混凝土结构耐久性浅谈

时间:2022-04-15 06:01:00

混凝土结构耐久性浅谈

摘要:混凝土一直被认为是坚硬、密实、能够长期使用的浇筑石体,其强碱性环境使内部钢筋处于保护状态下而不会发生锈蚀,因此,对混凝土(钢筋混凝土)结构的使用寿命期望值很高,忽略了混凝土结构耐久性问题,混凝土的耐久性是指混凝土在实际使用条件下抵抗各种破坏因素的作用,长期保持强度和外观完整性的能力。影响结构耐久性的因素很多,砼质量及其保护层是内在因素;环境与载荷作用则是外在因素,不同的原因会造成不同的后果。通过对国内外钢筋混凝土工程耐久性现状的介绍,讨论了影响混凝土耐久性的因素,通过分析分析影响混凝土耐久性的因素及混凝土缺陷检测﹑寻求提高混凝土耐久性的措施。

关键词:混凝土 耐久性检测影响因素

中图分类号: TU37 文献标识码: A

1混凝土耐久性的基本概念混凝土抵抗环境介质作用并长期保持其良好的使用性能和外观完整性,从而维持混凝土结构的安全、正常使用的能力称为耐久性。

2混凝土耐久性是指混凝土在实际使用过程中抵抗各种破坏因素作用,长期保持强度和外观完整性的能力。主要包括冻融破坏、渗透破坏、碱骨料反应、混凝土的碳化、钢筋锈蚀、化学侵蚀六个方面对混凝土结构发生耐久性失效的原因及影响因素进行论述。

2.1混凝土冻融破坏是指混凝土在饱水或潮湿的状态下,由于环境中温度的正负变化,导致混凝土内部松弛产生疲劳应力,反复的冻融循环造成混凝土由表及里逐渐剥蚀的破坏现象。

2.1.1破坏机理

混凝土冻害机理的研究始于20世纪30年代,有静水压假说、渗透压假说等。但由于混凝土结构冻害的复杂性,至今尚无公认的、完全反映混凝土冻害机理的理论。

2.1.2影响因素

对于影响混凝土冻融破坏的主要因素总结起来大致有以下四个方面:

(1)水灰比:水灰比越大,使凝土孔隙率越大,导致混凝土的吸水率增大,最终导致混凝土结构冻融破坏严重;

(2)孔结构和孔隙特征:连通毛细孔易吸水饱和,使混凝土冻害严重;若为封闭孔,则不易吸水,冻害就小;

(3)饱水度:若混凝土的孔隙非完全吸水饱和,冰冻过程产生的压力促使水分向孔隙处迁移,从而降低冰冻膨胀应力,对混凝土破坏作用就小;

(4)混凝土自身强度:在相同的冰冻破坏应力作用下,混凝土强度越低,冻害程度就越高。

2.2混凝土渗透破坏

2.2.1破坏原因

混凝土具有多种粒径的孔隙,连通的孔隙会成为气体、液体或有害介质进入混凝土的通道,导致混凝土破坏。

2.2.2影响因素

影响混凝土渗透性的因素主要有水灰比、骨料最大粒径、混凝土养护方法、水泥品种、外加剂等因素。

2.3碱骨料反应

混凝土中的碱与混凝土中的活性骨料发生反应,生成膨胀性物质,导致混凝土发生膨胀破坏,称为碱骨料反应。这种反应引起明显的混凝土体积膨胀和开裂,改变混凝土的微结构,使混凝土的抗压强度、抗折强度、弹性模量等力学性能明显下降,严重影响结构的安全使用性,而其反应一旦发生很难阻止,更不易修补和挽救,被称为混凝土的“癌症”。

2.3.1破坏原因

碱骨料反应主要可分为碱与硅酸、碱与碳酸盐及碱与硅酸盐三种反应。

(1)碱-硅酸反应:是分布最广、研究最多的碱骨料反应,该反应是指混凝土中的碱组分与骨料中的活性SiO2之间发生的化学反应,其结果是导致骨料被侵蚀,生成碱-硅酸凝胶,并从周围介质中吸收水分而膨胀,导致混凝土开裂。

(2)碱-碳酸盐反应:是指混凝土中的碱与碳酸盐矿物产生化学反应引起混凝土的地图状开裂。碱-碳酸盐反应是孔溶液中的碱与骨料中的白云石之间的反应。这一反应不是发生在骨料颗粒与水泥砂浆的表面,而是发生在骨料颗粒的内部,水镁石Mg(OH)2晶体排列的压力和粘土吸水膨胀,引起混凝土的内部应力,导致混凝土开裂。

(3)碱-硅酸盐反应:是指混凝土中的碱与骨料中某些层状结构的硅酸盐发生反应,使层状硅酸盐层间间距增大,骨料发生膨胀,致使混凝土膨胀开裂。

2.3.2影响因素

从碱骨料反应发生的条件出发,分析该种破坏的影响因素主要是:

(1)活性骨料:引起混凝土碱骨料反应的主要因素是混凝土中含有碱活性的骨料。因此在施工中尽量选择无碱活性的骨料,在不得不采用具有碱活性的骨料时,应严格控制混凝土中总的碱量;

(2)活性掺合料:掺用活性掺合料,如硅灰、矿渣、粉煤灰(高钙高碱粉煤灰除外)等,对碱骨料反应有明显的抑制效果。活性掺合料与混凝土结构中的碱起反应,反应产物均匀分散在混凝土中,而不是集中在骨料表面,不会发生有害的膨胀,从而降低了混凝土的含碱量,起到抑制碱骨料反应的作用;

(3)水分:碱骨料反应要有水分,如果没有水分,反应就会大为减少乃至完全停止。因此,要防止外界水分渗入混凝土结构中以减轻碱骨料反应的危害。

2.4混凝土的碳化

混凝土的碳化作用是指空气中的二氧化碳气体渗透到混凝土内,与其碱性物质起化学反应生成碳酸钙和水,使混凝土碱度降低的过程,这一过程又称混凝土的中性化。

2.4.1破坏原因

碳化的化学反应式为:

Ca(OH)2+CO2=CaCO3+H2O

混凝土的碳化反应结果有两个方面:一方面,反应生成碳酸钙和其他固态物质会堵塞在混凝土孔隙中,使混凝土的孔隙率下降,大孔减少,从而减弱了后续CO2的扩散,使混凝土密实度提高;另一方面,孔隙中的Ca(OH)2浓度及PH值降低,导致钢筋脱钝而锈蚀。

2.4.2影响因素

影响混凝土碳化的因素有很多,但概括其主要因素有两方面,一方面是材料因素,另一方面是环境条件因素。

2.5钢筋锈蚀

混凝土中水泥水化后,会生成碱性的氢氧化钙,导致混凝土孔隙中的水分有很高的碱性,在钢筋表面形成一层致密的钝化膜,因此在正常情况下钢筋不会锈蚀;但钝化膜一旦破坏,在有足够水和氧气条件下会产生电化腐蚀。

2.5.1破坏原因

混凝土中钢筋锈蚀的实质是电化学腐蚀。主要表现为钢筋在外部介质作用下发生电化学反应,逐步生成氢氧化铁(即铁锈)等,铁锈的体积会比原金属增大2~4倍,产生膨胀压力,造成混凝土顺筋裂缝,从而成为腐蚀介质渗入钢筋的通道,加快结构的损坏。

2.6化学侵蚀

一些侵蚀性介质,比如酸、碱、硫酸盐、压力动水等,侵入混凝土,可能会造成混凝土的化学腐蚀。化学腐蚀主要有三类,分别为溶出蚀、溶解蚀和膨胀蚀。

2.6.1产生原因

(1)溶出蚀(2)溶解蚀(3)膨胀蚀

2.6.2影响因素

结构的密实程度和孔隙特征对混凝土化学侵蚀会有所影响;结构密实和孔隙封闭的混凝土,环境水不易侵入,故其抗侵蚀性较强。

3高性能混凝土具有丰富的技术内容,尽管同业对高性能混凝土有不同的定义和解释,但彼此均认为高性能混凝土的基本特征是按耐久性进行设计,保证拌和物易于浇筑和密实成型,不发生或尽量少发生由温度和收缩产生的裂缝,硬化后有足够的强度,内部孔隙结构合理而有低渗透性和高抗化学侵蚀。

5结论

混凝土结构是以混凝土为主要材料制成的结构,包括素混凝土结构、钢筋混凝土结构、预应力混凝土结构等结构形式。这种结构广泛应用于建筑、桥梁、隧道、矿井以及水利、港口等工程。例如设计使用30年的拉索往往不到20年就要更换,这无疑会大大缩短结构的使用寿命,应该在设计时加以考虑。混凝土结构的耐久性是一个涉及环境、材料、设计、施工等多种因素的复杂问题,要解决好这个问题需要进行多方面的工作。钢筋混凝土结构耐久性应由正确的结构设计、材料选择以及严格的施工质量来保证,同时应注意对其在使用阶段实行必要的管理和维护。只有这样,才能保证和提高混凝土结构的耐久性,才能保证我国建筑事业的可持续发展 。参考文献

[1]魏新良,浅谈混凝土结构的耐久性[J].

[2] 张完善.有色金属材料.第二版.大连:金属工业出版社,1998.89-90.

[3]刘海华,高速铁路混凝土结构耐久性措施探讨[J].铁道标准设计,2004,(05).

[4]陈仲庆.提高混凝土耐久性的措施[J]. 科技资讯,2007,(14).

[5]马庆华,叶森,仝彩霞. 混凝土保护层质量对结构耐久性的影响分析[J]. 科技信息(学术版),2006,(04).

上一篇:只有荒凉的沙漠,没有荒凉的人生 下一篇:现有光纤传输网络优化的探讨