量子化学基础范文

时间:2023-08-15 10:56:53

量子化学基础

量子化学基础范文第1篇

关键词:基础量子化学 教学实践 教学改革

量子化学是高等师范院校化学专业为硕士研究生开设的一门专业基础课程,其任务是使学生利用量子力学的基本原理和方法掌握微观物质运动的基本规律,探索物质的结构及结构与性能关系[1,2]。目前,量子化学理论已愈来愈广泛地应用到化学各个分支学科领域中,并渗透到其他自然学科中,从而使量子化学的教学在整个化学专业教学计划中的重要性日益增加。但它涉及面广,内容比较抽象,且具有极强的理论性,同时要求学生具有较强的空间思维能力,因而量子化学教学不仅对教师提出较高的素质要求,而且对教学方法提出新的课题。下面我结合多年来在量子化学教学改革中的探索和尝试,谈谈教学感受和体会。

三、开展第二课堂,培养学生计算技能

为了让学生把学到的量子化学理论运用到研究中,掌握一些专业软件的计算技巧,教师可利用课余时间开展第二课堂,为学生提供一个学习和实践的平台,给他们创造更多的锻炼机会。例如,搞有机合成的研究生,根据专业需要可以让这些学生学会过渡态的寻找和优化,通过理论计算探索反应机理,能预测最佳反应通道,为他们的研究方向提供理论支持;研究方向是无机配位化学,可以让这些学生学习一些金属配合物的计算方法,学习配合物电子吸收光谱、荧光光谱及磁性的计算,这些计算结果对合成具有特殊性能的配合物都是很有帮助的。在第二课堂中,也可以让基础较好的学生参与到自己的科研活动中,承担一部分力所能及的科研课题,使学生科研能力得到锻炼,激发他们的科研热情,拓宽他们的视野,同时自己通过学生的实践活动,找到自己课堂教学中的不足。第二课堂的开展,不仅把学生所学的理论知识转化成学生认识和解决实际问题的能力,更重要的是教师身上这些品质能够言传身教地影响学生,从而使学生具备创造的兴趣和素质。

四、结语

量子化学的教学改革取得了一定的效果,首先学生克服了量子化学难学的畏难心理,激发了学生学习量子化学的激情,可以在有限的教学时间内达到较好的教学效果;其次,通过开展第二课堂,将量子化学理论与科研实例有机地结合起来,培养了学生分析问题、解决问题及科研创新的能力。

参考文献:

[1]徐光宪,黎乐民.量子化学.科学出版社,1999.

量子化学基础范文第2篇

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二)在金属及合金材料方面的应用

过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717

[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262

[10]SatoruK,MikioW,ShinighiK.ElectrochimicaActa1998,43(21-22):3127

[11]麻明友,何则强,熊利芝等.量子化学原理在锂离子电池研究中的应用.吉首大学学报,2006,27(3):97.

论文关键词:量子化学材料能源生物大分子

量子化学基础范文第3篇

论文摘要:将量子化学原理及方法引入材料 科学 、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和 规律 ,这将对材料科学、能源以及生物大分子体系的 发展 有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和 计算 方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和 电子 尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、 在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1 ,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含ca 钙矾石、含ba 钙矾石和含sr 钙矾石的al -o键级基本一致,而含sr 钙矾石、含ba 钙矾石中的sr,ba 原子键级与sr-o,ba -o共价键级都分别大于含ca 钙矾石中的ca 原子键级和ca -o共价键级,由此认为,含sr 、ba 硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二) 在金属及合金材料方面的应用

过渡金属(fe 、co、ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在lnf3中ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,nbo2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的nbo2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温nbo2及其等电子化合物vo2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子, 如低级芳香烃作为碳/ 碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由guassian 98 程序中的半经验方法uam1 、在uhf/ 3-21g*水平的从头计算方法和考虑了电子相关效应的密度泛函ub3l yp/ 3-21g*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域 发展 。

锂离子电池又称摇椅型电池,电池的工作过程实际上是li + 离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。ago 等[8] 用半经验分子轨道法以c32 h14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。ago 等[9 ] 用abinitio 分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种li - c 和具有共价性的li - li 的混合物。satoru 等[10] 用分子轨道 计算 法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、 在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、 电子 水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘, 进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考 文献 :

[1]程新. [ 学位 论文 ] .武汉:武汉 工业 大学材料 科学 与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17 (4) :12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠, 江元生等.化学学报,1990,48(10): 973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]ago h ,nagata k, yoshizaw a k, et al. bull.chem. soc. jpn.,1997,70:1717

[9]ago h ,kato m,yahara a k. et al. journal of the electrochemical society, 1999, 146(4):1262

[10]satoru k,mikio w,shinighi k. electrochimica acta 1998,43(21 - 22):3127

量子化学基础范文第4篇

论文摘要:将量子化学原理及方法引入材料科学、能源以及生物大分子体系研究领域中无疑将从更高的理论起点来认识微观尺度上的各种参数、性能和规律,这将对材料科学、能源以及生物大分子体系的发展有着重要的意义。

量子化学是将量子力学的原理应用到化学中而产生的一门学科,经过化学家们的努力,量子化学理论和计算方法在近几十年来取得了很大的发展,在定性和定量地阐明许多分子、原子和电子尺度级问题上已经受到足够的重视。目前,量子化学已被广泛应用于化学的各个分支以及生物、医药、材料、环境、能源、军事等领域,取得了丰富的理论成果,并对实际工作起到了很好的指导作用。本文仅对量子化学原理及方法在材料、能源和生物大分子体系研究领域做一简要介绍。

一、在材料科学中的应用

(一)在建筑材料方面的应用

水泥是重要的建筑材料之一。1993年,计算量子化学开始广泛地应用于许多水泥熟料矿物和水化产物体系的研究中,解决了很多实际问题。

钙矾石相是许多水泥品种的主要水化产物相之一,它对水泥石的强度起着关键作用。程新等[1,2]在假设材料的力学强度决定于化学键强度的前提下,研究了几种钙矾石相力学强度的大小差异。计算发现,含Ca钙矾石、含Ba钙矾石和含Sr钙矾石的Al-O键级基本一致,而含Sr钙矾石、含Ba钙矾石中的Sr,Ba原子键级与Sr-O,Ba-O共价键级都分别大于含Ca钙矾石中的Ca原子键级和Ca-O共价键级,由此认为,含Sr、Ba硫铝酸盐的胶凝强度高于硫铝酸钙的胶凝强度[3]。

将量子化学理论与方法引入水泥化学领域,是一门前景广阔的研究课题,它将有助于人们直接将分子的微观结构与宏观性能联系起来,也为水泥材料的设计提供了一条新的途径[3]。

(二)在金属及合金材料方面的应用

过渡金属(Fe、Co、Ni)中氢杂质的超精细场和电子结构,通过量子化学计算表明,含有杂质石原子的磁矩要降低,这与实验结果非常一致。闵新民等[4]通过量子化学方法研究了镧系三氟化物。结果表明,在LnF3中Ln原子轨道参与成键的次序是:d>f>p>s,其结合能计算值与实验值定性趋势一致。此方法还广泛用于金属氧化物固体的电子结构及光谱的计算[5]。再比如说,NbO2是一个在810℃具有相变的物质(由金红石型变成四方体心),其高温相的NbO2的电子结构和光谱也是通过量子化学方法进行的计算和讨论,并通过计算指出它和低温NbO2及其等电子化合物VO2在性质方面存在的差异[6]。

量子化学方法因其精确度高,计算机时少而广泛应用于材料科学中,并取得了许多有意义的结果。随着量子化学方法的不断完善,同时由于电子计算机的飞速发展和普及,量子化学在材料科学中的应用范围将不断得到拓展,将为材料科学的发展提供一条非常有意义的途径[5]。

