光通信范文

时间:2023-11-05 19:11:40

光通信

光通信篇1

光纤接入技术一种是面向FTTH(光纤到户)和FTTC(光纤到路边)的宽带网络接入技术。OAN(光纤接入网)是电信网中发展最快的接入网技术,能够有效解决窄带业务(如电话)的接入问题外,还可以解决宽带业务(如调整数据业务、多媒体图像)的接入问题。光纤接入技术将传统接入技术进行了有效的改变,进一步增加城域网和核心网和的容量。光纤接入技术更容易与其他技术相结合,形成APON、GPON和EPON。

2光孤子通信

在光纤通信系统中,由于光纤存在损耗和色散,从而使传输容量和距离在很大程度上都受到了限制。光孤子通信的出现极其有效的解决了光纤色散问题。所谓光孤子通信是在光纤长距离传输中,用光孤子超短光脉冲做信息载波,信号的波形和速率始终保持不变,并且可以到近零误码率信息传递的通信方式。

3光纤通信技术的发展趋势

3.1超大容量、超长距离传输技术

WDM虽然能极大地改善光纤传输系统的频带利用率,但是随着通信需求的距离不断加大,就需要一门更好的技术来支持超长距离传输,因此就有了DWDM(密集波分复用技术)及OTDM(光时分复用技术)和WDM(波分复用技术)相结合的产生。这种结合技术的优势在于极大的提升光通信系统的传输速率和传输带宽。依靠WDM(波分复用技术)和OTDM(光时分复用技术)来提高光纤通信系统的传输带宽的效果是一定的,因此可以把多个光时分复用信号进行波分复用,从而提高系统的传输带宽。RZ(归零)编码的占空比在光纤通信中对光纤的PDM(偏振模色散)和非线性适应能力很强,此外RZ编码信号的占空比在超高速系统中很小,这对色散的要求也降低了,所以一般超大容量的通信系统都采用RZ编码传输。

3.2全光网络(AONAllOpticalNetwork)

全光网是指信号在网络中传输和交换的过程中始终以光的形式存在,只在出入网络时才进行电/光和光/电的变换。由于在传输的整个过程中都没有电的处理,所以极大的提高了网络资源的利用率,通信网干线总容量的进一步提高。全光网络不能独立在通信系统中存在,它必须要结合因特网、移动通信网等通信技术,因此光网络必将向着服务多元化和资源配置的方向发展。全光网络网络结构十分的简洁,组网也十分的灵活可变,可在不附加任何的交换处理设备的情况下随意添加新的节点。全光网络不仅能提供超大带宽、极高处理速率和极低误码率,而且也具有良好的透明性、兼容性、可靠性、开放性和可扩展性。从光纤通信的发展趋势来看,未来信息网络的核心将是建立一个一光交换技术为主的光网络层,消除电光瓶颈也是未来光通信发展的必然趋势。

4结束语

光通信技术作为信息技术的重要传输技术,光纤通信技术得到了业界与社会广泛地认可,在未来信息社会中将起到重要作用,同时这一技术也势必会得到最广泛的利用与发展。相信在不远的将来全光网络终会到来。

光通信篇2

关键词 超联络系;电场线;实体化;超联络线

中图分类号TN91 文献标识码A 文章编号 1674-6708(2013)100-0206-02

人类对速度的追求永无止境,然而,光速就像一道魔障横在了人类面前。光速真的像爱因斯坦相对论说的那样是不可超越的吗?事实并非如此,超光速通信证明,信息在两个惯性系之间是可以超光速传递的。

超光速通信技术的原理如图(1)所示,箭头表示电磁波传播的路线,两根超导线匀可认为是无限长的。

信号器和探测器放置在两个相对静止的惯性参考系中,设它们之间的距离为30万千米,超导线1相对于信号器和探测器静止,超导线2相对于信号器和探测器以20万千米/秒的速度向右匀速运动。电磁波从信号器发出垂直传到超导线上所花的时间,以及电磁波从超导线上垂直传到探测器中所花的时间匀可忽略不计。

信号器发出一速高能量电磁波,被分成两速分别垂直传到两条超导线上,电磁波以光速C通过相对静止的超导线1传给探测器所花的时间为1秒;而通过超导线2传给探测器所花的时间仅为0.6s。这说明,电磁波从信号器发出,通过超导线2传给探测器的速度为50万千米/s,这个速度是光速C的1.666………倍。

超光速通信的物理意义十分重大,它证明了信息是可以超光速传递的,光速并不是宇宙的终极速度。但奇怪的是,电磁波必须以第三者(超导线2)为载体才能以超光速传播。如果电磁波从信号器发出直接传向探测器,则无论信号器或探测器以什么样的相对速度匀速运动,测得的电磁波在真空中传播的速度都是光速C。这是为什么呢?

