从宏观到微观

时间:2022-09-25 07:28:56

从宏观到微观

认识和了解宇宙万物的本质和运动规律是人类自古以来的欲望和使命,物理学作为研究物质及其在时空中运动的学科,是人类不断履行这个使命的最古老也是最有生命力的专业之一。

物理学专业可分为“纵向深入”和“横向扩张”两方向。“纵向深入”是向更微观和更高速领域的深入探索,获得描述新的领域最核心的物理模型。“横向扩张”是在“纵向深入”中得到的每一个区域的核心物理模型基础上,应用该模型来探索和解决该领域每一个更具体和更复杂的问题,伸向更精细的世界。

纵向世界

下图是目前物理学的四个“基本理论”所统治的区域,它是一个普遍的力学系统,用一个数学模型来描述物质、时间和空间,以及他们之间的关系。这四个“基本理论”是人类几百年来“纵向深入”所得到的四个核心物理模型。

一、经典力学(Classical Mechanics)

图中左下区域是“宏观低速”区域,称为经典力学(Classical Mechanics)领域,即最早的牛顿力学及其后续发展的拉格朗日力学,哈密顿力学等。在中学物理课程中主要涉及的部分是牛顿力学。这里基本的数学模型是:空间是最简单的欧几里得几何的三维空间,时间是另外一个和空间维完全无关的维度。物质是质点,或者是有限体积的质点集合(刚体,流体),或者是遍布全空间无限体积的质点集合(场,如电磁场)。质点在空间中的运动符合伽利略变换。

这个领域孕育了第一次工业革命和第二次工业革命。它的“纵向深入”突破点是麦克斯韦的电动力学,并由此导致量子力学和相对论力学领域的出现。

二、相对论力学(Relativistic Mechanics)

图中的右下区域是纵向深入到“宏观高速”的区域,即爱因斯坦的相对论力学(Relativistic Mechanics)领域。

这里基本的数学模型是:狭义相对论(Special Relativity)时空是闵可夫斯基四维时空,即一维时间和三维空间由光速不变原理紧密联系,组成一个平直的四维时空背景。广义相对论(General Relativity)的时空是黎曼时空,即一个弯曲的四维时空。相对论力学里物质依然是经典力学里的质点、体或场,但是它会直接影响时空背景。质点在四维时空中的运动符合洛仑兹变换。

这个模型揭示了时间和空间不再是经典力学中和物质运动独立无关的背景,而是与物质的质量、能量和运动紧密联系。

三、量子力学(Quantum Mechanics)

图中左上区域是纵向深入到“微观低速”的区域,即量子力学(Quantum Mechanics)的地盘。它的建立以普朗克、爱因斯坦、波尔、德布罗意等物理学家的工作为先导,以海森堡、薛定谔、狄拉克、泡利等物理学家的工作为主体。

这里基本的数学模型是:时空还是经典力学中欧几里得的三维空间加上独立的一维时间,物质运动还是符合伽利略变换,但物质本身却不再是质点或者质点的集合,而是分布在全空间的波函数。一切物理量的取值都要靠它与波函数在全空间的积分才能得到。

这个模型揭示了真实的微观物质不是只具备粒子性的质点,而是同时具有波动性,即分布在全空间的波。

这个领域是现代物理学最大的领域,它孕育了20世纪后半叶的高新技术产业革命,使人类全面步入信息时代。

四、量子场论(Quantum Field Theory)

图中右上区域便纵向深入到“微观高速”区域,即量子场论(Quantum Field Theory)领域。它是量子力学和狭义相对论的结合。从量子力学的几位创始人到标准模型的建立者,诸多20世纪物理学家们的工作完成了这个建立过程,其中包括杨振宁教授和李政道教授的贡献。

这里基本的数学模型是:物质的基本粒子是分布在完全的闵可夫斯基四维时空的波动场的激发态,场的基态是能量不为零的真空态。一个基本粒子的出现和消失(产生和湮灭)是它的场在该模式上的跃迁。场用量子化的拉格朗日密度来描述。

这个模型揭示了真实的物质不仅是量子力学中分布在全空间的波,还和狭义相对论中的时空背景紧密相连。

从各个区域所建立起来的基本数学模型来看,量子场论区域是目前描述自然界最精确的模型,量子力学区域是描述自然界的低速近似,相对论力学区域是描述自然界的宏观近似,经典力学是描述自然界的宏观低速近似(显然关系已经不大了)。

在这我们只能用“近似”两个字,因为人类在了解和认识自然界的过程中是一个不断深入的渐进的认识过程,一个不断积累的认识过程,这个过程将永远不断地有新的发现,就像我们观赏大自然的美景一样,没有终极,越看越美丽,越看越新奇。

