废水中的有机污染物,最终达到净化废水的目的。因它具有使用设备体积小、不产生二次污染、有机污染物能够被彻底矿化等特点,近年来备受关注。利用多种阳极对电解处理制革废水的影响结果显示,电化学氧化法对COD的去除有一定的作用。如,Ti/Pt-Ir阳极和不锈钢阴极为电极对制革废水进行处理,并对污染物的去除机理进行了研究,都得到了明显的效果[20-21]。

2.3.2微电解法

微电解法是一种新型工业污水处理法,其原理是利用铁屑和碳在废水中形成原电池的正负极,发生氧化还原反应。微电解法治理有机废水技术是以废治废的典型方法,该方法利用废铁屑对污染物进行电化学降解和电凝聚沉淀,投资少、运行费用低且操作简便。如,以内电解为主的全物化工艺处理制革废水,当进水COD平均浓度为762mg/L时,出水水质能够稳定达到二级排放标准,COD的平均去除率为74.8%[22];制革废水经微电解法预处理后与SBR结合的工艺,能使COD降低40%~60%,为后续生化法处理创造了有利条件[23];在酸性条件下铸铁/活性炭、铸铁、纯铁、纯铁/活性炭4种填料,对COD的去除率分别为65.3%、75.9%、71.6%和96.3%[24]。

2.3.3电絮凝法

电絮凝是指废水在直流电的作用下,Fe或Al阳极失去电子后溶解在水中成为Fe(Ⅱ)、Fe(Ⅲ)、Al(Ⅲ),经水解形成氢氧化物微絮体,就可起到絮凝作用以吸附去除水中的污染物。同时在电解过程中,阳极表面产生的中间产物(如羟自由基、原子态氧)对有机污染物也有一定的降解作用。电絮凝的优点在于可自动化操作、絮凝效率高、操作简单和费用低。Zaroual等[25]用电絮凝法处理制革废水,利用铁作为可溶性电极,在电流密度为0.15A/cm2、电压为0.70V、电解时间为90min的条件下,制革废水中的COD有良好的去除作用。

2.4其他处理技术

制革废水的COD含量很高,通常采用常规的单一物化或生化处理效率不高,出水很难达到排放标准,所以除了上面提到的应用较多、比较成熟的工艺系统外,近年来还出现了多种组合处理工艺,其中不乏有借鉴价值的工艺。有报道表明:1)用一种新型生物流化床工艺处理制革废水,COD去除率达80%以上,BOD去除率达86%以上,出水达到GB8978-1996二级排放标准[26];2)采用UASB工艺处理高浓度制革废水,以厌氧污泥作为接种污泥,温度35~38℃的条件下,COD的去除率达到91.6%[27];3)利用超声波强化,以CaO为主的混合药剂对铬鞣废水进行处理,COD和SS的去除率分别为48%和84%[28];4)用水解-酸化射流曝气活性污泥法处理制革废水,废水中COD、BOD去除率均在90%以上,出水达标且每吨运行费用比传统工艺降低0.3元,认为该工艺在技术上可行、经济上合理[29];5)利用物化-水解酸化-CAST工艺处理制革废水,实践表明,COD的去除率在90%以上,出水水质优于《污水综合排放标准》(GB8978-1996)二级标准[30];6)将水解酸化-预曝气-氧化沟-气浮工艺应用于制革废水处理中,运行结果表明,COD去除率在90%以上,所排放废水各项指标达到了《污水综合排放标准》(GB8978-1996)中一级标准[31]。

3制革废水COD的电化学处理思考

废水治理范文第5篇

物化后处理试验

采用Fenton化学氧化–絮凝沉淀工艺对生化出水进行后续处理,先利用Fenton试剂的强氧化能力氧化分解生化处理后遗留的难降解有机物。由亚铁离子与过氧化氢组成的体系也称芬顿试剂,两者在适当的pH下(2.5~3.5)会反应产生氢氧自由基(•OH),而氢氧自由基的高氧化能力与废水中的有机物反应,可分解氧化有机物,进而降低废水中生物难分解的CODCr。由于Fe2+与H2O2反应会形成Fe3+,必须于中和池中将pH调整至中性以形成Fe(OH)3,并于慢混池中藉助polymer聚集成大颗粒,于化学沈淀池中去除。由于Fe3+本身就是非常好的混凝剂,所以在这个过程中除了将Fe(OH)3分离去除外,同时对色度、SS及胶体(Colloid)也具有非常好的去除功能。使最终出水达到广东省地方标准《水污染物排放限值》(DB44/26-2001)第二时段一级标准。试验仪器及药剂:85-2控温磁力搅拌器,pHS-5型酸度计,光学显微镜,溶氧仪,电子分析天平。FeSO47H2O(配成10%浓度)、30%H2O2和粉状PAM药剂(配成0.1%浓度)。试验步骤:(1)用量杯分别取2个水样至500mL烧杯中;(2)用浓硫酸调整2个烧杯中的废水pH=3左右;(3)依次往2个烧杯中分批次加入FeSO4•7H2O及H2O2,用玻璃棒快速搅拌1min,然后反应1h;(4)用碱液调整2个烧杯中的废水pH=9.5~10之间;(5)依次往2个烧杯中加入1mL的聚丙烯酰胺溶液,用玻璃棒快速搅拌1min后再慢搅2~5min;(6)静置沉淀30min后取烧杯中上清液检测CODcr及BOD5。

分析方法

主要理化指标分析方法见表2。

好氧处理试验结果

试验结果见图1。由图1可知,中试系统进水CODCr最高为436mg/L,最低为276mg/L。经过二级好氧处理,出水CODCr最高为275mg/L,最小为200mg/L。生化系统对CODCr平均去除率在32%左右。

芬顿试验结果

去除CODCr需要H2O2理论当量E可按下式计算:E=(CCODcr÷103)×(34÷16)(g/L)实验研究中,将单因子分析与正交试验因子优化两种方法相结合来设计实验方案,在静态试验的基础上开展稳态试验,分别对pH、反应时间、H2O2投量与有机物浓度之比、H2O2投量与Fe2+投量之比(摩尔比)等几个主要影响因素进行探讨,试验结果见图2、3。由图(2)可知,进水pH=3时,CODCr去除率最高。因此,pH对Fenton试剂的影响较大,pH过高或过低都不利于OH的产生。从图(3)可见,随着H2O2的投加量增加,CODCr去除率呈上升趋势。这是因为双氧水投加量增大,有利于反应(2)进行,产生更多的•OH。但过量的双氧水会与•OH反应,造成•OH消耗,同时废水中残留的双氧水在检测CODCr时会被重铬酸钾氧化,造成测得的CODCr浓度偏高,从而影响去除效果。考虑废水的治理成本及系统的稳定性,确定最佳反应条件为:当生化出水CODCr≤250mg/L时,进水pH=3,HRT=60min,H2O2/CODCr=2.5,H2O2/Fe2+=3∶1。对应的CODCr的去除率约为60%。当生化出水250≤CODCr<300mg/L时,进水pH=3,HRT=60min,H2O2/CODCr=3,H2O2/Fe2+=4∶1。对应的CODCr的去除率约为65%以上。