二、在能源研究中的应用

(一)在煤裂解的反应机理和动力学性质方面的应用

煤是重要的能源之一。近年来随着量子化学理论的发展和量子化学计算方法以及计算技术的进步,量子化学方法对于深入探索煤的结构和反应性之间的关系成为可能。

量子化学计算在研究煤的模型分子裂解反应机理和预测反应方向方面有许多成功的例子,如低级芳香烃作为碳/碳复合材料碳前驱体热解机理方面的研究已经取得了比较明确的研究结果。由化学知识对所研究的低级芳香烃设想可能的自由基裂解路径,由Guassian98程序中的半经验方法UAM1、在UHF/3-21G*水平的从头计算方法和考虑了电子相关效应的密度泛函UB3LYP/3-21G*方法对设计路径的热力学和动力学进行了计算。由理论计算方法所得到的主反应路径、热力学变量和表观活化能等结果与实验数据对比有较好的一致性,对煤热解的量子化学基础的研究有重要意义[7]。

(二)在锂离子电池研究中的应用

锂离子二次电池因为具有电容量大、工作电压高、循环寿命长、安全可靠、无记忆效应、重量轻等优点,被人们称之为“最有前途的化学电源”,被广泛应用于便携式电器等小型设备,并已开始向电动汽车、军用潜水艇、飞机、航空等领域发展。

锂离子电池又称摇椅型电池,电池的工作过程实际上是Li+离子在正负两电极之间来回嵌入和脱嵌的过程。因此,深入锂的嵌入-脱嵌机理对进一步改善锂离子电池的性能至关重要。Ago等[8]用半经验分子轨道法以C32H14作为模型碳结构研究了锂原子在碳层间的插入反应。认为锂最有可能掺杂在碳环中心的上方位置。Ago等[9]用abinitio分子轨道法对掺锂的芳香族碳化合物的研究表明,随着锂含量的增加,锂的离子性减少,预示在较高的掺锂状态下有可能存在一种Li-C和具有共价性的Li-Li的混合物。Satoru等[10]用分子轨道计算法,对低结晶度的炭素材料的掺锂反应进行了研究,研究表明,锂优先插入到石墨层间反应,然后掺杂在石墨层中不同部位里[11]。

随着人们对材料晶体结构的进一步认识和计算机水平的更高发展,相信量子化学原理在锂离子电池中的应用领域会更广泛、更深入、更具指导性。

三、在生物大分子体系研究中的应用

生物大分子体系的量子化学计算一直是一个具有挑战性的研究领域,尤其是生物大分子体系的理论研究具有重要意义。由于量子化学可以在分子、电子水平上对体系进行精细的理论研究,是其它理论研究方法所难以替代的。因此要深入理解有关酶的催化作用、基因的复制与突变、药物与受体之间的识别与结合过程及作用方式等,都很有必要运用量子化学的方法对这些生物大分子体系进行研究。毫无疑问,这种研究可以帮助人们有目的地调控酶的催化作用,甚至可以有目的地修饰酶的结构、设计并合成人工酶;可以揭示遗传与变异的奥秘,进而调控基因的复制与突变,使之造福于人类;可以根据药物与受体的结合过程和作用特点设计高效低毒的新药等等,可见运用量子化学的手段来研究生命现象是十分有意义的。

综上所述,我们可以看出在材料、能源以及生物大分子体系研究中,量子化学发挥了重要的作用。在近十几年来,由于电子计算机的飞速发展和普及,量子化学计算变得更加迅速和方便。可以预言,在不久的将来,量子化学将在更广泛的领域发挥更加重要的作用。

参考文献:

[1]程新.[学位论文].武汉:武汉工业大学材料科学与工程学院,1994

[2]程新,冯修吉.武汉工业大学学报,1995,17(4):12

[3]李北星,程新.建筑材料学报,1999,2(2):147

[4]闵新民,沈尔忠,江元生等.化学学报,1990,48(10):973

[5]程新,陈亚明.山东建材学院学报,1994,8(2):1

[6]闵新民.化学学报,1992,50(5):449

[7]王宝俊,张玉贵,秦育红等.煤炭转化,2003,26(1):1

[8]AgoH,NagataK,YoshizawAK,etal.Bull.Chem.Soc.Jpn.,1997,70:1717

[9]AgoH,KatoM,YaharaAK.etal.JournaloftheElectrochemicalSociety,1999,146(4):1262

[10]SatoruK,MikioW,ShinighiK.ElectrochimicaActa1998,43(21-22):3127

量子化学基础范文第5篇

摘要:本文针对大学化学的学科特点,从四个方面探讨了量子化学计算软件在大学化学教学的应用实例。运用形象直观的量子化学软件,结合多媒体教学手段,将枯燥、深奥、抽象的化学知识和概念以一种形象、生动、直观、立体的形式呈现出来,帮助学生建立形象思维,使学生进入一种喜闻乐见、生动活泼的学习氛围,从而开拓学生思路,激发学生学习兴趣。结果表明,该方法对激发学生学习化学的兴趣具有显著的促进作用,取得了良好的教学效果,同时也丰富了大学化学课程的教学方法。

关键词:量子化学;密度泛函理论;计算化学;Gaussian 09

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)50-0176-04

传统的化学是一门实验科学,它的发展已经经历了几千年的时间。发展至今,化学科学已经成为了包含有机化学、无机化学、物理化学、生物化学、分析化学、实验化学、理论化学、应用化学、精细化学、材料化学等众多子学科的中心学科。在大学化学基础理论的教学中,涉及很多抽象的化学知识和概念,比如原子、分子及晶体结构等,无法通过肉眼进行直接观测,而且微观结构难以用宏观模型进行科学的描述。传统的教学模式很难满足学生学习化学的需求,这就需要引入新型的先进教学方法和手段。上个世纪20年代开始形成了一门新的化学子学科――量子化学。量子化学是用量子力学原理研究原子、分子和晶体的电子层结构、化学键理论、分子间作用力、化学反应理论、各种光谱、波谱和电子能谱的理论,以及无机和有机化合物、生物大分子和各种功能材料的结构和性能关系的科学[1]。理论与计算化学能渗透到化学领域的很多方面,与其他学科交叉,并形成了很多分支学科,例如:物理化学方面,我们可以通过量子化学方法计算分子的热力学性质、动力学性质、光谱性质、固体的化学成键性质等,从而形成了量子电化学、量子反应动力学等子学科;在有机化学方面,可以通过量子化学计算预测异构体的相对稳定性、反应中间体性质、反应机理与谱学性质(NMR,ESR…)等,因而衍生了量子有机化学;在分析化学方面,可以借助于计算化学进行实验光谱的解析等;无机化学方面,可以进行过渡金属化合物的成键性质的解析等,并形成了量子无机化学;在生物化学领域中,也可以通过理论计算研究生物分子活性中心结构、结构环境效应、酶与底物相互作用等,并逐渐产生了量子生物化学。随着计算量子化学方法与计算机科学的发展,本世纪有望在复杂体系的精确量子化学计算研究方面取得较大进展,从而更好地从微观角度去理解和预测宏观化学现象。本文通过四个教学实例,运用形象直观的量子化学软件,结合多媒体教学手段,将枯燥、深奥、抽象的化学知识和概念以一种形象、生动、直观、立体的形式呈现出来,帮助学生建立形象思维,使学生进入一种喜闻乐见、生动活泼的学习氛围,从而开拓学生思路,激发学生学习兴趣。结果表明,该方法对激发学生学习化学的兴趣具有显著的促进作用,取得了良好的教学效果,同时也丰富了大学化学课程的教学方法。