为了描述一个物体的运动,我们习惯于选择另一个物体来作参考系,并把其它看起来没有什么关联的物体分割开,甚至把空间和时间也分割开。这种传统的处理方式可以很好地解决一些局域性的物理问题,但却使我们的思维变得狭隘,没有全局观。特别是在微观的量子世界中,每个量子的位置和速度都是不确定的,没有 一个量子可作为另一个量子的参考系,传统物理学中惯性参考系和非惯性参考系的观念在许多物理量都是不确定的量子世界中并没有什么意义。因此,我们必须引入超联络系这个线性非局域的观念才能解决超光速通信原理和光速不变原理之间的矛盾。

什么是超联络系呢?一个相对静止的电荷和它产生的静电场构成的就是一个相对静止的超联络系。电荷就是这个超联络系的中心,电场线就是超联络线。

与传统物理学中电场线的含义不同,在超联络系中,电场线是构成电场的线,是客观存在的实体化的线,是由一种未知的物质形成的无限细的线,可以像光线那样叠加,互相穿过或相交而互不影响。

传统物理学认为,电场线从正电荷出发终止于负电荷。但在电场线是实体化的超联络系中,情况却大不一样。

在超联络系中,正电荷的电场线从正电荷出发,可弯曲地绕过包括负电荷在内的任何一个电荷,指向无穷远处;负电荷的电场线从无穷远处出发,可弯曲地绕过包括正电荷在内的任何一个电荷,指向负电荷本身。

某处空间中方向相同的电场线越密集,电场强度就越大,方向相反的电场线条数相等,则电场互相平衡。以电荷为球心,r为半径,则有电场线的密度与r的2次方成反比关系。

一个电荷的电场线经过另一个电荷周围时会被弯曲,电荷之间的距离越短,电场线就越弯曲。当电荷之间的距离十分短时,电场的分布情况就会与高斯定理和环路定理描述的相似。[1]

每一条电场线都只属于一个电荷的,任何两个电荷,包括正电荷和负电荷都不能共用一条电场线。

电场线是电磁波的载体,电磁波的能量只能在电场线中传播,不能向电场线外辐射,这就好比光的能量只能在“光线”中传播,不能向“光线”外辐射那样。

电荷必须依靠它本身的电场线才能从波源中接收电磁波,而电荷激发的电磁波不能通过电荷本身的电场线传给另一个电荷,这说明电场线具有单向传递信息的特性。

电荷和它的电场线构成了一个独立的具有无限广延性的“物体”,我们移动电荷的时候,电荷和它的电场线就会同步移动,就像我们移动一只虫子的躯体,虫子身上的鞭毛就会跟着一起移动那样。我们也可以通过移动电荷的电场线来移动电荷本身。因此,无论电荷以什么样的速度匀速移动,电荷的任何一个方向上的任何一条电场线接收到的每一份电磁波传给电荷的速度都是光速C。

我们都知道,激发电磁波的是电荷,接收和反射电磁波的也是电荷,干涉现象也是电磁波与电荷相互作用产生的。在麦克耳孙和莫雷的实验中,干涉仪中的每个电荷和它的电场线都随着地球一起移动,因此,光波相对于干涉仪的速度恒为C,干涉条纹不会变动。

地球上的每个观测电荷和它的电场线构成的超联络系并不局限于地球上,而是从地球上延伸到太阳系、银河系,直致遍及宇宙。太阳处在地球上每个观测电荷和它的电场线构成的超联络系的范围内,这些超联络系与地球是同步移动的,相对地球来说是静止的,这必然导致我们观测到的光行差角a严格地只与地球对太阳(也可以反过来说是太阳对地球)的相对运动有关[2]。

光线弯曲,引力场红移[3]等都是超联络系的观测电荷观测得到的。

地球自转时,地球上每个观测星光的电荷和它的电场线构成的超联络线都会随地球同步旋转,但为什么我们观测到的星空图中星系的位置不因地球的自转而改变呢?

要弄明白这个问题,关键是要有全局观,从宇宙的微观的整体性上去思考。

我们都知道,电磁波是一份一份的,电磁波携带的信息也是一份一份的,地球上所有的超联络系在每一瞬间接收的电磁波信息汇成的星空图也是一份一份的,星系在星空图中的位置在超络线接收到电磁波信息的那一瞬间便已记录在星空图中了。因此,我们观测到的星空图中星系的位置不会因地球的自转而改变。

当我们拼弃了惯性参考系这个局域性的传统的物理观念,引入超联络系这个线性非局域的观念后,我们就能正确地解释光速不变和各种相对论的观测效应,并发明出各种先进的超光速技术。

参考文献

[1]王丽军,王少平.电磁学同步导读ABC.机械工业出版社,2011,9.

[2]刘佑昌.狭仪相对论及其佯谬.1版.清华大学出版社,2011.

光通信篇3

关键词:光纤通信技术 优势 接入技术

0 引言

近年来随着传输技术和交换技术的不断进步,核心网已经基本实现了光纤化、数字化和宽带化。同时,随着业务的迅速增长和多媒体业务的日益丰富,使得用户住宅网的业务需求也不只局限于原来的语音业务,数据和多媒体业务的需求已经成为不可阻挡的趋势,现有的语音业务接入网越来越成为制约信息高速公路建设的瓶颈,成为发展宽带综合业务数字网的障碍。

1 光纤通信技术定义

光纤通信是利用光作为信息载体、以光纤作为传输的通信力式。在光纤通信系统中,作为载波的光波频率比电波的频率高得多,而作为传输介质的光纤又比同轴电缆或导波管的损耗低得多,所以说光纤通信的容量要比微波通信大几十倍。光纤是用玻璃材料构造的,它是电气绝缘体,因而不需要担心接地回路,光纤之间的中绕非常小,光波在光纤中传输,不会因为光信号泄漏而担心传输的信息被人窃听,光纤的芯很细,由多芯组成光缆的直径也很小,所以用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题。

