气候变化对土壤的影响范文

时间:2023-12-20 15:51:40

气候变化对土壤的影响

气候变化对土壤的影响篇1

土壤湿度是陆地水循环的关键环节,也是陆地和大气之间水汽和能量交换过程中的重要因子。长期以来,科学家们对土壤湿度在气候系统中的作用已经开展了大量的研究,但也存在一些尚未解决的问题;其主要原因,是土壤湿度观测资料极为缺乏。王国杰介绍说,近几年,国际水文与遥感学界致力于利用卫星遥感手段提取陆面土壤湿度,欧洲的科学家已经开发出了较为完善的微波辐射传输遥感模型,利用美国、欧洲、日本的极轨卫星资料,发展了最近30年的日分辨率的全球土壤湿度。但是在这其中,中国的遥感资料和产品并没有参与进来。意识到这一情况,王国杰不畏艰难,毅然决定利用中国气象局的风云三号气象卫星资料开展研究,参与到多国遥感合作项目中,扩大中国卫星产品的国际影响。

目前任教于南京信息工程大学地理与遥感学院的王国杰,2007年就获得中国科学院水文学博士,2011年获得荷兰阿姆斯特丹自由大学气象学博士,凭借深厚的专业积累和多学科背景,将工作着眼于土壤湿度产品的研发及其在气象预报和水文预报等领域的应用,致力于实现水文学与气象学的结合。每一个科研新项目都源自过往的积淀,对他来说更是如此,在多年的工作中,他脚踏实地、勤勤恳恳,用辛劳和汗水筑牢了科研的根基。

推动中国卫星产品参与国际合作

2013年,王国杰开始进行教育部国际合作项目“利用中国风云三号气象卫星遥感资料提取陆面土壤湿度”的研究。基于中国气象局风云三号气象卫星微波遥感资料,王国杰与荷兰合作方进行密切合作,采用合作研发的陆面参数遥感模型(LPRM)提取土壤湿度。LPRM模型是一个较为成熟的辐射传输遥感模型,在国际上有很高的知名度,已经被应用于多颗卫星资料来研发全球土壤湿度产品,包括SMMR、SSM/I、TRMM、AMSR-E、WindSat、AMSR-2等。利用成熟的土壤湿度反演技术和风云三号气象卫星微波亮温资料,王国杰已经研发了空间分辨率为25km、时间分辨率为12小时的全球土壤湿度产品,效果极优;并且基于WebGIS技术搭建了数据服务器,成立“信大遥感数据网”(http://),供全球用户在线浏览、查询和下载土壤湿度数据。目前,这一产品已经用于国家自然科学基金委中德科学中心“中德合作组项目“水资源综合管理:模型模拟到适应措施”的工作之中。

王国杰介绍说,利用风云三号B星和最近发射的风云三号C星资料,可以把土壤湿度产品的时间分辨率提高到6小时;利用风云气象卫星多载荷融合技术,可以把土壤湿度产品的空间分辨率提高到1km。提高风云卫星土壤湿度产品的时、空分辨率,是王国杰研究工作的一个重要方向。

通过这一系列的工作,王国杰为后续的水文气象过程研究提供了高质量的基础数据。与此同时,他也与荷兰阿姆斯特丹自由大学、澳大利亚新南威尔士大学和美国NOAA的土壤湿度遥感团队建立了长期、紧密的学术联系,为今后的进一步研究奠定了基础。

揭秘东亚季风区降水机制

东亚季风区是我国人口最稠密、经济最发达的地区。在过去30年来,随着全球气温变暖,东亚季风区极端降水的频率和强度显著增加。极端降水所导致的洪涝灾害,对社会经济和人们生活产生了重要的影响。这使得人类对水资源的调控及洪水风险管理,对于大气降水尤其是极端降水的预报提出了更高的要求。然而,大气过程具有混沌特征,并且极端降水频率和强度增加,使得大气降水的可预报性降低。因此,在全球变暖的条件下,加强对我国东部季风区夏季降水的预报能力,是我国水文气象工作者迫在眉睫的任务。

众多研究表明,中国东部地区夏季土壤湿度对同期降水可能存在正反馈机制,但是尚无法厘清是直接反馈还是间接反馈。同时,东亚季风区春季土壤湿度对夏季大气降水的动力反馈,不仅会改变夏季风的强度,也可能改变其路径。因而,这种反馈机制对夏季降水的影响及其空间分布更加复杂。

近几年,陆面水文遥感技术快速发展,开始提供大尺度的土壤湿度观测资料。在对现有成果深入分析研究后,王国杰认为,以数值模拟手段研究土壤湿度对大气降水的反馈作用,不同数值模式输出的结果有很大分歧;而单纯采用数学手段则难以准确地分离出反馈信号并确定反馈机制。要厘清土壤湿度对大气降水的反馈机制,需要综合利用数值模拟和数据分析两种手段。

为了在这一领域获得突破,王国杰带领课题组成员开展了国家自然科学基金项目“东亚季风区土壤湿度对大气降水的反馈作用研究”。在这项工作中,王国杰潜心科研,着重解决关键科学和技术问题,瞄准土壤湿度遥感产品的交叉验证和优化处理,为该项研究提供高质量的数据基础。土壤湿度与大气降水之间存在双向的相互作用,相关分析等传统手段无法捕捉和量化土壤湿度对大气降水的影响。为了有效地分析反馈信号,王国杰采用反映统计因果关系的Granger causality等方法分离土壤湿度和大气降水之间的相互作用,并试图提出新的数学方法以剔除外生变量如SST所导致的虚假信号。同时,王国杰领导的研究团队采用集合卡尔曼滤波等技术手段,把卫星遥感土壤湿度产品同化到WRF等数值模式中,进行陆面-大气相互作用的数值模拟。目前,这项研究还在进行中,王国杰说,项目进展非常顺利,东亚季风区土壤湿度相关研究初见成效。

同时,在手头工作量很重的情况下,王国杰不畏辛劳,与荷兰国际航天测量与地球科学学院、美国海洋与大气管理局开展合作,主持开展了国家自然科学基金重大研究计划项目“青藏高原春夏季土壤湿度热力效应及其对东亚夏季风和季风降水的影响”的研究。

青藏高原热力作用显著地影响东亚夏季风和季风降水。春夏季土壤湿度对高原热源有重要影响,但土壤湿度观测数据不足,学术界对土壤湿度的热力效应及其对东亚夏季风和季风降水的影响仍然缺乏研究。为此,王国杰带领团队利用高质量的土壤湿度遥感数据,综合利用诊断分析和数值模拟两种手段,研究青藏高原春夏季土壤湿度的热力效应,及其对东亚夏季风和季风降水的影响机制。

在这一过程中,王国杰将研究重点放在三个方面,集中优势资源优化现有多源卫星资料,建立全国最近20多年土壤湿度数据库。同时,他诊断分析青藏高原春夏季土壤湿度的热力效应,及其与东亚夏季风环流和季风降水的关系。除此之外,他以土壤湿度遥感数据驱动区域气候模式进行敏感性实验,揭示土壤湿度异常通过热力效应影响东亚夏季风和季风降水的具体过程和物理机制。

探索土壤湿度与气候变化之间关系的奥秘

气候变化对人类社会和生态系统带来的最直接和最重要的影响,是导致地表水资源短缺;而地表水资源短缺,尤其是土壤水分缺乏,又会通过反馈机制作用于大气过程,放大变暖的信号。那么,在我国东部地区,气候变化和地表土壤湿度之间有什么样的具体联系呢?2015年底,王国杰受国家自然科学基金国际合作项目资助,与加拿大谢布克大学合作开展“我国东部地区土壤湿度卫星反演及其对气候变化的响应机制研究”,共同研究我国东部地区土壤湿度对气候变化的响应机制。

王国杰认为,要认识土壤湿度对气候变化的响应机制,需要从水平衡原理入手。地表土壤湿度,取决于大气降水和蒸散发的差值;大气降水的变化易于研究,而陆地蒸散发是陆地水循环中最大的不确定项,受太阳辐射、风速、气温等诸多因素的影响,难以厘清并量化它们之间的复杂关系。因而,这是一个比较艰巨的任务。经过大量的文献调研,王国杰发现,“基于传统水量平衡原理计算过的干旱指数,并不能够准确反映气候变化对地表水资源及水循环的影响;只有采用大尺度土壤湿度观测资料开展研究,才能更加准确描述气候变化对我国东部地区水资源的影响,探明陆地-大气界面水循环对气候变化的响应机制”。

那大尺度的土壤湿度观测资料又来源于何处呢?

基于近十年来,国际卫星遥感反演手段的快速发展,为获取大尺度长序列的土壤湿度数据提供了可行途径。王国杰很有信心:“可能当前土壤水分卫星遥感技术并不尽完美,但可以为我们提供一个独立于气象观测的地表土壤湿度数据集,这种客观的数据是极其重要的”,利用卫星遥感技术建立土壤湿度数据库,并对其进行详细分析,可以量化气候变化对地表水循环的影响。

可是,问题又来了!是不是拟采用的卫星反演手段就一定能准确测定土壤湿度呢?