经济分析

废水治理范文第6篇

金属矿山酸性废水的形成机理比较复杂,含硫化物的废石、尾矿在空气、水及微生物的作用下,发生风化、溶浸、氧化和水解等系列的物理化学及生化等反应,逐步形成含硫酸的酸性废水。其具体的形成机理由于废石的矿物类型、矿物结构构造、堆存方式、环境条件等影响因素较多,使形成过程变的十分复杂,很难定量研究说明[1]。一些研究资料[2]表明,黄铁矿(FeS2)是通过如下反应过程被氧化的:

FeS2+2O2FeS2(O2)2(1)

FeS2(O2)2FeSO4+S0(2)

2S0+3O2+2H2O2H2SO4(3)

上式表明元素硫是黄铁矿氧化过程中的中间产物。而另有研究则认为其氧化反应过程是通过下式进行的,即:

(1)在干燥环境下,硫化物与空气中的氧气起反应生成硫酸亚铁盐和二氧化硫,在此过程中氧化硫铁杆菌及其它氧化菌起到了催化作用,加快了氧化反应速度:

FeS2+3O2FeSO4+SO2(4)

在潮湿的环境中,硫化物与空气中的氧气、空气土壤中的水分共同作用成硫酸亚铁盐和硫酸。

2FeS2+7O2+2H2O2FeSO4+2H2SO4(5)

反应(4)、(5)为初始反应,反应速度很慢。

据中科院1993年的调研资料[3]证明矿物中的硫元素在初始氧化过程以四价态为主,反应过程(5)可以表示为:

2FeS2+5O2+2H2O2FeSO3+2H2SO3

2FeSO3+O22FeSO4

2H2SO3+O22H2SO4

(2)硫酸亚铁盐在酸性条件下,在空气及废水中含氧的氧化作用下,生成硫

酸铁,在此过程中氧化铁铁杆菌及其它氧化菌起到了催化作用,大大加快了氧化反应过程:

4FeSO4+2H2SO4+O22Fe2(SO4)3+2H2O(6)

反应(6)是决定整个氧化过程反应速率的关键步骤。

(3)硫酸铁盐同时还可以与FeS2及其它金属硫化矿物发生氧化反应过程,形成重金属硫酸盐和硫酸,促进了矿物中其它重金属的溶解及酸性废水的形成。

7Fe2(SO4)3+FeS2+8H2O15FeSO4+8H2SO4(7)

2Fe2(SO4)3+MS+2H2O+3O22MSO4+4FeSO4+2H2SO4(8)

(其中M表示各种重金属离子)

反应(7)、(8)反应速度最快,但是取决于反应(6),也即亚铁离子的氧化反应速率。

(4)硫酸亚铁盐中的Fe3+,同时会发生水解作用(具体水解程度与废水的pH大小有关),一部分会形成较难沉降的氢氧化铁胶体,一部分形成Fe(OH)3沉淀,其反应方程式如下:

Fe2(SO4)3+6H2O2Fe(OH)3(胶体)+3H2SO4(9)

Fe2(SO4)3+6H2O2Fe(OH)3+3H2SO4(10)

二、金属矿山酸性废水治理现状

2.1石灰/石灰石中和沉淀法[6]

中和沉淀法是处理矿山酸性废水最常用的方法,该方法主要是通过投加碱性中和剂,提高矿山酸性废水的pH,并使废水中的重金属离子形成溶度积较小的氢氧化物或碳酸盐沉淀。常用的中和剂有生石灰(CaO)、石灰乳(Ca(OH)2)、石灰石(CaCO3)、白云石(CaCO3、MgCO3)、电石渣(Ca(OH)2)、Mg(OH)2等,此类方法可在一定pH值条件下去除多种重金属离子,具有工艺简单、可靠、处理成本低等特点。工程上较为常用的中和沉淀法为石灰/石灰石中和沉淀法,根据其具体方法的不同,石灰/石灰石处理方法又具有不同的处理工艺、系统。

(1)水塘处理工艺

水塘处理系统(PondTreatment)是矿山酸性废水与生石灰混合进入反应沉淀池,进行中和反应,中和泥渣沉降,上层澄清水外排。反应沉淀池一般是考虑两段设计,第一段主要用作反应沉降,水面较深,底泥要定期清理,第二段主要用作进一步沉降,增强出水水质(图2-1为水塘处理工艺)。此处理工艺简单可靠、工程投资及运行费用低,且能较好的适应水量、水质的变化。但由于处理系统没有考虑控制问题,在处理过程中可能要出现一些问题,例如处理过程中由于没有混合反应设备反应时间及混合不均匀导致一部分铁离子不能被充分氧化,但如果添加曝气系统,会对污泥对沉降性能产生影响。另外水塘一般地势低洼,处理出水及底泥到排放需要添加动力提升设备,将会加大能耗,增加处理运行成本。同时在处理过程中天气对处理出水水质有重要影响,水塘的塘面比较大,较大的风力会引起搅动,影响出水水质。水塘处理系统最大的不利条件是中和药剂石灰的利用率比较低,低于50%,为提高石灰的利用率可以考虑建立底泥回流系统,把一部分中和污泥用机械设备输送回处理系统,这样不但能提高石灰的利用率,而且提高污泥的浓度,从而可以降低处理运行成本。

图2-1水塘处理工艺

(2)基坑连续/批处理系统

基坑连续/批处理系统(PitTreatment)类似与水塘处理工艺,但在水塘处理工艺的基础上添加泵入、泵出设备,反应过程的混合作用增加了中和药剂石灰的效率。

批处理过程是矿山酸性废水在中和反应器中与配置的石灰乳液混合,发生中和反应,使重金属离子以形成相应的氢氧化物沉淀,在此过程中可以添加絮凝剂,一段处理出水自流进入基坑,在其中进行絮凝沉降,基坑上层清液通过浮动泵泵入二段中和反应器,通过添加硫酸调节pH值,使其达到出水限制要求,二段反应器最终出水达标排放。图2-2为某基坑连续/批处理工艺系统图。

图2-2基坑连续/批处理系统

基坑连续/批处理系统运作的关键是保证浮动泵泵出的是基坑内表面澄清液。泵入泵出基坑的水量是变化的,基坑内的水面高度同时也是波动的,整个处理过程可以连续进行也可以进行批处理操作。虽然基坑连续/批处理工艺系统相比水塘处理工艺能较好的提高中和药剂石灰的利用率,但是同样面临着中和pH不易控制,中和污泥沉降效果不佳等问题。

