集成电路设计研究方向范文

时间:2023-10-16 16:48:36

集成电路设计研究方向

集成电路设计研究方向篇1

【关键词】集成电路版图;CD4011B;CMOS工艺

1.引言

集成电路产业是最能体现知识经济特征的高技术产业[1]。以集成电路为主要技术的微电子产业的高度发展促进了现代社会的电子化、信息化、自动化,并引起了人们社会生活的巨大变革。集成电路布图设计(以下简称版图设计)在集成电路设计中占有十分重要的作用。版图设计是指集成电路中至少有一个是有源元件的两个以上元件和部分或者全部互连线路的三维配置,或者为制造集成电路而准备的上述三维配置[2]。集成电路芯片流片成本高,必须保证较高的成品率,版图设计人员应具有扎实理论基础和丰富的实践经验。典型芯片是经过实践检验性能优越,所以,通过研究已有的典型芯片版图是提高设计能力的有效途径。

版图设计是在一定的工艺条件基础上根据芯片的功能要求而设计的。目前,集成电路的主要工艺有三种,分别是双极工艺、CMOS工艺和BICMOS工艺[3][4]。其中CMOS工艺芯片由于功耗低、集成度高等特点而应用最广泛,所以,研究CMOS工艺芯片版图具有更重要的意义。

本文对CD4011B芯片进行了逆向解析,通过研究掌握了该芯片的设计思想和单元器件结构,对于提高CMOS集成电路设计水平是十分有益的。

2.芯片分层拍照

3.单元结构

4.电路图和仿真

5.结论

本文采用化学方法对CD4011B芯片进行了分层拍照,提取了电路图,仿真验证正确。从芯片的版图分析,该芯片采用NMOS场效应晶体管、PMOS场效应晶体管、PN结二极管和基区电阻等器件单元,四个与非门版图一致且对称布局。该芯片采用典型的CMOS工艺,为了节省面积采用叉指场效应晶体管,输入和输出端采用防静电保护结构。电路为典型的CMOS与非门电路。该芯片的版图布局体现了设计的合理性和科学性。

参考文献

[1]雷瑾亮,张剑,马晓辉.集成电路产业形态的演变和发展机遇[J].中国科技论坛,2013,7:34-39.

[2]汪娣娣,丁辉文.浅析我国集成电路布图设计的知识产权保护——我国集成电路企业应注意的相关问题[J].半导体技术,2003,28:14-17.

[3]朱正涌,张海洋,等.半导体集成电路[M].北京:清华大学出版社,2009.

[4]曾庆贵.集成电路版图设计[M].北京:机械工业出版社,2008.

[5]王健,樊立萍.CD4002B芯片解析在版图教学中的应用[J].中国电力教育,2012,31:50-51.

[6]Hastings,A.模拟电路版图的艺术[M].北京:电子工业出版社,2008.

作者简介:

王健(1965—),男,辽宁沈阳人,硕士,沈阳化工大学信息工程学院副教授,研究方向:微机电系统设计。

张大为(1983—),男,辽宁沈阳人,硕士,沈阳航空职业技术学院讲师,研究方向:电路设计。

集成电路设计研究方向篇2

长期以来复旦大学微电子学教学形成了“基础与专业结合,研究与应用并重,创新人才培养国际化”特色。近年来,在教育部第二批高等学校特色专业建设中,我们根据国家和工业界对集成电路人才的要求,贯彻“国际接轨、应用牵引、注重质量”的教学理念,制定了复旦大学“微电子教学工作三年计划大纲”并加以实施,在高端创新人才培养方面对专业教学的特色开展了深层的挖掘和拓展。

一、课程体系的完善和课程建设

微电子技术的高速发展要求微电子专业课程体系在相对固定的框架下不断加以更新和完善。

我们设计了“复旦大学微电子学专业本科课程设置调查表”,根据对于目前工作在企业、大学和研究机构的专业人士的调查结果,制定了新的微电子学本科培养方案。主要修改包括:

(1)加强物理基础、电路理论和通信系统课程。微电子学科,特别是系统芯片集成技术,是融合物理、数学、电路理论和信息系统的综合性应用学科。因此,在原有课程基础上,增加了有关近代物理、信号与通信系统、数字信号处理等课程,使微电子学生的知识覆盖面更宽。