2 光纤通信技术优势

2.1 频带极宽,通信容量大

光纤比铜线或电缆有大得多的传输带宽,光纤通信系统的于光源的调制特性、调制方式和光纤的色散特性。散波长窗口,单模光纤具有几十ghz·km的宽带。对于单波长光纤通信系统,由于终端设备的电子瓶颈效应而不能发挥光纤带宽大的优势。通常采用各种复杂技术来增加传输的容量,特别是现在的密集波分复用技术极大地增加了光纤的传输容量。采用密集波分复术可以扩大光纤的传输容量至几倍到几十倍。目前,单波长光纤通信系统的传输速率一般在2.5gbps到1ogbps,采用密集波分复术实现的多波长传输系统的传输速率已经达到单波长传输系统的数百倍。巨大的带宽潜力使单模光纤成为宽带综合业务网的首选介质。

2.2 损耗低,中继距离长 目前,实用的光纤通信系统使用的光纤多为石英光纤,此类光纤损耗可低于0.20db/km,这样的传输损耗比其它任何传输介质的损耗都低,因此,由其组成的光纤通信系统的中继距离也较其他介质构成的系统长得多。

如果将来采用非石英系统极低损耗光纤,其理论分析损耗可下降的更低。这意味着通过光纤通信系统可以跨越更大的无中继距离;对于一个长途传输线路,由于中继站数目的减少,系统成本和复杂性可大大降低。目前,由石英光纤组成的光纤通信系统最大中继距离可达200多km,由非石英系极低损耗光纤组成的通信系至数公里,这对于降低通信系统的成本、提高可靠性和稳定性具有特别重要的意义。

2.3 抗电磁干扰能力强 我们知道光纤原材料是由石英制成的绝缘体材料,不易被腐蚀,而且绝缘性好。与之相联系的一个重要特性是光波导对电磁干扰的免疫力,它不受自然界的雷电干扰、电离层的变化和太阳黑子活动的干扰,也不受人为释放的电磁干扰,还可用它与高压输电线平行架设或与电力导体复合构成复合光缆。它是一种非导电的介质,交变电磁波在其中不会产生感生电动势,即不会产生与信号无关的噪声。这样,就是把它平行铺设到高压电线和电气铁路附近,也不会受到电磁干扰。这一点对于强电领域(如电力传输线路和电气化铁道)的通信系统特别有利。

2.4 光纤径细、重量轻、柔软、易于铺设 光纤的芯径很细,约为0.1mm,由多芯光纤组成光缆的直径也很小,8芯光缆的横截面直径约为10mm,而标准同轴电缆为47mm。这样采用光缆作为传输信道,使传输系统所占空间小,解决了地下管道拥挤的问题,节约了地下管道建设投资。此外,光纤的重量轻,柔韧性好,光缆的重量要比电缆轻得多,在飞机、宇宙飞船和人造卫星上使用光纤通信可以减轻飞机、轮船、飞船的重量,显得更有意义。还有,光纤柔软可绕,容易成束,能得到直径小的高密度光缆。

2.5 保密性能好 对通信系统的重要要求之一是保密性好。然而,随着科学技术的发展,电通信方式很容易被人窃听,只要在明线或电缆附近设置一个特别的接收装置,就可以获取明线或电缆中传送的信息,更不用去说无线通信方式。

光纤通信与电通信不同,由于光纤的特殊设计,光纤中传送的光波被限制在光纤的纤芯和包层附近传送,很少会跑到光纤之外。即使在弯曲半径很小的位置,泄漏功率也是十分微弱的。并且成缆以后光纤在外面包有金属做的防潮层和橡胶材料的护套,这些均是不透光的,因此,泄漏到光缆外的光几乎没有。更何况长途光缆和中继光缆一般均埋于地下。所以光纤的保密性能好。此外,由于光纤中的光信号一般不会泄漏,因此电通信中常见的线路之间的串话现象也可忽略。

3 光纤接入技术

随着通信业务量的不断增加,业务种类也更加丰富,人们不仅需要语音业务,高速数据、高保真音乐、互动视频等多媒体业务也已经得到了更多用户的青睐。光纤接入网可分为有源光网络a(on)和无源光网络((pon。)采用sdh技术、atm技术、以太网技术在光接入网系统中称为有源光网络。若光配线网(odn全)部由无源器件组成,不包括任何有源节点,则这种光接入网就是无源光网络。

现阶段,无源光网络p(on)技术是实现ft-tx的主流技术。典型的pon系统由局侧olt光(线路终端)、用户侧onuo/nt(光网络单元)以及odn-orgnizationdevelopment network(光分配网络)组成。pon技术可节省主干光纤资源和网络层次,在长距离传输条件夏可提供双向高带宽能力,接入业务种类丰富,运维成本大幅降低,适合于用户区域较分散而每一区域内用户又相对集中的小面积密集用户地区。

为实现信息传输的高速化,满足大众的需求,不仅要有宽带的主干传输网络,用户接入部分更是关键,光纤接入网是高速信息流进千家万户的关键技术。在光纤宽带接入中,由于光纤到达置的不同,有ftb、fttc,fttcab和ftth等不同的应用,统称fttx。

ftth(光纤到户)是光纤宽带接入的最终方式,它提供全光的接入,因此,可以充分利用光纤的宽带特性,为用户提供所需要的不受限制的带宽,充分满足宽带接入的需求。我国从2003年起,在“863”项目的推动下,开始了ftth的应用和推广工作。迄今已经在30多个城市建立了试验网和试商用网,包括居民用户、企业用户、网吧等多种应用类型,也包括运营商主导、驻地网运营商主导、企业主导、房地产开发商主导和政府主导等多种模式,发展势头良好。不少城市制定了ftth的技术标准和建设标准,有的城市还制门了相应的优惠政策,这此都为ftth在我国的发展创造了良好的条件。

