在线监测仪范文

时间:2023-03-19 14:07:07

在线监测仪

在线监测仪范文第1篇

[关键词]COD; 比对 ;监测采用;误差分析

中图分类号:TP236 文献标识码:A 文章编号:1009-914X(2017)06-0153-02

前言

COD水质在线自动监测从样品的采集、测定到计算、显示结果,均在控制程序下有序自动地进行,为实施水质COD在线远程监控提供了技术支持[1]。一方面,促进了企业的环保管理工作,方便了企业对废水排放有机物污染浓度的管理和控制,有利于废水处理装置的调控;另一方面,也为上级环保管理部门的监督创造了条件。从文献报道及工作实际来看,COD水质在线自动监测仪的安装和使用过程中,其重现性、零点漂移、量程漂移和标准样品测试结果均能符合《化学需氧量(COD)在线监测仪器环境保护产品认定技术要求》(HBC 6-2001)的技术要求[2]。但是对于实际水样,特别是悬浮物值比较高的,COD在线分析仪的测量值与实验室的测量值产生较大差异。

1 实验部分

1 水样分析测试质量控制

本实验室比对分析的水样体积采用国标推荐的试样量20.00 mL。此外,我们将标准移液管进行改造,将细孔的口径用砂纸打磨,确保SS快速、充分地进入移液管中,然后对刻度线进行校正,消除改造后产生的误差。

为使水样数据可靠准确,本研究对所有水样均采用平行样分析。另外,采用两个空白,并带一个标样作质量控制。

2 结果与讨论

目前,污染源在线自动监测系统采用的COD在线监测仪的品牌和种类较多,但主要由两部分组成,即水样采集输送装置和水样定量测定装置。从COD在线监测仪器的仪器测量结果与人工监测结果的比对分析中全过程误差权重来看,在线监测系统采样环节的误差一般占整个系统分析误差的30-50%[3]。从过去的实践知,其主要有两方面的原因:一、受限于实地条件,取样管路过长;二、悬浮颗粒物的影响,导致取样时间、地点、方式差异性。由于COD的固有属性,在以实验室标准方法为比对数据时,根据GB11914-89[4]和HJ/T 356-2007[5]要求:水样应充分摇匀,并尽快分析。但目前没有关于采样环节明确规定的环境方面的国标。下文,我们从水样的理化性质出发,深入研究、分析了COD在线分析仪的测量值与实验室的测量值在采样环节的误差。

2.1 样品放置不同时间的CODcr值

本文所用实验水样取自某城市污水处理厂高浊度原水,其CODcr值为856 mg/L。把水样尽可能地摇匀后,分别按自然沉降时间2、5、10、30、60、120、240 min后,迅速准确移取上层沉降部分水样,进行实验。图1给出了样品放置不同时间测定的CODcr值及悬浮物值。由图1的曲线趋势看出来,样品的CODcr值随着放置时间极剧下降,并趋于平缓。2 min时突降至样品CODcr值的约68%,5 min时突降至样品CODcr值的约40%(约为2 min时样品CODcr值的59%),30 min内降至样品CODcr值的约33%(约为2 min时样品CODcr值的约44%),接下来的时间内CODcr的值就趋于一常数。

2.2 样品放置不同时间的SS值

上述现象,究其原因,从物理化学概念剖析,水是一种具有不同分散度的复合多元混合分散体系或混合分散体系,其特征是指水体中各种组分颗粒级配的分布特点,即粗状颗粒(>1μm) +胶体粒子(1×10-3~1 μm)+分子溶液混合体系[6]。从文献来看,水体中悬浮物颗粒的粒径主要分布在0-32μm之间,一般中值粒径约在10μm左右,大于4 μm的颗粒所占的比例约80%左右。一些研究表明,粗颗粒固体部分和胶体部分约占CODcr值的40~80%[7]。

在环境领域,习惯上把能通过0.45 μm滤膜的水中物质称为 “可溶物”,而滞留在滤膜上的物质称为“粒状物”。综上述,悬浮物的测定值与分散体系的存在关系不大。粗分散体系由于分散介质粒子粒径较大,易于测定。胶体粒子中分散介质的通过率,并且随着对滤纸的阻塞作用,是测定的关键。

对样品的不同放置时间的SS值,见图1。从图1中,可以看出,SS值也有类似上述COD值的趋势。5min时突降至样品SS值(2min时样品的SS值)的约28%,30min内降至样品SS值(2min时样品的SS值)的约15%,接下来的时间内SS的值就趋于稳定。这说明悬浮物的沉降过程是一个渐变的过程,在短时间内大颗粒的无机物和部分有机物能够很快沉降下来,但水体中的小颗粒有机物和生物碎屑等的完全沉降则需要较长时间,但随着时间的推移,最终SS值应为一常数。

2.3 CODcr值与SS值的线性相关

以悬浮物值为自变量X,化学需氧量值为因变量Y做一元线性回归处理,得到COD与SS相关关系式:

COD=204.3562SS+1.65276

R=0.96984

从上述方程式的相关系数看出,CODcr与SS之间存在着很好的线性关系,SS值越高,COD值越大,这从图1中得到证明。

2.4COD在线自动监测仪器Y果与人工测定结果的比较

把上述不同沉降时间采集的水样,依次在不同的污染源企业的同品牌同型号COD在线分析仪上测定,其值与相对误差见下表。

显然,在沉降时间为2、5min的水样,由不同COD在线分析仪和实验值的相对误差远大于其它沉降时间比对的相对误差(3.81-13.34%0.17-3.74%)。根据HBC6-2001《化学需氧量(COD)在线监测仪器环境保护产品认定技术要求》中表1中所列:CODcr≥100mg/L,实际水样与比对试验相对误差

结语

从上述分析来看,在废水现场采样比对测试过程中,在保障比对测试结果的可比性方面,仅仅做到比对的废水样品“四个同一”[8],即:同一地点、时间、容器、水样,还是不够的。必须充分考虑到比对水样的沉降时间,也就是说COD在线监测仪中水样从采样单元进入计量单元与手工移液管取样的时间应同步、一致。COD在线监测是一项技术强、管理复杂的工作。如何更好地发挥COD在线监测仪器在环境管理中的作用,提高污染源监督管理的科学化、自动化水平,使其为污染减排和污染物总量控制工作提供准确、科学的技术支持,作为监测人,还将有很长的路要走。

参考文献

[1] 编委会.水和废水监测分析方法(第四版)[M],北京:中国环境科学出版社,2002.

[2]梁高亮,陈灿云,霍妙霞.DL 2001 COD水质在线监测仪现场验收的若干问题[J].环境监测管理与技术,2006,18(3):47-48.

[3] 李艳红,毕彤.废水COD在线监测系统现场比对试验及管理的几点建议[J].中国环境监测,2005,21(4):33-35.

[4] HJ/T 356-2007.水污染源在线监测数据有效性判别技术规范.

[5] GB 11914-89.水质化学需氧量的测定重铬酸盐法.

[6] 陈为庄,曹佳红.用物理化学概念剖析污水水质特性[J].中国给水排水,2000,16(12):52-53.

[7] 向军,逄勇,李一平,等.浅水湖泊水体中不同颗粒悬浮物静沉降规律研究[J].水科学进展,2008,19(1):111-115.