(3)传统处理工艺

传统处理工艺(ConventionalTreatmentPlant)矿山酸性废水进入石灰中和反应池,进行中和反应,通过控制反应池pH使废水中的重金属以氢氧化物沉淀的形式去除,处理出水经投加絮凝剂后进入澄清池,进行泥水分离,上层清夜达标外排,底泥从澄清池底部泵入污泥池或者压滤机进行进一步的处理、处置。但是通常要添加砂滤池或者其它过滤澄清设备,对溢流出水进行进一步处理,除去剩余的悬浮物、杂质,以提高出水水质。

图2-3传统处理工艺

江西德兴铜矿、永平铜矿及拟建中的铜陵化工集团新桥矿业公司的污水处理系统均采用传统处理工艺。此处理工艺简单可靠,处理运行费用低,在德兴铜矿、永平铜矿废水治理过程中取得了较好的废水处理效果,处理出水均可达到相应的国家排放标准。

虽然与水塘处理工艺及基坑连续/批处理工艺相比具有较好的石灰利用效率,但是与HDS底泥循环处理技术相比石灰的利用率还是较低。同时HDS底泥循环处理技术污泥的固含量可以达到20%,而传统处理工艺污泥的固含量不到5%,同时HDS处理技术在防止由于石膏的生成造成管道堵塞问题,而且HDS污泥回流工艺与传统处理工艺相比仅增加了底泥回流系统对整个工程投资及运行费用来说仅占较小的比例。

(4)简易底泥回流工艺

简易底泥回流技术(SimpleSludgeRecycle),这项处理技术没有被申请专利,其成果也没有被广泛,但是在一些地方也得到应用。主要是因为其增加了底泥回流系统,如图2-4。

此种处理工艺与传统处理工艺相比有较多的优点:

1)缩小了反应器容积

2)提高了污泥的沉降性能

3)提高了石灰的利用率,降低药剂石灰的用量

4)增加底泥浓度

关键点是简易底泥回流工艺底泥浓度明显的高于水塘处理系统和传统处理系统,其污泥固含量可达到15%,低于HDS处理技术的20%,但相对水塘处理工艺及传统处理工艺产生的污泥固含量的不足1%、5%来说是一个重大的提高。但从整个工艺流程来说,简易底泥回流技术省略了HDS处理技术中的混合池,从处理设施基建投资及运行费用方面来说是简易底泥回流技术较HDS处理技术具有低的基建投资及运行成本。

图2-4简易底泥处理工艺

(5)HDS处理技术

与简易底泥回流系统不同,HDS处理方法(theHighDensitySludgeProcess),增加了石灰/污泥混合池,澄清池回流底泥与中和药剂石灰在混合池(Lime/SludgeMixTank)中混合,此过程可以促进中和药剂石灰颗粒在回流沉淀物上的凝结,从而增加沉淀颗粒粒径和污泥密度,同时通过石灰的添加调节混合池pH值。混合池混合反应物溢流进入快速反应池(RMT)与酸性废水发生中和反应,中和污泥溢流进入中和反应池,完成进一步的中和反应。通常反应过程中要鼓入空气进行曝气,氧化中和废水中的亚铁,提高出水水质。中和反应池溢流水进入絮凝池,通过加入絮凝剂使中和污泥形成絮体,提高在澄清池中的沉降性能。澄清池沉降污泥一部分外排进行处理处置,一部分进入底泥循环系统,进一步循环利用。图2-5为HDS工艺处理系统。

图2-5HDS处理工艺系统

HDS处理技术在世界范围内的多数矿山都有广泛的应用,国内,江西德兴铜矿为解决传统处理工艺在实际应用过程中,出现的管道结、底泥含水率高等问题,通过国际招标,选择与加拿大PRA公司合作,开展了利用HDS技术处理矿山酸性废水的现场试验研究,已经取得了较好的效果,底泥浓度可控制在25%~30%,当SO42-离子浓度大于25g/L时,整个试验工艺流程不存在结垢现象,生产实践中可有效的延长设备的使用周期[11]。

图2-6显示了不同的HDS处理工艺系统,称为TheHeathSteele处理技术,与HDS处理系统不同,HeathSteele处理系统没有快速混合池和絮凝池。HDS处理系统的快速混合池主要是利于控制反应pH,随着污水处理控制系统的完善,快速混合池完全可以取消,试验表明快速混合池在HDS处理系统中没有多大作用。同时中和反应池溢流中和污泥完全可以与絮凝剂在输送管道中混合发生絮凝,这样可以取消HDS处理系统中絮凝池的,由此这种改进的HDS处理技术在降低工程基建投资及废水处理运行费用方面更具有优势。

图2-6TheHeathSteele处理工艺

(6)分段中和处理技术

这个处理系统不同的添加量也不是必须的,排,底泥从澄清池底部泵入污泥塘。反应器设计分段中和处理技术(Staged-Neutralization(S-N)process)是在各段中和反应中通过控制不同反应器不同反应终点pH值使不同的重金属离子分段沉淀,便于回收利用。

江西永平铜矿2003年以前采用同样的处理工艺——分段中和沉淀法处理铜矿酸性废水,第一段中和反应槽反应pH控制在4.5左右,废水中的Fe3+、部分的Fe2+、Cr6+形成氢氧化物沉淀,通过斜板沉淀池沉淀去除,澄清液进入第二段中和反应槽,反应终点pH值控制在7.5沉淀铜离子,生成氢氧化铜沉淀,送铜回收车间通过压滤、干燥、煅烧回收铜。由于随矿山开采时间的延长,酸性废水中铜离子浓度的含量逐年下降第二段沉淀池污泥中的品位达不到设计时的要求,通过污泥回收铜的运行成本高于其价值,因此永平铜矿放弃使用从污泥中回收铜的工艺,由两段中和工艺改为一次中和两次沉淀的处理方案[9]。

2.2硫化沉淀法

硫化物沉淀法是利用硫化剂将废水中重金属离子转化为不溶或者难溶的硫化物沉淀的方法,金属硫化物沉淀是比其氢氧化物沉淀离子溶度积更小。常用的硫化剂有Na2S、NaHS、H2S、CaS和FeS等,该法的优点是硫化物的溶解度小、沉渣含水率低,不易因返溶而造成二次污染,同时产渣量相较石灰中和沉淀法少,而且当用中和沉淀法处理矿山酸性重金属废水不能达到相应的限制要求时可采用硫化沉淀法,同时可以与浮选法组合成沉淀浮选工艺,对废水中的重金属进行选择性沉淀回收。