在ftth应用中,主要采用两种技术,即点到点的p2p技术和点到多点的xpon技术,亦可称为光纤有源接入技术和光纤无源接入技术。p2p技术主要采用通常所说的mc(媒介转换器)实现用户和局端的自接连接,它可以为用户提供高带宽的接入。目前,国内的技术可以为用户提供fe或ge的带宽,对大中型企业用户来说,是比较理想的接入方式。

4 结束语

光通信篇4

所谓全光传输系统指的是利用光设备取代电设备,各个传输设备之间也实现了全光化,传输系统在进行信息数据处理的过程中也完全实现了光处理,信息交叉交换也并非利用电比特流,而是根据光波频率的差异来对路由进行调试。全光传输系统具备非常多的优势,例如说稳定性强、兼容性好、使用能耗低等,加之其网络结构相对简便,有利于我们后期的扩容与调整作业,可以带来更大的传输带宽,系统处理速度也更快。

2光纤通信技术的发展趋势

2.1将朝着超高速系统发展随着现代科技的飞速发展,光纤通信技术已经拥有了更快的传输速度,为了最大限度的满足社会发展的需求,光纤通信技术必然会朝着超高速系统的方向发展。推动光纤通信技术传输速度的提升能够给我们带来下面两个优势:一方面是光纤通信技术朝着超高速系统发展会极大的提高新业务的传输容量;另一方面是随着光纤通信技术传输速度的提升能够确保多媒体和宽带等不同技术功能的更好实现。另外,全光传输距离的增加也能够在一定程度上增加光纤传输容量。所以,超高速系统应该是未来光纤通信技术的主要发展方向。

2.2将朝着更大的容量发展光纤通信技术的发展要求其拥有更大的容量,现阶段,光纤通信应用的带宽只有百分之一,剩余的99%的带宽无法充分的利用起来。所以为了避免光纤带宽的浪费,我们必须要尽快的开发光纤通信容量。随着现代科学技术的发展,光纤通信技术具备的传输容量越来越大,在未来的几年之内将其容量扩充到目前的几十甚至几百倍也不是没有可能性的。

2.3将朝着光联网的方向发展未来的网络系统必然是全光化的系统,等待光纤通信技术发展到全光网络系统之后,光纤通信技术在达到其最高水平的同时也成为了社会所需要的最佳网络传输方式。但因为目前还存在一些技术方面的障碍,光纤通信技术向光联网发展的速度相对较慢甚至停滞不前,若光联网实现之后,所有的信息便能够以光的速度传播,能够带来极大的便利。光纤通信技术向光联网发展是利用SDH电路的连接,这是光纤通信技术未来的重点发展方向。

2.4新型光纤的开发与应用我们可以预计,未来光纤的开发与应用方向有下面两种:其一是非零色散位移光纤的开发和应用,它的设计思路为:基于1550窗口工作波长区色散低,相对来说更加合理,可以确保较长距离内10Gbps速率传输,而在这样的过程中并不一定要进行色散补偿,如此一来便能够降低色散补偿器和附加光放大器所产生的成本;其二是全波光纤的开发。根据城域网业务的实际需求,开发和应用具备较高管理水平和业务疏导能力的全波光纤,这是光纤通信技术未来发展的一个关键点。全波光纤让可复用波长极大的提升,进而让设备成本再次降低,也能够让我们对整个系统的成本进行有效的控制。

光通信篇5

关键词 通信系统;光纤通信技术;通信介质

中图分类号 G2 文献标识码 A 文章编号 1674-6708(2015)134-0112-02

0 引言

光线价格随着科学技术的发展不断降低,与此同时,光纤应用范围也在不断的扩大,可以说光纤已经逐渐替代其他媒介,正成为信息宽带传输时候的主要媒介。综合这些情况来说,国家未来信息基础设施的支柱就是光纤通信系统。所以,笔者在此对通信系统中的光纤通信技术进行了剖析。

1 通信系统的发展及组成

通信技术的发展可以根据其历程分为三个阶段,详细情况如表1所示。

通信的基本形式是在信源与信宿之间建立一个传输或转移信息的通道。建立该通道,实现信息传递所需的一切技术设备和传输介质的总和称为通信系统。这里本文以基本的点对点通信为参考实例,如图1所示。组成部分的详细的分析,如表2所示。

2 光纤通信中的介质构成

2.1 光纤

光纤是光导纤维的简称。光纤是由纤芯、包层、涂覆层和护套构成的一种同心圆柱体结构。其中,纤芯和包层光纤的核心部分。纤芯是光波的主要传输通道;包层将光信号封闭在纤芯中并起到保护纤芯的作用。纤芯粗细、纤芯材料和包层材料的折射率,对光纤的特性起决定性影响。按照光纤中传输模式的多少来进行划分,可以将光纤分为两大类:一类是单模光纤;另一类是多模光纤。在光纤通信中,石英光纤是使用的主要媒质。在不同的环境中,为了都能使用光纤,这就必须让光纤与不同的元件进行结合,来构成光缆。

2.2 光缆

通常来说,光缆由3部分组成:一是缆芯;二是加强元件;三是护层。其中,缆芯主要用于传输光波,它的组成是由单根或多根经二次涂覆处理后的光纤构成;再者,加强元件的主要作用就是增强光缆敷设时可承受的拉伸负荷,它的组通常用金属丝或非金属的合成纤维构成;而护层的主要作用就是是对已形成光缆的光纤芯线起相应的保护作用,为的是避免受外界机械力和特殊环境的损伤,护层一般具有阻燃、防潮、耐压、耐腐蚀等特性。