在查阅大量文献后,王国杰发现并非如此。每颗卫星的原始观测资料,都有自己的优势和缺陷;不同的土壤湿度反演算法同样如此。因此,采用多卫星、多传感器联合反演手段,可以整合各种卫星数据和各种反演算法的优点,提高土壤湿度的反演精度。另外,基于单颗卫星资料反演土壤湿度,其时间序列较短;采用多卫星资料融合,可以延长土壤湿度时间序列,更有利于分析气候变化对土壤湿度的影响。通过国家自然科学基金委中-加合作项目,可以充分利用双方团队的科研和技术优势,开发高质量的土壤湿度产品。王国杰领导的研究团队,擅长利用微波遥感技术反演土壤湿度产品。加拿大团队则擅长采用合成孔径雷达反演土壤湿度,尤其擅长利用L波段开发高植被覆盖地区的土壤湿度产品。

王国杰介绍说,欧美国家近年斥巨资研发专门卫星以探测土壤湿度。2010年,欧洲空间局(ESA)耗资3.15亿欧元,发射了“土壤湿度和海水盐度”(SMOS)卫星;2015年,美国NASA耗资9.16亿美元,发射了“土壤水分主被动探测”卫星(SMAP)。我国目前尚没有土壤湿度专门卫星。基于中国自主知识产权的风云卫星资料研发自主知识产权的土壤湿度和植被光学深度数据,可以满足并保障国家重大需求,也可促进我国卫星资料的深化利用,参与在该领域内的国际竞争。加强国际合作与交流,并可借鉴和吸收SMAP和SMOS的优秀研究成果,为发展我国遥感反演土壤数据集提供技术支持和参考。

勇于发现,开拓创新。在梳理科研工作中面临的诸多问题后,王国杰及合作团队决定利用卫星反演高质量的土壤湿度资料,从地表水平衡原理及水循环动力机制出发,重新厘定中国东部地区土壤湿度对气候变化的响应机制。

鉴于这项研究的复杂性,必定会面临诸多意料不到的困难。但,利用越发先进的卫星遥感技术,能够把原本离我们遥远不可视的自然空间“拉”到眼前。正因王国杰等科学家们用勇气与智慧试图去探索自然,揭开我们脚下土地、周围空气的奥秘,人类社会才会与自然和谐相处,从而得以长远发展。

气候变化对土壤的影响篇2

关键词土壤环境因子;有机污染物;迁移转化;影响

土壤农药污染是一全球性问题。随着环境问题在全球范围的不断变化,土壤环境污染化学已成为环境化学不可缺少的重要组成部分[1]。在北美、西欧和澳洲等国家,随着各种点源污染得到有效控制,人们关注的焦点逐渐转移到多介质非点源污染,另外土壤环境污染的研究也受到人们日益关注。在我国,受农药使用历史、施药技术以及产品结构等因素影响,土壤农药污染较为严重,制约食品安全与农业可持续发展。随着土壤有机污染物的类型不断增多,大量难降解的有机污染物进入土壤,造成环境的严重污染,影响了农业的可持续发展。土壤中的各种环境因子对有机污染物降解转化有一定的影响,因此,研究这些因子的相互作用,可促进有机污染物在土壤中的消除。

1土壤污染的现状

相对于大气环境和水环境而言,土壤环境的污染源更为复杂,作为有机农药、化肥的直接作用对象,并随着社会发展需求,使得土壤污染物的种类极为繁多。目前,全球生产和使用的农药已达1 300多种,其中被广泛使用的达250多种。我国也已经迈入了世界农药生产和使用大国,现在,我国每年施用逾80万~100万t的化学农药,其中有机磷杀虫剂占40%,高毒农药达到37.4%,且有的化学性质稳定、在土壤中存留时间长[2-4]。大量的农药流失到土壤中,造成土壤环境受到严重污染,影响了农业的可持续发展。造成我国土壤农药污染的农药主要是有机氯与有机磷2类。尽管1985年起,我国就已禁用有机氯农药,但因早期大量使用及其难降解性,土壤中仍有残留,造成作物污染。目前,土壤污染物可以分为传统污染物及新型污染物。

1.1传统污染物

一是传统化学污染物。其又可分为无机污染物和有机污染物两大类,其中传统无机污染物包括汞、镉、 铅、砷、铬等,过量的氮和磷等植物营养元素以及氧化物和硫化物等,传统有机污染物包括DDT、六六六、狄氏剂、艾氏剂和氯丹等含氯化学农药以及DDT的代谢产物DDE和DDD,石油烃及其裂解产物,以及其他各类有机合成产物等。二是物理性污染物。指来自工厂、矿山的各种固体废弃物。三是生物性污染物。指带有各种病菌的城市垃圾和由卫生设施(包括医院、疗养院)排出的废水和废物以及农业废弃物、厩肥等。四是放射性污染物。主要存在于核原料开采、大气层核爆炸地区和核电站的运转,以锶和铯等在土壤环境中半衰期长的放射性元素为主。在这些众多的污染物种类中,以土壤的化学污染物最为普遍、严重和复杂[5]。

1.2新型污染物

近年来,土壤新型污染物受到关注,这类污染物的特点是在土壤环境中的浓度一般较低,但对生态系统的危害和对人体健康的影响较大。这些新型土壤污染物目前主要有四大类[6-7]:一是各种兽药和抗生素对土壤环境的污染。随着动物饲养业和畜牧业的发展,畜禽养殖污染中一个重要的问题就是这些兽药通过动物的排泄以及其他方式导致土壤环境的污染。与兽药污染相对应的是各种抗生素的土壤污染。随着医学事业的发展,各种抗生素将得到日益广泛的应用,由此导致的土壤污染可能会更加复杂。二是大部分溴化阻燃剂在土壤环境中有很高的持久性,能够通过食物链和其他途径累积在人体内,长期接触会妨碍人体大脑和骨骼的发育,并且可能致癌,因此引起人们关注。随着电子工业的不断发展以及各种电子产品的逐渐报废,各种阻燃剂将以各种方式进入土壤环境中,从而造成对土壤的污染。三是“特富龙”不粘锅中使用的化学物质“全氟辛酸铵”以及芳香族磺酸类污染物对土壤的污染。其中,全氟辛烷磺酸(PFOS)是纺织品和皮革制品等防污处理剂的主要活性成分,在民用和工业化产品生产领域用途非常广泛。尽管目前尚没有土壤环境中存在含量的数据,但由于PFOS本身的难分解性、生物高蓄积性和污染的广泛性,有关其土壤环境的污染问题势必将被暴露出来,并成为土壤环境污染化学面临的新课题。四是含有过敏源的植物及花粉对土壤的污染。在法国,近年来发现1种或许起源于北美的豚草属植物(Ambrosiaartem isiifolia)及其花粉,特别是这种花粉由于含有多种潜在的过敏源,能在夏天导致严重的干草热以及哮喘疾病,成为引起人们关注的一种新型土壤污染物。

2土壤环境因子对有机污染的影响

土壤中的微生物、温度、水分、气候、土壤机械组成、含水率、植物根际环境、pH 值、二氧化碳浓度等因素对土壤中有机物的分解与转化有很大的影响。除了有机污染物本身的难降解性以及生物迁移性会对有机物降解速率和效果产生影响外,土壤环境因子也会对有机污染物的迁移转化造成一定的影响。

2.1土壤微生物

有机污染物在土壤中的降解分为非生物降解与生物降解两大类,在生物酶作用下,农药在动植物体内或是微生物体内外的降解即生物降解。微生物降解是指利用微生物降解有机污染物的生物降解过程,降解微生物有细菌、真菌和藻类。虽然在厌氧和需氧条件下多氯化合物都可以降解,但是在厌氧条件下降解速率更快。尽管在好气条件下土壤也有很多分解菌存在,但是在好气的旱田条件下,由于有机氯污染物被土壤吸附,生物活性降低,可以长期残留[8]。微生物降解是消除有机氯农药的最佳途径,通常药剂在土壤中的分解要比在蒸馏水中的分解快得多,将土壤灭菌处理后,药剂在大部分土壤中对有机污染物的分解速率明显受到抑制。

迄今为止,已从土壤、污泥、污水、天然水体、垃圾场和厩肥中分离得到可降解不同农药的活性微生物。活性微生物主要以转化和矿化2种方式,通过胞内或胞外酶直接作用于周围环境中的农药。尽管矿化作用是消除环境中农药污染的最佳方式,但是自然界中此类微生物的种类和数目十分缺乏,而转化作用却相当普遍,某一特定属种的微生物以共代谢方式实现对农药的转化作用,并同环境中的其他微生物以共代谢的方式最终将农药完全降解。

研究显示DDT的分解菌至少涉及30个属,其中包括细菌、酵母、放线菌、真菌以及藻类等微生物。六六六的分解菌除了很早知道的生芽孢梭芽孢杆菌和大肠杆菌外,Matsu mura等人从各种环境中分离出71株有分解六六六能力的细菌、真菌菌株。这些分解菌包括好气性、基本嫌气性、嫌气性等各种细菌以及真菌[9]。

常规环境条件下能降解目标污染物的微生物数量少,且活性比较低,当添加某些营养物包括碳源与能源性物质或提供目标污染物降解过程所需因子,将促进与降解菌生长相关联的有机物的降解代谢,即微生物只能使有机污染物发生转化,而不能利用它们作为碳源和能源维持生长,必须补充其他可以利用的基质,微生物才能生长。在共代谢过程中,微生物通过酶来降解某些能维持自身生长的物质,同时也降解了某些非微生物生长必需的物质。

2.2土壤温度

气候变暖是当今全球性的环境问题,大气中CO2浓度的不断增加对全球气候变化起着极其重要的作用。土壤中CO2的排放主要来自土壤原有有机质和外源有机物(如植物的凋落物、根茬及人为的有机污染物投入)的分解过程[10]。全球气候不断增暖将改变各地的温度场、蒸发量和降水量,而这些变化又影响着土壤有机污染物的分解。

土壤温度影响土壤微生物和酶活性及土壤中溶质的运移,还影响土壤反应的速度和土壤呼吸速率,最终影响土壤中有机污染物的降解转化。在一定温度范围内,温度升高会促进土壤有机污染物的分解,但随着温度的进一步升高,土壤有机污染物对温度的响应程度降低。Miko发现,在平均温度为5 ℃时,温度每升高1 ℃将会引起全球范围内10%土壤有机污染物的丧失;而在平均温度为30 ℃时,温度每升高1 ℃将会使得有机污染物丧失3%[11]。

但是,在冷冻条件下关于土壤有机污染物的分解和微生物的活性还存在分歧。Neilson 研究了冷冻对碳和氮循环的影响,发现冷冻加快了土壤碳和氮的循环速率,但不同植被品种、土壤层次和冷冻程度所增加的幅度不同,而且在冷冻程度非常大时,会促进土壤呼吸和二氧化氮的流量和矿化。

2.3土壤pH值

土壤的pH值对有机污染物的吸附有很大的影响,一般来说,pH值越低,土壤对有机污染物的吸附能力越强。土壤酸碱性通过影响组分和污染物的电荷特性、沉淀溶解、吸附解吸和络合平衡来改变污染物的毒性,土壤酸碱性还通过土壤微生物的活性来改变污染物的毒性。pH值对有机污染物如有机农药在土壤中的积累、转化、降解的影响主要表现为:一是土壤的pH值不同,土壤微生物群落不同,影响土壤微生物对有机污染物的降解作用,这种生物降解途径主要包括生物氧化和还原反应中的脱氯、脱氯化氢、脱烷基化、芳香烃或杂环破裂反应等。二是通过改变污染物和土壤组分的电荷特性,改变两者的吸附、络合、沉淀等特性,导致污染物浓度的改变。