(2)面向研究、应用和学科交叉的需要,增加专业选修课程。如增加了电子材料薄膜测试表征方法、射频微电子学、铁电材料与器件、Perl语言、计算微电子学、实验设计及数据分析等课程,为本科生将来进一步从事研究和应用开发打下基础。

(3)强调能力和素质训练,高度重视实验教学。开设了集成电路工艺实验、集成电路器件测试实验、集成电路可测性设计分析实验及专用集成电路设计实验等从专业基础到专业的多门实验课。

在课程体系调整完善的同时,还对于微电子专业基础课和专业必修课开展了新一轮的课程建设。包括:

(1)精品课程的建设。几年来,半导体物理、集成电路工艺原理、数字集成电路设计经过建设已经获得复旦大学校级精品课程。其中半导体物理和集成电路工艺原理课程获得学校的重点资助,正在建设上海市精品课程。另有半导体器件原理和模拟集成电路设计正在复旦大学校级精品课程建设之中,有望明年获得称号。

(2)增加全英语教学和双语教学课程。为了满足微电子技术的高速发展和学生尽快吸收、学习最新知识的需求,贯彻落实教育部“为适应经济全球化和科技革命的挑战,本科教育要创造条件使用英语等外语进行公共课和专业课教学”的要求,在本科生专业课的教学中新增全英语教学课程3门,双语教学课程4门。该类专业课程的开设也为微电子专业的国际交流学生提供了选课机会。

(3)教材建设。为了配合课程体系的完善和补充更新专业知识,除了选用一些国际顶级高校的教材之外,还依据我们的课程体系组织编写了一系列专业教材和论著。有已经出版的《深亚微米FPGA结构与CAD设计》、《ModernThermodynamics》、《现代热力学-基于扩展卡诺定理》,列入出版计划的《半导体器件原理》、《超大规模集成电路工艺技术》和《计算机软件技术基础》。另外根据课程体系的要求对实验用书也进行了更新。

为了传承复旦微电子学的丰富教学经验和保证教学质量,建立了完备的教学辅导制度,如课前试讲、课中听课及聘请经验丰富的退休老教师与青年教师结对子辅导等。每学期听课总量和被听课教师分别均超过所授课程和任课教师人数的50%以上。对所有听课结果进行了数据分析,并反馈给任课教师,为教师改进教学提供了有益的帮助。在保证教学内容的情况下,鼓励教师尝试新的教学手段,实现所有必修课程的电子化,建立主要必修课程的网页,完全公开提供所有课件信息,部分课件获得超过15000次的下载量。青年教师还独创了“移动课堂”的授课新方法,该方法能够完整复制课堂教学,既能高清晰展示教学课件的内容,又能把教师课上讲解的声音、动作及临时板书全部包含在内,能够使用大众化的多媒体终端进行播放,随时随地完美重现课堂讲解全过程。

通过国际合作的研究生项目及教师出国交流,复旦大学微电子学专业教师的教学水平得到进一步提升。在研究生的联合培养项目(如复旦-TUDelft硕士生项目、复旦-KTH硕士生/博士生项目等)中海外高校教师来到复旦全程教授所有课程,复旦配备青年教师跟班听课和担任课程辅导。这使得青年教师的授课理念、授课方式及授课水平都有大幅提高。同时,由于联合培养项目及其他合作项目,复旦的青年教师也被邀请参与海外高校的教学,担任对方课程的主讲,青年教师利用交流的机会,引进海外高校的一些课程用于补充复旦微电子的培养方案。这些都为集成电路专业特色的挖掘和拓展起到重要的作用。

经过几年的努力,微电子专业的教学水平普遍得到提升,在教学评估中得到各个方面的好评。

二、培养方法的改进和创新

培养适应时代要求的微电子专业创新人才也需要在培养方法上加以改进和创新。

针对微电子工程的特点,在坚持扎实的理论的基础上,强调理论联系实际,开展实践能力训练。在学校的支持下,教学实验室环境得到及时更新,几个方面的实验教学在国内形成特色。

(1)本科的集成电路工艺实验可以在学校自己的工艺线上完成芯片的清洗、氧化、扩散、光刻、蒸发、腐蚀等基本工艺制作步骤,为学生完整掌握集成电路制造的基本能力提供了很好的实际训练。