在线监测仪范文第2篇

[关键词]氨氮在线检测仪;干扰因素;稳定性分析

中图分类号:X853 文献标识码:A 文章编号:1009-914X(2017)05-0094-01

本文以氨气敏电极A1000氨氮在线监测仪用“氨氮含量低、电导率及碱度高的水源水”监测为例,分析氨氮在线监测仪在使用中存在的干扰因素、稳定性加以介绍和分析。

一、仪表监测原理及主要干扰因素分析

在我国,目前主要有分光光度法、氨气敏电极法两种比较常见的氨氮在线监测仪监测原理。其中,前者与GB7479-1987的监测原理基本相同,均系通过水样中的氨与碘化钾和碘化汞的碱性混合溶液,来进行化学反应,其生成物呈淡红色棕色胶态化,以410~424nm的波长范围之内进行测定。该监测过程中主要的干扰因素为:产生“色度和浊度”的化学物质。在实际应用中,多数氨氮监测仪都是采用氨气敏电极法。

从上述原理图及结合氨气敏电极监测仪实际工作情况,在样品监测液中,加入一定量的NaOH以提高其pH,铵盐转化为氨后,将会自样品液中逸出。其会穿过憎水性气体透过膜,再溶解于浓度为0.1mol/L的NH4Cl电极填充液中。当改变OH-的浓度,观察电极填充液变化,对数据进行处理后可显示出氨氮含量。分析监测原理可知,氨氮监测数据影响因素主要有:“氨的转化、溢出、扩散、改变填充液、pH电极的监测及数据转化”。

一是氨转化过程。监测液中,氨氮存在形式主要有溶解性NH3和NH4+芍郑其二者相对量基本取决于样品液pH值。酸性液中,H+浓度较高,NH3将转化为NH4+。在溶液中,加NaOH和EDTA二钠盐后,加热监测液,可使转化绝大部分铵盐。所以,确定监测液中的pH值,可算出NH3和NH4+之比例。二是氨的溢出过程。该过程会直接随温度及溶解性物质量的改变而变化。三是氨通过膜扩散过程。监测液中,含有表面活性剂类物质时,憎水性气体微孔透过膜的扩散物质包括NH3和部分水分子,这会降低填充液浓度,容易出现监测误差。第四是氨改变填充液过程。第五是pH电极的监测和它的数据转化过程。为获得很好地电极电位斜率并消除参考电位带来的,常以两种已知浓度的标准液体取代样品液,再通过校准电极和记录电位,绘制出ln[NH3]S与E关系直线。

由分析检测仪监测原理可知:影响氨转化、溢出和透过膜的主要干扰因素是被监测液中“离子和溶解性物质含量、表面活性剂类物质及样品液的pH值”等。此外,确保缓冲液中NaOH与EDTA二钠盐的浓度足够高对检测仪器可靠性高稳定强也很重要是稳定监测的前提,因缓冲液既可调节监测液的pH值,还能够掩蔽样品液中的大量离子。需要注意的是,在选用氨气敏电极方法监测含有表面活性剂类物质监测液时,最好进行预处理水样,以此来保障监测效果。

二、仪器仪表选型问题分析

对于氨氮的测量中,正确做好仪器仪表至关重要。在监测仪器选型上,一般要结合氨氮监测的要求、所监测水体可能的氨氮含量和干扰物质三方面来选择。如,监测二级污水工业单位再生水,通常再生水其浊度会较低且很稳定,其特点是:残余表面活性剂类物质相对含量较高,这种特点适合选用原理为分光光度法氨氮监测仪器。该监测仪既能够满足实际监测要求,也对于水样的预处理比较简单。其优点是:维护工作量相对较少,费用低。比较来说,净水工艺中,水质氨氮及表面活性剂类物质二者相对含量很低,对这种情况,可选用无水样预处理功能氨气敏电极的监测仪,其优点是既能节约采购费用和后续维护费用。

三、主要结论探讨

综上所述,对氨氮在线监测仪干扰因素及稳定性有如下结论。

(一)结合该监测仪监测原理与监测过程可知,对检测介质干扰主要因素有:pH值、溶解性物质总量、离子总量和表面活性剂类物质。且稳定监测的前提是缓冲液中足够高的NaOH浓度和EDTA二钠盐。

(二)设备仪器的选型应主要依据监测液中氨氮可能含量和干扰物质种类等因素。对色度和浊度较低且稳定,残余表面活性剂类的物质含量较高的被检物质,宜采用分光光度法检测仪;而在检测“氨氮含量较低,没有表面活性剂类物质或含量较少”的,以氨气敏电极法检测仪为最佳。

(三)为能屏蔽监测液中离子和溶解性物质,避免碱度影响,提高监测的pH值,调整NaOH浓度缓冲液EDTA二钠盐,以监测仪器在正常工作时排出液符合pH≥12和EC≤10μS/cm要求。为保证监测精度,用氨氮监测仪时要选用短取样管,避免阳光暴晒,同时要做好取样管灭菌处理,还应一些简单过滤器。

参考文献

[1] 王经顺,李军.氨氮在线自动检测仪的现状与问题[J].干旱环境监测.2010(01).

[2] 农永光,胡刚.氨氮在线监测仪器的使用原理和方法探析[J].城市建设理论研究.2011(30).

在线监测仪范文第3篇

【关键词】COD;在线监测;应用及发展

1.引言

污水COD在线监测的分类及工作原理污水COD的在线监测方法按采用氧化剂的不同可分为:重铬酸钾法(COD)、高锰酸钾指数法、臭氧法、羟基自由基法等。根据工作原理的不同,可分为化学法、电化学法、光谱法和生物法四类。化学法基于外加氧化剂K2Cr2O7、KMnO4或O3与水中有机物发生化学反应;电化学法是利用电解产生Fe2+与剩余Cr6+反应(库仑滴定)或电生羟基自由基直接氧化水中有机物。总体上讲,COD在线自动监测仪的设计思路大体有两种,一种是模拟传统湿化学法的原理,将分析过程在线化,样品必须先消解后测定,多数COD在线监测仪设计遵循这一思路;另一种则彻底摒弃样品消解,采用全新的原理进行测定,例如利用电解产物直接与有机物反应、利用生物快速降解有机物或直接测定有机物的紫外吸收光谱等。后一思路是对传统COD测定方法的突破。目前我国广泛使用的污水COD的在线监测方法主要是分光光度法和电位滴定法两种。综合运用了流动注射技术、电化学技术、现代传感技术、自动测量技术、自动控制技术、计算机应用技术、现代光机电技术,仪器一般包括进样系统、反应系统、检测系统、控制系统四部分。光度分析法污水COD在线监测仪的工作原理:载流液(含重铬酸钾的稀硫酸)由恒流泵输送至反应管道中,基本装置流动注射分析是基于把一定体积的液体样本通过阀切入到一个运动着的由适当液体组成的连续载流中,当注入阀将水样切入反应管道中后,试样带被载流液推进并在推进过程中渐渐扩散,样品和试剂混合。在强酸溶液中,以银盐作催化剂,定量的重铬酸钾氧化水样中的还原性物质,在一定的消解温度下,加热消解一定时间,六价铬被水中还原性物质定量还原为三价铬,在一定波长下,用分光光度计测定三价铬的吸光度,通过吸光度与水样COD的线性关系进行定量分析测定。进样系统由输液泵、定量馆、电磁阀、管路、接口等组成,完成对水样的采集、输送、试剂混合、废液排除及反应室清洗等功能;反应系统主要有加热单元和反应室,完成水样的消解和反应;监测系统包括单片机(或工控机)、时序控制和数据处理软件、键盘和显示屏等,完成对在线分析全过程的控制、数据采集与处理、现实、储存及打印输出。污水COD在线监测仪电位滴定法的工作原理是在强酸溶液中,以银盐作催化剂,钼氨酸、硫酸铝钾作助催化剂,经恒温密闭消解一定时间后,用硫酸亚铁铵滴定水样中未被还原的重铬酸钾,由消耗的硫酸亚铁铵的量换算成消耗氧的质量浓度。就其反应过程来看,氧化剂浓度、反应液的酸度、消解时间、消解温度对测定结果影响较大。而消解时间、消解温度、曲线的有效取值区间要视不同水质、消解反应难易程度及污染物浓度正常变化范围而具体确定,测试方法较光度分析法复杂,需要消耗较多的化学试剂。