2.3 光源

在光发射机的诸多器件中,关键器件之一就是光源,它的功能就是把接收到的电信号进而转换为发射的光信号。在光纤通信系统中,目前,被广泛使用的光源主要有两类,一类是半导体激光二极管,又被称为激光器(LD);另一类是半导体发光二极管,又被称为发光管(LED)。有时候在有些场合也有可能使用固体激光器。半导体激光二极管转换效率高,与光纤耦合好,当输入电流达到阈值时光谱特性好,主要用于长距离和大容量的光纤通信系统中。

2.4 光电检测器

光电检测器是一个转换信号的器件,既是通过光电效应,然后将接收到的光信号进而转换为电信号的一个器件,它也是光接收机的核心部件。目前常用的光电检测器主要有半导体PIN光电二极管和APD雪崩光电二极管。一般光纤通信系统对光电检测器有如下要求。

响应度足够高,即对一定的入射光功率能够输出尽可能大的光电流。响应速度足够快,以适用于高速宽带系统。

噪声低,对信号影响小。PI曲线线性好,信号光电转换不失真。

体积小,工作寿命长。

PIN光电二极管是在PN光电二极管的PN结中间设置了一层惨杂浓度很低的本征半导体构成,结构简单,可靠性高,工作电压低,使用方便,且量子效率高,器件噪声小,带宽高,但灵敏度比APD光电二极管低,因此广泛应用于灵敏度要求不高的场合。APD二极管灵敏度高,增益高,但电压高,结构复杂,噪声大,因此多用于对光接收机灵敏度要求较高的场合。

3 通信系统中的光纤通信技术

光纤通信技术现状截止到目前为止,我们可以看到光纤通信技术已经有了很大提升,它的应用范围也在不断扩大。时至今日,光纤通信技术已具有了高速率、大容量等优点,它的这些优点都在在通信系统中体现出来,并且被广泛应用在许多地方。光纤通信主要技术有有以下几种。

3.1 波分复用技术

所谓波分复用技术(wavelength-divisionmultiplexing, WDA)就是指将多个携有信息、频率不同的信号利用合波器整合到一起,然后沿着一条光纤传输,最后用某种方法在接收端接收,将波长不同的信号分别提取出来的光通信技术。WDA主要利用的是光纤低损耗波段的带宽资源优势,来增加光纤的传输带宽,从而使光纤传送信息的有效带宽增加一倍至数倍,从而有效的提高了频带利用率。

3.2 光纤接入技术

光纤接入技术一种是面向 FTTH(光纤到户)和 FTTC(光纤到路边)的宽带网络接入技术。OAN(光纤接入网)是电信网中发展最快的接入网技术,能够有效解决窄带业务(如电话)的接入问题外,还可以解决宽带业务(如调整数据业务、多媒体图像)的接入问题。光纤接入技术将传统接入技术进行了有效的改变,进一步增加城域网和核心网和的容量。光纤接入技术更容易与其他技术相结合,形成APON、GPON和EPON。

3.3 光孤子通信

在光纤通信系统中,由于光纤存在损耗和色散,从而使传输容量和距离在很大程度上都受到了限制。光孤子通信的出现极其有效的解决了光纤色散问题。所谓光孤子通信是在光纤长距离传输中,用光孤子超短光脉冲做信息载波,信号的波形和速率始终保持不变,并且可以到近零误码率信息传递的通信方式。

4 结论

光纤通信技术因为其本身的诸多优点,在各行各业里面得到了广泛应用,其已经成为通信技术中的重要组成部分,在信息传输中扮演着重要角色,相信未来中光纤技术会得到更为广泛的应用。

参考文献

[1]付伟,苗遥遥.光缆通信线路的维护管理策略研究[J].无线互联科技,2014(6).

[2]汤永忠.浅谈光纤通信技术的发展现状[J].电脑知识与技术,2014(10).

[3]潘伟,蔡文涛.浅谈通信工程中传输技术的广泛应用[J].民营科技,2014(2).

光通信篇6

【关键词】电力通信;光纤通信技术;运用策略

科学信息技术的不断发展与进步,使得其在越来越多的领域得到广泛应用,同时也给人们的生活带来了极大便利。但是,随着人们生活水平的不断提高,现有的电力通信已经很难满足人们的需求。而此时,光纤通信技术的出现,给电力通信行业带来了新的发展机遇,其对电力通信的影响是不容忽视的。与传统电力通信技术相比,光纤通信技术的传输容量更大,运行更稳定,也正是因为这些优势,使得光纤通信技术在电力通信中得以广泛运用。

一、光纤通信技术在电力通信中运用的重要影响

1.1提高了信息的传播速度

信息时代的到来,给电力通信行业带来了新的发展机遇和挑战,电力通信行业应该充分把握信息时代的优势,进行自我转型和升级。只有这样才能满足人们对电力通信提出的越来越高的要求,才能促使电力通信朝着数字化、智能化的方向发展。光纤通信技术以其自身所具有的特征和优势,在电力通信中得到广泛运用,这也加快了电力通信的转型和升级。与传统的电力通信相比,光纤通信使宽带的广度和宽度得到增加,更加有助于实现数据、信息以及电能传播速度和传播张佳、李莉娟效率的提高,以此确保社会和人们对数据、信息以及电能的需求和标准能够被满足。