一、常用量子化学软件Gaussian/GaussView简介

Gaussian软件是一个功能强大的量子化学综合软件包,它可以在Windows,Linux,Unix操作系统中运行,是在半经验计算和从头计算中使用最为广泛的计算化学软件之一。该软件可以计算分子的能量和结构、键和反应能量、分子轨道、原子电荷和电势、振动频率、红外和拉曼光谱、核磁性质、极化率和超极化率、热力学性质、反应路径等。该软件的量子化学计算可以对体系的基态或激发态执行,可以预测周期体系的能量,结构和分子道。因此,Gaussian可以作为功能强大的工具,用于研究许多化学领域的课题,例如取代基的影响、化学反应机理、势能曲面和激发能等等,因此我们可以从微观角度去理解和预测很多宏观的化学性质及现象。Gaussian计算软件经常与相应的可视化软件GaussView连用。目前Gaussian软件的最新版本是Gaussian 09[2]。

二、量子化学理论及软件在大学化学教学中的应用实例

1.分子稳定性预测。1,3-丁二烯分子中的碳-碳单键能够自由旋转,因而理论上可以形成顺式和反式异构体。那么两种异构体的热力学稳定性如何?我们可以通过理论计算给出合理的预测。运用密度泛函理论(density functional theory,DFT),在B3LYP/6-31G*水平,我们分别优化了顺式-1,3丁二烯和反式-1,3丁二烯的几何结构,并做了频率分析。频率计算无虚频,说明所得到的顺式-1,3丁二烯和反式-1,3丁二烯均为最小点。图1给出了B3LYP/6-31G*优化得到的顺式-1,3丁二烯和反式-1,3丁二烯的几何结构和相对应的分子的能量。理论计算结果表明,相对于顺式1,3丁二烯的能量,反式1,3-丁二烯的能量大约低3.55 kcal/mol,所以反式1,3丁二烯的热力学稳定性更强,这就解释了为什么实验上没有发现顺式-1,3丁二烯构象的存在。

2.分子的红外吸收光谱和振动模式。将一束不同波长的红外射线照射到物质的分子上,某些特定波长的红外射线被吸收,形成这一分子的红外吸收光谱。每种分子都有由其组成和结构决定的独有的红外吸收光谱,据此可以对分子进行结构分析和鉴定。红外光谱法的工作原理是由于振动能级不同,化学键具有不同的频率。因此,通过理论上的频率计算,就可以相应地得到分子的红外吸收光谱,并可以与实验得到的红外光谱进行比较。以最常见的H2O为例,基于水分子稳定点,通过DFT理论,在B3LYP/6-31G*水平计算了H2O分子的频率,并得到了相应的红外光谱图。如图2所示,在计算的水分子的红外光谱图中,一共有三个吸收峰,理论值与实验值(括号内的数值)是一致的。并且按照波数从小到大,分别对应H2O分子中O-H键的三种振动模式,分别是剪式振动,对称性伸缩振动,非对称的伸缩振动模式。通过理论计算和图形界面的动画演示,有利于加强学生对红外光谱的理解。

3.苯的前线分子轨道。分子轨道理论是结构化学教学的重点和难点内容之一。分子轨道理论是指当原子组合成分子时,原来专属于某个原子的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道。关于分子轨道的概念非常抽象,单纯从理论和数学的角度学生难以理解[3,4]。如果能够结合量子化学软件将分子轨道图形化,有助于学生深入理解该理论。以苯分子的分子轨道计算为例,简单说明量子化学在结构化学教学中的应用。苯分子中有6个碳原子,6个π电子。这6个π电子杂化成6个π型分子轨道,其中三个成键轨道三个反键轨道。图3是通过Gaussian 09软件,在B3LYP/6-31G*水平计算得到苯分子的所有π型轨道,并通过GaussView可视化软件,将这6个π轨道显示出来。从图3中可以看出,这6个π型分子轨道的节面数分别是0,1,2或3。这6个π型轨道共有四个能级,节面为1和2的分子轨道,分别有两个简并能级。

4.溶剂化显色效应的模拟及其机理解释。溶剂分子能引起溶质吸收带的位置,强度,甚至谱线形状的变化[5]。这种现象称为溶剂化显色现象。在从微观结构研究溶剂对噻吩类化合物结构及性能影响方面,理论计算起着越来越重要的作用。图4(a)展示了含时密度泛函(TD-DFT)方法计算得到的齐聚噻吩的吸收光谱图,谱线按Lorentzian线形展开,从气相到强极性的水溶液,聚噻吩的吸收光谱发生了红移现象,与实验现象一致。根据Frank-Condon原理,垂直激发通常伴随着电荷的重新分布,因此激发过程可能会导致溶质偶极矩和能量发生变化。基于此,我们采用完全活性空间自洽场方法(complete active space self-consistent field)CASSCF(12,10)/6-31G*方法分别计算了二噻吩气相与溶液中基态和第一单重激发态的能量。如图4(b)所示,随着溶剂极性的增加,基态和激发态能量均随着溶剂极性增加而降低,但是激发态的能量降低的比基态的能量降低的要多一些,从而从本质上解释了噻吩吸收光谱发生红移的原因[6]。

运用量子化学计算软件Gaussian 09和可视化软件GaussView,结合多媒体技术,将大学化学教学中抽象难懂的化学知识以一种形象、直观、易于理解的形式呈现出来,有利于学生更加深入形象地理解化学知识,还能提高学习效率,对激发学生学习化学的兴趣具有显著的促M作用,取得了良好的教学效果,同时也丰富了大学化学课程教学的方法。

参考文献:

[1]Lewars,E. Computational Chemistry-Introduction to the Theory and Applications of Molecular and Quantum Mechanics,Kluwer Acadamic Publishers:New York,Boston,Dordrecht,London,Moscow,2004:1-5.

[2]Frisch,M. J. et al.,Gaussian 09,Revision A. 02,Gaussian,Inc.,Wallingford,CT,2009.

[3]李延伟,姚金环,杨建文,申玉芬,邹正光.量子化学计算软件在物质结构教学中的应用[J].中国现代教育装备,2012,(5).

[4]刘杨先.量子化学Gaussian软件在“燃烧学”教学中的应用[J].课程教材改革,2012,(19):41-42.

[5]Reichardt. C. Solvents and Solvent Effects in Organic Chemistry,3rd ed.;VCH:Weinheim,2003:285-300.

量子化学基础范文第6篇

【关键词】量子化学 薛定谔方程 非相对论近似 伯恩-奥本海墨近似 轨道近似

【基金项目】海南师范大学第六批校级教学改革研究项目(HSJG201121)资助。

【中图分类号】G64 【文献标识码】A 【文章编号】2095-3089(2014)04-0158-02

无机化学是大学一年级化学专业学生接触最早的一门基础课,其中量子化学部分由于内容较抽象,学生普遍反应非常难理解,有些学生甚至因此失去了学习化学的勇气[1-3]。由于这部分内容关系到学生对于后来原子结构、分子结构、晶体结构和配位化合物等相关知识的理解,所以在教学中历来是重中之重,讲解课时也是安排最多的,但是学生仍然普遍觉得内容晦涩难懂。通过多年的教学经验以及和学生们的沟通了解,我们认为主要是课本在编排时只引用了了结果,而没有介绍相关结果的来龙去脉,这一出发点本是为减轻学生的负担,但反而造成知识链条的中断,学生既不知其然,又不知所以然。因此,我们补充了课本中省略的相关知识点,使学生对于量子化学的处理方法有初步的了解,提高了教学效果。由于这一部分涉及许多数学知识,因此在讲解时应突出研究思路,而不是让学生钻研数理公式。这样就会使学生对于微观粒子的运动方程的由来有初步了解,对于原子结构、分子结构和晶体结构的学习有一定的辅助作用。

1.非相对论近似

薛定谔方程是量子力学的基本方程,其解即为体系的波函数,一旦求得了体系的波函数,原则上体系的所有性质都可以推测出来,这是因为量子力学的理论会告诉我们如何获取这些信息。但是由于薛定谔方程是一个偏微分方程,除少数几种情况外,是难于求解的,所以要求采取一系列合理的理论近似及数学处理方法[4-5]。

在研究体系内有有限个原子核和电子,其运动速度远小于光速,在这里没有粒子的产生和湮灭的现象,即粒子数是守恒的,因而可以忽略相对论效应,而采用非相对论近似,其相应的薛定谔方程为:

但在实际计算中,一般只取一个或几个Slater行列式计算,既能满足要求又不致于使计算过分复杂。

经过上述的处理,才能够求得多电子体系中电子运动的波函数和原子轨道。学生才能更好地理解多电子体系中对于电子运动状态的描述,是在基于上述几个近似后才求得的。

参考文献:

[1]曹锡章, 宋天佑, 王杏乔. 无机化学[M]. 北京: 高等教育出版社,1994.