2.污水COD在线监测

作为连续在线运行的仪器,COD在线监测仪一般具有以下特点和功能:(1)具有不同采样方式(等比例采样、整点采样、任意间隔时间采样)或采样接口;(2)具有时间设置功能,可按实际需要设定检测频次。(3)采用强氧化剂和高温进行消解,可根据水质实际情况调节反应时间保证高效氧化;(4)分析周期短,实现真正意义上的实时在线监测,一般分析周期为15min-2h,短的仅2min~6min;(5)测定范围广,一般测试范围为10-2000mg/L,最大可达100000mg/L;(6)自动化程度高,自动采样、自动稀释、自动测量、自动量程转换、自动校标、自动清洗、温飘时飘自动补偿;(7)数据输入,图表打印,标准信号输出接口,具有计算机监控功能,可以进行远程通信;(8)状态自检和报警功能;(9)具有断电保护,来电自动恢复,自动校准等功能;(10)试剂可反复使用,有的不需要化学试剂,无二次污染;(11)运行和维护费用低。

3.COD在线监测方法的应用方向

随着我国工业化进程的推进,节约化大生产必然形成,污水的集中处理也必将是大势所趋,对于市场化的城市污水处理厂,进行及时、准确的水质、水量监测是非常必要的。目前我国广泛使用的分光光度法和电位滴定法在线监测仪,测试过程中要消耗大量的化学试剂,如浓硫酸、硫酸银、重铬酸钾、硫酸汞、硫酸亚铁铵、硫酸铝钾、钼酸铵等,这些化学试剂的使用,一方面造成严重的二次污染;另一方面,由于浓硫酸、重铬酸钾溶液等强氧化剂容易使系统管道破损、仪器失灵,维护工作量大且复杂,运行与维护成本较高。臭氧氧化法和高温催化法由于不产生二次污染,方法较为简单,不消耗化学试剂,因而测试成本低廉,仪器维护简单,是值得推荐的清洁测试方法,在国外使用较多,但由于该法不是国际标准方法,且进口仪器价格昂贵,因此推广起来有一定困难。我们可以通过国产化,降低仪器的价格来实现臭氧氧化法和高温催化法的广泛应用。TOC反映水体中全部有机物的含量,于COD相比更能直接表示水体中有机污染物的总量,而且TOC的测定不消耗化学药品,不产生二次污染,属清洁监测技术,是未来实现污水中有机污染物含量在线监测的发展方向。但目前我国对废水的考核指标是COD,对于固定种类的污水,TOC与COD的相关性问题需要解决,我们可以需要测定其与标准方法相关性,来解决非标准方法与现行管理制度不适应的问题。另外,COD在线监测系统可广泛应用于采矿排污监控点、污水监测站、污水处理厂、自来水厂、地区水界点、水质分析室等。政府监测机构利益远程监测中心数据库管理系统与在线监测系统相连接,接收子站传输的信息和其他监测点源的监测信息,能够有效监控和监督污染源排放点,减少乃至杜绝偷排现象,对推动我国水体污染物总量控制事业的发展将会有重要的意义。

4.结语

污水在线监测系统是集环境保护科学、在线监测、现代语音和数据通信、现代网络和信息系统为一体的新技术在我国部分城市污水处理领域已有应用,到目前为止,国家已建立了长江、淮河等七大流域监测网络,其中部分监测站实现了在线实时监视。根据国家计划,我国还将在十大流域建立多个水质在线监测站。因此,污水COD在线监测系统将有很大的发展空间和前景。由于污水COD连续在线监测系统数据量大、测试频率高,要求仪器实时、快速地提供准确的、大量的数据,这对测试方法提出了快速、简单、无化学药品消耗、等要求。目前广泛使用的分光光度法和电位滴定法在线监测仪,由于存在严重的二次污染问题,应该逐渐被对环境友好的清洁监测仪器,如TOC在线监测仪、臭氧氧化法和高温催化法COD在线监测仪所代替。同时,从工业现场连续在线监测来讲,为确保稳定、可靠的运行,有两点特别要注意:(1)解决好采样的代表性、水样预处理、反应器和检测池的清洁问题;(2)坚持例行的日维护、周维护、月维护和年维护至关重要。COD在线监测仪运行中还应充分考虑排放口的水质、水量等情况,在现阶段,以流量计和污水比例采样器组成的COD在线监测子系统是一般排污口实行总量控制的优选方案。

参考文献

[1]张海玮.污水COD在线监测系统的开发研究[D].中国优秀硕士学位论文全文数据库,2007.

[2]王瑞慧.COD在线分析仪比对中应注意的问题[J].环境监测管理与技术,2007,03:60-61.

[3]邵振清.污水COD在线自动监测技术进展管窥科技致富向导,2014.

[4]朱焕山,任庆,张晶废.水污染源的COD在线监测[J].河南科技,2003,8.

[5]李国刚.水质化学需氧量(COD)在线自动分析仪的发展现状[J].干旱环境监测,2001,04:29-32.

[6]方团团,沈悦.污水COD在线监测问题分析[J].现代园艺,2014,4:103-104.

在线监测仪范文第4篇

关键词:原油 含水 在线监测仪 适用性 研究

一、前言

在原油的开采、脱水、集输工作中,如何准确测量原油的含水率一直是较难解决的问题。由于原油含水不断波动,尤其是在进入稠油高含水期后,油田原油取样蒸馏化验结果与实际原油含水误差越来越大,为实现原油含水在线连续计量,避免间歇性人工取样蒸馏化验结果的随意性和不确定性,近年来锦州油田陆续在采油站和联合站试验安装了多台原油含水在线监测仪。

二、现场使用效果测试

锦州油田自1997年4月开始试验和安装使用原油含水在线监测仪,至2013年底,累计安装原油含水在线监测仪17台,其中12台用于采油站外输液含水计量;5台用于联合站分区进液含水计量。根据现场工况,可将监测仪使用情况归纳成三类。

1、检测原油含水率相对稳定,在线监测仪不间歇连续运行。现场在用13台。用于采油站外输和联合站分区进液含水计量。测量值与现场人工取样化验值平均误差为1.12个百分点(算术平均值),其中最低误差0.29个百分点,最高误差1.71个百分点。其中在采油97#站外输及与其对应的联合站进油计量都安装了原油含水在线监测仪,监测仪与流量计配合计量出的区块原油产量平均输差为3.3%。

2、检测原油含水率变化较大,在线监测仪连续运行。现场在用共2台,分别安装在采油站卸油台和联合站卸油台,用于检测落地污油或捞油井产量。测量值与化验值平均误差为3.71个百分点,其中最低误差0.11个百分点,最高误差12.6个百分点。

3、在线监测仪间歇运行,且间歇时间较长或长期停用后恢复运行。现场测试2台次,其测量值与化验值平均误差超出20个百分点,且显示含水皆偏低,其中采油56#站因工艺改造,在线监测仪在2012年10月份停运,2013年初恢复运行,现场取2点对比,在线检测原油含水率较化验值分别低24.3个百分点和24.9个百分点。

三、适用性分析。

根据现场实际使用情况和检测结果,原油含水在线监测仪具有运行稳定、精度较高等优点,但和其它同类产品一样,同时也存在着结构性和系统性缺陷。且在不同工况下测量精度会随之发生变化。

1、在检测原油含水率相对稳定,在线监测仪不间歇连续运行的情况下,监测仪运行稳定,且精度最高,所以在线监测仪比较适合用于采油站外输、联合站进油含水检测。但由于锦州油田普遍进入稠油高含水期,含水率超过90%。而在含水率超过90%的情况下,1.12个百分点的含水误差,将导致最少10%的原油产量误差。所以原油含水在线监测仪所测值只能作为参考,仍不能用于采油站或区块原油产量的精准计量。