1.2提高电力通信服务的多样性和功能性

在电力通信中运用光纤通信,可以提高电力通信服务的多样性和功能性。第一,不管是搭建长距离电网,还是在一些较为特殊的区域铺设线路,光纤通信技术的运用都可以很好的满足电力通信行业的需求,从而提高电力通信服务的功能性。第二,对于现阶段部分未能实现统一规范管理的电力通信企业来说,在铺设和搭建线路电网的过程中,运用光纤通信可以提高联网的可能性,从而使得电力通信服务更具多样性和功能性。第三,对于电力通信企业来说,光纤通信技术的应用,可以促进电力通信企业的进一步发展和升级,与传统的电缆材质相比,光纤电缆的材质相对更好,因此使用寿命相对也较长,同时可有效降低成本,从而提高企业的经济效益。

1.3降低损耗量

光纤通信技术在电力通信中的运用,为电网在全国范围内实现推广和普及提供了技术支持和基础条件。在进行大范围电网建设的过程中,光纤通信技术的运用使得偏远地区电缆的搭建得以实现,不管是偏远地区还是贫困地区,都可以实现有线电视、数字电视的应用。传统电力通信传输网线的材质为铜质电缆线,不管是在重量方面,还是在耗能方面,传统电力通信传输网线都很难满足长距离输送数据、信息和电能。而光纤通信技术的运用,在实现数据、信息和电能长距离传输的同时,还可以有效降低其在传输过程中的电能损耗量,从而更好的实现电网在偏远地区和地形险峻地区的搭建和覆盖。

1.4增强电网线路的抗腐蚀性和抗干扰性

与传统的铜质电力通信传输线相比,部分光纤电缆的金属含量较少,还有一部分光纤电缆不含有任何金属。因此,光纤通信技术在电力通信技术中的应用,不仅可以实现电力系统运行中光纤电缆与其他线路的绝缘,同时还可以实现与自然环境中雷电的绝缘[1]。由此可见,光纤通信技术的运用,可以提高电力通信的安全性和可靠性,对电力线路可以起到保护的作用。并且光纤电缆的耐腐蚀性较高,可以确保数据、信息以及电能的完全性传输。除此之外,光纤电缆的抗干扰性也较高,可以有效抵抗外界物质对电网线路的干扰以及周边电磁对其造成的影响。

二、电力通信中光纤通信技术运用的有效策略

2.1架空地线复合光缆的使用

从外到内看,架空地线复合光缆主要包括铝线、铜芯、光纤三层。根据不同的架空地线复合光缆结构,可以将其划分为三个类型,分别是骨架式地线复合光缆、绞式地线复合光缆以及中心束管地线复合光缆[2]。在电力通信中使用架空地线复合光缆,不仅可以提高电力通信系统的机械强度和导电性能,同时还可以提高电力通信的安全性和抗外力破坏性能。现阶段,在110kV线路中,这类光缆的应用较多,这将有助于复合光缆和电力输电线路同步建设的实现。在具体使用架空地线复合光缆的过程中,应该充分考虑电力通信系统的负荷量,在最大限度避免光纤电缆短路的同时,还要做好光纤电缆的保护措施,可以在光纤电缆外部套上两层保护套,以防止紫外线对其造成的损害。在进行地线更换的过程中,应该确保地线原本就具有的性能,从而保障更换底线后,电力通信系统运行的稳定性和安全性。

2.2光复用技术的应用

在光纤通信技术发展与推广的过程中,光复用技术的应用起到了极大的促进作用。光复用技术主要包括波分复用技术、频分复用系统、光码分复用技术。其中波分复用技术是指将多种波长的光载波在一根光纤上进行同时的传播,以此实现光纤传播能力的提高,通过不同方向的波长,在单根光纤上实现双向的传达,从而促使波分复用技术能够更加灵活的在电力通信中进行应用。在频分复用系统中,相邻峰值波长之间的间隔在1nm之内,光载波的间隔比较密集,因此,频分复用系统更适合在高速度、大容量的电力通信系统中应用[3]。而传统的分波器和合波器频分复用系统器件很难区分光载波,应该加强高分辨率可调谐光滤波器等技术的应用。光码分复用技术的应用,不仅有助于光编码和解码的实现,同时还可以实现信号交换性能的提高以及网络容量的增加。除此之外,该技术的应用有利于干扰、多径衰落问题的解决,从而提高电力通信的保密性和安全性。

2.3金属自撑架空光缆

金属自撑架空光缆结构比较复杂,需要借助高模量塑料管套的帮助,将防水物引入其中,然后再套入光纤。另外,还需要加强对光缆中心的处理,以提高金属自撑架空光缆套管的耐热性和防水性。除此之外,可以在套管四周适当的涂抹聚乙烯,并将油膏涂抹在管套内部,以起到保护光纤结构的作用,同时可有效控制余长,从而实现光缆抗拉性能的提高[4]。金属自撑架空光缆的外管套非常光滑,可有效降低光缆安装过程中产生的摩擦,同时防止紫外线对其造成的损害。

2.4非金属自撑架空光缆

非金属自撑架空光缆具有较强的抗拉性,其最大拉伸长度可达1km。该光缆主要由芳纶纤维组成,这种材料的质地较轻,且具有较大的强度和防弹性。非金属自撑架空光缆的套装方式为松套层绞,因此,其抗电腐蚀能力较强[5]。此光缆在220kV及以上的高压输电线路中应用较多,在对电力通信系统进行维护的过程中,可以做到不停电进行相应操作,并且整个操作过程比较简单、便捷。但是,非金属自撑架空光缆也存在一定的弊端。例如:光缆上有灰尘,很容易降低电场的均匀性,从而造成漏电情况。除此之外,如果线路出现放电现象,就会灼伤光缆表层,对非金属自撑架空光缆线路造成破坏。