(2)在集成电路测试方面,结合自动化测试机台(安捷伦SoC93000ATE),开设了可测性设计课程,附带实验。

(3)集成电路设计课程都附带课程项目实践,培养了学生实际设计能力和素质,取得很好效果。

通过课程教学训练学生创新思维和分析问题的能力。尝试开设了部分本科生和研究生同时共同选修的研讨型课程。在课程学习的过程中,本科生不仅可以得到研究生的指导,在课堂上就某些课程内容进行探究,还可以在开展课程设计时在小组内和研究生同学共同开展小型项目研究,对于提高本科生进一步学习微电子专业的兴趣和培养他们发现问题解决问题的能力有很大的帮助。

参加科研无疑是培养学生创新能力的一个最为有效的途径。配合复旦大学的要求,微电子学专业在本科阶段,持续设置多种科研计划,给予本科生进实验室开展科研以支持。

(1)大一的“启航”学术体验计划。计划鼓励大一学生在感兴趣的领域进行探究式学习和实践,为学生打造一个培养创新意识,锻炼学术能力的资源平台。“启航”学术体验计划的所有学术实践项目均来自各个微电子专业的导师,学生通过对感兴趣的项目进行申报与自荐的形式申请加入各学术实践小组。引导学生领略学科前沿,体验研究乐趣。

(2)二、三年级曦源项目。项目建立在学生自主学习和创新思想的基础上,鼓励志同道合的同学组成研究团队,独立提出研究方向,寻找合适的指导教师。加入自己感兴趣的研究方向的团队。在开放课题列表中寻找合适的课题方向,并向该课题指导教师进行申请。还有更多的学生在大三甚至更早就进入各个研究小组,参与教授领导的各类国家级、省部级项目及来自企业、海外等的合作项目的研究。在完成的计划和项目成果之外,学生们还在收集文献资料、获取信息的能力,发现问题、独立思考的能力,运用理论知识解决实际问题的能力,设计和推导论证、分析与综合的能力,科学实验、发明创造的能力,写作和表说的能力等方面,都有不同的收获。

通过学生参加国际交流活动及外籍教师讲授课程给学生提供国际化的培养,提供层次更高、路径多元的培养方案,培养了学生的国际化眼光,开拓了学生的培养渠道。

几年来,微电子学专业学生的出国交流人数逐年增长,从2008年起,共有20位本科生赴国外多个高校交流学习。交流的项目包括双学位、长学期和暑期项目等,交流时间从3个月到2年不等,交流学校包括美国(耶鲁、UCLA等)、欧洲(伯明翰、赫尔辛基等)、日本(早稻田、庆应等)及我国港台高校。大多数同学在交流期间的学习成绩达到交流学校的优秀等级,同时积极参加交流学校教授小组的科研工作,得到了很好的评价。个别同学由于表现优异在交流结束回国后被对方教授邀请再次前去完成毕业论文;也有同学交流期间)参加国际级大师的科研小组工作,获益匪浅,直研后表现出强于一般研究生的科研能力。可以看到,国际交流不仅为同学们提供了专业知识和研究能力的不同培养模式,也为他们提供了更加广阔的视野和体验多种文化的机会,为他们今后的发展和进步打下了很好的基础。自特色专业建设以来,每学期均新开设“前沿讲座”课程,课程内容不固定,授课人为聘请的海外教师,有的来自海外高校,有的来自海外企业,课程均为全英语课程或双语教学课程。这类课程直接引进了海外高校的课程和教学方式,不仅学生受益,同时也培养了复旦微电子专业的青年教师。企业还提供与课程内容直接相关的软件,在改善教学环境的同时,还为学生参加科研提供了培训。

经过2年多特色专业项目的建设,复旦微电子学专业在巩固已有教学特色基础上,在高端创新人才培养方面进行了深层的挖掘和拓展,取得了一系列的成果。

通过以上各方面的努力,集成电路特色专业方向的本科生培养体系更加完善,成为培养具备集成电路研发能力的高端人才与工程师的优质基地,正在努力实现为学术界和产业界培养具有前瞻性、综合素质高、创新能力强、实现能力强和具有国际竞争力的高层次集成电路研发人才与产业工程师的目标。

[本论文工作由教育部第二类特色专业建设项目资助]

[责任编辑:文和平]

来源:中国大学教学 2012年4期

集成电路设计研究方向篇3

关键词:集成电路设计;本科教学;改革探索

作者简介:殷树娟(1981-),女,江苏宿迁人,北京信息科技大学物理与电子科学系,讲师;齐臣杰(1958-),男,河南扶沟人,北京信息科技大学物理与电子科学系,教授。(北京 100192)