2、检测原油含水率变化较大的情况下,监测仪稳定性下降,精度降低。但由于落地油或油井捞油含水一般在60%左右,3.71个百分点的含水误差所导致的原油产量误差,不到10%;再加上原油含水率变化较大时,人工间歇取样化验所取得的含水率,更具有随机性和不确定性。所以,在线监测仪更适合在原油卸油台等处与流量计配合使用,用于粗略计算原油产量。

3、间歇时间较长或长期停用后恢复运行,监测仪会发生零点漂移,导致误差增大,检测结果不可用。由于探测器直接与检测介质接触,在原油停输管道卸压后,探测器(发射器)极容易附着稠油及其中所含的杂质,若停输时间较长,则发射器可能被原油及杂质顽固附着甚至包裹,不进行清洗处理便投入运行,精度将明显降低。此外,介质中含砂、含气或其它杂质时,也会导致原油含水在线监测仪精度降低。

4、虽然各种原油含水在线监测仪在油田已经普遍使用,但至今没有制定出对此类产品规范有效的检定标准和检定方法。

四、结论

1、原油含水在线监测仪安装方便、可以在线连续监测,原油含水在线监测仪与流量计配合使用,可以随时反映出井、站产量变化情况,为采油生产措施的制定和决策实施提供了科学可靠的依据。

2、由于在线监测仪的结构性和系统性缺陷,以及至今没有制定出相应的检定规范或标准,目前其所测含水值只能作为参考,仍不能用于精准计量油田原油产量。

作者简介

在线监测仪范文第5篇

关键词:避雷器;在线监测仪;应用

中图分类号:TU895 文献标识码:A 文章编号:

1、引言

2010年2月23日,操作队在对所辖一座66KV变电站正常巡视时,发现66kV母线A相金属氧化锌避雷器在线监测仪指针指示在最大量程0.9mA偏右处,已经到头了。B相指示为0.75,C相指示为0.8,经过对比,三相较前几次巡视时数值均有较大幅度的增长。当时天气有雾,经过仔细观察,未听见放电异音,避雷器本体及附件未见放电痕迹,红外检测未发现温度分布异常。接到这个报告时,我们一时不知该怎么办。该变电站为单母线运行,如果停电处理不仅影响本地居民、企业的正常用电,而且该站还担负着朝鲜绸缎岛、新西里岛的供电任务,一旦停电将会造成严重的国际影响。

2、原因分析

为了弄清楚运行中的设备允许的泄漏电流标准到底是多少,我们查了大量的标准、规程,查到的相关规定如下:

《110(66)kV~750kV避雷器技术标准》

第6.1.2.2条在持续运行电压下通过避雷器的持续电流应不超过规定值,该值由制造厂规定和提供,所提供值应包括全电流和阻性电流基波分量的峰值。

交接试验时,在系统运行电压下测量持续电流即运行电压下的交流泄漏电流应不大于出厂试验值的30%。

第6.1.3.3条 漏电流也称为泄漏电流。无间隙金属氧化锌避雷器在0.75倍直流1mA参考电压下的漏电流不应大于50μA。”

《110(66)kV~750kV避雷器技术监督规定》和 《电力设备预防性试验规程》(DL/T596―1996)

项目名称 监督手段 要求

金属氧化物避雷器直流1mA电压(U1mA)及0.75 U1mA下的泄漏电流

定期试验 U1mA不得低于GB11032规定值,与初始值和制造厂规定值相比,变化应不大于±5%;0.75 U1mA下的泄漏电流应不大于50μA

金属氧化物避雷器运行电压下的交流泄漏电流

定期试验 测量运行电压下的全电流、阻性电流或功率损耗,测量值与初始值比较,有明显变化时应加强监测。当阻性电流增加0.5倍时应缩短试验周期并加强监测;增加1倍时,应停电检查

通过上面的规定我们得知对于运行中的避雷器泄漏电流的大小并没有明确规定,只是对出厂试验、交接试验和日常监督试验值做了规定,也就是说避雷器泄漏电流是否合格,能否正常运行是通过试验、数据比较来判断的。

三、处理经过

由于2009年未进行预防性试验,所以我们决定结合此次异常由试验所提前对该组避雷器进行2010年度的例行试验,2月24日下午试验所进行带电测试数据如下:

将上面的数据与2008年的数据对比我们发现,全电流分别比08年增加A相28%、B相29.7%、C相7.5 %,阻性电流分别比08年增加A相355%、B相506%、C相116%,其中本次试验成绩中阻性电流占全电流的比例分别为A相47%、B相55%、C相19%。通过上面的数据比较,我们发现避雷器存在严重的问题,需要停电做全面的试验、检查。

为了尽可能保证供电可靠性,我们一边进行计划停电检修的准备,一边联系避雷器、在线监测器生产厂家帮助进行原因分析。

避雷器巡视记录

通过对连续几天的巡视记录分析,我们发现:

(一)、避雷器在线监测仪指示随着天气的好转,各相数值呈下降趋势,这为我们执行计划作业创造了条件;

(二)、试验表明A、B相泄漏电流较大,C相泄漏电流相对较小,但从巡视记录看,在线监测仪B相指示始终小于其他两相。难道是在线监测器有问题吗?我们查看了历年的试验报告,结果表明均合格,我们又询问了厂家,技术人员告诉我们在线监测仪可能存在一定的误差,但应与实际泄漏电流大小成正比,不应该出现这么大的误差。为了进一步了解、核实情况,我们于27日上午到达前阳变电站进行现场分析。到达现场后我们首先对避雷器在线监测仪进行了查看,发现B相型号与A、C相型号不同,B相型号为JSH―4型,A、C相型号为JSH―3型。不同的区别在于前者分别对避雷器瓷套外污秽度和瓷套内泄漏电流分别进行测试,后者无法区分,只能测试总体的泄漏电流。在现场我们发现B相显示的瓷套外污秽度为15μS,处于注意状态。(监测器刻度显示:0~7.5μS为正常状态,7.5~17.0μS为注意状态,17.0~37.5μS为异常状态,37.5μS以上为严重状态)。我们又对避雷器本体进行了目测,发现表面经过雨水的洗刷后非常的脏污,查阅检修记录簿该避雷器自2007年以来一直未清扫,而且该变电站地处海岸线附近,所处地区污秽等级为D级。

有了新发现后我们决定暂不提报停电计划,先对避雷器本体进行水冲洗,然后再进行带电测试,待试验结果出来后再决定下一步的处理方案。3月1日连续多日的雨水结束,天气达到带电作业的要求。水冲洗后的带电试验数据如下:

避雷器水冲洗后的在线监测器显示的数值分别为:A相0.55mA、B相0.36mA、C相0.49mA,说明在线监测仪也是比较准确的。至此,前阳66kV变电站66kV母线避雷器泄漏电流异常处理完毕,恢复正常,可以继续运行。

四、结论

在线监测仪范文第6篇

检测水质仪表与检测生产物理参数仪表为污水处理厂在线监测仪表的两大类型,其中检测水质仪表包括氨氮、浊度、COD和PH等,而检测生产物理参数仪表则包括温度、流量、压力和液位等。笔者现针对检测水质仪表展开研究,并对其配置进行全面分析。

1.1氨氮监测仪表

氨氮监测仪表主要在进出口氨氮值测量中得到广泛应用,而实际运用氨氮监测仪表时,要求进出口仪表间必须分别配置一台由美国哈希(HACH)公司生产的AmtaxTMCompact氨氮在线分析仪,通过分光光度计测量法来确保测量数据的准确性、真实性和有效性,为今后仪表的养护和维修工作提供有利条件。