[2]许善锦. 无机化学[M]. 北京: 人民卫生出版社, 2005.

[3]吴国庆. 无机化学[M]. 北京: 高等教育出版社, 2004.

[4]P. W. Atkins. Molecular Quantum Mechanics. London: Oxford University Press, 1983.

[5]徐光宪, 黎乐民, 王德民.量子化学――基本原理和从头计算法[M]. 北京:科学出版社, 1985.

[6]D.E.Ellis. The Discrete Variational Method and its Applications to Large Molecules and Solidstate Systems. Conselho National de Desenvolvimen to Cientificoe Tecnologico, 1997.

[7]肖慎修, 孙泽民. 量子化学中的离散变分Xα方法及计算程序[M]. 四川:四川大学出版社,1986.

作者简介:

量子化学基础范文第7篇

关键词:基因 基因概念 历史渊源

中图分类号:Q3 文献标识码:A 文章编号:1672-3791(2012)08(b)-0234-03

遗传学是研究生物起源,基因和基因组结构、功能及其演变规律的学科,而基因的研究对促进遗传学发展具有重要意义。自20世纪开始以来,基因的发展经历了理论水平、细胞水平的遗传学阶段和分子水平上的遗传学阶段,在前人大量实验的基础上,人们对基因的认识不断深入,特别是随着人类基因组计划和“DNA元件百科全书”计划(Encyclopedia of DNA Elements, ENCODE)的完成,人们对基因的认识又有了新的变化,并将遗传学中基因的概念和理论应用到了计算机、商业和信息技术等领域。

如今的21世纪,随着学科交叉研究的发展,一些科学研究者开始利用物理化学工具来研究核酸结构,从分子水平上阐述遗传现象背后的化学本质。本文结合大量文献综述了基因的发展历程以及现阶段物理化学方法在遗传学研究中的应用,并展望了量子化学理论在遗传学领域的应用前景。

1 基因概念的历史渊源

19世纪,由于农业生产发展的需要,人们开始重视动植物的遗传变异现象并对这些现象进行了系统研究,这为基因概念的产生创造了条件。1868年,Darwin C.受Hippocrates和Anaxagoras的生源说影响提出了泛生论的假说,认为生物体的细胞能产生自我繁殖的微粒,这些微粒可以汇聚于生殖细胞并决定后代的遗传性状,这种观点缺乏实验论证,不过它充分肯定了生物体内部存在特殊的物质负责遗传性状的传递。之后,Weismann A.又在前人基础上提出了种质论(Germpiasm),认为种质是生物体的遗传物质,它可能作为遗传单位存在于染色体上,这对基因概念的形成奠定了理论基础[1]。

2 基因的研究发展

2.1 基因概念的提出

在前人的遗传学理论研究基础上,Mendel G.J.第一个对遗传现象做了系统的实验研究。通过豌豆杂交实验,他认为生物性状是由“遗传因子”来控制的,这些遗传现象符合分离定律和自由组合定律。之后,Devries H、Correns C.和Tschermak E.分别证实了孟德尔的实验结果,到1909年,丹麦的Johannsen W.L.首次用“基因”一词表示遗传因子。不过,当时的遗传因子没有涉及到基因的具体物质概念,只是一个经过统计学分析的理论概念。

2.2 基因学说的创立

Mendel的遗传因子学说是宏观水平上的发现,其所提出的遗传因子到底是否存在于细胞中需要进行细胞水平上的研究。随着当时工业生产的发展,用以研究生物学实验的仪器设备有了极大的改进。20世纪初,Boveri T.[2]和Sutton W.S.[3]各自在研究减数分裂时,发现遗传因子的行为与染色体行为呈平行关系,提出了基因就在染色体上的假说。然后,1910年,Morgan T. H.等[4]用果蝇作材料,进行了一系列杂交实验,发现了伴性遗传现象和基因连锁互换定律,直接证实了基因在染色体上,建立了染色体遗传理论。1926年,Morgan T.H.正式提出了基因学说,即“三位一体”的基因概念,基因首先是决定性状的功能单位,能控制蛋白质的表达,决定一定的表型效应;其次是一个突变单位,可以发生在等位基因之间,表现出变异类型;最后它是一个重组单位,只发生在基因之间,可以产生与亲本不同的基因型[5]。这把染色体和基因联系了起来,说明了基因具有物质性,不过,Morgan在其著作中并没有涉及基因的本质是什么以及基因的功能是如何发挥等问题。

2.3 基因化学本质的研究

对于基因的化学本质和功能等问题,早在1909年,英国Garrod A.E.就提出过基因产生酶的观点。之后,1941年斯坦福大学Beadle G.和Tatum E.[6]在研究真菌过程中,提出了“一个基因一个酶”的假说,认为一个基因控制一个酶的合成,基因通过酶控制生物的代谢途径,这从生物化学角度阐述了基因的功能,不过这种基因的概念仍然没有揭示基因的化学本质,只是解释了基因发挥功能的途径。到1944,Avery等通过肺炎双球菌转化实验证明了遗传物质的化学本质是DNA,然后,1956年,美国的Fraenkel又通过烟草花叶病毒实验证明了RNA也可以作为遗传物质进行传递[7]。

2.4 基因功能的研究

1953年,Watson J.D.和Crick F.H.C.[8]提出了DNA的双螺旋结构,人们开始从分子水平上认识基因的本质,即基因是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位[9],从此以后,人们对基因功能的认识开始有了深入的了解。1955年,Benzer S.[10]通过T4噬菌体感染大肠杆菌的互补实验提出了顺反子学说,认为基因就是顺反子,即一个遗传功能单位,一个顺反子决定一条多肽链,它并不是一个突变单位和交换单位。一个顺反子可以包含一系列突变子,突变子是DNA中构成的一个或若干个核苷酸,由于基因内的各个突变子之间有一定距离,所以突变子彼此之间能发生重组,重组频率与突变子之间的距离成正比[11]。

20世纪60年代之前,人们已经认识到基因是有着精细结构的DNA分子,其结构可以继续分割,不过,当时对于基因功能表达及其具体作用等问题的研究依然局限于传统的“一个基因一个酶”的学说。1961年,法国遗传学家Jacob F.和Monod J.L.[12]根据对大肠杆菌的试验,提出了大肠杆菌操纵子模型,认为DNA的不同区域存在一个调节基因和一个操纵子,操纵子模型包括若干结构基因、操纵基因和启动基因。这一模型进一步说明了基因是可分的,通过基因间的密切协作,细胞才能表现出独特的功能[13]。此后,随着DNA重组技术和DNA测序技术的发展,人们对基因的研究更加深入,发现了许多基因的其他功能和特点,极大地完善了人们对生物体各种遗传现象的认识。