2.4土壤水分

土壤水分是土壤中水溶性成分的运输载体,也是土壤反应得以正常进行的介质。王彦辉认为森林土壤有机污染物的分解速率在很大程度上受控于环境条件,其中含水量起着决定性作用,最佳含水量为被分解物饱和含水量的70%~90%,极度干旱或水分过多都会限制土壤微生物的活动,明显降低土壤中有机污染物的分解速率[12]。但是,Olivier认为在淹水条件下有机污染物料的分解速率加快,在长期的淹水条件下厌氧微生物反复利用腐解发酵的有机物料,会导致较低的净残留碳的矿化[13]。这与淹水、嫌气条件下有机物料的分解速率慢于旱地、分解量低于旱地的传统概念不同。

在非淹水条件下,温度对有机碳分解的影响随着分解时间的延长而逐步减小。淹水条件下培养7 d以后,温度对供试物料有机碳分解的影响不随培养时间的变化而变化。当土壤含水量为300、500 g/kg时,供试物料的有机碳分解最快,而土壤含水量为200 g/kg和淹水条件下的有机碳分解较慢,空白对照培养结果显示土壤有机碳的分解速率随着水分含量的提高而加快[14]。在相同的水热条件下,有机碳的分解量与土壤黏粒含量呈负相关。

不同的土壤含水量对土壤中植物残体的分解速率和土壤腐殖质组分(胡敏酸和富里酸) 数量的影响仍存在争议。由于常规研究土壤有机污染物动态变化的方法存在不足,所以可以通过同位素示踪方法(14C示踪法或13C自然丰度法)进一步定量研究。利用同位素示踪技术可以区分原有土壤有机质与外源有机物分解转化形成的土壤新有机质,从而了解土壤中植物残体分解转化的动态变化规律。

2.5土壤机械组成

土壤质地的差异形成不同的土壤结构和通透性状,因而对环境污染物的截留、迁移、转化产生不同的效应。由于黏土类富含黏粒,土壤物理性吸附、化学吸附及离子交换作用强,具有较强的保肥、保水性能,同时也把进入土壤中的污染物质的有机、无机分子、离子吸附到土粒表面保存起来,增加了污染物转移的难度。

在黏土中加入砂粒,可相对减少黏粒含量,增加土壤通气孔隙,可以减少对污染物的分子吸附,提高淋溶的强度,促进污染物的转移,但要注意到因此可能引起的地下水污染等问题。砂质土类的优点是有机污染物容易从土壤表层淋溶至下层,减轻表土污染物的数量和危害;但是有可能进一步污染地下水,造成二次污染。壤土的性质介于黏土和砂土之间,其性状差异取决于壤土中砂、壤粒含量比例,黏粒含量多,性质偏于黏土类,砂粒含量多则偏于砂土类。

一般而言,黏性土壤中的空气较砂性土壤少,好气性微生物活性受到抑制,土壤黏粒具有保持碳的能力,其含量影响外源有机物(有机化合物、植物残体)及其转化产物的分解速率。随着土壤黏粒含量的增加,土壤有机碳和土壤微生物量碳也增加,土壤有机碳与黏粒含量呈正相关,随着土壤黏粒含量的增加,碳、氮矿化量减少,但矿化部分的碳氮比并不受土壤质地的影响。

2.6气候及二氧化碳含量

气候变化通过影响土壤水分、溶质运移和温度的变化来影响微生物的活动,从而引起土壤中有机污染物含量的变化。凉爽季节向温暖季节转化会导致土壤有机碳的损失,热、湿润的气候有利于有机污染物的分解。在秋季和冬季,土壤中微生物数量增加;在春季积雪融化后,土壤中微生物数量迅速下降,这种微生物群落的动态变化与植物碳、氮的有效性相关联。

大气CO2浓度升高提高了植物的光合作用,使20%~50%光合产物通过根系分泌或死亡输入土壤,从而间接影响土壤生态系统。有些学者认为CO2浓度升高,会增加输入土壤的碳量,刺激土壤微生物的生长和活性,加强土壤的呼吸作用,增加了土壤中有机物的分解速率[15]。多数研究是在土壤—植物系统中进行的,CO2浓度升高通过增加植物同化碳来增加根系生物量,从而增加土壤中碳量输入。于水强研究了土壤外部不同O2、CO2浓度对土壤微生物的活性和土壤有机物分解及其组分的动态变化的影响,认为低CO2浓度有利于有机物的分解和胡敏酸的形成,而高CO2浓度有利于有机物的积累和富里酸的形成。

3结语

土壤是生态环境的重要组成部分,是人类赖以生存的主要资源之一,也是物质生物地球化学循环的储存库,对环境变化具有高度的敏感性。土壤的环境因子存在着不稳定性,但是通过研究最适合土壤中有机污染物降解转化的环境,可改变受污染严重的土壤中有机污染物的含量,改善环境质量,实现可持续发展。

4参考文献

[1] 郝亚琦,王益权.土壤污染现状及修复对策[J].水土保持研究,2007,14(3):248-251.

[2] 权桂芝.土壤的农药污染及修复技术[J].天津农业科学,2007,13(1):35-38.

[3] 夏北成.环境污染物生物降解[M].北京:化学工业出版社,2000.

[4] 张大弟,张晓红.农药污染与防治[M].北京:化学工业出版社,2001.

[5] 周启星.土壤环境污染化学与化学修复研究最新进展[J].环境化学,2006,25(3):257-264.

[6] 唐永銮,刘育民.环境学导论[M].北京:高等教育出版社,1987:178-180.

[7] 周启星,孔繁翔,朱琳.生态毒理学[M].北京:高等教育出版社,2004.

[8] 陈菊,周青.土壤农药污染的现状与生物修复[J].生物学教学,2006,31(11):3-6.

[9] 何振立.土壤微生物量及其在养分循环和环境质量评价中的意义[J].土壤,1997(2):61-69.

[10] FANG C,MONCRIEFF J B. The dependence of soil CO2 effluxon tempe-rature[J].Soil Biology and Biochemistry,2001,33(2):155-165.

[11] 徐全胜,李凌浩,韩兴国,等.土壤呼吸对温度升高的适应[J].生态学报,2004,24(11):2649- 2655.

[12] 王丽莉.温度和水分对土壤腐殖质形成与转化的影响[D].长春:吉林农业大学,2003.

[13] 张文菊,童立成,杨钙人,等.水分对湿地沉积物有机碳矿化的影响[J].生态学报,2005,25(2):249-253.

[14] 张甲,陶澍,曹军.中国东部土壤水溶性有机物含量与地域分异[J].土壤学报,2001,38(3):308-313.

气候变化对土壤的影响篇3

[关键词]茶园;栽培模式;生态环境;影响

1材料与方法

1.1研究区域概况

湖北恩施州位于该省西南部,地处湘、鄂、渝三省交汇处,属亚热带季风及季风性湿润气候,夏无酷暑、冬无严寒,常年降水充沛,地势多变,常见气候垂直地域性差异。湖北恩施现有茶园面积约100万余亩,年产量约100万担,是该地区发展支柱型产业。

1.2实验设计

本次研究主要以湖北恩施山区农村茶园为研究背景,研究选择纯茶园区、塑料大棚茶园、林篱茶园三种茶园栽培模式为研究重心对其各模式内部采用定点观测数据方式,分别于2015年5月20~24日、2015年8月2~6日、2015年10月21~25日3个时间节点对各实验区内部土壤、水分及连续5天区域内部小气候等进行数据测验。

本次研究所有不同栽培模式、栽培区域内茶树进行统一性管理,茶树品种及树龄均相同,区域试验前环境条件均保持一致。

1.3试验方法

1.3.1区域小气候测验

本次研究各实验区域小气候均采用定点定时平行对比测量,每区域每天均持续观测12小时,早8点至晚20点结束,2小时/次,小气候观察内容包含光照强度及内部湿度及温度测量等。

1.3.2土壤理化性状测定

本次研究采用5点取样方法对土壤进行水分、容重、pH值、有机质等进行分别检测,其中化学性状检测土壤需采集土壤表面至30厘米土壤,每10厘米深度为一组,共采集3组数据,含水量取0~60厘米深度,每20厘米为一节点,分3组。

2结果与分析

2.1不同栽培模式对茶园小气候影响分析

2.1.1光照

光照强度、光照时间以及光质是茶树光合作用质量的重要影响因素,但同时除以上影响因素之外,二氧化碳、水分及温度等也可对茶树光合作用产生严重影响[1]。

根据本次研究可知,在不同观察月份中,各栽培模式中茶园日变化趋势未发生明显变化,均于早8点上升,于12:00~14:00达到最高后降低,但5月与8月中,纯茶园的光照强度于各点之上均高于其他茶园[2],且平均光照强度均高于光饱和点。因此,5月及8月中,10:00~16:00之间除纯茶园外,其余茶树栽培模式全天光照强度值均低于光饱和点,利于茶树生长。

2.1.2温湿度

一是温度日变化。本次研究中,各茶园栽培模式不同均会对其空气温度造成一定的影响,根据研究结果可知,不同栽培模式茶园气温日变化规律于3个月测量下变化规律基本均呈先高后低趋势,14:00温度最高,纯茶园相对最高。基本而言,在研究中,空气温度垂直变化3个不同层面中纯茶园气温日变化均明显高于其他茶园,而对比中林篱模式最低。10月气温日变化曲线逐渐趋于平缓。因此各茶园之间曲线变化基本相接近。

二是湿度日变化。根据研究可知,各茶园相对湿度与相对温度呈现反方向变化,空气湿度于中午前后较小,而在3种栽培模式中林篱茶园变化最明显,其次为塑料大棚,因此该研究结果表明,对茶园予以遮蔽可有利于茶园湿度增加[3]。各月份各模式茶园中,林篱茶园湿度最大,而纯茶园最小。

2.2茶园土壤因子研究

2.2.1物理结构改善结果

一般而言,茶园土壤物理性状会对茶树根系生长发育造成一定影响,良好的土壤结构有利于茶园种植环境的稳定及植物根系生长,有利于茶树生长。

一是水分。本文对不同月份不同栽培模式茶园内土壤水分进行测定后可知,各茶园土壤水分总体呈垂直变化趋势且变化趋势均随深度增加而增加,而土层间每月份土壤含水量平均值具有明显差异,在研究中,纯茶园模式水分均最低,而大棚模式及林篱模式水量基本相一致,因此可知,该两种种植模式持水能力较好。

二是容重。一般而言,土壤容重数值与肥力指标具有重要相关性,土壤容重越小则表明其结构性越好、空隙多,渗透性高,在本次研究中,0~40厘米土层中,纯茶园模式土壤容重最高,因此可知,该栽培模式下土壤性状较其他2种栽培模式较差,塑料大棚及林篱模式容重较小,有利于茶树生长。