三、结束语

光通信篇7

【关键词】光纤通信;信息化;电力通信网;应用

一、前言

随着综合国力的提升,电力系统越来越复杂,各行各业都需要电力的支持,从最繁华的城镇到经济相对落后的村落,每个角落都有电力系统的存在,因此电力通信网的要求很高,将光纤通信应用于电力通信网中,能够提高电力通信的强度、提高电力通信的安全性,加快电力通信时间,给电力通信带来很大的便利。

二、电力通信的特殊性

电力是现在各行各业最基本的支撑条件,是人们生产生活的基础,电力通信网承担的使命是进行电力资源的调度,完成各类信号的传输,电力系统覆盖的范围广,因此,电力系统的通信有很高的技术性。它跟电力的安全系统、电力自动化调度系统相互协作,保证了电力系统的正常稳定。电力系统背负的任务重,这要求电力系统的专业性强,针对性高,而且还要具备很高的可扩展性。电力系统的特点主要表现在下面几点。2.1电力系统需具备高的可靠性人们生活的各个方面都离不开电力系统,从最基本的家用电器,到日常生活所需的银行系统,以及工作中需要的电脑等,现在人们的生活的每时每刻都离不开电力。一旦断电,造成的系统瘫痪,会给人们的生活工作带来极大不便,甚至使事情处于停滞状态。因此电力通信网络必须具备高的可靠性,在电力传输的过程中经受得起各种打击,随着信息化的发展,人们对电力的依赖性越高,对可靠性的要求也更加明显,光纤电缆传输过程中信息丢失率低,能够适应电力通信网的需求。2.2电力系统需具备强的扩展性电力通信网覆盖了全国的各个角落,电力系统的种类繁多,大小各异,而且随着时间的推移处于不断变化中,这要求电力系统有强的扩展性。在刚开始铺设的时候,为以后电力系统的发展提供预留的接口。也要保证现在的投资,随着社会的发展有良好的收益收回成本,因此电力通信网络需要很强的扩展性。2.3电力系统需具备快的传播性通信延时后,造成的损失是无法估计的,信息高速发展的今天,信息的不平等性带来的机会很多,信息是每个机构个人争取的竞争要素,因此电力通信网络要具备及时性,不能出现通电延时。电力通信网络传播的快速性,也有利于断电后,现场的及时回复,挽回损失,光纤电缆传播信息的速度快,在电力通信网络方面的应用广泛。2.4电力通信设备需具备环保性人类的活动给自然环境造成了严重的伤害,人们对资源的索取无穷无尽,我国是人口大国,消耗资源的速度快,因此环保是任何事情的基本原则。电力通信网络系统庞大,消耗的设备多,需要选择环保的传输设备,光纤的主要成分是二氧化硅,普遍存在于自然界中,环保是其自带属性。

三、光纤电缆在电力通信中的应用

光纤电缆传输的可靠性强,速度快,可靠程度高,环保性能好,能满足电力系统传输的特殊性,因此被广泛的应用于电力通信网络。常见的光纤电缆包括OPGW,GWWOP,ADSS。OPGW是地线复合光缆,光纤被放置于已经架好的地下设备中,其优点是和地线设备相辅相成,将性能最大化。GWWOP是地城缠绕光缆,即将光缆通过缠绕的方式铺在地线上,这类光缆的特性是铺设简单,操作简便,缺点是容易被折断,在铺设地线的时候,需要与地形紧密结合,防止光缆的损坏。ADSS是全介质自承式光缆,这种光缆的环境适应能力强,因为其结构紧凑,所以能保证光缆在恶劣环境下不受力,光缆的柔韧度高,具有强的抗弯曲能力,整个光缆是非金属材料,能够避免电磁的干扰。电力通信过程中的两种组网方式是DWDM,SDH。DWDM是密集波分复用技术,SDH是同步数字体系,两者各有优缺点,现在常用的组网策略是将两者结合,同时提高了电力通信的传输速度和安全性。

结束语

电力通信网络覆盖全国各地,给电力设备提出了很高的要求,最基本的要素包括电力通信的可靠性、扩展性、传播性、环保性。光纤的传输速度快、抗干扰能力强、环保性能高,能很好的应用于电力通信网络中。文章介绍了电力系统的特殊性,并分析了光纤能很好的应用于电力通信的原因,最后给出了光纤应用于电力系统的方式,并对组网技术进行了简要说明。将光纤应用于电力通信网络中,给电网系统的正常高效运行带来了便利。

参考文献

[1]李成乾,卢文鹏,朱昊.光纤通信技术在电力通信中的应用[J].山东工业技术,2014(17):109-109.

[2]李曦.光纤通信在电力通信网中的应用探讨[J].电子世界,2014(22):282-282.