1.2浊度监测仪表

浊度监测仪表主要在CAST池污水浑浊度的测量中得到有效应用。运用由美国哈希(HACH)公司生产的SOLITAXsc浊度或污泥浓度或悬浮物分析仪对CAST池污水浑浊度进行检测,可以取得准确度高和精密度高的测量数值,有利于出水质量的充分了解和掌握,为今后仪表的养护和维修工作提供强有力参考依据。

1.3COD监测仪表

COD监测仪表主要在进出口COD值测量中得到普及使用,而COD监测仪表在实际运用过程中,要求进出口仪表间一定要分别配置一台由美国哈希(HACH)公司生产的COD在线监测仪表,通过重铬酸钾测量法,有效降低测量数据存在的偏差率,提高其准确性、真实性和有效性。但该仪表在使用过程中也存在着许多不足之处,例如无法立即修复、药剂费用多、配件到货时间长和维修配件贵等,这不仅会增加污水维修厂的投资金额,还会降低污水处理厂的投资效益。

1.4pH监测仪表

pH监测仪表主要在污水酸碱值测量中得到普遍运用。一般情况下,污水处理厂大多会将pH监测仪表应用于进水出水和各工艺环节中,通过电极法实现测量数据准确性的提高,以此为污水处理厂的日常生产活动提供强有力参考依据。

2、在线监测仪表在污水处理厂中的应用

为了使处理模式能够安全稳定运行,降低故障发生率,污水处理厂通常会采取有效性措施,让操作人员可以充分了解和掌握部分核心参数,并根据这些参数数值对厂内设备和工艺进行适当调整,这样有利于出水质量差的综合处理。由于在线检测水质改变的结果与在线检测参数的结果相互协调一致,所以污水处理厂只是针对这一情况提供相应的数据信息,以确保整个运行状态的安全性与稳定性。按照有关规定的要求,合理控制和运行污水处理厂的处理模式,如果水质发生改变,那么实验就无法立即做采样分析工作,直到水质参数检测结果出来前,水质才会发生新的变化,因而运行变化和水质改变不得相互协调一致,只有这样才能确保测量结果与出水水质要求相符。污水处理厂应用在线监测仪表对污水进行实时检测,可以有效完成各项前馈控制工作,这主要是因为在线监测仪表的实际测量时间能够维持在半个小时左右,如果污水处理厂在实际运行过程中出现异常状况,那么该仪表的相应系统就会立即向污水处理厂的核心控制体系发出警报,而操作人员则会根据检查结果对参数数据进行适当调整,这样除了可以保证总体出水质量外,还可以防止能耗与费用出现不必要的浪费情况。除此之外,在线监测仪表的应用还可以大量削减污水处理厂的管理人员和监测分析人员,利用裁员方式提高经济效益和社会效益,降低有关单位的废水处理投资金额。

3、结语

总而言之,我国必须对污水排放硬性指标进行严格要求,并高度重视在线监测仪表在污水处理厂中的使用情况,只有这样才能在线监测仪表的实际效用充分发挥出来,促使该厂的经济效益和社会效益达到最大化。但由于受到成本、维修、养护和安全运行等多种因素的影响,使得在线监测仪表无法满足现代化污水处理厂提出的各项需求。为此,各污水处理厂必须全方位优化在线监测仪表的性能,以提高经济效益和社会效益,推动污水处理厂不断向前发展。

在线监测仪范文第7篇

Abstract: Through analyzing the mercury in flue gas online monitoring technology of cold vapor atomic absorption spectrometry, the article designs mercury in flue gas online monitoring instruments based on cold vapor atomic absorption spectrometry, including sampling units, test unit, control unit, and display unit. The instrument test data on the drift of zero point, span drift is ideal, realizing the real-time, secure, and stable monitoring of mercury in flue gas.

关键词: 冷原子吸收光谱法;在线监测;监测技术

Key words: cold vapor atomic absorption spectrometry;online monitoring;monitoring technology

中图分类号:X82 文献标识码:A 文章编号:1006-4311(2012)35-0032-02

0 引言

伴随着工业的发展,汞的用途越来越广,生产量急剧增加,从而使大量的汞随着人类活动而进入环境。主要包括:施用含汞农药和含汞污泥肥料;汞矿的开采、冶炼;含汞废水灌溉;城市垃圾、废物焚烧等等。人类活动造成水体汞污染,主要来自氯碱、塑料、电池、电子等工业排放的废水。而排向大气和土壤的也将随着水循环回归入水体。据第一财经日报综合报道,专家介绍,汞被联合国环境规划署列为全球性污染物,是除了温室气体外唯一一种对全球范围产生影响的化学物质。

1 烟气中汞在线监测仪器原理

烟气做采样泵的作用下经过气路切换单元(除湿、除尘和除硫),通过隔膜泵将汞蒸气输送到检测池中,汞蒸气在254nm下有强烈吸收,汞蒸气的浓度与吸收强度成正比,原理是朗伯-比尔定律

I=I0e-KCL

式中:I为吸收后的光强度;I0是物质浓度为零(即不存在吸收物质)时的光强度;C为物质浓度;L为比色皿(采样槽)的长度;K为吸收常数。对于一个特定的采样槽,其长度L不变;对于特定的测量波长以及特定的被测物,吸收常数K基本不变,因此通过测量吸收前后的可见光的强度,便可以测量出烟气中汞的浓度。

2 烟气中汞在线监测仪器设计

2.1 仪器结构框图 仪器结构框图如图1所示。

图1所示,监测仪器由三个单元组成,分别为气路切换单元、检测单元和显示单元,气路切换单元主要完成烟气和零气的切换处理,并针对不同的通道进行不同的预处理,其中烟气通道进行除尘和超滤处理,以减少对汞检测的影响。检测单元由光源、检测池和光电探测器组成,主要完成汞蒸气的吸收光信号检测,显示单元由数据计算、数据显示和数据输出组成,主要完成对检测到信号进行处理,经过运算得到吸光度,然后代入内置工作曲线进行计算得到汞浓度,最后将浓度结果通过RS485或4-20mA输出。

2.2 气路切换单元设计

2.2.1 切换器 切换器由三通切换阀和驱动器组成,当进行正常测试时,切换器切换到烟气通道,烟气经由除尘器和超滤器进入检测单元,当仪器需要进行零点校准时,切换器切换到零气通道,零气经由零气通道直接进入检测单元。切换阀采用低压24V控制模式,当三通电磁阀有电时,切换阀打开,失电时,切换阀关闭;当控制电源故障失电时,切换阀关闭。驱动器用于驱动三通电磁阀,能通过接收TTL控制信号是否产生24V电压。

2.2.2 除尘器 除尘器采用不锈钢材料制成的圆柱形多孔滤芯,烟气通过入口进入滤芯,烟气中的灰尘在滤芯上被拦截下来,烟气得到净化,当滤芯被附着的灰尘累积到一定程度后,启动反清洗装置,高压空气通过反清洗入口对滤芯进行高压反清洗,附着在滤芯表面的灰尘被脱落,达到滤芯自动清洁的目的。

2.2.3 超滤器 采用欧洲优质过滤材料和不锈钢骨架,具有过滤效率高、耐腐蚀、强度高、气流阻力低、使用寿命长等特点。滤芯最外层采用抗油、耐酸类化学腐蚀的疏水性泡沫套筒,防止了聚结液体重新进入气流,确保了高效率除有机干扰物,以减少有机物对汞检测造成的影响。

2.3 检测单元设计

2.3.1 光源 监测仪采用低压汞灯作为光源,汞灯是指汞蒸气压力为1.3~13Pa(0.01~0.1mmHg),主要发射波长在紫外区的253.7nm(0.01mmHg),相当能量为471.0kJ/mol(112.5kcal/mol),占灯的总能量的70%的汞蒸气弧光灯。25℃时,该灯的主射线为253.7和184.9nm。低压汞灯光强低,光固化速度慢,但发热量小,不需冷却就可使用。由于汞灯发出的光时发散的,使用的时候需要使用透镜将光聚焦,提高汞灯穿过检测池的能量。