2.2.2土壤养分状况改良结果

一是土壤速效养分。土壤速效养分指可被水溶解并被植物直接利用的养分,有利于茶树生长。一般而言,上层土壤速效养分均较中下层高,造成此类结果的原因主要是因为上层土壤受到的人为干预及自然干预因素较多,其中人为干预主要是指人类对茶园的养分保持操作及施肥管理,自然因素主要是指植物自身对养分的改良。本次研究中,大棚模式茶园肥力在上中下各土层中均较其他各模式好,这与避免雨水冲刷等具有重要相关性。

二是土壤全量养分。该土壤养分主要是指土壤中某营养元素的全部含量,土壤全量养分的发展及变化趋势与速效养分具有一定相类似性。

3讨论

3.1不同栽培模式对茶园生态环境的影响

本次研究中,林篱模式在具体应用中有树木遮挡,因此可对太阳光造成一定的吸收及反射作用,而塑料大棚遮挡物也有利于直射光遮挡,故与纯茶园相比其直射光较弱,而散射辐射等增强,光照强度均低于光饱和点,因此有利于茶树蛋白质、氨基酸等的积累,提升茶叶质量,这与之前所研究的结果具有一致性。

3.2复合模式效益分析

茶树在生长过程中与生态环境之间关系密切,不同的环境条件对于茶树的形态及生理等均具有不同影响。在本次研究中,林篱模式属林茶复合模式,该类模式在具体应用中有利于光能利用率提升,促进整个种植生态系统的平衡,减少病虫害发生概率,而单作茶园其稳定性较差,难以实现茶园的有效种植及茶叶质量提升。

塑料大棚栽培模式属新兴茶树栽培模式的一种,该模式在应用中可有效提早茶叶开采时间,有利于春茶开采期提前并避免霜冻等对茶树嫩芽所造成的伤害,有利于经济效益增强,值得推广。

3.3发展建议

湖北恩施山区农村茶园茶树种植面积非常广,种植技术等已逐渐趋于完善性发展,在现代茶树种植中,该区域可针对不同的地域特征采用不同的茶园栽培模式形成以茶为主的人工生态系统,加强茶园树种选择,选择主干分支部位较高、受病虫害影响较小且经济效益较高的茶树,加强茶园管理,养殖小型家禽家畜,尽量选择对病虫害有抑制作用的家禽家畜,保护生态环境,在不影响生态环境的基础上实现茶园有效生产及机械操作,立地符合无公害要求,避免选择周围具有严重污染物的区域,从而保证茶园茶树生长环境的优越性,提升茶树生长质量,促进茶叶品质的有效提升。

参考文献:

[1]戈照平.不同生态模式茶园小气候变化及对茶叶品质影响研究[D].北京:中国农业科学院,2013.

[2]杨海滨,盛忠雷,谢遥等.不同栽培模式对山地茶园生态环境和茶叶品质的季节调控[J].西南农业学报,2015(4):1559-1563.

气候变化对土壤的影响篇4

【关键词】作物;生理需水;生态需水

一、水在作物生理中的作用

水是作物的重要组成部分,其含量常常是生命活动强弱的决定因素。生长活跃和代谢旺盛的组织的含水量一般达70%80%,甚至达90%以上,如生长着根尖、嫩芽、幼苗的含水量为66%—90%。大多数种子的含水量为5%—15%,在萌芽之前一定要吸足水分,当种子含水量达40%—60%时才开始萌发。作物体内含水量分布大致遵循如下规律:生长旺盛的器官和组织高于老龄的器官和组织,上部高于下部,分生和输导组织高于表皮和其他组织。

作物体内的水分,按存在状态的不同,可分为束缚水和自由水两种。束缚水是细胞中靠近胶粒、受胶粒束缚(牢牢吸附)而不易移动的水分,其含量影响作物抗旱、抗寒能力。自由水则是离胶粒较远、不受束缚而能自由移动的水分,其含量决定作物的代谢强度,如光合强度、蒸腾强度、呼吸强度和生长速度等。因此,作物体内束缚水和自由水的含量及其比率,是反映水分生理状况的一项重要指标。如小麦的发芽、出苗和分孽期,生长发育旺盛,自由水占总含水量的比例大;但随着气温逐新下降,进入越冬期,束缚水占总含水量的比例逐渐增大,小麦的抗寒能力增强,从而顺利越冬;开春后,随着气温逐渐回升,小麦开始返青起身,自由水占总含水量的比例逐渐增大,生长速度加快,抗寒能力减弱,此时若出现寒潮,小麦易受冻害。

二、土壤—作物一大气水分传输系统

把水分在土壤、作物和大气中的流动看做是一个在物理上连续的动态过程,构成一个连续完整的系统,称为土壤一作物一大气连续体,简称SPAC。

(一)作物对水分的吸收、输导和散失途径

根系从土壤中吸收的水分,主要经过茎、叶,最后散失于大气中。具体地说,土壤水-根毛-根的皮层-根的中柱鞘-根导管-茎导管-叶柄导管-叶脉导管-叶肉细胞一叶细胞间隙-气孔腔-大气。

(二)水分传输的原理

在土壤一作物一大气连续体中,无论是土壤、作物和大气,还是液态水和气态水,均具有一定的水势。系统内的水总是由水势高处向低处流动。当叶面蒸腾时,首先引起叶水势下降,从而在叶、茎之间产生水势差(水势梯度),使水分由茎部流向叶部;接着在茎、根间和根、土间发生连锁反应,最终形成内土壤经作物至大气的水流。

在土壤一作物一大气连续体中,各个部位水势大小顺序是:

根系吸水困难。根水势最高位-0.4MPa,最低可降至-1.5MPa。茎每升高1m,茎水势降低0.03-0.04MPa,一般农作物的茎水势为-1.5—0.4MPa。正常生长情况下的叶水势一般为-1.5-0.5MPa。大气的水势特别低,当空气相对湿度为50%左右时,其水势为-100MPa。由于有这样大的水势梯度,产生强大的蒸腾拉力,可使水分沿树木上升到l00m以上高大乔木的顶端,是水分向上输导的主要动力。而植物主动吸水的生理过程所产生的根压最多使水分上升204m。大气和土壤是作物赖以生存的环境,通过对土壤一作物一大气连续体的研究及应用,可揭示作物与环境之间的水分传输规律,为进行农田水量平衡、确定作物需水量及制定灌溉排水计划提供理论依据。

三、灌溉与排水对改善作物生态环境的作用

(一)调节土壤肥力

1.以水调气

作物生长要求土壤中有适量的空气,以利于根系呼吸和有益微生物活动。水分和空气共同存在于土壤孔隙中,它们互为消长、互为矛盾,即土壤水多时,空气就少,反之亦然。可见,水分是矛盾的主要方面。因此,旱地里及时排除地表积水和土中滞水,降低过高地下水位,可以改善土壤通气状况,达到以水调气的目的。水稻田浅灌、勤灌和适时排水晒田,促使水气交换,增加土壤中氧气含量,可减少有毒物质的产生,改善土壤理化性状,促进养分的分解和活化,增强根的活力。

2.以水调温

作物生长要求适当的土壤温度和大气温度,温度过高或过低都会抑制和危害作物的生长发育。由于水的热容量和导热率远大于空气,当土壤水分增加或减少时,都会影响土壤温度变化,所以在低温和高温来临之前,增加土壤水分,可以缓和、稳定土温及气温变化,缩小昼夜温差,防止作物受害。在早春升温季节需要尽快提高土温时,通过适当排水以降低土壤含水量或稻田水层,有利于提高土壤和大气温度。例如,早春水稻育秧时,天气较冷,昼夜温差较大,必须白天排水,晚上灌水,以吸热保温,使幼苗不受冻害。冷烂田排除冷浸水和降低过高的地下水位,有利于提高土温。玉米等作物夏天灌水则可以降低土温或抑制土温上升,避免高温危害。越冬作物如冬小麦等在冻前灌水,可以平抑地温,防止或减轻冻害。

3.以水调肥

作物对养分的吸收必须以水为媒介(或载体)。如果土壤中有丰富的养分,而没有足够的水分,则养分不能被作物吸收。养分只有在适当的水分配合下,才能发挥其对作物的营养作用。同时,土壤水分状况对土壤养分的转化和保持也有重大的影响。生产上通过合理灌排,以水调肥,可以促进或控制土壤养分的分解和转化的方向,防止养分的流失浪费,既有利于作物的吸收利用,又有利于培肥土壤。例如,通过水层的变化,调节养分的积累、分解和利用,以促进水稻合理的吸收,健壮生长。

(二)改善农田小气候

农田小气候主要指地面以上2m内的空气层温度、湿度、光照和风的状况,以及土壤表层的水、热状况。它是作物生活的重要环境条件,对作物生长发育及产量高低有许多直接或间接的影响。影响农田小气候的因素很多,其中通过灌溉排水改变农田水分状况,对改善农田小气候有显著作用。

灌溉排水对农田小气候的影响是复杂的。不同的灌排时间和灌排方法都会对农田小气候产生不同的影响。例如,在喷灌的情况下,水分通过机具喷洒,以雾滴状降落在植株和地面上,其对农田小气候的影响更为显著。据一些喷灌与地面灌溉对比试验资料,一般喷灌比畦灌的空气温度要高10%—20%,空气温度在高温季节可低l—3℃,低温季节可高1℃左右。

由于灌溉排水对农田小气候会产生多方面的效应,因而在农业生产中,高温季节可利用灌溉来防止高温干旱和干热风的危害;低温季节可防止低温和霜冻的危害;水稻田采用合理灌排和适时晒田等措施,更可以收到改善农田小气候的良好效果。

参考文献

[1]戴佳信.内蒙古河套灌区间作作物需水量与生理生态效应研究[J].内蒙古农业大学,2011年.