硫化沉淀法在矿山酸性废水处理过程中一般工艺流程为第一段通过添加中和药剂控制pH值为4.0左右,主要去除矿山酸性废水中含有的三价铁,溢流出水添加硫化剂,使含有的其它重金属转化为金属硫化物沉淀,所得硫化渣通过浮选工艺进一步回收重金属,处理后水进一步用石灰处理进行中和处理使之达标排放。

德兴铜矿1985年设计废水三段处理工艺(一段投加石灰乳除铁,二段利用硫化沉淀法回收金属铜,三段中和),当时处理矿山酸性废水12370t/d,二段硫化沉淀法回收铜,铜的回收率可达到99%,铜渣含铜品位大于30%,自建立到1999年底,共处理酸性水1600万t,回收金属铜304t,处理水达标率达到87.5%,产生较好的经济效益和环境效益[13]。

硫化沉淀法在一些矿山酸性废水处理过程中已经得到应用,但在应用过程中出现了一些问题:

(1)硫化剂本身有毒,在矿山酸性废水处理过程中易形成有毒的H2S气体造成空气污染;

(2)相较其它处理药剂,硫化剂价格高,增加了污水处理运行成本,但其具体经济可行性要综合考虑重金属回收获得的收益;

(3)处理过程中不易控制药剂添加用量,过量不但增加污水处理成本而且也会造成污染。

但一些研究考虑利用资源丰富的硫铁矿(Fe2S)制备硫化剂FeS,可以避免硫化沉淀过程中产生H2S,排水可再处理,使硫化沉淀法得到改进。

2.3氧化还原法

氧化还原法在矿山酸性废水处理过程中的应用主要是两个方面:一是酸性废水中二价铁的氧化,在矿山酸性废水中含有大量的二价铁,在中和、硫化沉淀法处理过程中不易处理,将二价铁氧化为三价铁(矿山酸性废水处理过程中一般采用曝气法)可以便于去除,控制pH在3.0左右即可去除大部分的铁离子,同时由于三价铁的共沉淀作用,可以去除部分的其它重金属;二是废水中重金属的置换、回收。在矿山酸性废水的处理过程中氧化还原法主要是铁屑置换工艺,利用铁的还原性还原废水中的重金属离子,形成海绵态的重金属。江西铜业股份公司永平铜矿和山东招远黄金冶炼厂都有相关工程应用,永平铜矿在采区废水形成汇流端处建起了数个小型氧化还原反应池,采用铁屑置换法,生产收集海绵铜,每年可获得近10万元的经济效益[9]。

2.4微生物处理技术[10]

中和沉淀法及硫化沉淀法的严重缺点是产生大量难以处置的固体废弃物,产生严重的二次污染,而废水水量大、重金属浓度低的矿山废水的处理具有较高处理成本。氧化还原工艺只能处理一部分重金属离子,单一处理并不能使废水处理达标排放。由于中和法、硫化沉淀法和氧化还原技术的缺陷和局限性,利用微生物技术处理金属矿山酸性废水处理矿山酸性重金属废水技术就成为研究的前沿课题。

根据微生物处理重金属废水作用机理的不同,微生物处理技术主要分为生物吸附技术、生物累积技术、生物浸出技术三大类。

(1)生物吸附技术是指废水中的有毒有害的重金属离子与微生物细菌细胞表面的多种化学基团如胺基、酰基、羟基、羧基、磷酸基和巯基等发生物理化学作用,结合在细菌的细胞表面,然后被输送至细胞内部并被还原成低毒物质。微生物可以从极稀的溶液中吸收金属离子,在一定条件下,微生物细胞能够富集几倍于自身重量的金属离子;富集后的金属可以通过有机物回收的途径再转变为有用的产品。

(2)生物累积技术是指细菌依靠生物体的代谢作用而在细胞体内累积金属离子。通过生物累积作用清除金属矿山酸性废水中的重金属离子,比现行的化学方法处理工艺有以下几方面的优势:

①对金属矿山复杂废水中某一特定金属离子有良好的选择性,从而可以回收废水中的某些有用重金属;

②对矿山酸性废水中低浓度的重金属离子具有一定的累计作用,从而使其达到回收价值。

③对于废水水量大、金属浓度低的矿山酸性废水的处理具有低成本性。

(3)生物浸出技术是指利用特定微生物细菌对某些金属硫化物矿物的氧化作用,使金属离子进入液相并实现对金属离子的富集作用。关于生物浸出的作用机理,一般有两种观点,即直接浸出机理和间接浸出机理。直接浸出是指细菌吸附于矿物颗粒表面,利用微生物自身的氧化或还原特性,使物质中有用组分氧化或还原,从而以可溶态或沉淀的形式与原物质分离的过程;间接浸出是指依靠微生物的代谢作用(有机酸、无机酸和Fe3+等)与矿物质发生化学反应,而得到有用组分的过程。

硫酸盐生物还原法(SRB微生物处理技术)是一种典型生物浸出技术。该法是在厌氧条件下硫酸盐还原菌通过异化的硫酸盐还原作用,使矿山酸性废水中的硫酸盐转化为硫化物,而这些硫化物可以和废水中的重金属离子生成溶解积较小的金属硫化物沉淀,从而使重金属离子得以去除,同时由于还原生成的S2-的水解及硫酸盐还原菌可以用矿山废水中添加的有机物或其它电子受体作为能量来源,产生CO2,由化学平衡可知,整个的还原过程中,废水的pH值会有所升高,一部分重金属离子将因形成碳酸盐或氢氧化物沉淀而得以去除。

现阶段采用的细菌堆浸-萃取-电积工艺主要也是利用细菌浸出技术,其工艺主要是采用酸性水循环喷淋和细菌氧化技术,加速低品位含铜、硫废石中重金属离子的溶出,通过循环喷淋提高酸性废水中重金属离子浓度,使其具有回收价值,进行进一步的萃取、电积,进行回收。此工艺不但可以去除废水中的重金属离子而且还可以获得一定的经济效益。

江西德兴铜矿1994年开始细菌堆浸-萃取-电积工程建设,工程概算投资为4761万元,实际完成投资为4900万元;整个流程实现闭路循环。堆浸厂从1997年开始生产,至2001年年末已从酸性废水、废石中回收了A级电铜2476t,2004年产值4000多万,利润达3000多万。

微生物处理技术的低成本、不产生二次污染等优越性决定了其在在矿山酸性废水治理过程将具有广阔的应用前景,但也有一定的局限性:

①微生物一般具有一定的适应性处理废水pH、温度的高低等均可影响微生物的活性,进而影响处理效果;

②微生物一般都具有选择性,只吸取或吸附一种或几种金属,针对矿山多金属废水的处理不具有优势;