2.3.2 检测池 在光谱吸收式气体检测系统中,气室的有效吸收光程是决定系统检测灵敏度的关键参数之一,本仪器采用怀特型气室的方法进行设计。本长光程气室内壁以及气室反射镜片均要求较高的反射率,以避免多次反射后造成的光强损失,气室内壁及反射镜片采用高反射率的金作为镀层,使光强反射率达到95%以上。气室的入射及出射窗口要求对于目标波长的光具有较高的透射率,根据波长的不同窗口使用的材料也会有所不同,光透射率达到92%以上。光路长度与测量精度有关,对于低浓度气体测量,光路达到8米以上。气室具有较强的耐腐蚀性,对于腐蚀性气体(如HCL、HF等)具有良好的耐腐蚀性,尤其是样气的出入口部分,镀层起到足够的保护作用。

2.3.3 光电探测器 光电探测器的工作原理是基于光电效应,热探测器基于材料吸收了光辐射能量后温度升高,从而改变了它的电学性能,它区别于光子探测器的最大特点是对光辐射的波长无选择性。在光电探测器的前端设置了253.7nm的滤光片,可以将其他波长的光拦截。

2.3.4 信号放大与AD转化 这部分主要是将光电探测器探测到的光信号进行放大,使其达到AD转化前的信号强度要求,AD转化电路完成信号的数字化。

2.3.5 数据采集处理 数据采集处理部分主要是完成光电探测器后端的信号进行采集并处理,使其采集到的信号更加有代表性。数据处理采用算术平均滤波法,提高其有用信号的比重,消除变化信号中的尖脉冲干扰值。

2.3.6 检测单元系统结构 检测单元系统结构如图2所示。光源由低压汞灯构成,在检测池的光路入口和出口分别设置了聚焦透镜,光源发出的光透过聚焦透镜进入检测池,穿过聚焦透镜,进入光电探测器。

2.4 显示单元

2.4.1 显示单元结构 显示单元以嵌入式低功耗CPU为核心(ARM CPU,主频400MHz)的高性能嵌入式一体化触摸屏工控机,设计采用了7英寸高亮度TFT液晶显示屏(分辨率800×480),四线电阻式触摸屏(分辨率1024×1024),内置128M FLASH,24VDC供电,采用wince6.0操作系统,工控机的系统结构图见图3。

2.4.2 数值运算 仪器具有校准功能,能根据不同浓度的汞标气记录吸光强度值,然后采用乘二法进行线性拟合,得到线性方程,并将线性方程系数保存在仪器存储器中,然后将数据显示在显示屏上,并将数据保存到工控机内部存储器中。仪器设置了4-20mA模拟输出和RS485数字输出功能,可以提供外部仪器或数采仪进行数据采集。

3 性能测试

为了研究研制的在线监测技术定量分析过程中存在的系统误差和偶然误差,本文设计了专门的零点漂移、量程漂移和跨度漂移实验,本仪器的测量量程为0-100μg/m3。零点漂移是让监测仪每隔1h测试零气,连续监测24h,计算相对于监测仪的最小读数,仪器指示值在一定时间内的变化;量程漂移是让监测仪每隔2h测试80μg/m3汞标气,连续监测24h,计算相对于自动分析仪的测定量程,仪器指示值在一定范围内的变化大小;跨度漂移是让监测仪每隔1天测试50μg/m3汞标气,连续监测1周,计算相对于自动分析仪的测定量程,仪器指示值在一定范围内的变化大小。

表1是性能测试结果,可以看到,零点漂移值为1.37%,量程漂移值为0.067%,跨度漂移值为0.05%,性能指标比较理想。

4 结论

通过设计气路切换单元、检测单元和显示单元,成功研制了烟气汞在线监测仪器,能应用于烟气中汞的在线实时监测,具有实时、快速、安全和可靠等特点,具备了良好的市场推广前景。

参考文献:

[1]李冬梅.燃煤锅炉烟气汞污染控制技术浅析[J].环境保护与循环经济,2011.

[2]方培基.烟气汞排放连续监测系统技术探讨[J].节能、减排、安全、环保——第四届中国在线分析仪器应用及发展国际论坛暨展览会论文集,2011.

在线监测仪范文第8篇

关键词 后散射;烟尘浓度;在线监测

中图分类号:O439 文献标识码:A 文章编号:1671-7597(2013)12-0016-02

目前国内外采用光学法测量粉尘浓度的传感器主要有光透射法和散射法两种,光透射法有一定局限性首先是安装要求比较高安装在工业烟囱上的时候发射端和接收端开孔必须足够同轴,否则接收端接收到的光强会受到影响,烟囱震动等外界干扰严重影响测量精度,其次是只适合与高浓度的粉尘环境检测,低浓度时检测精度低,不能满足当前形势发展和要求,逐渐被散热法所替代。传统散射法粉尘浓度传感器体积较大,光路设计复杂,生产过程复杂,成本比较高,可维护性比较差。由于粉尘浓度传感器工作环境复杂,传统传感器难以有效克服作业现场镜片污染问题。

1-光接收器; 9-仪器壳体

2-激光器驱动电路板; 10-滤光片

3-激光器

4-聚焦镜片;

5-大密封平面镜;

6-小密封平面镜; L1-仪器内部测量区域;

7-干净隔离气源入口; L-测量环境种的测量区域;

D-所测量环境区域直径; T-测量环境安装法兰长度。

1 后散射烟尘浓度监测仪系统研究

监测仪主要由激光器3发出光源沿着一定角度θ射入测量区域L,在这个区域内由粉尘颗粒散射回的光信号进入,θ角度可根据现场工况来调节激光器驱动电路板驱动板2来适应各种复杂工况。气体保护单元13是为了防止粉尘颗粒污染光学镜片,具体实施方式是从干净隔离气源入口7通入压缩空气会在气体保护单元13形成干净的气体隔离膜来阻挡粉尘的污染。

2 后散射烟尘浓度监测仪电路

监测仪采用半导体二极管激光器作为光源,激光器波长为650 nm,通过微处理器采用PID算法将光源恒光强输出,为了防止杂光干扰并将光信号调制,经过光学聚焦并平行后转成平行光提高了能量,将光以一定倾斜角θ射入被测烟道区,经烟尘散射回的光经过聚焦镜片4聚焦到接收器转换成电信号再加一窄带滤光片10可以有效防止其他杂光干扰,再由微处理器将信号解调放大滤波处理后转换成电压信号,通过得到的电压信号、预存的电压信号与粉尘浓度的比例关系,计算出粉尘浓度,计算公式推导如下。

激光源输出功率为Po,经挡尘窗口镜片衰减K1后照射烟尘,如果烟尘的等效散射系数为K2(与烟尘的组织结构、浓度相关),烟尘反射的功率为Po×K1×K2×D,穿过窗口镜片G后的功率为Po×K1×K2×D×K1,经4-凸透镜透镜聚焦后的功率Pr为Po×K1×K2×D×K1×K3。

Po:探测激光源输出功率,与激励电压Vt成正比(系数k);

C:烟道烟尘浓度;

K1:挡尘片衰减,受积尘影响;

K2:烟尘反射系数,与烟尘组成的结构颗粒有关;

K3:透镜会聚增益,是常数;

接收到的信号电压:Pr= Po×K1×K2×D×K1×K3。

若Po、K1、K3恒定,Pr与K2×D成正比,监测仪安装后,通过标定可以得到Pr与D的对应关系,即可计算出烟尘浓度值C:

C=A/K2×Pr。(假定A=1/(Po×K1×K1×K3)

3 后散射烟尘在线烟尘仪数据比对

图4和图5是在热电厂实际工况比对结果,电厂粉尘排放限值120 mg/m3,采用静电除尘器,通过调节电除尘器电场电压改变电场强度,可以调节烟尘排放工况,烟囱直径2 m,参照国标采用手工采样方法进行比对数据结果如下。

4 结论

激光粉尘浓度智能传感器采用激光后向散射方法,通过粉尘对光散射强度快速准确有效反映出粉尘浓度大小。即利用激光发射单元按照一定角度射入被测区域,由于粉尘散射并经过聚焦镜片4聚焦,通过激光接收单元接收光信号再由处理器转换成激光粉尘浓度值,监测仪设计了气体保护单元有效防止粉尘及各种污染气体污染镜片减少了仪器故障率提高了仪器稳定可靠性。结构设计简单紧凑,体积小方便安装维护,解决了安装现场各种复杂条件限制的问题。

基金项目

国家863支撑项目(2012BAB19B04)

参考文献

[1]李霖峰,尹王保,王金来,吉选忙.光后向散射式烟尘在线测量样机的研制[J].光学仪器,2008,30(2):82-84.

[2]贾文超,李娟娟,刘增俊,程全喜.一种基于单片机的半导体激光器电源控制系统的设计[J].现代电子技术,2008,31(5):190-191.

[3]国家环境保护行业标准:HJ/T 76-2007.固定污染源排放烟气连续监测系统技术要求及检测方法.

[4]朱震等.光散射粒度测量中M此理论的高精度算法[J].光电子.激光,1999,10(2):135-138.

[5]邢键,孙晓刚,原桂彬,齐旭,唐红.非球形烟尘粒子后向散射场的光谱分析 光谱学与光谱分析,2010,30(8):2239-2242.

在线监测仪范文第9篇

关键词:无汞电极、差分脉冲、阳极溶出

Abstract: Water-line automatic monitor of heavy metals using mercury electrodes, not only to avoid contact with mercury mercury-film electrode to be regularly replaced the shortcomings, but also reduce environmental pollution, high-precision differential pulse anodic stripping voltammetry (DPASV), can effectively remove dissolved residual current of oxygen and other background currents, the lower limit of detection, the sensitivity increased.Key words: Mercury electrode; Differential pulse; Anodic stripping

1 引言

水环境是人类生存环境的一个重要子系统,人类生产和生活都时刻离不开水。重金属污染是危害最大的水污染问题之一,重金属具有毒性大、在环境中不易被代谢、易被生物富集并有生物放大效应等特点,严重威胁人类和水生生物的生存。为了加大对水污染的监控力度,国家环保总局规定重点水质污染源必须配备各类水质在线自动监测仪,水质重金属在线自动监测仪的市场需求巨大。

根据国家环保总局规定的水质重金属检测标准,目前国内水质重金属在线自动监测仪主要采用的阳极溶出伏安法具有仪器简单、检测下限低、灵敏度高等优点。但是,常规阳极溶出伏安法由于背景电流的影响,检测下限和灵敏度受到限制。差分脉冲溶出伏安法能够消除背景电流的影响,使检测限下降、灵敏度大为提高。目前,国内尚没有厂家生产基于差分脉冲溶出伏安法的水质重金属在线自动监测仪,主要依赖进口,不仅价格昂贵,运行费用高,维修配件也缺乏。

2工作原理

阳极溶出伏安法水质重金属在线自动监测仪主要由试剂输送系统、电化学检测系统和自动控制与数据处理系统组成见下图:

2.1试剂输送系统

能够自动完成被测水样、蒸馏水、缓冲液及标准溶液的定量输送和电解池的清洗。由计量泵、电磁阀及输送管路构成,根据微控制器的控制指令,能够自动完成试剂(被测水样、蒸馏水、缓冲液及标准溶液)的定量输送和电解池的清洗。

2.2电化学检测系统

电化学检测系统由电解池和恒电位计构成,电解池是对重金属离子电解富集和阳极溶出的装置,采用三电极系统:工作电极(WE)、辅助电极(CE)和参比电极(RE)。根据微控制器根据设置的D/A值扫描电压输出到恒电位仪上,控制工作电极的电位,同时记录A/D测得的流过工作电极的电流,实现电化学溶出伏安测量。

电化学溶出伏安测量分为三步:富集、静息和溶出:首先是在一定电位下将被测金属离子通过阴极电解还原沉积在工作电极上:

Mn+ + ne M

经过静息一定时间,使被富集的物质在工作电极上分布均匀,以提高分析结果的再现性。

然后,工作电极向正电位方向扫描, 使已沉积的金属电解溶出:

M Mn+ + ne

电解沉积过程相当于一个浓缩富集过程,被测离子从较大体积的溶液中被沉积到小体积的电极上,使其浓度有很大的提高,因而在溶出过程中能产生较大的电流。所以溶出伏安法具有较高的灵敏度,最低检测限可达10-12gL-1。

记录溶出过程中的电流-电位曲线称为溶出伏安曲线, 曲线中的峰电位与被测离子的性质有关,峰电流ip的大小与电解沉积的金属离子浓度、溶液粘度、金属离子扩散系数、电解富集时间、电极形状和面积、电位扫描速率、搅拌速率及温度有关。在其它条件一定的前提下,峰电流ip与溶液中被测离子的浓度cM成正比:

ip=K.cM

差分脉冲阳极溶出伏安法(DPASV)是在溶出过程中,在缓慢线性变化的直流扫描电压上,叠加小振幅的矩形脉冲电位,如图所示:

对于差分脉冲阳极溶出伏安法(DPASV ),当直流电压扫描达到离子的氧化电位之后,由于电极反应己经产生,所加的脉冲电压就使电极产生脉冲氧化电流,由于这一电流是离子氧化产生的,属于法拉第电流iF,法拉第电流随时间下降的速度很慢,是以t-1/2关系下降的。在施加脉冲电压的时候,同时对电极下的双电层也有充电作用,因而产生脉冲电容电流iC,电容电流是以e-t/RC关系下降的。t为施加脉冲的时间延迟,RC为溶液电阻与双电层电容的乘积即时间常数,电容电流比法拉第电流的下降速度快很多,因此经过一定的时间延迟,电容电流几乎衰减为零,而法拉第电流仍然很大。这时采样的电流是己经除去了电容电流的法拉第电流,由此信噪比可提高100倍左右,使检测限降低,灵敏度提高。

2.3自动控制与数据处理系统

该系统通过微控制器设定好的控制指令,采用多线程步控,控制计量泵、电磁阀及恒电位计,自动实现被测溶液进入电解池、加缓冲溶液、加标准溶液前测量(富集、静息和溶出)、加入标准溶液、加标准溶液后测量(富集、静息和溶出)、测量结束后排出样液、进超纯水清洗电极、管路和电解池等。

根据微控制器设置的D/A值,扫描电压输出到恒电位仪上,同时记录A/D测得的流过工作电极的电流。由微控制器对上传的数据采用最小二乘法和FIR滤波技术进行数据预处理,画出相应的溶出峰电流曲线,系统对数据曲线进行一次微分,计算加入标准溶液前后的峰电流值,标准加入法可以有效地克服基体效应。先测得试液体积为Vx的被测离子的峰电流h,再在伏安池中加入浓度为Cs、体积为Vs的被测离子的标准溶液,在同样实验条件下测得峰电流H,则由:

H=KCx

H=K,(Cx+ΔC)

由于加入标准溶液的量很少,不影响试液基本组成,K=K,。设加入的标准溶液相对原被测溶液的体积很小(Vs

ΔC=Cs.Vs/Vx

从而可计算得出被测溶液的浓度为:

Cx=Cs.Vs.h/(H-h))Vx

微控制器依据上述公式计算,并将结果显示或通过互联网传输给政府部门。

3 关键技术

3.1高性能长寿命无汞工作电极的设计与制作

重金属离子的阴极电解富集和阳极溶出都是在工作电极上完成的,工作电极的电化学性能及使用寿命至关重要。

3.2 阳极溶出伏安测量工艺条件的优化

由于电解液酸度及离子强度、电解富集电位及时间、电位扫描及速率、温度控制等,对电化学溶出伏安测量的准确性及精度影响很大,采用正交化试验设计,优化阳极溶出伏安法测量重金属的工艺条件。

3.3 恒电位计的设计与制作

恒电位计是控制工作电极电位及测量工作电极电流的重要器件,其性能直接决定了电位控制的准确性、稳定性和精度,也必将影响溶出伏安测量的准确性及精度。尤其是本项目采用差分脉冲阳极溶出伏安测量技术,对恒电位计的性能要求更高。本项目将参照高性能电化学工作站恒电位控制线路的原理,结合计算机仿真模拟技术进行优化,设计出高性能恒电位计电子线路,并据此制作恒电位计。

3.4 自动控制与数据处理程序

差分脉冲电位扫描的控制及电流信号采集的同步性的研发,在分析高性能电化学工作站差分脉冲电位扫描测量的原理的基础上,结合计算机仿真模拟技术进行优化,设计出符合测量要求的自动控制与数据处理程序。

4 结语

本项目研制开发的差分脉冲阳极溶出伏安法水质重金属在线自动监测仪具有极低检测限,测量范围广、准确度及灵敏度高、选择性好、抗干扰能力强、消耗低以及可以分析元素不同价态等优势,能够同时检测As,Hg,Pb,Cu,Bi,Tl,Cd,Zn,Se,Mn,Fe,Ni,Cr,Au,Ag等金属元素,可广泛应用于水质、环保、电镀,冶炼等领域。由于使用无汞电极和无毒性的试剂,所用试剂非常便宜且试剂消耗非常少,分析废液可以直接排放,对环境无污染。在水质重金属在线自动监测仪领域具有技术和性能优势,经济效益和社会效益明显。

在线监测仪范文第10篇

Abstract: Through research on heavy metal monitoring technology, the paper puts forward electrochemical potential control method, the hardware design platform and software design, and monitoring system based on anodic stripping voltammetry, including single-chip design, software design, and the working electrode design, for online monitoring of heavy metals.

关键词: 电化学;在线监测;工作电极

Key words: electrochemistry;online monitoring;work electrode

中图分类号:TB472 文献标识码:A 文章编号:1006-4311(2013)14-0035-02

1 背景

重金属主要是指汞(水银)、镉、铅、六价铬以及类金属砷等生物毒性显著的重元素,其中,六价铬、汞、砷、铅和镉已经被国家列入重点监测指标,由于重金属不能被生物降解,相反却能在食物链的生物放大作用下,成千百倍地富集,最后进入人体,同时,重金属元素由于某些原因未经处理就被排入河流、湖泊或海洋,或者进入了土壤中,使得这些河流、湖泊、海洋和土壤受到污染,它们不能被生物降解,因此,在线监测重金属污染情况是非常有必要的。

2 设计需求

本研究根据以上国内外厂家性能和环保等角度分析,采用有毒试剂循环回收利用的方法研制新型重金属监测仪器,同时根据国家相关标准,确定重金属监测仪市场需求,请看下表:

3 设计方案

3.1 产品工作原理 溶出伏安法(又称反向极谱法)是从电化学分析中的极谱法发展起来的,分为阳极溶出伏安法与阴极溶出伏安法,但阳极溶出伏安法更为重要。在电解池内放入一个悬汞电极或其他固体电极代替极谱法的滴汞电极作为研究电极,以饱和甘汞电极兼作辅助电极和参比电极。先将研究电极置于待测离子的极限盛有支持电解质和含有浓度很低的金属离子。在不断搅拌溶液下进行电解,此时扩散电流的电位上,一般负于半波电位0.2-0.3V,金属离子在电极上还原成金属并生成汞齐,这一步称为电积,经过一定时间电积富集之后,汞电极中的金属提高到必要浓度,停止搅拌,约20-30秒后把研究电极的电位向正方扫描,这时汞齐中的金属在半波电位附近又重新溶解成为离子进入溶液,这一步称为溶出,在溶出过程中记录的电流—电位曲线上出现溶出峰型,峰高或峰面积与待测离子的浓度成正比,这是定量分析的基础。峰电位与离子的性质有关,这是定性分析的基础。锌、镉、铅、铜等可以在适当的支持电解质溶液中,以汞膜电极作工作电极,以银-氯化银电极作参比电极,加以适当的预电解电位,经过一定时间的预电解富集,还原到汞膜电极上,于汞生成汞齐,然后在较短的时间内作反向溶出扫描,记录其溶出伏安曲线。根据溶出峰电位和峰高,用标准加入法定量地测定每个杂质的含量。

3.2 硬件设计要求 控制原理:仪器配有三电极系统,分别是研究电极(玻碳电极)、辅助电极(铂电极)和参比电极(银-氯化银电极),分析过程分为三个主要步骤,分别是富集、静置和溶出。电路设计结构图如下图所示:

MCU处理器:具有Flash存储器;

D/A恒电位控制:电位控制精度1mV,电位控制范围

±12V,电位能从-12V到12V扫描,扫描速度控制范围1-1000mV/S;

电流采集单元:由于需要检测的电流属于微弱信号,并且不同浓度下的电流大小不一样,所以电流采集时需要选择不同的灵敏度,灵敏度的控制可以通过精密电阻来切换,切换原理图如图2,电流通过电阻后产生电压,根据U=I*R,通过检测电压大小采集电流大小,一般情况下,0-10uA范围电流采用100K电阻,10-100uA范围电流采用10K电阻,0.1-1mA范围电流采用1K电阻,1-10mA范围电流采用100Ω电阻,电阻精度要求0.1%;

A/D转换:根据电流采集精度选用,建议采用16位;

阀体控制:至少能控制30路电磁阀,20路带24V电源,10路不带电源;

试剂报警:6路液位AD输入;

3.3 软件设计

软件功能:

通讯模式:具有232串口数据输出端口,可以通过数采仪上传数据,同时具有四路4-20mA输出端口,能同时输出4路数据;

参数设置:设定测量参数(以Zn、Cd、Pb、Cu联测为例):富集电位(-1.3V)、静置电位(-1.2V)、终止电位(0V)、富集时间(120s)、灵敏度选择(10uA)、是否消解,如果需要设定好消解时间;寻峰范围设置:Zn(-1200—-800mV)、Cd(-800—-600mV)、Pb(-600—-300mV)、Cu(-300—0mV);

3.4 工作电极设计 工作电极与电极线连接采用M3的铜螺纹连接,保证接触良好,玻碳采用日本进口材料,直径为5mm,与检测池的密封采用O型圈密封方式,需要注意O型圈、塑料直径、检测池工作电极孔直径之间的配合间隙,结构示意图如图4。

4 结论

通过软件设计、电路设计和电极设计,成功研制了重金属在线监测仪器,能应用于水质中重金属的在线实时监测,具有准确、快速、安全和可靠等特点,具备了良好的市场推广前景。

参考文献:

[1]高鹏.智能电化学工作站DSP软件的总体设计与研究[J].科学与研究,2007.

[2]朱日龙,胡军,易颖,潘大为,谭杰,潘海婷.阳极溶出伏安法快速测定地表水中镉[J].环境监测管理与技术,2010-08-25.

上一篇:监测监控范文 下一篇:监测指标范文

友情链接