气候变化对土壤的影响篇5

分析得出:在剖面上,土壤饱和导水率由大到小的排列顺序为 0~10cm、20~30cm、10~20cm 和 30~40cm;土壤饱和导水率与植被盖度相关性显著,植被盖度越高土壤入渗能力越强,土 壤饱和导水率越大;温度是影响高寒草甸土壤水分分布的重要因素,随着地温的升高,土壤 的饱和导水率也相应增大。植被和地温是影响高寒草甸的土壤入渗能力的重要因素。

关键词:入渗,饱和导水率,植被盖度,

abstract

infiltration is an important process in hydrologic cycle, in the source region of yangtze river, infiltration of soil moisture has impact in runoff and plateau ecology. basing on the measured data in

infiltration, ground temperature and vegetation during three years, the results are as follows: in profile,

the sequence of saturation conductivity coefficient was soil layers 0~10cm, 20~30cm, 10~20cm and

30~40cm below the surface from max. to min.; there is positive and significant correlation between

the saturation conductivity coefficient and vegetation cover; when the ground temperature increased, the saturation conductivity coefficient too. so, the vegetation cover and ground temperature have important influence to the soil infiltration in alpine meadow.

keywords:infiltration; saturation conductivity coefficient; vegetation cover; the source region of yangtze river

长江源区土壤入渗是指降雨落到地面上的雨水从土壤表面渗入土壤形成土壤水的过程,它是水在土体内运行的初级阶段,也是降水、地表水、土壤水和地下水相互转化过程中的一个重要环 节[1]。

土壤入渗是分析模拟土壤侵蚀过程的重要参数,同时也是实施水土保持规划时需要认真 考虑的因素。总结各因子下的土壤入渗的变化规律,将有助于研究地表产流的机理及其规律[2],揭示水量转化关系及“五水”(大气降水、地表水、地下水、土壤水、植物水)转化机理, 以从更深层次上弄清水量转化规律。这对土壤侵蚀的预测和防治、洪水的预报、各种水土保 持措施的最优化配置及其效益评价都具有极为重要的指导意义,同时为增加土壤蓄水、土壤 水分最优化调控、合理有效地利用土壤“水库”的调节功能,提高土壤水分生产力等方面具有 重要的理论和现实意义。

土壤的入渗性能受制于许多内在因素的影响,诸如:土壤剖面特征、土壤含水量、导水 率及土壤表面特征等[3~6]。特别是土壤导水率又取决于土壤孔隙的几何特征(总孔隙度、孔隙 大小分布及弯曲度)、流体密度和黏滞度、温度等因子[2,7]。不同林地、草地、地形地貌、土 地利用方式等外界条件对土壤内在理化性质均有显著的影响,从而形成不同外界条件下土壤 入渗的特异规律。本文用土壤饱和入渗仪(2800k1)对不同植被盖度、不同地温、不同土 层深度的土壤进行观测,得出饱和导水率,并进行统计分析,弄清长江源区高寒草甸植被覆 盖与地温变化对土壤饱和导水率的影响,找出高寒草甸生态环境下的土壤入渗规律。

1. 研究区概况

长江源区位于青藏公路以西的昆仑山和唐古拉山之间,平均海拔高度 4500m,生态环境 极为复杂、生物多样性最集中的地区,该区域独特的地理位置及其生态环境特点、特有的水 源涵养生态功能、丰富的自然资源与生物多样性,以及对整个流域环境的深刻影响等,使该 区域近年来成为全社会所广泛关注的热点地区之一。

本文所选择的研究区位于长江源区多年冻土和高寒草甸比较典型的小流域北麓河一级 支流——左冒西孔曲流域,地理位置9249′48~93°0′40e,34°39′36~34°46′50n,流域面 积为134km2。该区域深居内陆,属高原寒带半湿润~半干旱区气候。年均气温为-5.2 ℃,多

年平均降雨量290.9mm,多年平均蒸发量1316.9mm,相对湿度平均为57%,海拔4680~5360

m(王根绪等,1998)。 该区域植被类型主要有高寒草甸和高寒草原两大类。草甸植物以莎草科嵩草属占优势,

如西藏嵩草和嵩草等;草原植物以禾本科和菊科为主,如紫花针茅、羽柱针茅等。该区成土 母质多为第四纪沉积物及变质岩、中性侵入岩等岩石风化的坡、残积物,砂砾石、碎石土基 亚粘土夹碎石(王根绪等,2001)。土壤发育很慢,处于原始的粗骨土形态。土壤类型基本 分为三大类:高山草甸土、高山草原土和高山荒漠土。冻土和地下冰比较发育,河谷中存在 着潜水,常形成冰锥、冻胀丘;斜坡地带常有冰锥、冰丘、冻融泥流及冻融滑塌发育;连续 多年冻土地区的地温为-3.0~-1.0 ℃,天然冻土上限为0.8~2.5m。

2.研究方法

2.1 实验设置

在研究区小流域内,根据流域两侧的地形、植被类型与植被覆盖状况布置观测试验点, 在每个观测实验点上进行以下试验与观测内容:地温、植被类型与盖度、土壤含水量、土壤 根系层深度、土壤容重、土壤饱和导水率及土壤取样等。按植被盖度分为 10%、40%、70%、

90%四个实验点,每个实验点重复实验四次。

2.2 土壤饱和导水率的测定

土壤入渗采用 2800k1 土壤饱和入渗仪。在流域内选择 10%、40%、70%、90%四个不 同盖度的植被进行观测,在每个盖度下重复 4 次,求其平均值。数据读取以 2 分钟作为时间 间隔并记录各个数据,直到土壤入渗达到饱和稳定入渗,停止观测。求出液面下降速率,单 位为 cm/s。

设管中液面下降速率为 r(cm/s),测得 5cm 处入渗水头为 r1,10cm 处为 r2,由此, 标准饱和导水率(kfs)由下列公式计算:

当使用外部储水管的时候使用以下公式:

kfs=0.0041xr2-0.0054xr1; 当使用内部储水管的时候使用以下公式: kfs=0.0041yr2-0.0054yr1;

式中,x,y 分别为外管和内管的面积值,分别为 x=35.22cm2,y=2.15cm2。

2.3 主要环境因子的测定

(1) 利用地温计对活动层5, 15, 25和35 cm的土壤温度进行观测, 每1 h 进行1 次; (2) 采用便携式tdr 对活动层5, 15, 25和35 cm 的土壤水分进行观测; (3)土壤的颗粒度通过取 样用激光粒度仪进行测定;(4)土壤容重采用环刀法进行测定。

3. 结果与讨论

3.1 土壤垂直剖面上的饱和导水率变化规律

土壤水分入渗过程受多种因素影响,在土壤水分入渗过程中,土壤剖面某一深度的土层 吸水过程或脱水过程往往相互交替或者同时并存,因此存在着滞后作用对入渗的影响[8]。当 有效降水进入土壤后,土壤水开始向下入渗并进行分配。在较大的时间尺度里,土壤水分的

动态变化实际上是一时间序列的变化,分析土壤的入渗特性,可以通过分析不同层次土壤饱和导水率来进行研究。

 

在青藏高原,土壤水分入渗对是高原生态环境变化影响显著。由于生态环境变化引起土

壤水分的运移、储存等过程严重变化。在垂直剖面上,土壤饱和导水率随土壤深度趋势有如 下特征(见图 1):

(1)四种不同的植被盖度下(10%,40%,70%,90%)变化曲线有着共同的变化趋势: 随着土层深度的增加,土壤饱和导水率总体呈现下降趋势。产生这个影响的根本原因是随着 土层深度的增加土壤空隙度在减小,这是因为在青藏高原的这种特殊的高寒草甸生态条件下,

随着土层深度的增加植被的根系越来越少,也使得土壤空隙度减小,这势必影响到饱和导水

率的减小。

(2)在 20~30cm 土层的时候,变化趋势出现了一个拐点。这是因为在长江源区这个特 殊的高寒草甸区,主要植被就是藏嵩草和小嵩草,而嵩草的须根层主要分布在 20~30cm 的 土层,经过对土壤剖面的观察,这个土层根系吸收水分很明显,这就使得 20~30cm 土层的 土壤空隙度 10~20cm 土层的大,因此 20~30cm 土层的饱和导水率相应就大于 10~20cm 土层 的饱和导水率。

3.2 植被盖度对入渗的影响

植被变化对区域水平衡的影响是目前国际水文科学最具活力的研究领域,尤其是大量研 究表明大尺度土地覆盖与土地利用变化是导致区域气候变化的重要因素,其中以水分、热量 传输变化为改变气候的主要方式[9],因此 igbp 将水循环的生物圈作用研究(bahc)一直作为 其核心计划[9,10].在描述土壤-植被-大气相互作用关系时,降水入渗不仅依赖于随机的降水事 件,而且受制于土壤水分状况[10,11].同时,不同植被类型的土壤具有不同的水分平衡关系,土壤 湿度依赖于植被类型和土壤特性,但反过来是决定不同植被蒸散量的关键因素[12].土壤水分 是连接气候变化和植被覆盖动态的关键因子,对不同地区的不同植被类型土壤水分平衡要素 的确定,是一个研究较早但始终未能解决的水文科学问题,也是新生边缘学科———生态水文 学的主要研究内容之一[13].

影响土壤降水入渗的主要因素是土壤自身性质如土壤质地、容重、含水率、孔隙度、地 表结皮、水稳性团粒等因子[14],而植被盖度的不同,改变了土壤质地,使土壤中各因子发生了较 大的变化,从而影响到土壤入渗速率之间有较大差异[2]。

植被盖度是影响土壤入渗的重要因素之一。文章初步分析了长江源区高寒草甸区植被 盖度和土壤饱和导水率关系。

在研究区小流域内,分别选取植被盖度 10%、40%、70%和 90%的样地。对 0~10cm,

10~20cm,20~30cm 和 30~40cm 土层进行试验。

 

图 2 土壤饱和导水率与植被盖度关系图

fig2. the curve between hydraulic conductivity and vegetation cover

表 1 土壤导水率回归方程仅有相关系数,没有显著性检验,下面回归方程难以成立

tab.1 hydraulic conductivity equation of regression

 

研究结果表明:

1、0~10cm,10~20cm,20~30cm 三层土层的饱和导水率曲线都很好得表明了:随着植被盖 度的增大,土壤饱和导水率明显有规律地增大(见图 2)。这是因为植被的存在很好的增大 了土壤的空隙度,增大了土壤的饱和到水率。这对土壤水分的保持很水文循环有着很重要的 意义。这也是江源地区能够为长江涵养水源的一个重要条件。

2、30~40cm 土层的饱和导水率曲线表明了:在植被盖度 70%以下的区域,植被的不足以影 响到 40cm 的地层,而且饱和导水率很小。因为中低盖度的植被须根层很少达到 40cm,

20~30cm 是须根的主要存在层。而在 90%的植被盖度下在 30~40cm 的土层也有很大的饱和 导水率,这是因为在高盖度的区域,植被的须根层生长良好,须根层达了 40cm,甚至更深。 这也说明了,植被盖度越高越有利于水分的入渗和保持。

3、表 1 表明了在长江源区的高寒草甸生态环境下,植被盖度和饱和导水率之间的相关方程 为二次多项式。相关系数都在 0.98 以上。这对水文循环研究和高寒草甸下水文模型的建立 都是一个很大的帮助。