③微生物具有一定的耐受性,有的在重金属浓度较高时会导致中毒,因而限制了其广泛的应用。

2.5离子交换法

离子交换法是指用离子交换、吸附材料离子交换、吸附矿山酸性废水中的重金属离子,以达到富集,消除或降低其浓度的目的。

现阶段离子交换吸附、材料的研究主要是无机离子交换剂改性沸石、膨润土材料和有机离子交换剂离子交换树脂,并取得了一定的研究成果,但是改性沸石、膨润土材料的应用仅局限于实验室规模,且大多用来处理实验配置水溶液,对于实际废水中污染物的吸附处理研究还较少,实际废水由于水源不同、成份复杂,用沸石、膨润土材料进行处理要不具有针对性,而且在处理实际污水时具有操作复杂性,高成本性,其工程应用的技术、经济可行性还要进一步分析、研究。

离子交换树脂法处理重金属废水相对技术比较成熟,在技术上是可行了的,但是用其对矿山废水进行处理不具有经济可行性,矿山废水水量大、离子浓度低,用离子交换树脂进行处理具有高成本性,同时,离子交换法处理重金属比较单一,这就更限制类其在矿山酸性废水处理中的应用。但可针对不同金属矿山废水的特点,离子交换法可与其它处理法组成组合工艺,利用离子交换法富集特性,富集矿山酸性废水中某一可回收重金属,不但可以对矿山废水进行达标处理,而且通过废水中重金属离子的回收可以产生较好的经济效益。

三、问题与展望

在矿山酸性废水处理过程中,不同的技术方法、工艺具有不同的特点,具体废水处理工艺的选择要针对矿山废水处理的实际,要求处理方法、技术经济合理、技术可靠、操作运行管理方便。虽金属矿山酸性废水处理处理技术的研究已经取得了显著的进展,在实际应用过程中还存在一定的问题,国内一些企业针对问题本身,实施了相应的方案、措施,并取得了较好的效果。

(1)矿山酸性废水产生量大,而且具有长期性,长期的酸性废水的治理对矿山企业是

巨大的经济负担,在酸性废水治理成熟处理技术的基础上,实施综合治理,降低酸性废水的处理量是矿山酸性废水治理的有效途径之一。

①有效预防金属矿山酸性废水的产生很重要,可以从源头上控制酸性废水的产生量,从而降低后续污水处理成本。

②在矿山采场、排土场建立截排水系统,实现清污分流,减少酸性废水的产生量,从而降低污水处理成本。德兴铜矿采矿场根据地形特点,采取分区截流方式,经清污分流进入封闭圈的水量可减少60%以上。

③酸碱废水中和,以废治废,综合治理

酸碱中和,以废治废,是永平、德兴铜矿废水治理成功的前提。目前德兴铜矿采场和废石场酸性废水产生量约为4万t/d,但其进污水处理站的酸性废水量仅为8600t/d,约31000t酸性废水是通过尾矿库酸碱中和和选矿用水(主要是选硫过程)得到处理。

④酸性废水综合利用。

永平铜矿酸水回用单独建立了一套酸性废水回用设施,包括一个泵房、近2000m长的玻璃钢输送管道,每日向该矿选矿厂输送约1440m3酸性废水。回用酸性废水可提高硫浮选回收率1.5%,每年为企业增效120万元以上。

(2)矿山酸性废水水量、水质具有波动性,不利于处理技术方法的有效利用,达不到

理想的处理效果。在矿山酸洗废水治理实际过程中较大库容的酸水调节库可以有效的保障后续污水处理设备的稳定运行及其出水水质达标排放。

永平、德兴铜矿矿山废水治理的一个主要优点是进水水量、水质比较稳定,易于后续处理。两矿均建有较大容量的酸水调节库,如永平铜矿主库9#、10#酸水调节库容量达1.2×106m3,德兴铜矿调节库更大,其祝家酸水库总库容达289万t,调节库容261万t,杨桃坞酸水库总库容96万t调洪库容18万t,且尾矿库的溢流水中和酸性水工艺也起到了一定的调节水量作用,为水处理系统的稳定运行提供了可靠的保障。

矿山酸性废水在实际治理过程中的遇到的一些问题通过相应的补充、辅助方案可以得到有效的解决,但现阶段面临另一最突出的问题:

①中和污泥的处理处置。石灰/石灰石中和法中和污泥含有大量的重金属,且易返溶,不合理的处理、处置会造成严重的二次污染,合理的处理、处置方案需要进一步的研究。

②矿山酸性废水的处理新方法、新技术得不到推广应用,一方面考虑新技术方法的可靠性,投资成本,另一方面很多矿山企业环保意识淡薄,对矿山酸性废水的处理当作是一种企业经济负担,不愿对其进行过多的投资。

③一些工矿企业的污水处理设施达不到优化设计的目的。这样就额外增加了工程设施的基建投资和污水处理运行成本,加重了企业的经济负担,挫伤了矿业公司进行废水治理投资的积极性。

④较为成熟的技术工艺得不到正确的应用。一些矿山企业虽建立了污水处理站并对矿山酸性废水进行了的处理,但是一方面其建设的处理站存在设计不合理,达不到进行达标处理的目的,另一方面由于污水处理过程自动化水平控制水平不高及工作人员不严格按照规程操作,使能达标处理的废水不能达标排放。

参考文献

[1]刘成,德兴铜矿酸性废水成因的研究.[J]有色矿山.2001,30(4).

[2]Mckay,D.R.andF.Halpern.Trans.Met.Soc.AIME.212,301(1959).

[3]中科院生态研究中心.重金属污染及其生态效应的研究[R].1993.

[4]韦冠俊.矿山环境工程[M].北京:冶金工业出版社,2001,9.

[5]StephenMcGinness.TreatmentofAcidMineDrainage[R].ScienceandEnvironmentSectionHouseofCommonsLibrary

[6]BernardAubé,P.Eng.,M.A.Sc.EnvirAubé.TheScienceofTreatingAcidMineDrainageandSmelterEffluents[R].

[7]江红,王连军,江莞.绿色化学概念在水处理剂材料中的应用及发展状况[J].无机材料学报.2003,5(18).

[8]罗凯,张建国.矿山废水治理研究现状.[J]资源环境与工程.2005,19(1).

[9]毛银海,徐怡珊.铜矿酸性废水氧化钙中和处置装置的改造[J].化工环保.2003,23(5).

[10]赵由才,牛冬杰.湿法冶金污染控制技术[M].冶金工业出版社.北京:2003.

[11]罗良德.利用HDS技术处理铜矿山废水德试验研究[J].铜业工程.2004,2.

[12]孔荟.日本矿山废水的治理[J].冶金矿山设计与建设,1998,(9):58-62.