2.5 基因概念的新发展

20世纪70年代以后,随着分子生物学技术的飞速发展,人们对基因的结构和功能上的特征有了更多的认识,其中比较重要的发现有假基因、重叠基因、跳跃基因、断裂基因、反转录基因、印记基因等。结合基因的这些新发现,现今人们认识基因有以下几种特点[5]:(1)基因不都是离散的,因为有重叠基因;(2)基因不一定是连续的,如断裂基因;(3)基因可以移动,其位置可以改变,如跳跃基因;(4)基因不是全能的结构单位,有很多顺式作用元件影响转录或剪接;(5)基因也不是简单的功能单位,因为基因可以通过顺式或反式剪接,产生多种蛋白质。那么,到底应该怎样给一个基因准确定义呢?近年来,有很多人对此提出了看法。

Gerstein等[14]提出,基因的定义应该和原来的定义有兼容,建立在已有的生物术语基础之上。他们认为,基因是基因组序列的联合体,这些序列可以编码具有潜在重叠功能的产品(蛋白质或RNA),基因与其调节序列是多对多关系。在此基础上,Pesole[15]则认为基因是一个离散的基因组区域,其转录可以被一个或多个启动子和远端调节成分调控,并含有合成功能蛋白质或非编码RNA的信息。基因在最终功能产物上有共同性质,这个定义主要针对真核生物基因组,强调每个基因都分布于基因组的连续区域,基因序列包含5′UTR和3′UTR。此外,还有学者从计算机角度对基因的定义做了描述,他们把基因组比喻为一个生命体的大的操作系统,而基因就是其中的一个子程序。总之,随着当今科技水平的发展,人们通过对DNA、RNA和蛋白质新功能的研究,发现基因并不是以前想得那么简单,其概念、功能和特征是随着一些特殊的生命遗传现象可以改变的。

如阮病毒的发现,朊病毒是一种只有蛋白质而没有核酸的病毒,就之前生物学家对基因的概念而言,朊病毒的复制并非以核酸为模板,而是以蛋白质为模板,这又重现了20世纪遗传物质本质问题的争议,是现阶段基因概念的新挑战。此外,2006年,《自然》杂志在New Feature栏目上刊登了“什么是基因?”一文,这篇文章结合最近的研究成果对基因的概念做了新的诠释,一些研究发现,RNA不是被动的将基因信息传递下去,而是主动地调控细胞的活动,有的RNA链不是传统认为的只由DNA的一条链转录,而是由两条链转录得来,还有一些RNA可以通过某种途径使正常基因沉默,在必要时还会作为模板纠正某些异常基因,跨世代地携带生物体遗传信息[16]。这些研究发现加深了我们对RNA的认识,深化了我们对生物体遗传现象的了解。又20世纪90年代,美籍华人牛满江教授又发现了“外基因”,即一些生物体细胞质中mtRNA能激活一些特定基因,使生物体表达特定的蛋白质,还有,2008年《自然》杂志上报告,美国科学家确认了一种可导致乳腺癌转移的超级基因,这种基因可控制肿瘤细胞中其他基因的表达,它的表达与癌症发生有密切的联系[17]。

总之,随着科学的不断发展,人们对于生物遗传现象的认识越来越深入,基因的概念也随着生物学的发展不断变化和完善。由于其他非生命领域的研究对象显示出了生命力及与生物基因相似的特征,现今,经济领域和计算机领域中又出现了企业基因[18]、产品基因[19]、数据基因[20]等新的定义,基因概念的基本理论已经发展到更多学科中了,对基因本质和特征的研究越来越有必要。

3 量子化学作为研究核酸方法的应用

当前,遗传学的研究已经发展到了分子水平,然而对于生物遗传现象中一些酶、核酸、激素等活性物质的构象、生物活性和其具体作用机制依然存在争议。生物系统研究的最大难题是生物分子的复杂性,常规的实验方法只能得到实验现象的宏观方面解释,而不能从微观方面对实验现象的化学本质做出解释。目前有一些研究者将物理化学方法应用到了生命科学领域,建立了从理论分析到实验优化的方法模式,他们根据实际体系在计算机上进行实验,通过比较模拟结果和实验数据检验理论模型的准确性,并在此基础上模拟生物大分子的结构、性质和反应过程。

随着计算机技术和物理化学理论的发展,以及X射线、NMR等技术的应用,人们可以利用一些物理化学工具在计算机上进行分子模拟,以此来模拟DNA、RNA和蛋白质的结构,预测蛋白质与核酸的功能和性质。而且,随着计算方法的改进,高度变化的核酸体系的精确分子模拟已成为可能,依赖强大的计算机就能模拟一些更复杂的反应,如DNA、RNA和蛋白质的催化及折叠等[21]。

其中应用比较广泛的物理化学工具就是量子化学方法,量子化学方法是应用量子化学基本原理和方法来研究化学体系的结构和化学反应性能的科学,其基本理论主要有价键理论(VB)、分子轨道理论(MO)、密度泛函理论(DFT),基本的计算方法有从头算方法(ab initio)、半经验方法(semi-empirical method)、密度泛函方法(Density Functional Theory)[22]。量子化学的原理和方法在物理化学、药学计算和生命科学领域有广泛的应用,可以很好地分析分子间相互作用的机理,解释实验中一些宏观现象的物理化学本质。如李梅杰[23]利用量子化学方法中的高精度组合从头算方法(ONIOM-G3B3)研究了核酸自由基性质和损伤机理,很好地解释了生命过程中由于自由基和电子转移导致DNA的断链损伤而引起的衰老、癌症、神经紊乱等疾病的发生。又如2002年,Starikov E.B.[24]总结了核酸中量子化学方法的应用,阐述了核酸中电荷转移过程的量子化学描述及其化学机理,并详细地讨论了不同量子化学方法在研究核酸电子构型中的优缺点。此外,于芳[25]运用量子化学工具对胞嘧啶与丙烯酰胺组成的分子体系进行了计算,以此来模拟核酸与蛋白质相互作用的反应过程,分析了DNA与蛋白质的作用形式。

对于利用量子化学方法研究蛋白质的应用,国外在这方面做得比较深入。如纽约州立大学石溪分校Simmerling C.等[26]应用量子化学方法研究了一种小分子量蛋白质,仅有20个色氨酸构成,准确地预测了蛋白质三维结构的折叠过程。又如Berriz和Shakhnovich[27]模拟了小的三螺旋束蛋白的折叠,Daggett和Fersht[28]模拟了小的单结构域蛋白的动力学折叠.还有Akira Shoji等[29]采用密度泛函理论方法优化了右手α-螺旋的PLA(聚L-丙氨酸)分子(如图1所示,即H-Ala18-OH分子),分析了αR-螺旋的PLA形成的机制,获得优化的αR-螺旋H-Ala18-OH构型外侧的1H、13C、15N、17O原子的化学位移与用高分辨率固相NMR检测的相同。

4 展望

近年来,国内外量子化学在分子生物学中的应用日趋广泛,如利用量子化学方法研究纳米微粒促进靶向给药、纯化核酸以及处理废气等技术的发展;应用量子化学方法优化生物活性分子结构,研发新型抗疾病药物;采用分子模拟的量子化学计算方法探究激素与受体以及其他活性分子与核酸的作用机理等等,很大程度上促进了分子生物学和医学的发展。从目前所作的科学研究看,量子化学完全可以作为遗传学工具来研究生物体遗传现象背后的化学本质,其在遗传学的研究中有广阔的应用前景。

参考文献

[1] 光晓元.基因概念的历史渊源及其历史发展[J].安庆师范学院学报,2002,8(4):95-97.