4、图 2 中的三条变化曲线的变化趋势,随着土层深度的增加,变化越来越缓慢,这也表明: 植被盖度对表层土壤饱和导水率影响最大,随着土层深度的增加,植被的影响越来越弱。

30~40cm 的变化曲线也表明了 30cm 以下的土层,高寒草甸的植被对土壤的入渗较小。

3.3 地温对土壤入渗的影响 土壤温度也称地温,是影响冻结土壤入渗能力大小的一个主要因素。在非冻结条件下,

土壤温度对土壤入渗能力的影响甚微,但是在冻结条件下,土壤温度是土壤水分发生相变的 两大条件之一,对土壤入神能力的影响显著。土壤温度的变化引起土壤中固、液相水分比例 的变化,进而引起土壤孔隙状况的变化,对土壤的入渗特性产生较大的影响[15]。

为了观测地温对土壤入渗的影响,本试验选取在 90%植被盖度下 10~20cm 深度的土层, 做连续的饱和导水率观测试验。为了避免每次试验对土壤结构和性质的破坏而引起的误差, 试验设计再 90%植被盖度下,选取 5 个点,在 1 天内的 5 个不同时间分别对 10~20cm 深度 的土层进行饱和入渗试验,测算出饱和导水率,别记下当时的 10~20cm 土层的地温。为了 更好的看出地温和饱和导水率的关系,把地温从低到高排列,并与饱和导水率对应,得到下 面的地温与饱和导水率关系图。

 

图 3 地温与饱和导水率关系图

fig2. the curve between hydraulic conductivity and ground temperature

研究结果表明:长江源区高寒草甸生态环境下,土壤的入渗与地温关系密切。随着地温

的升高,饱和导水率随之升高,两者的关系是二次多项式。在地温 0℃以下的土层,为冻土 层。在冻土层上,土壤水分是不会下渗的。

3.4 次降雨入渗过程随植被覆盖的变化

在一次降雨后,土壤水分在垂直剖面上的变化过程是土壤水分变化的主要过程之一,是 研究降雨、地表径流、降雨入渗以及土壤水分变化的重要内容[16]。为了研究一次降水后, 土壤水分在不同植被盖度下的分布变化,选取典型的样地和地段,对不同植被盖度下

(10%,50%,90%)土壤剖面深度 0~10cm,10~20 cm,20~30cm 和 30~40cm 范围的土壤含水 量进行了观测和分析。

结果表明,高寒草地土壤含水量与植被盖度有密切的相关性。从 0~10cm 土壤含水量 变化可以发现,在 0~10cm 的土层范围内,盖度不同,土壤水分变化明显(图 4),雨后在植 被盖度为 10%的草地的初始土壤含水量最高,90%盖度草地的初始含水量最低。在一次降雨 后,植被盖度较高的地表土层较疏松,空隙度相对较大,土壤的入渗能力较好,使水分很好 得下渗到深层土壤。所以,在雨后的初始阶段,植被盖度越高,0~10cm 土层的水分含量越 越低。随着时间的变化,含水量总体都有减少的趋势,这是水分不断向下入渗的原因。植被

 

图 4 不用植被盖度相同土层深度的水分变化

fig4.ange of the soil moisture for different coveragein the same soil depth

盖度越高的草地,土壤含水量变化越慢。90 分钟后 90%盖度草地的含水量远远高于低

盖度的草地,这也表明了高植被盖度的草地良好的持水能力。这主要是植物的地上部分吸收 太阳辐射,减少了辐射到地面的热量,降低了土壤表层的蒸发量.植物根系有很好的亲水性,由 于表面张力作用使根系对土壤中的水分起阻滞作用[16]。10~20cm 和 20~30cm 土层的雨后土 壤含水量变化曲线图呈现出和 0~10cm 土层相同的变化趋势。

30~40cm 的土壤水分变化与 30cm 以上的土层含水量变化曲线不同。雨后初始含水量不 再是 10%盖度的草地,而是 50%盖度的草地,而 10%盖度的草地含水量最低。这说明了在

30~40cm 土层,10%盖度的草地土壤空隙度小,水分不利于下渗到 40cm 的深层土壤,而 90% 盖度的草地持水能力比较强,这也使 30~40cm 的土层的含水量小于 50%盖度的草地。随着 时间的变化,含水量总体仍然是减少趋势。90 分钟后 30~40cm 土层的土壤含水量仍然和初 始含水量关系一样:50%盖度草地的最高,10%盖度草地的最低。

以上关系充分说明植被盖度对土壤水分入渗的影响。土壤的入渗能力和持水能力的对比 都对土壤含水量有很大影响。随着植被盖度增大,土壤的入渗和持水能力都增加,入渗能力 变化得更明显。!

4.结论

综上所述,

1. 随着土层深度的增加土壤饱和导水率总体呈现下降趋势。30cm 的须根分布层增大了 土壤的入渗能力。土壤饱和导水率从大到小依次为在 0~10cm、20~30cm、10~20cm 和 30~40cm 土层;

2. 在 0~10cm,10~20cm,20~30cm 的 3 个土层剖面上,随着植被盖度的增大,土壤饱

和导水率明显有规律地增大,并呈现出二次多项式关系;

3. 在 30cm 以下的土层,植被影响较小,只有在 70%以上的高盖度植被覆盖下,影响 才比较明显,并呈现出 3 次多项式关系;

4. 长江源区高寒草甸生态环境下,土壤的入渗与地温关系密切。随着地温的升高,饱 和导水率随之升高,两者的关系是二次多项式。

5. 次降雨量的试验充分验证了植被和土壤饱和导水率的关系。植被是高寒草甸生态环 境下,影响水分循环的重要因素,好的植被有利于水分的入渗和保持,对长江源区生态水文 环境有重大意义。

参考文献

气候变化对土壤的影响篇6

9月7日,中国农业科学院副院长唐华俊在“气候变化对我国粮食生产系统的影响机理与适应机制研究”项目启动会上说:气候变化与我国粮食生产之间具有相互影响和相互作用的密切关系。我国农业尤其是粮食生产对气候变化非常敏感,是受气候变化影响最大的行业,气候变化对我国粮食生产的影响已经初步显露出来。2008年我国南方遭遇冰雪灾害影响,2009年我国北方小麦产区遭遇严重干旱以及我国西南地区发生的严重干旱等,都对我国农业和粮食生产产生了明显的影响。气候变化对我国粮食生产系统的影响非常广泛,并将继续造成深远而巨大的影响,其中负面影响将表现得更为突出。

据专家介绍,气候变化直接导致我国粮食生产的热、水、光等气候资源条件变化,直接影响作物布局和农业生产结构的调整。如近年来我国玉米种植面积急剧上升,成为我国第二大粮食作物,而小麦则下降为我国第三大作物,小麦品种抗冻性降低,小麦冻害明显增加,直接影响了我国粮食安全。土壤温度升高和降雨量的变化使土壤微生物活动发生改变,导致微生物对土壤有机质的分解加快,加速了土壤养分的变化,可能造成土壤有机质含量减少和土壤肥力下降。大范围的气温升高以及由此而引起的干旱化,在一定程度上影响着我国农业生产的布局。

同时,气候变化可能诱导粮食作物基因抗逆性变化和品种改良,改变粮食作物生长发育机理,导致粮食作物主要病虫害种类和流行暴发规律的改变。如全球变暖将加重病虫害对农业生产的危害程度,特别是小麦锈病、粘虫、草地螟等的危害加重;暖冬对农作物病虫害安全越冬十分有利,将导致农作物病虫害加重。在温度偏高伴随阶段性干旱条件下,病虫害的种群世代数量呈上升趋势,繁殖数量倍增,往往造成病虫害的大发生。

我国农业尤其是粮食生产仍然是以农户生产方式为主,种植规模小,抗灾能力弱,极易受到农业气象灾害的打击。数据显示,1995~2005年我国因旱灾造成的粮食减产损失约为每年1500万~2500万吨,约占全国粮食总产量的4%~8%,占因灾总损失的55%以上,每年旱灾面积约占耕地面积的1/6左右;洪涝灾害所造成的农作物受害面积占气候灾害总面积的27%,每年平均洪涝灾害作物1.4亿亩。有分析认为,如果不采取措施,未来20~50年我国粮食生产将受到气候变化的严重冲击,气候变化将严重影响我国长期的粮食安全,造成农业成本和投资大幅度增加,进而影响到粮食主产区农村经济可持续发展和农民收入的稳定增长。

唐华俊说,揭示气候变化对我国粮食生产的影响机理及适应机制,摸清气候变化对我国粮食生产的影响途径和作用过程,认清我国粮食生产对气候变化的适应能力,定量确定气候变化对我国粮食生产发展等的影响程度,是国家制定应对气候变化政策和行动、确保国家粮食安全、促进粮食主产区农村经济社会可持续发展和农民收入稳定增长的迫切需求。

气候变化对土壤的影响篇7

关键词:盐碱地;土壤节肢动物群落;垂直分布;改良措施

中图分类号:S154.5 文献标识码:A 文章编号:0439-8114(2016)11-2785-07

DOI:10.14088/ki.issn0439-8114.2016.11.018

盐碱土是气候干旱、蒸发量强等情况下形成的一类特殊土壤,其形成的实质主要是各种易溶性盐类在地面的重新分配,致使盐分在集盐地区的土壤表层逐渐积聚起来[1]。用脱硫废弃物改良盐碱地是将工业废物的再利用和农业土壤改良相结合的一种改良方式,具有深远的现实意义[2]。盐碱化恢复过程是由物理、化学、生物等多个不同属性过程组成。其中,生物过程尤为重要,土壤节肢动物是土壤生态系统中不可缺少的重要组成部分,在土壤物质循环和能量转化过程中起着重要的作用,同时,土壤生态因子也决定了土壤节肢动物的生存与活动[3-5]。土壤节肢动物群落组成与结构对环境变化或干扰的反应极为敏感,可作为土壤环境监测的敏感因子[6]。土壤线虫[7]、原生动物[8]、蚯蚓[9]、甲螨[10,11]等类群已被应用于作为反映土壤质量的主要指标。土壤盐渍化对土壤节肢动物群落演变过程的生态驱动机制逐步受到关注,土壤节肢动物的种群分布、密度及生物量与土壤理化性状、土壤酶活性、有机物含量及肥力结构密切相关。中国北方干旱区盐碱化生境如黑河流域[12,13]、吉林羊草草原盐碱生境[14]、宁夏银川北部盐碱改良地试验区[15,16]、新疆尼勒克农田[17],湿地盐碱化生境如崇明瀛东[18]、扎龙湿地[19]、豫东黄河[20]等不同盐碱化生境中陆续开展的一系列土壤节肢动物生态学研究表明,土壤pH、可溶性盐、碱化度、有机质等是影响土壤节肢动物的主要因子,而且受气候因子(温度和降水)的季节变化影响,不同盐碱化生境的优势类群差异很大。土地利用、覆被变化和生态系统管理措施对黑河流域土壤盐渍化及土壤节肢动物群落演变特征的耦合可显著改变土壤节肢动物群落结构[12,21]。