废水治理范文第7篇

关键词:铜酞菁 母液 微电解 吹脱 A/O生化法

江苏某化工厂是以生产铜酞菁为主要产品的企业。铜酞菁是生产酞菁颜料,染料的母体,亦可用作有机导体,光电导,感光性树脂的增感剂,以苯酐、尿素、氯化亚铜等为原料,通过原料研磨、反应合成、纯化、压滤干燥等工序,生产出铜酞菁产品。在铜酞菁的纯化过程中产生的压滤母液和冲洗水,色度深,酸度强,有害物质含量高,处理难度比较大。我公司人员经过对废水的小试,确定了母液回收氯化钙,混合废水经过微电解、吹脱、沉淀、A/O生化法相结合的处理路线,达到了预期的效果。

1 污染源分析

废水来自铜酞菁纯化过程产生的压滤母液和混合废水。压滤母液的水量为20m3/d,主要为废盐酸,盐酸的含量大约在10%左右。混合废水的水量为1500m3/d,废水中主要的污染物为铜酞菁颜料、氨氮、铜离子和酸度,废水呈蓝色。混合废水的水质如下:

表1 混合废水水质一览表

Table one the schedule of mixed wastewater quality

水质指标

CODcr

BOD5

NH3-N

Cu2+

pH

色度

质量浓度(mg/l)

≤1600

≤500

≤1000

≤100

1~2

600倍

2 处理工艺、构筑物及设备

2.1 压滤母液的处理

压滤母液中盐酸的含量比较大,直接中和处理排放,处理费用高,资源浪费大。考虑到生产中需用CaCL2产品,并且要求的纯度也不高,经过考察,决定用石灰膏中和后回收CaCL2,工艺流程如下:

为106.5kw,实用功率为75kw,每天的电费为864元;石灰膏的用量每天4吨,费用为1200元;硫化钠的用量每天30kg,费用为30元;PAM的用量每天1.5kg,费用为30元;煤的耗量每天为4吨,费用为1200元;人工费每天200元。

则除收益外,每天净投入的运行费用为1724元,即1.15元/m3.污水。

5 结论

铜酞菁生产过程中产生的压滤母液和冲洗废水,对压滤母液中和后回收CaCL2,冲洗废水经过微电解、吹脱除氮和除铜后,再进行生化处理,实践证明是可行的。铜酞菁生产废水的浓度高、毒性大,直接生化处理的难度比较大。生化处理法对污水氨氮浓度和铜离子浓度都有一定的适应范围,氨氮质量浓度在1000mg/L以上、铜离子质量浓度在5mg/L以上时会使微生物中毒,进而影响生化系统的去除效率。因此,必须采用一种切实可行的预处理方法,先去除部分氨氮和铜离子,使废水中的氨氮浓度降至140.0mg/L以下、铜离子浓度降至5mg/L以下,再采用生化处理方法,以达到最终达标排放的目的。

参考文献:

1.李家珍, 染料、染色工业废水处理. 北京:化学工业出版社,1998

2.王建龙, 生物固定化技术与水污染控制. 北京:科学出版社,2002

3.国家城市给水排水工程技术研究中心(译), 污水生物与化学处理技术.北京:中国建筑工业出版社,2001

废水治理范文第8篇

【关键词】 生物强化技术 废水治理 机理 应用

现阶段,化工生产企业的废水处理系统相对落后,在废水处理方面的效率低、质量差,严重制约了化工企业的发展。因此,本文对我国的生物强化技术进行了研究,通过应用生物强化技术对废水治理系统进行创新,提高废水治理效率和质量,从而改善废水治理效率低、处理质量差的现状。

1 生物强化技术

1.1 概述

生物强化技术主要是通过生物金属对废水进行治理的一种技术,其治理效果非常好,治理效率非常高。生物强化技术因为拥有操作简单、效率高、成本低、针对性强等诸多优点,所以被广泛的应用在我国污水、废水治理企业当中,而且具有非常广阔的发展空间和发展前景。生物强化技术治理废水实际上是将研究出的特殊菌投放到需要治理的废水当中,从而增强自然菌的生物特性,加强微生物的新陈代谢作用,进而提高污染物的分解速度和效率,达到污水治理与进化的目的。生物强化技术在废水治理系统中主要有两个作用,一个是共代谢作用,一个是直接作用。

1.2 优势

生物强化技术之所以被广泛的应用在废水治理系统当中,是因为有着显著的优点,能够高效率、高质量完成废水治理工作。生物强化技术的优点有以下几个方面:

(1)生物强化技术治理废水污染物很彻底,不会发生污染物转移的现象,也不会发生二次污染的状况;(2)生物强化技术融合了传统的活性污泥法,治理废水的降解非常简单,而且投入的成本也非常低;(3)生物强化技术是一种高效率的废水治理技术,它与传统的废水处理系统不同;(4)采用生物强化技术的废水处理系统启动的速度非常快,具有周期短的优点;(5)生物强化技术废水治理系统的环境适应力非常强,能够在恶劣或高浓度的环境下运行等。

2 生物强化技术机理

生物强化技术废水处理系统的作用机理。在未改进废水处理系统之前,废水处理厂一般采用的是传统活性污泥法净化废水。但是,传统活性污泥法治理对污染物含量多、毒性较大、降解难度高的工业废水治理的效果非常低,达不到预期治理目标,而生物强化技术却能够弥补这方面的缺点。因为生物强化技术具有直接作用、共代谢作用、基因水平转移作用三个作用机理,废水治理效果非常好,效率非常高。共代谢主要是针对废水中的有害物质,该作用能够直接对有害物质进行降解,从而将其结构改变,降低物质的有害性;直接作用是通过驯化、诱变、基因重组等一系列技术获得分解污染物的微生物,从而将其成批复制用于废水处理当中;基因水平转移作用,在采用生物强化技术之后,有利于建立微生物与自然基因之间的交换、代谢途径,从而提高治理效果。

3 应用

3.1 在高效治理废水方面的应用

生物强化技术治理方法比传统的废水治理方法效率高,能够实现高浓度、高难降解度的污染物分解、治理。可以将生物强化废水治理应用在高舛取⒛呀到獾忍囟ǖ墓ひ捣纤治理当中,针对性解决废水中的BOB、COD、TOC与特定污染物。

3.2 在石油化工行业的应用

本次研究的废水中,除去COD含量高之外,含有硫化物、硫酸钠、环烷、苯酚、硫酸等主要污染物。要想使用生物强化技术治理废水,就必须制定废水治理工艺流程图。图1为本次污水治理的流程图,如下图所示,碱渣废水治理过程中,首先要通过酸化反应器将废水中的环烷提取出来;其次,将提取过环烷酸的碱渣废水放入生物强化反应器当中,通过生物强化反应器将废水中存在的有害物质和污染物降解,达到废水治理的目的;最后,将生物强化技术处理的废水置入二沉池,最后将其排放到废水综合处理厂进行集中的处理。在采用生物强化技术处理碱渣废水的过程中,必须要设置环烷酸存储装置,将提取出的环烷酸存放其中。同时,还需要在工艺流程当中建立污泥回流环节,将二沉池中沉淀的污泥流入生物强化反应器当中。