[2] Boveri T.ber mehrpolige Mitosen als Mittel zur Analyse des Zellkerns[J]. Verh Phys.Med Ges Würzburg,1902, 35:67-90.

[3] Sutton W S.The chromosomes in heredity[J].Bio Bull,1903,4:231-251.

[4] Morgan T H.Sex-limited inheritance in Drosophila[J].Science,1910,32(812):120-122.

[5] 谢兆辉.基因概念的演绎[J].遗传,2010,32(5):449-454.

[6] Beadle G W,Tatum E L.Genetic control of biochemical reactions in neurospora[J].Proc Natl Acad Sci USA, 1941,27(11):499-506.

[7] 高汝勇.基因概念的发展历程[J].科技风,2009(11):128-128.

[8] Watson J D,Crick H F C.A structure for deoxyribosenucleic acid[J].Nature,1953:171,737.

[9] 赵亚华.基础分子生物学教程.2版.北京:科学出版社,2007,7:1-10.

[10] Benzer S.Fine structre of a genetic region in bacteriophage[J].Proc Natl Acad Sci USA,1955,41(6):344-354.

[11] 张勇.基因概念之演变[J].生物学通报,2002,37(10):52,54.

[12] Jacob F,Monod J.Genetic vegulator ymechanisms in the synthesis of proteins[J].J.Mol.Biol,1961(3):318.

[13] 刘元,陈国梁,梁凯.基因概念的演变[J].延安大学学报,2005,24(4):80-83.

[14] Gerstein M B,Bruce C,Rozowsky J S,et al.What is a gene,post-ENCODE?History and updated definition[J].Genome Res,2007,17(6):669-681.

[15] 施江,辛莉,郭永新,等.现代生物学基因研究进展—— 从遗传因子到超级基因(2)[J].生物学通报,2009,44(4):4-7.

[16] 唐捷.基因是什么[J].生物化学与生物物理进展,2006,33(7):607-608.

[17] 欧阳芳平,徐慧,郭爱敏,等.分子模拟方法及其在分子生物学中的应用[J].生物信息学,2005(1):33-36.

[18] 许晓明,戴建华.企业基因理论的演化及其顺反子系统新模型的构建[J].上海管理科学,2008,30(2):86-90.

[19] 杨金勇,黄克正,尚勇,等.产品基因研究综述[J].机械设计,2007,24(4):1-4.

[20] 奚建清,汤德佑,郭玉彬.数据基因:数据的遗传信息载体[J].计算机工程,2006,32(17):7-9.

[21] Pesole G.What is a gene?An updated operational definition[J].Gene,2008,417(1-2):1-4.

[22] 赵艳丽,许炎,李遥洁,等.量子化学在金属配合物中的应用进展[J].广东化工,2010,37(9):75-76.

[23] 李梅杰.核酸自由基性质和损伤机理的量子化学研究[D].合肥:中国科学技术大学化学与材料科学学院,2007.

[24] Starikov E B.Quantum chemistry of nucleic acids:how it could help and when it is necessary[J].Journal of Photochemistry and Photobiology C:Photochemistry Reviews,2002,3:147-164.

[25] 于芳.酰胺类化合物与DNA碱基相互作用的理论研究[M].江苏:江南大学应用化学系,2009.

[26] Simmerling C,Strockbine & Roitberg A E.All-atom structure prediction and folding simulations of a stable protein[J].Journal of the American Chemical Society,2002,124:11258-11259.

[27] Berriz G F,Shakhnovich E I. Characterization of the folding kinetics of three-helix bundle protein via a minimalist Langevin model[J].Journal of Molecular Biology,2001,310:673-685.

[28] Daggett V,Fersht A R.Is there a unifying mechanism for protein folding[J].Trends in Biochemical Sciences,2003, 28:18-25.

量子化学基础范文第8篇

关键词 燃烧热;密度泛函(DFT) ;共振能;苯

中图分类号O64 文献标识码A 文章编号 1674—6708(2012)76—0109—02

“燃烧热测定”是物理化学中一个经典的实验,在实验室中一般测定固体物质萘或蔗糖等有机物固体的燃烧热[1—2]。本文通过热力学综合测定仪中的燃烧热测定装置,可以测量出液体苯、环己烷、环己烯的燃烧热,进行计算可得到苯的共振能。应用量子化学理论算方法亦可计算苯的共振能,通过计算方法的选择,并与文献值比较[3],可找到计算适合苯、环己烷、环己烯系列物质的最佳方法。

1 实验部分

1.1 实验仪器及药品

物理化学热力学综合实验装置RLXZH— ?(配计算机及相关软件),氧弹量热计,压片机,电子天平,氧气钢瓶;苯甲酸,苯(A.R),环己烯(A.R),环己烷(A.R),药用胶囊(本实验用的是重庆申高生化制药有限公司生产的氨咖黄敏胶囊,把药粉倒出,只用外包装的胶囊)。

1.2 空心胶囊燃烧热的测定

取6个空心胶囊,将其叠压在一起,量取约15cm的铁丝,在分析天平上准确称取铁丝的质量,然后把铁丝绑在胶囊上面,准确称量总质量。利用量热计测出空心胶囊的燃烧热。

1.3 测定试剂的燃烧热

选取一个密封完好的药用胶囊,在分析天平上准确称取它的质量,取适量铁丝,准确称取它的质量,放入胶囊中,用滴管小心加入苯,使其装满,再把胶囊套好,在分析天平上准确称取质量,算出苯的质量。再把装好的胶囊置于氧弹中,冲入氧气,利用氧弹量热计测出燃烧热,扣除胶囊的燃烧热,即得到苯的燃烧热,用同样的方法测出环己烷和环己烯的燃烧热。

1.4 实验记录及其数据处理

根据所测的数据作图,并对各测定做温度雷诺校正图,直接通过南大万和综合热测定仪随即软件作图,求出每次实验时温度差T。之后再作雷诺校正图得到温差,图l是四个实验的雷诺校正图,温差T已标出;计算量热计的热容,计算结果可由南大万和物理化学热力学综合实验装置随机软件记录并处理数据。从量热计的热容、各液体样品燃烧时的水温升高值以及胶囊的燃烧热值,计算苯、环己烷和环己烯的恒容燃烧热,并由H=QP=QV+ nRT计算恒压反应热,结果见表1。

2 理论计算部分

2.1 计算方法

在ChemDraw程序中构建苯、环己烷和环己烯的分子结构模型,先用AM1半经验算法对分子模型进行初步的几何优化。之后分别用半经验法(AM1)、从头算方法HF(6—311+g*和6—311++g*基组水平)和密度泛函(B3lyp/6—31)进行优化构型的量子化学计算,整个计算过程使用Gaussian 03程序包完成。

2.2 计算结果

分别使用半经验AM1法,从头算方法HF(6—311+g*)、HF(6—311++g*)、B3lyp/6—31进行结构全优化计算。苯是一个完全对等的正六边形,6个C—C单键完全。由于苯环的共轭作用,使得苯环中C—C单键长度介于环己烷的C—C和环己烯的C=C双键之间。环己烷是较为稳定的椅式结构,6个C原子不在一个平面上。

3 结果与讨论

3.1 实验结果与计算结果对比

按照下列公式求得苯的共振能E[4],计算结果如表2所示。

3.2 误差分析

文献值是123.58kJ·mol—1[5],从实验测量与计算结果上分析,实验方法与文献值相差较大,测量了多次仍存在较大误差,主要原因:1)由于苯、环己烷和环己烯都具有强挥发性,在装入氧弹并排出氧弹中空气的过程中已有部分挥发所导致;2)用胶囊盛装液体,在高温时胶囊变软,从而导致液体挥发,使液体燃烧不完全引入误差。用量子化学理论计算方法,经过半经验法(AM1)、从头算方法HF(6—311+g*和6—311++g*基组水平)和密度泛函(B3lyp/6—31)4 种方法计算,密度泛函方法计算得到的结论与文献3值吻合较好,而且在用HF方法计算时,我们用了不同的基组,发现基组的改变对计算数值影响不大,所以用密度泛函方法使用较小的基组也能得到与文献值相符的结果。

4 结论

通过实验和量子化学理论计算均能得到苯的共振能,通过方法和误差分析也可比较两种方法的优点。从误差分析,实验方法得到的结果误差较大,经过多次改进仍不理想。量子化学理论计算方法中的密度泛函(DFT)方法得到的结果与文献值接近,是计算该类物质能量的较好的方法。

参考文献

[1]复旦大学.物理化学实验[M].北京:高等教育出版社,2002,6:24—26.