土壤盐碱化是目前制约宁夏农业增产的土壤因素之一,用脱硫废弃物改良盐碱地正逐步深入,并成为盐碱化生态恢复的有效途径。研究盐碱化恢复过程中土壤节肢动物群落和土壤环境的演变特征,为进一步解析盐碱化生态系统的生物过程演变机制奠定基础。为此,本研究通过调查不同改良措施下盐碱苜蓿地土壤节肢动物群落的结构,分析土壤节肢动物群落与环境因子间的关系,旨在揭示土壤节肢动物对盐碱化恢复的响应,为深入揭示盐碱化恢复的生物过程机理和制定有效的恢复措施提供科学依据。

1 研究区概况与研究方法

1.1 研究区自然概况

研究地位于宁夏平罗西大滩试验基地(E106°22′50″,N38°48′18″,海拔1 095 m),地处河套平原西南部,地势平缓低洼,境内分布有中国乃至世界特有的龟裂碱土。该地属典型的北温带大陆性气候,年平均气温8.50 ℃,年平均降水量180 mm,主要集中在7~9月,平均海拔1 100 m。地下水埋深约1.50 m,盐分类型主要有NaCl、Na2SO4、Na2CO3,土壤质地黏重,透水性差。土壤碱化度为15%~60%,pH 8.00~10.40,全盐含量0.25%~0.65%。

1.2 样地设置与土壤节肢动物采集鉴定

样地设在6×6拉丁方设计(36个小区)的苜蓿(Medicago sativa)试验田(已种植2年,每年夏季和秋季各刈割1次),小区面积5 m×10 m,总面积1 800 m2,苜蓿株(丛)距10 cm,行距30 cm。共设6个处理,处理1(MXA)不用任何改良技术;处理2(MXB)施脱硫石膏1.5 t/667 m2;处理3(MXC)施改良剂0.5 t/667 m2+有机肥2.0 t/667 m2;处理4(MXD)洗盐灌水定额270 m3/667 m2;处理5(MXE)施脱硫石膏1.5 t/667 m2+灌排措施(同处理4);处理6(MXF)施脱硫石膏1.5 t/667 m2+有机肥2.0 t/667 m2+改良剂0.5 t/667 m2+灌排措施(同处理4)。采样于2014年6~10月进行,每20 d采集1次,共采集7次,同一处理选择3个小区,并在3个小区上各设3个重复。每一样方以200 cm3环刀法分0~5、5~10、10~15 cm三层取土样,带回实验室分别用Tullgren法(干漏斗法)进行分离提取土壤节肢动物[22]。

对采集的土壤节肢动物标本进行鉴定[22-24],因土壤节肢动物成虫和幼虫的生活习性差异较大,所以将成虫和幼虫分开统计数量。

1.3 土壤理化因子分析

在每个样方内,用环刀法按照0~5、5~10、10~15 cm分层取土样,装入袋中,带回实验室,测定土壤全氮、速效磷、速效钾、有机质、pH、全盐和碱化度值[25]。土壤温度和水分含量分别用TP-ST-1和TP-SR-1在样地野外测定。

1.4 数据分析

各类群数量等级划分:个体数量占全部捕获量10%以上为优势类群,介于1%~10%之间为常见类群,介于0.1%~1%之间为稀有类群,0.1%以下的为极稀有类群。以土壤节肢动物密度(D)反映不同样地土壤节肢动物的数量,其含义为100 cm3捕获的土壤节肢动物个体数。土壤节肢动物类群多样性(H)分析采用Shannon-Wiener多样性指数,计算公式为H′=-∑PilnPi,其中Pi=Ni/N,Pi是第i种个体数占总个体数的比率,Ni是第i种的个体数,N是总个体数[26]。

土壤因子对土壤节肢动物群落结构的影响,采用灰色关联的方法分析[27]。关联系数:rij(k)=(Δmin+PΔmax)/Δij(k)+PΔmax,式中,Δmin、Δmax分别为所比较数列的绝对差中的最小值和最大值,P为分辨系数,一般取值在0.1~0.5,本研究取值0.5。

通过SPSS16.0统计软件,采用单因素方差分析(One-way ANOVA)法分析不同样地土壤理化性质、土壤节肢动物群落之间的差异。采用Correlate相关分析中的Pearson指数分析土壤节肢动物密度、类群丰富度与土壤因子的相关性。采用多元线性逐步回归(Stepwise)分析检验土壤节肢动物群落与土壤因子之间的关系。

2 结果与分析

2.1 不同改良措施下土壤节肢动物群落组成

在研究样地共获得土壤节肢动物10 194头,31个土壤节肢动物类群,隶属于3纲11目27科(表1)。依据个体数量划分,土壤节肢动物群落的优势类群为前气门亚目和棘跳科,其个体数分别占群落个体总数的75.52%和10.77%;甲螨亚目和等节跳科为常见类群,其个体数占群落个体总数的7.66%和4.29%;稀有类群为6个类群,其个体数占群落个体总数的1.04%;极稀有类群为21个类群,其个体数占群落个体总数的0.72%。不同样地主要类群略有差异,其中MXA样地优势类群为前气门亚目(77.21%)和棘跳科(10.26%),常见类群为甲螨亚目(9.36%)和等节跳科(1.16%),特有类群为疣跳科、啮科;MXB样地优势类群为前气门亚目(83.80%),常见类群为甲螨亚目(3.42%)、棘跳科(8.48%)和等节跳科(3.61%),特有类群为叩甲科;MXC样地优势类群为前气门亚目(74.90%)和棘跳科(10.61%),常见类群为甲螨亚目(5.83%)、等节跳科(5.51%)和地蛛科(1.13%),特有类群为康(虫八)科;MXD样地优势类群为前气门亚目(76.88%)和棘跳科(11.99%),常见类群为甲螨亚目(6.18%)和等节跳科(3.93%),特有类群为苔甲科;MXE样地优势类群为前气门亚目(60.81%)、甲螨亚目(14.52%)和棘跳科(10.86%),常见类群为等节跳科(8.66%);其中MXF样地优势类群为前气门亚目(73.13%)和棘跳科(14.22%),常见类群为甲螨亚目(7.90%)和等节跳科(2.02%)。

优势类群前气门亚目种群密度在不同样地间差异显著(F=24.472,P0.05)。不同改良措施对稀有和极稀有类群数目没有明显影响,但MXA样地最多,MXE样地次之,MXC样地和MXF较少,说明在人工干扰条件下,稀有类群数目有减少的趋势。稀有和极稀有类群数目受土壤水分量的影响显著(r=0.932,P

由图1可知,不同改良措施对盐碱苜蓿地土壤节肢动物群落类群丰富度(F=1.083,P>0.05)没有显著影响,MXA样地类群丰富度最高,说明农艺措施干扰会降低土壤节肢动物类群丰富度。不同改良措施明显影响盐碱苜蓿地土壤节肢动物聚集程度,MXB样地土壤节肢动物密度显著高于其他样地(F=0.389,P

2.2 土壤节肢动物的垂直分布

本次调查研究中,0~5、5~10、10~15 cm土层总类群数分别为24、22、18个,个体数量分别占调查总体数量的40.26%、41.32%和18.42%。不同土壤层次的土壤节肢动物类群丰富度存在差异,0~5 cm层与10~15 cm层之间存在显著差异(F=6.566,P

不同改良措施对盐碱苜蓿地土壤节肢动物群落类群丰富度和密度随土层而变化的规律的影响略有不同(图3)。0~5 cm层MXA样地的类群丰富度显著高于MXB样地,不同样地间类群丰富度差异不显著(F=1.386,P>0.05)。5~10 cm层MXB样地的类群丰富度显著高于MXE样地,而其他不同样地间类群丰富度差异不显著(F=1.432,P>0.05)。不同改良措施对不同土层的土壤节肢动物密度分布没有显著影响,MXB样地土壤节肢动物密度在3层中均为最高,在0~5 cm层MXF样地最低,5~10 cm层MXC样地和MXD样地最低,10~15 cm层MXC样地最低。

2.3 土壤节肢动物群落与土壤理化因子间的关系

不同样地0~15 cm土层土壤理化因子的测定结果见表2。从表2可知,不同改良措施下,样地间的土壤全氮、有机质、pH、全盐和碱化度有所不同。MXA样地pH、全盐和碱化度显著高于其他样地,5种改良措施下的土壤全盐差异不显著,MXB样地的pH分别与MXD和MXE样地差异显著(P

微地域内土壤节肢动物与土壤环境因子关系十分复杂,利用灰色关联分析方法,选择土壤节肢动物优势类群前气门亚目和棘跳科密度、常见类群甲螨亚目和等节跳密度、稀有类群密度、类群丰富度、总密度、群落多样性指数作为母数列(y),并依次定义为前气门亚目(y1)、甲螨亚目(y2)、棘跳科(y3)、等节跳科(y4)、稀有类群密度(y5)、类群丰富度(y6)、群落密度(y7)、群落多样性(y8)为母数列,对土壤的理化因子(表3)作单因素方差分析,选择差异明显(P

在所有的系数(表3)中,r65最大,r65=r(y6,x5)=0.829 0,表明土壤碱化度对土壤节肢动物群落类群丰富度影响最大。从土壤节肢动物的5个类群来看,在r1j中,即r1j=(y1,xj),r13和r11较大,r14偏小,表明前气门亚目受pH(0.782 6)和全氮(0.761 1)影响较大,受全盐(0.666 6)影响最小;在r2j中,即r2j=(y2,xj),r24和r25较大,r12偏小,表明甲螨亚目受土壤全盐(0.828 5)和碱化度(0.818 7)影响较大,受有机质(0.596 5)影响最小;以此类推,棘跳科受土壤pH(0.743 1)影响最大,受有机质(0.679 2)影响最小;等节跳科有机质(0.682 1)影响最大,受全盐(0.662 5)影响最小;稀有类群受全盐(0.776 5)和碱化度(0.769 0)影响较大,受有机质(0.549 1)的影响最小;类群丰富度受土壤碱化度(0.829 0)影响最大,受全盐(0.810 3)较大,受有机质(0.526 8)影响最小;群落密度受全氮(0.812 1)影响最大,pH(0.796 9)次之,受全盐(0.627 8)影响最小;群落多样性受pH(0.819 4)影响最大,全盐(0.786 5)和碱化度(0.775 8)次之,受有机质(0.549 5)影响最小。