4 结语

随着化工企业的快速发展,废水产量越累越多,给生态系统的运行造成了影响,不利于和谐社会的建设。因此,本文对我国废水治理方法进行了研究,通过采用生物强化技术,提高废水治理系统的效率和效果,实现废水净化的目标。生物强化技术治理废水,不仅能有着废水治理的作用,还有利于环境保护,节约水资源的作用,有利于我国可持续发展战略的实施。

参考文献:

废水治理范文第9篇

[关键词]重金属废水污染 重金属离子 治理技术

[中图分类号] X52 [文献码] B [文章编号] 1000-405X(2013)-11-147-1

重金属开采、加工活动的日益频繁,为公众生活和社会生产提供了便捷,但也引发了令人堪忧的重金属废水污染,如Pb、Hg、Zn、Cd、Cu等重金属会经食物链不断迁移和累积,不仅影响水体生物正常生存,也威胁着公众的身心健康,严重破坏了生态平衡,故强化治理技术研究,有效治理废水污染刻不容缓。

1重金属废水污染概述

无论是石油、煤炭等工业能源生产,农药化肥、污水灌溉等农业生产,还是随意堆放的生活垃圾,层出不穷的重金属污染事件,均为重金属废水污染提供了渠道,已然成为当下备受关注的环境课题。

虽然重金属离子或化合物的毒性通常需要积累方能显现,但一旦出现,其后果已是十分严重,甚至不可逆转,除了对水生生物的生长、反之、洄游等活动构成威胁外,也会影响人体健康,如汞污染易侵害神经系统,影响皮肤功能,导致心脏病等疾病;铅污染则会对神经、消化、心血管、肝肾、造血等诸多组织造成伤害等。因此必须加大重金属废水污染治理技术的研究和实践,以此减轻其不利影响,还生物一份健康。

2重金属废水污染治理技术研究

在科技力量的推动下,诸多重金属废水污染治理技术应运而生,并在具体实践中取得了一定的成效,在此根据所属学科领域的不同将其划分为下述几类:

2.1物理类治理技术

一是吸附法;该种方法操作简单,主要是利用膨润土、沸石、活性炭、凹凸棒石、硅藻土等吸附剂的多孔吸附功能,在络合、螯合等作用下将废水中的重金属吸附出来,而且成本较低,来源广泛,可循环使用,效果较好,如在处理重金属废水时利用沸石,其Pb2+、Cr2+ 、Cd2+等离子的吸附率可高达97%以上。

二是膜分离法;该种方法选择性强,分离率高,能耗低且环保,主要在施加外界压力,稳定溶液的物化性质的基础上,利用特殊半透膜的反渗透作用,分离或浓缩溶质和溶液。其中超滤膜和反渗透应用十分广泛,常被用于终端处理重金属废水,且分离效果显著,可高达95%以上。

此外,还可借助离子交换去除废水中重金属离子,但其经常作为化学治理技术的后续过程,主要是通过发挥交换离子的效用,降低废水中的重金属浓度,进而使其得以净化,相对而言,该种方法的金属资源回收率几乎接近100%,而且离子交换树脂可多次使用。

2.2化学类治理技术

一是废水预处理方法氧化还原;既可以将空气、液氯、臭氧等氧化剂或铜屑、铁屑、亚硫酸钠等还原剂加入废水中,使重金属离子转换为沉淀或低毒性的价态后再予以去除,在含铬废水中加入绿矾、电石渣后,铬总量和其他重金属离子浓度均低于了相关标准;也可以通过电解还原重金属离子,使其絮凝沉淀而回收,实践表明电解含镍废水可使其去除率达到97%。虽然其便于操作,但处理量小,易出现废渣。

二是应用最为广泛的化学沉淀;当重金属发生化学反应生成不溶于水的沉淀后,再将进行过滤、分离操作是其工作原理,主要包括中和凝聚、钡盐沉淀、中和沉淀、硫化物沉淀等多种方法,但由于受限于环境条件和沉淀剂性质,可能会影响处理效果,甚至造成二次污染,因此应予以综合考虑,科学处理。

此外浮选法也在重金属污水治理中有所应用,即先析出重金属离子,然后在表面活性剂的作用下促使重金属上浮,最后加以去除。但其一般适用于稀有重金属,且渣液处理和水质净化尚未得到妥善解决。

2.3生物类治理技术

一是微生物法;该种方法主要是借助真菌、细菌等微生物的代谢作用,降低或分离重金属离子,常见于有机物含量较高,但重金属浓度较低的废水中。可以借助具有吸附性能的菌体细胞壁用于去除重金属,如苍白杆菌可用于吸附废水中的铜、铬、镍等;可以利用微生物代谢活动分离重金属离子,如以SRB为主的厌氧类微生物可用于处理废水中高浓度的硫酸根;可以利用微生物的絮凝能力去除重金属离子,如实践中的复合絮凝剂不仅成本大幅较低,效果也提升了20%左右,而硅酸盐细菌絮凝技术也取得了较大进展。

二是植物法;蓝藻、绿藻、褐藻等藻类植物在重金属废水治理中也发挥了吸附功能,如环绿藻适于吸附铜离子,马尾藻可适于吸附铜、铅、铬等,同时还可以利用重金属废水中植物的根系或整个系统用于稳定、挥发、降低、去除重金属离子的毒性,以此达到清除污染、治理水体的目的,即植物修复技术,当下已发现了400余种重金属超积累植物,如芦苇、香蒲等挺水植物在处理高浓度的镉、镍、锌、银、铜、钒等矿区重金属废水中效果良好,但一般适用于面积较大的废水处理。

3结束语

总之,重金属废水污染危害严重,来源广泛,不利于我国经济社会的可持续发展。因此必须科学利用治理技术,加以及时有效的处理,并加大研究,积极创新,以此为其提供有力的技术支持,促进环境效益和经济效益和谐发展。

参考文献

[1]高长生,夏娟.重金属废水处理技术研究[J].绿色科技,2012(06).

[2]郭轶琼,宋丽.重金属废水污染及其治理技术进展[J].广州化工,2011(12).

[3]韩玲玲,高淑玲.重金属污染现状及治理技术研究进展[J].前沿.三农视野,2012(20).