光通信篇8

前言:在科技改变生活的时代,作为现代化信息技术发展关键的光纤通信技术被应用的越来越广泛,尤其是在计算机通信网的建设和完善上,光纤通信技术成为最为主要的通信传输技术。它有着其他通信技术难以企及的优势。但同时也不可能否认,它的应用也存在着一些问题值得去改进。本文通过对具体的光纤技术应用的分析,希望可以有效提升此技术的运用效果,更好的让它造福社会,造福于国民。

1.浅析光纤通信技术的特点

1.1 排除串音干扰

在电波的传输过程中,电磁波的传送很容易出现泄漏的情况。而使用光纤进行传送,由于包裹光纤的是不透明的塑料膜,可吸收泄漏的电磁波射线,这便很好的规避了这样的状况,同时也使得通信的保密性大大增强,信息的安全性大大增加。在多条光纤电缆设备同处于一条电缆的情形之下,光纤的特性也可以保证不串音,排除了串音的干扰。

1.2 抗干扰能力强

制作光纤电缆的材料一般是石英,石英具备良好的绝缘性和耐腐蚀性,作为通信设备极佳。另外,它不易受到外部环境中电磁的干扰,性能稳定,甚至可以与高压线平行建立,在大多数通信领域,甚至是军事通信领域都是运用极为广泛的。

1.3 损耗低

通信是花费高回报率低的技术领域,所以如何能够最大限度的降低成本从而相对提高收益是不得不去考虑的问题。现在大多数的光纤电缆材料时石英,它不仅有很强的绝缘性、耐腐蚀性和抗电磁干扰能力,它还是相对低损耗的传输介质,这可以最大限度的提升通信的效率。在广泛运用石英之前,通信需要建立大量的中继站,这耗费了许多不必要的人力、物力、财力,增加了成本。而在使用石英材料之后,中继站可以只需要建设很少的一部分,这节约了许多资源。若能够发现更加低损耗的材料,则能够进一步提升传播的效率,这是科学家们正在不断探索的课题。

2.光纤通信传输技术的应用现状

2.1 光纤接入技术

随着社会经济的迅猛发展,计算机普及率提升快速,现在越来越多的行业都需要全天候使用计算机,这对于通信的流畅度和速度都提出了较高的要求。另外计算机通信网的建设也很重要,这将纳入越来越多的设备,完善整个通信网。而在军事领域,使用的计算机对通信技术的要求则更高,跟普通用户相比,又多出了信息的容量、保密性等多个方面的需要。目前使用很广泛的光纤接入技术较传统的用户接入方式多出了许多优点。传统所使用的接入方式主要是铜线接入,它损耗大,极度影响使用网络的速度,并且抗干扰能力差,保密性差,不适用于许多领域的应用。现在的光纤接入方式大大提升了网络的速度,拓宽了传输的带宽,更令网络故障发生频率降低,大大便利了人们的日常生活和工作学习。为信息高速公路的建设提供了必要的技术支持。光纤接入技术势必要成为光纤技术发展过程中的主流。

2.2 单纤双向传输技术

单纤双向传输技术是相对于双纤双向传输来讲的,双纤传输时,收发信号分别在不同的两根光纤里传输,而单纤传输时,收发信号被调制在不同的波段后在同一根光纤里传输。目前,由于技术水平尚欠缺,我国使用最多的是双纤传输。

而单纤传输仅仅在光纤末端接入设备、单纤光收发器等设备上得到了使用,在骨干传输网中还尚未使用,这还远远不够。单纤传输相比于双纤传输能够节约一半的宝贵光纤资源,单是设备上的更新完善就可以达到惊人的成果,大大降低成本,这使得从事相关业务的技术人员认识到单纤传输是必须要推广使用的技术,是双纤传输技术普及之后必然的更新趋势。

2.3 光交换技术

一个高速高效率的光纤通信技术应当是全程采用光信号,这对于各种器件的要求是很高的。过去我国大多采用电子器件,而电子器件只能接收传送电信号,不能传送光信号。随着光纤技术的进步,光信号越来越普及,但是传统的电子器件却没有随之发展,导致目前我国光纤技术应用中的尴尬局面――“光―电―光”即发出光信号,在到达电子器件时需要转换成为电信号,通过电子器件发出后再转为光信号继续发送。显而易见,这样的信号传输方式导致了资源的严重浪费,并且增添了许多额外的不必要的成本和损耗,大大制约了我国光纤通信技术的发展。

3.光纤通信传输技术发展前景分析

3.1 解决研发集成光电子器件的难题

提升通信速度和容量要必然达到的目标是体积不能因此扩大,反而要缩小,效率要提升。所以,光电子器件应当朝着集成化的方向发展。在互联网飞速发展的时代大背景之下,现有的光电子器件已经不能满足使用,更无法支撑起互联网的进一步发展。所以使其集成化已经迫在眉睫。提升光电子器件集成化有很多途径,其中主要的方法是使用全新且成熟的制作工艺,在硅衬底之上进行光学器件的制作,包括波导与光纤耦合器等重要的无源器件,在一块硅芯片之上实现全部光学器件模块的集成处理。这样,便能够大大提升其集成化。为了达到这一目标,应当积极引进先进设备和进行人才培养,让科技的发展进步能够可持续化,切实提升应用水平。

3.2 致力于实现全光网络

全光网络的实现对于计算机通信网有着巨大的现实意义。可以将通信速度提高不止一倍。实现全光网络需要许多技术的共同进步――电子器件的升级与换代、因特网的进一步发展、移动通信网的进一步普及等等。可喜的是,我国的4G网络得到了普及,不久又将会出现5G网络,这大大促使了传统的电子器件的淘汰,并引进新的光学器件,为致力于实现全光网络扫清了一大障碍。总之,我们都不可否认,实现全光网络是一个过程,并非一蹴而就,但同时是可以带来巨大经济社会效益且不可避免的提升光纤通信技术水平的必由之路。

4.结语

当今科学技术的发展越来越迅速,许多高端的科学技术不仅运用于军事等领域,更造福着千万国民。当下,最让我们感受到科技就是力量的便是计算机网络的普及与应用。而提升计算机网络的重要技术便是光纤通信技术。通过上述探究,的确我国的光纤通信技术尚存在很多问题,距高水平的应用还有很大差距。

上一篇:进程间通信范文 下一篇:卫星通信范文