土壤理化因子关联度均值由大到小依次为pH(0.736 7)、碱化度(0.734 5)、全盐(0.734 3)、全氮(0.713 7)、有机质(0.619 4)。土壤节肢动物群落关联度均值由大到小依次为类群丰富度(0.730 6)、群落多样性(0.730 4)、甲螨亚目(0.729 9)、群落密度(0.713 7)、棘跳科(0.713 4)、前气门亚目(0.712 6)、等节跳科(0.671 5)、稀有类群密度(0.659 6)。灰色关联度越大,说明子序列对母序列的影响越大[27]。可以看出,土壤pH、碱化度和全盐与土壤节肢动物的关系密切。群落丰富度和群落多样性与选取的环境因子最为密切,优势类群、常见类群和稀有类群密切程度略低。回归分析表明,土壤节肢动物类群丰富度分别与土壤pH(y=-24.117+3.667x,r2=0.629,F=6.788,P=0.048)、碱化度(y=0.860-0.174x,r2=0.825,F=18.793,P=0.012)和全盐(y=3.702+0.640x,r2=0.618,F=6.472,P=0.044)呈显著的线性关系,说明不同改良措施导致的土壤pH、碱化度和全盐的变化会明显影响土壤节肢动物类群的分布。

对0~5、5~10、10~15 cm土层土壤节肢动物类群丰富度、群落密度和多样性指数(H)与表2的土壤理化因子进行多元回归检验,结果见表4。从表4可见,在0~5 cm土层,土壤全盐和全氮是影响土壤节肢动物类群丰富度(r2=0.951,F=29.253,P=0.011)的决定因素;土壤全氮和速效钾影响土壤节肢动物群落的Shannon-Wiener指数(H)(r2=0.884,F=11.472,P=0.039)。在5~10 cm土层,土壤全盐决定土壤节肢动物类群丰富度(r2=0.813,F=17.386,P=0.014),土壤碱化度决定土壤节肢动物群落的Shannon-Wiener指数(H)(r2=0.690,F=8.910,P=0.041)。在10~15 cm土层,土壤节肢动物类群丰富度、群落密度和多样性指数(H)与土壤因子没有明显的回归关系。

3 小结与讨论

本研究调查共获取土壤节肢动物10 194个,计31个类群,优势类群和常见类群为前气门亚目、甲螨亚目和弹尾目的棘跳科、等节跳科,构成了银北盐碱地土壤节肢动物的主体,对土壤节肢动物群落特征起着决定性作用,其余为稀有类群和极稀有类群,这与相似生境的研究基本一致,由于盐碱地改良的作物不同,次优势类群略有差异[15,16]。半干旱盐渍化生境下以耐干旱的鞘翅目类群、蚁科及蜘蛛类为优势类群[12,13,21],螨类和弹尾目是羊毛盐碱草原的优势类群[14],湿地盐碱生境中优势类群最丰富[18-20],因此,盐碱化生境下由于植被覆盖和气候等诸多因素的影响,优势类群差异明显。本研究中不同改良措施下的土壤节肢动物类群丰富度虽然没有明显区别,但MXA样地最高,说明农艺措施和人类干扰改变了天然盐碱地的土壤节肢动物类群组成,由于改良年限较短,土壤理化因子虽然有了明显变化,但不同土壤节肢动物类群的入侵和定居存在迟滞效应,造成不同改良措施下土壤节肢动物群落结构差异不明显[21]。不同改良措施明显影响土壤节肢动物群落密度和优势类群前气门亚目的密度,其对土壤生态系统恢复程度有一定的指示作用[28]。

气候变化对土壤的影响篇8

关键词: 温度 降水量 二氧化碳浓度 病虫害 土壤肥力 农业灾害

1.松原市气候变化及其对农业生产的影响

近百年的时间松原地区气温变化的趋势与全球及我国的气温变化总的趋势一致,呈明显变高趋势,增高率为2℃/100年,特别是1988年以来气温偏高,为明显的偏高期[1]。年降水量及春、夏、冬季降水量均无明显的长期变化趋势,但秋季降水量有减少趋势。近50年松原市平均气温、平均最高气温、平均最低气温均呈明显上升趋势,气候变暖以夜间增温为主,年平均最低气温增高率为0.4℃/10年[1]。未来气候变化对松原市农业的影响主要表现在:一是农业生产的不稳定性增加,如果不采取适应性措施,水稻、小麦和玉米三大作物均以减产为主。二是农业生产布局和结构将出现变动,种植制度和作物品种将发生改变。三是农业生产条件发生变化,农业成本和投资需求将大幅度增加。四是潜在荒漠化趋势增大,土壤肥力进一步降低,初级生产力下降。气候变化对粮食产量的影响取决于诸多因素,包括温度、水分、土壤性质、病虫害、二氧化碳对植物的直接影响,以及气温、二氧化碳浓度和作物适应能力等因子之间彼此的相互作用[2]。下面具体谈一下这些因素对农作物生产的影响。

1.1 温度升高对松原市作物生产的影响

温度升高可延长全年生长期,对无限生长习性或多年生作物以及热量条件不足的地区有利,而对生育期短的栽培作物来说又是不利的,因为温度高使作物的发育速度加快,生育期缩短,单产下降。据[3]研究,作物生育期气温每升高1℃,水稻生育期日数平均缩短7~8d,从而减少了光合作用积累干物质的时间,因此温度升高,对松原市水稻产量的影响是不利的;在平均温度升高的同时,极值最高、最低温度的出现频率增加,对松原市作物的生长发育有抑制作用。高温条件下作物生育期缩短,生长量减少,可能会抵消全年生长期延长的效果。高温胁迫的热害已经限制了作物生产,严重影响玉米的种植和产量。总体而言,温度升高,对松原市作物的生产是不利的。

1.2降水量变化对作物生产的影响

松原市大约一半左右的粮食产量来自灌溉农业,而灌溉的作物主要是水稻、小麦。粮食作物对水分的增多与减少反应不同。玉米表现为水分增加产量增加。小麦对降水量的反应表现出缺水和过多都影响产量。水稻的栽培是“以水定稻”,北方水分减少使水稻减产,高粱、谷子在气候变暖、变干或变湿的过程中由于抗逆性较强,将起调节作用,可减少粮食产量的波动。温度、水分变化对作物生产的影响还决定于水、热匹配状况,如气候变暖与变湿相匹配且同季,农作物将增产;如气候变暖、变干,水分不仅限制变暖的效果,而且会加剧不利影响,作物将减产。近五十年来,松原市乃至整个松原地区干旱呈加重趋势,加之气候变暖,松原地区由于降水减少、蒸发量加大,缺水干旱的状况加剧,作物产量受到严重影响。

1.3气候变暖对施肥量的影响

据松原市土肥站的资料显示,松原市绝大部分的土壤肥力为中等偏下。在较暖的气候条件下,土壤有机质的微生物分解将加快,长此下去将造成地力下降。在高二氧化碳浓度下,虽然光合作用的增强能够促进根生物量的增加,在一定程度上可以补偿土壤有机质的减少,但土壤一旦受旱后,根生物量的积累和分解都将受到限制。这意味着需要施用更多的肥料以满足作物的需要。肥效对环境温度的变化十分敏感,尤其是氮肥。温度增高1℃,能被植物直接吸收利用的速效氮释放量将增加约4%,释放期将缩短3.6天。因此,要想保持原肥效,每次的施肥量将增加4%左右[4]。施肥量的增加不仅使农民增加投入,而且对土壤和环境也不利。

1.4气候变暖对病虫害的影响

气候变暖后,因病虫害造成的粮食减产幅度将进一步增加,应引起植保部门的足够重视。由于温度升高,害虫发育的起点时间有可能提前,一年中害虫繁殖代数也因此而增加,在新的有利环境条件下,某些害虫的虫口将呈指数增加,造成农田多次受害的机率增高。另外,病虫越冬状况受温度影响将更加明显,冬季变暖,有利于幼虫安全越冬,虫源和病源增大;害虫的休眠越冬期缩短,世代增多。松原市本来就是农作物病虫害的多发啊地区,因此,气候变暖可能会加剧松原市病虫害的流行。

1.5气候变暖对农业灾害的影响

在气候变化的大背景下,异常气候出现的概率将大大增加,尤其是极端天气现象的增多,势必导致世界粮食生产的不稳定,巨大损失在所难免。气候变化可能加重松原地区土地沙化、碱化和草原退化,引起区域气候灾害、荒漠化、沙尘暴的加剧。

2.小结

鉴于气候变暖对松原市农业生产可能出现的严重影响,须加强研究并提出相应的对策。⑴研究适应气候变化的农业发展战略问题:粮食生产的趋势与前景、水资源的农业调配与利用、气候变化后的土地生产力等,以确定农业发展的重点与农业技术的政策与导向。⑵根据气候条件的可能变化,通过模拟实验和田间试验,以确定其对农业影响的程度。⑶研究农业生产布局和结构的调整方案,以确定适应各种变化的农业生产形式与内容。⑷研究高温热害、干旱等农业灾害的机制和规律,提出适应、抗御的途径与措施。⑸发展旱地农业和节水农业,增强农业系统抗逆性,以适应气候可能变干的不利影响。⑹培育耐旱、耐湿、耐热性作物品种,改变耕作制度和栽培管理条件,以适应变暖、变干、变湿的气候环境,提高抗御不良环境影响的能力。⑺采取必要措施,减缓“温室效应”引起全球气候变暖的程度和速度。⑻加强病虫害的防治[5]。

参考文献:

[1]吴志祥,周兆德; 气候变化对我国农业生产的影响及对策[J];华南热带农业大学学报; 2004年02期; 9-13

[2]王铮,黎华群,孔祥德,张正远; 气候变暖对中国农业影响的历史借鉴[J]; 自然科学进展; 2005年06期; 68-75

[3]唐国平,李秀彬,Guenther Fischer,Sylvia Prieler; 气候变化对中国农业生产的影响[J]; 地理学报; 2000年02期;3-12

[4]孙东吉,王春杰,张玉江; 浅谈20世纪90年代后的气候变化对农业生产的影响及措施 [J];黑龙江气象; 2004年03期; 17-18

上一篇:电工电子基本知识点范文 下一篇:环保节能措施范文