废水治理范文第10篇

【关键词】电厂;化学废水;综合治理;措施;研究

前言

目前,很多电厂无视国家环保法规,将生活污水与产生的化学废水直接排放,根本不进行任何的处理,而且这些排放的废水水质严重超标,影响了饮用水资源和地下水资源甚至影响人体健康。电厂化学废水的处理已经成为亟待解决的问题,因此,电厂化学废水的综合利用势在必行。

1、电厂化学废水的来源

电厂化学废水主要是离子交换树脂再生产生的废酸、废碱液和交换器正、反洗产生的废水以及其他少量生产废水。主要特点是浓度大、很难生化降解、难处理。

2、废水污染中的重点处理

2.1磷的处理

对于处理电化学废水来说,其中的磷很难处理,一般来说可以向水中加入高价金属离子将磷元素转化成不溶于水的固态物质,也可以添加石灰、明矾等沉淀剂,将磷转化为难溶的沉淀物;除此之外,就是选用生物除磷的方法。常用的生物除磷工艺为A2/O工艺,该工艺可以有效的去除废水中的磷,使出水水质达到国家污水排放标准。还可以采用活性污泥法去除废水中的磷,通过培养出优势菌群,达到去除磷的目的,这种处理方法效果良好。

2.2碱的处理

对于处理电化学废水来说,其中的碱也很难处理,一般来说需要采取预处理措施,应该先加入一定量的强酸进行中和并且pH的调节,上述操作结束后,可以采用3种工艺进行处理。第一种为超临界水氧化处理工艺,这种工艺是将处理后的废碱液和氧化剂(氧气或者过氧化氢)一起加入到釜式反应装置中在高温高压下进行反应,处理后的水非常清澈,出水的COD、BOD等可以达到废水一级排放标准;第二种为湿式氧化处理工艺,这种工艺具有反应速度快等优点,是将处理后的废碱液和氧化剂(氧气或者过氧化氢)一起加入到釜式反应装置中在高温高压下进行反应,出水的COD、BOD等可以达到废水二级排放标准;二种为湿式氧化处理工艺,这种工艺具有反应速度快等优点,是将处理后的废碱液和氧化剂(氧气或者过氧化氢)一起加入到釜式反应装置中在高温高压下进行反应,出水的COD、BOD等可以达到废水二级排放标准;第三种处理工艺是膜分离工艺,这种工艺具有投资少、占地小等诸多优点,是将处理后的废碱液通过超滤或者纳滤膜,处理后的水质可达到废水二级排放标准。

2.3油类的处理

废水中的油污常常以悬浮状态、乳化状态、溶解状态三种状态存在。对于悬浮油来说,比较容易去除,采用物理法就可以。乳化油是非常难处理的,要采取高级氧化技术进行处理,例如超临界水氧化处理工艺,这种工艺是将乳化油和氧化剂(氧气或者过氧化氢)一起加入到釜式反应装置中在高温高压下进行反应,处理后的水非常清澈,出水的COD、BOD、TOC等可以达到废水一级排放标准;如果某些指标超标,还可以加入金属或者金属氧化物作为催化剂,超标的问题就会得到解决;还可以组合的工艺进行处理,例如混凝-砂滤-活性炭法的综合工艺。一旦乳化油溶解,即成为溶解油的形态,就可以利用活性炭进行处理。实验证明,活性炭对于油类有较强的吸附能力,可以净化废水中的油污。除此之外,膜分离和活性炭组合工艺也可以很好地处理乳化状态的油污,这种工艺具有投资少、占地小等诸多优点,膜分离可以将乳化油里面的大颗粒进行截留,滤过后的物质进到活性炭工艺中,活性炭将污染物质吸附,处理后的水质可达到废水二级排放标准。

3、药品添加建议

为了保证废水得到有效的处理,同时电厂也在严格执行国家的环保政策和规定,确保废水处理站全天候满负荷进行,因此,再投加废水处理药剂时,每天都是冲击性的投加处理药剂,如果遇到气温不高或者废水中的有机物含量很低,就没有必要投加氧化剂,这样就会浪费资源,而且也会对出水产生影响。但当气温较高时,微生物在这样的环境下会快速进行繁殖和生长,作为负责添加药剂的操作工需要根据实际的运行情况添加适量的次氯酸钠,将有机物得到部分的清除,有效提高出水水质。

而聚丙烯酰胺和聚合氯化铝的投加要满足一定的条件,当设备在稳定、安全运行时,水质在不停变化时不停的加入。聚合氯化铝是一个无机高分子化合物。它非常容易在水中溶解,而水解的时候会产生沉淀、吸附、凝聚和电化学等化学物理过程,它具有强烈的架桥吸附的作用。在水溶解的溶液里面有一定的氯离子,它是在氢氧化铝和三氯化铝之间的水解产物,因此如果投加过量的话,很有可能就会出现水中氯离子含量的直线上升。水经过了污水处理之后,就会通过循环冷却水系统内,因为系统的腐蚀防护和浓缩倍率的问题,我们对悬浮物SS和出水的氯离子都有一定的要求标准。

4、电厂废水综合治理的发展趋势

随着国家对环保的支持力度的不断加大,同时社会公众环保意识的不断增强,电厂化学废水的处理也必须要做好,出水的水质必须符合国家的环保要求,因此,开发和研究新型的环境友好的电厂化学综合治理技术是未来的发展趋势,今后电厂化学废水处理技术的发展趋势应主要集中在以下方面:

(1)针对现有电厂化学废水处理技术及工艺的不足,开发和研究新型的电厂化学废水处理系统,采用联合处理工艺,这样可以有效的发挥各种工艺的优势和特点,避免产生局限性。

(2)深入探索和研究电厂化学废水的降解机理,为提高电厂化学废水处理效率提供坚实的理论基础。

(3)加强对“环境友好”处理工艺和技术的开发和研究。其中,电催化法由于具有多种功能,便于综合治理;不添加化学试剂,可望避免产生二次污染;设备相对较为简单,易于自动控制等优点,应具有更为突出的发展潜力。

5、结语

本文对电厂化学废水的治理技术进行了全面介绍。针对废水污染中的重点处理物质进行了讨论,让废水达到更好的治理结果。我们应该意识到:废水的综合治理都是一个非常艰巨和长期的工程,我们今后还要在环保工作上继续奋斗和努力,从保护水环境和节水增效的方面看,水资源的利用率得到提高就是通过废水的零排放来努力的,可以节约资源并且让企业的效益得到提高。

参考文献

[1]沈岭琳,黄剑雄,邵俊.电厂污废水的综合治理和回收利用[J].电力设备,2007,8(1).

[2]四川电力.白马电厂废水回收利用与节水技术研究通过技术评审[J].四川电力技术,2001,24(6).

上一篇:综合治理总结范文 下一篇:烟气治理范文