横向世界

一、经典力学(Classical Mechanics)

经典力学模型应用到具体的物质运动形式上就可建立刚体力学、流体力学、声学,以及经典的光学、电学、热力学、磁学等学科。现在的物理学家已经很少涉及这个领域,因为在这个领域里基本的模型早已建立完毕并经受住了时间的考验,物理学家也早已把这个地盘交到工程师的手上了,研究的主流变成是对这些规律的应用,这个领域与人类日常生活关系最近。

对于有志于从事机械、建筑、汽车、航天、热能动力等专业的学子来说,牛顿力学和热力学等是必须要掌握的物理基础,这些物理基础引发了人类第一次工业革命。对于有志于从事电力、通讯、电子工程等专业的学子来说,经典电磁学和电动力学是必须要掌握的物理基础,这些基础引发了人类第二次工业革命。

学好这些基础,能让你轻快地进入到这些实用的领域中发展。

二、相对论力学(Relativistic Mechanics)

相对论力学模型应用到具体的物质运动形式上就可建立天体物理学、宇宙学等学科方向,研究宇宙大尺度物理现象,如引力等,从业人数在物理学界占较小的部分。

对于有志于研究天文学和恒星、地外行星、黑洞等各种天体以及宇宙奥秘的学子来说,这个领域便是其归宿。这个领域的实验主要以望远镜观测为主。相对论力学领域是人类认识宇宙和了解宇宙的最前沿,它是人类了解太空的一扇窗口,但是离人类日常生活较远。工作单位一般是各个天文台、大型的地面观测站和太空观测站等科研部门。

三、量子力学(Quantum Mechanics)

量子力学模型应用到具体的物质运动形式上就可建立原子物理学、分子物理学、量子光学、量子电子学,以及凝聚态物理学等学科。物理学家中在这个领域的人数最多,仅凝聚态物理专业的人数就要占所有物理学家的三分之一以上,是物理学最大的分支。保守估计以量子力学为基础理论的这个区域中的物理学家人数应该超过所有物理学家总人数的一半。近十年的诺贝尔物理学奖有6次颁给了这个领域的科学家。

这个领域的特点是基础理论模型完善,计算方便。实验规模小,可在实验室桌面上进行。理论和实验课题数量多且分散,而且作为研究物质结构的基础领域,和化学与生物学等其他学科联系紧密,因此它横向扩张的速度最快,成果也远多于物理学其他三个区域。

这个领域孕育了20世纪的现代科技革命,如半导体元件的发明、激光器的诞生、磁存储介质、液晶,以及最热门的纳米材料、超导体等都是拜他它所赐。因此这个领域不但适合想从事物理研究的学子加入,而且也适合想从事微电子学、纳米材料、量子信息技术等新兴专业的学子们学习。

四、量子场论(Quantum Field Theory)

量子场论模型应用到具体的物质运动形式上建立了量子电动力学(QED),电弱统一理论,量子色动力学(QCD)等理论,作为粒子物理(高能物理)的基础理论,同时研究基本粒子的束缚态如重子、介子和原子核结构等。这个领域是向物质奥秘探索的最前沿,基本理论内容最深奥、计算难度大,但是横向扩张的工作很多。实验需要在大型的粒子加速器上进行,规模庞大,课题集中,成果多是十年磨一剑,因此进展缓慢。

对于有志于探索物理最前沿的学子来说,这个领域最适合,但更需要具备耐得住寂寞和世俗诱惑的能力。这个领域风光无限,魅力无限。

结语

物理学的发展是不断地“纵向深入”加“横向扩张”的过程。物理学专业本科期间的理论课会从经典力学“纵向深入”到狭义相对论和初等量子力学的阶段。以经典力学和电动力学为核心,“横向扩张”出力学、热学、电磁学、光学等普通物理课程。以量子力学为核心会“横向扩张”出原子物理学和固体物理等普通物理课程。要向更深远的方向发展,还得继续向更高阶层的研究生阶段深造。

纵向深入的程度决定了物理学专业毕业生是走“科研路线”还是走“工程路线”。科研路线需要向纵向世界深入到研究领域的最前沿,进入学术圈,一步步完成自己的研究目标。步入工程路线的物理学专业学生可转入材料学、核技术、电子工程、光学工程等专业,甚至金融专业。需要补充一点的是,学好物理的人,都具备比较深的数理基础,在工程路线中会如鱼得水,后劲十足,就是转到金融行业、地质调查、国土资源管理等领域也会得心应手。

上一篇:烂漫樱花,武汉的风骨柔情 下一篇:经管院走出的工程师