[2]孙尔康.物理化学实验[M].南京:南京大学出版社,2010,1:8—10.

[3]马沛生.有机化合物实验物性数据手册[M].北京:化学工业出版社,2006,8: 476—480.

[4]邢其毅,徐瑞秋,裴伟伟,等.基础有机化学(第三版上册)[M].北京:高等教育出版社,2005:25—27.

量子化学基础范文第9篇

中国最高科学技术奖被许多人誉为国家的“诺贝尔奖”。今年已经90岁高龄的徐光宪院士是我国稀土串级萃取理论的建立者,他荣幸成为摘取2008年度国家“诺贝尔奖”的优秀科学家之一,本文对他的人生经历作一初探。

艰难曲折的求学之路

1920年11月7日,徐光宪出生在浙江上虞。父亲徐宜况是当地一个有名的律师,母亲虽没上过学,但却很重视对子女的教育。她总认为:“家有粮田千顷,不如一技在身”,这话可以说影响了徐光宪一生。

但当徐光宪入校门不久,父亲因病去世,家庭失去了顶梁柱,家境便开始走下坡路。徐光宪在校学习勤奋,上初中时就获得浙江省数理化优胜奖,本可以朝考大学的方向奋斗,由于家境不佳,他便想学一门技术,早一点工作挣钱帮全家脱离困境。1936年初中毕业后,他考入浙江大学所属的杭州高级工业职业学校。抗战爆发杭州沦陷后,他于次年转学到宁波高级职业学校继续学习。1939年毕业后,他与7名同学前往云南参加“叙昆”(宜宾――昆明)铁路建设,不料领班中途携款逃走,也就断了大家去云南工作之路。

无奈,徐光宪只好前往上海,在上海当中学老师的哥哥帮他找到了一份当家庭教师的工作,暂时解决了生存问题。强烈的事业心和求知欲让徐光宪又做起了“大学梦”。他白天复习,晚上做家教,省吃俭用积攒学费,终于在半年时间内,就考上当时学费最便宜的上海交通大学化学系。经过刻苦攻读,1944年7月,他获得理学学士学位,两年后被交通大学化学系聘为助教。

为了继续深造,1948年1月,徐光宪惜别了新婚不久的妻子高小霞(同班同学),只身远渡重洋来到美国,在华盛顿大学化工系研究院留学。这一年夏天,他又利用暑假到纽约哥伦比亚大学暑期试读班学习,由于他学习认真,基础又好,被该校破格录取为化学系研究生,攻读量子化学,一年后就获得该校硕士学位。1950年7月又被选为美国PhiLamda Upsilon荣誉化学会会员。1951年3月,他的博士论文《旋光的量子化学理论》通过论文答辩,获得哥伦比亚大学博士学位,并被选为美国SigmaXi荣誉科学会会员。这在当时美国一流水平的哥伦比亚大学,他的业绩也是属于一流的。

赤子情深报效祖国

徐光宪在美国学习期间,深受导师贝克曼教授的赏识。导师极力挽留他继续在美国进行科学研究,并推荐他去芝加哥大学莫利肯教授处做博士后。他的夫人高小霞此前也已来到美国纽约半工半读,当时只要再读一年就能获得博士学位,他去莫利肯教授处不但可获得很好的科研工作环境,而且也可为高小霞继续求学创造良好的条件。

1949年10月1日,中华人民共和国成立了!身在异国他乡的徐光宪为新中国的成立兴高采烈参加了留美学生组织的庆贺新中国的成立活动。然而,1950年6月,美国政府发动侵朝战争,战火烧到了中朝边界的鸭绿江边,对新中国的领土安全构成了严重威胁,一批中国留学生毅然准备回家卫国。徐光宪与妻子商量,故乡在杭州萧山的高小霞一脸深情地说:“你不要考虑我的学位问题,科学没有国界,但科学家有自己的祖国!”这句话坚定了徐光宪回来报效祖国的决心。当时美国政府想方设法极力阻挠留美中国学生返回新中国,美国国会也于1951年初通过有关禁令,要求全体中国留美学生加入美国籍,不准回国。禁令只要美国总统签署后即正式生效。在这种紧急情况下,徐光宪和妻子高小霞急中生智,假借华侨归国探亲的名义,于1951年4月15日悄悄乘上“戈登将军号”邮轮回到祖国的南大门广州,当看到鲜艳的五星红旗时,他俩激动得热泪盈眶。

到达首都后,徐光宪担任了北京大学副教授并兼任燕京大学副教授,一方面为新中国培养人才,另一方面从事化学科研工作。他的妻子也到北大化学系任教。受教育部委托,徐光宪教授和卢嘉锡、唐敖庆、吴征铠教授一起于1954年7月在北京举办“物质结构暑期进修班”,培养了我国第一批物质结构课的师资。1957年7月。他被任命为放射化学教研室主任,1958年9月被任命为新成立的原子能系副主任,兼核燃料化学教研室主任。同年12月应邀访问苏联,参加在杜布纳原子能研究所召开的国际核物理与放射化学学术会议,会后访问了莫斯科大学和列宁格勒大学。由于教科研成绩显著,1961年他被晋升为北京大学教授。

在中,徐光宪教授受到迫害,被造反派污蔑为“美国特务”,关进“牛棚”交代“罪行”。1969年底还被迫离开北京大学到江西农场劳动,两年后才回到北京大学化学系恢复教学工作。作为一个共产党员,回校后他把个人受到的冤情抛到一边,很快投入到教学和科研工作中。

与稀土研究结下不解之缘

我国是稀土大国,有世界上最丰富的稀土资源,储量占世界的80%。但在20世纪70年代以前,我国的稀土原料大多出口,而稀土产品却大量从国外进口。1972年,北京大学化学系接到“分离镨钕”的紧急军工任务,徐光宪教授便成为这项重要任务的科研领军人物。

镨钕都是稀土元素,由于化学性质非常相似,17种稀土元素要提纯任何一种都十分不易,分离镨钕更是难上加难。为了攻克这一科学难关,徐光宪教授凭借自己的经验和学识,并参考了相关文献资料,放弃了当时国际上采用的“离子交换法”和“分级结晶法”,在简陋的实验室里,带领有关科研人员经过无数次的科学实验,大胆用“萃取法”成功分离出被稀土界称为“孪生兄弟”的镨钕元素。由于采用了独特的“推拉体系”,使镨钕的分离系数远远超过了国际同行的分离水平。1977年,徐光宪被任命为北大化学系无机化学教研室主任。

在出色的成绩面前,徐光宪教授并不停步,他的研究在步步深入,并将研究的重点放在稀土基础萃取理论研究课题上。在长期的科学研究和具体实验中,他对稀土化学健、配位化学和物质结构等基本规律有了更深刻的认识,并发现稀土溶剂萃取体系具有“恒定混合萃取比”的基本规律,建立起具有普适性的串级萃取理论。他根据假定推导出100多个工艺参数公式,广泛应用于我国稀土分离工业。

为使科研成果转化成生产力,在实际的工农业生产中得到 广泛运用,创造良好的经济效益,1974年9月徐光宪教授亲赴包头稀土三厂参加这一新工艺流程用于分离包头轻稀土的工业规模试验,并一举获得成功,从而在国际上首次实现了用推拉体系高效率萃取分离稀土的工业生产。在这些工作的基础上,他随后陆续提出了可广泛应用于稀土串级萃取分离流程优化工艺设计的设计原则和方法,极值公式,分馏萃取三出口工艺的设计原则和方法,建立了串级萃取动态过程的数学模型与计算程序,回流启动模式等。1976年他在上海跃龙化工厂举办了“全国串级萃取讲习班”,把这些成果向全国有关科研单位、高等院校和稀土工厂推广。这些原则和方法用于实际生产,大大简化了工艺参数设计的过程,减少了化工试验的消耗;特别是能适应原料和设备不同的工厂。因而能普遍使用。他和李标国、严纯华等人共同研究成功的“稀土萃取分离工艺的一步放大”技术,是在深入研究和揭示串级萃取过程基本规律的基础上,以计算机模拟代替传统的串级萃取小型试验,实现了不经过小试、扩试,一步放大到工业生产规模,大大缩短了新工艺设计到生产的周期,使我国稀土分离技术达到国际先进水平。几十年来,他和李标国等在全国各主要稀土生产厂,如上海跃龙化工厂、广州珠江冶炼厂、包头稀土厂等推广应用了这些研究成果,为生产成本大幅降低和大批稀土产品的开发生产作出了重要贡献。

教书育人桃李满天下

在北京大学执教的50多年中,徐光宪培育了一大批学生,为国家输送了一批又一批优秀人才,真可谓“桃李满天下”。

早在20世纪50年代初,徐光宪就在北京大学化学系讲授物理化学课,同时在燕京大学化学系为研究生开设量子化学课。院系调整后在北京大学开出《物质结构》新课程,并承担了1954年的物质结构暑期进修班的讲课。1957年国家要求北京大学迅速培养原子能科学技术方面的人材。徐光宪当时虽对原子能化学并不熟悉,但在被任命为这项工作的负责人之一以后,日夜备课,充分准备,两个月后就讲授了放射化学、原子核物理导论等课程。他很注重让青年教师、研究生及时掌握学科最新成就,站到学科发展最前沿。

到20世纪50年代末期,国际上配位场理论在无机化学中的应用迅速扩展,萃取化学研究刚刚开始,他及时在技术物理系给青年教师和研究生开设了配位场理论和萃取机理等课程。粉碎“”以后,国内恢复了对基础研究的重视。当时,量子化学经过十多年的迅速发展,在化学各分支学科得到广泛应用,并渗透到与化学相关的其他学科领域内,他抓住时机开设了量子化学、分子光谱、高等无机化学等课程,直到1986年他还亲临教学第一线。他讲课内容丰富,注意启发学生深入到物质变化的微观层次运用基本规律分析复杂纷繁的化学现象,以求深刻理解这些现象的微观本质及它们之间的内在联系,进而能预见一些新现象。

徐光宪在教研中,十分重视教材编写工作,他认为一本好的教材对学生的学习有很大帮助。20世纪50年代他根据自己在北京大学几年中使用的物质结构讲义,加以修改补充,精心整理,编写成《物质结构》一书,于1959年由高等教育出版社出版,并由高教部规定为全国统编教材。1965年,为了适应工科、师范类院校的教学需要,他又编写了一本《物质结构简明教程》。《物质结构》一书,内容丰富,安排得当,条理清楚,概念表述准确、深刻,有关化学键理论的两章写得尤为精采,因此深受教师和学生的欢迎,成为在全国使用多年的教材,曾先后5次再版,发行了10余万册,在物质结构课的教学中发挥了重要作用,1988年1月获得国家教委颁发的“高等学校优秀教材特等奖”。该书还在香港被翻印,受到港台读者的欢迎。20世纪80年代初,他根据物质结构学科发展的情况,在王祥云协助下对原书进行了修改补充,于1987年由高等教育出版社出了修订版,很受读者欢迎。1978年徐光宪在给研究生开设量子化学课时,针对化学系本科生数学、物理基础较薄弱的情况,和黎乐民等合作编写了一部研究生用的量子化学教材《量子化学基本原理和从头计算法》,分别于1980、1985、1989年由科学出版社出版。这部教材内容比较丰富,能较全面地反映出这一学科发展的现状,在基本原理的叙述和公式推导方面又相当详细,较易为数学、物理基础较薄弱的读者理解,因而得到读者的好评。此外,他还在《化学通报》等杂志上发表过不少教学经验交流或专题讲座性质的文章,也使很多教师和学生读后受益不浅。据不完全统计,几十年来,他共编著了物质结构、量子化学、稀土等方面的专著近20部,多达800多万字。

徐光宪的学生中,优秀人才脱颖而出。其中包括黎乐民、黄春辉等3名院士和3名长江学者特聘教授。北京大学著名教授季羡林教授称赞徐光宪是:“桃李满天下,师德传四方”。徐教授的学生严纯华则更贴切地评价老师:“科学家中有两种人,一种是‘工匠’,还有一种是‘大师’。前者的目光局限在具体的研究中,而后者则研究科学的哲学层面。徐先生则已经达到了后者的境界。”

量子化学基础范文第10篇

一、结构化学课程的教学现状分析

目前结构化学教学面临两大难题。首先,结构化学中的很多概念过于抽象,教师难以形象地去讲授,学生难以理解和接受。其次,随着现代化学学科本身的快速发展以及与其他学科的交叉融合,使得结构化学的教学内容快速膨胀,而结构化学的教学课时不但没有增加反而有所减少,这就势必产生“任务重,时间少”的难题。

为了解决这两大难题,人们已做了一些有益的尝试和探索,如,整合教材内容,采用多媒体教学等。这些改革都不同程度地改进了结构化学的教学,也取得了一些积极的效果。但是,这些改革措施和方法并没有彻底解决这两大难题。我们结构化学教学组经过长期的尝试和探索,得到了一种行之有效的方法,这就是在结构化学的教学中采用目前先进的可视化量子化学分子设计软件来辅助教学。下面予以介绍,以期为同行们提供一些借鉴。

二、可视化量化计算软件的使用

使用可视化的量子化学软件,通过计算得出教材中的结论,将抽象的概念变为直观的图形,也可以通过化学软件的使用使学生了解到所学的基本概念在实际中的应用,在课堂上用多媒体的形式加以演示。在实际教学过程中具体做法如下:

第四章对于分子的对称操作和点群的有关知识,利用可视化软件画出具体的图形,在课堂上利用多媒体对具体的图形进行各种对称变化和操作,形象直观容易接受。

丁二烯分子π轨道图形

另外,对于结构化学知识在实践中的应用、NMR数值的测定、偶极距、分子光谱等问题都可以利用量子化学软件计算得出与实验相符合的数值,使学生进一步了解学习结构化学课程的作用。

总之,可视化量化计算软件可以使结构化学的教学从单纯的理论讲授变成理论与实践相结合的课程,将结构化学抽象的概念变成直观的图形;通过让学生动手进行计算,分析计算结果,加深了学生对课程内容的理解,使学生便于接受和理解,同时提高了他们的学习兴趣,培养他们的科研能力。

注:本项目为河南大学第十一批教学改革研究项目。

上一篇:农耕文化范文 下一篇:化学应用工程范文