基金项目:本文系北京市教委科技发展计划面上项目(项目编号:KM201110772018)、北京信息科技大学教改项目(项目编号:2010JG40)的研究成果。

中图分类号:G642.0     文献标识码:A     文章编号:1007-0079(2012)04-0064-02

1958年,美国德州仪器公司展示了全球第一块集成电路板,这标志着世界从此进入到了集成电路的时代。在近50年的时间里,集成电路已经广泛应用于工业、军事、通讯和遥控等各个领域。集成电路具有体积小、重量轻、寿命长和可靠性高等优点,同时成本也相对低廉,便于进行大规模生产。自改革开放以来,我国集成电路发展迅猛,21世纪第1个10年,我国集成电路产量的年均增长率超过25%,集成电路销售额的年均增长率则达到23%。我国集成电路产业规模已经由2001年不足世界集成电路产业总规模的2%提高到2010年的近9%。我国成为过去10年世界集成电路产业发展最快的地区之一。伴随着国内集成电路的发展,对集成电路设计相关人员的需求也日益增加,正是在这种压力驱动下,政府从“十五”计划开始大力发展我国的集成电路设计产业。

在20世纪末21世纪初,国内集成电路设计相关课程都是在研究生阶段开设,本科阶段很少涉及。不仅是因为其难度相对本科生较难接受,而且集成电路设计人员的需求在我国还未进入爆发期。我国的集成电路发展总体滞后国外先进国家的发展水平。进入21世纪后,我国的集成电路发展迅速,集成电路设计需求剧增。[1]为了适应社会发展的需要,同时也为更好地推进我国集成电路设计的发展,国家开始加大力度推广集成电路设计相关课程的本科教学工作。经过十年多的发展,集成电路设计的本科教学取得了较大的成果,较好地推进了集成电路设计行业的发展,但凸显出的问题也日益明显。本文将以已有的集成电路设计本科教学经验为基础,结合对相关院校集成电路设计本科教学的调研,详细分析集成电路设计的本科教学现状,并以此为基础探索集成电路设计本科教学的改革。

一、集成电路设计本科教学存在的主要问题

在政府的大力扶持下,自“十五”计划开始,国内的集成电路设计本科教学开始走向正轨。从最初的少数几个重点高校到后来众多相关院校纷纷设置了集成电路设计本科专业并开设了相关的教学内容。近几年本科学历的集成电路设计人员数量逐渐增加,经历本科教学后的本科生无论是选择就业还是选择继续深造,都对国内集成电路设计人员紧缺的现状起到了一定的缓解作用。但从企业和相关院校的反馈来看,目前国内集成电路设计方向的本科教学仍然存在很多问题,教学质量有待进一步提高,教学手段需做相应调整,教学内容应更多地适应现阶段产业界发展需求。其主要存在以下几方面问题。

首先,课程设置及课程内容不合理,导致学生学习热情降低。现阶段,对于集成电路设计,国内的多数院校在本科阶段主要开设有如下课程:“固体物理”、“晶体管理”、“模拟集成电路设计”和“数字集成电路设计”(各校命名方式可能有所不同)等。固体物理和晶体管原理是方向基础课程,理论性较强,公式推导较多,同时对学生的数学基础要求比较高。一方面,复杂的理论分析和繁琐的公式推导严重降低了本科生的学习兴趣,尤其是对于很多总体水平相对较差的学生。而另外一方面,较强的数学基础要求又进一步打击学生的学习积极性。另外,还有一些高等院校在设置课程教学时间上也存在很多问题。例如:有些高等院校将“固体物理”课程和“半导体器件物理”课程放在同一个学期进行教学,对于学生来说,没有固体物理的基础就直接进入“晶体管原理”课程的学习会让学生很长一段时间都难以进入状态,将极大打击学生的学习兴趣,从而直接导致学生厌学甚至放弃相关方向的学习。而这两门课是集成电路设计的专业基础课,集成电路设计的重点课程“模拟集成电路设计”和“数字集成电路设计”课程的学习需要这两门课的相关知识作为基础,如果前面的基础没有打好,很难想象学生如何进行后续相关专业知识的的学习,从而直接导致学业的荒废。

其次,学生实验教学量较少,学生动手能力差。随着IC产业的发展,集成电路设计技术中电子设计自动化(Electronic design automatic,EDA)无论是在工业界还是学术界都已经成为必备的基础手段,一系列的设计方法学的研究成果在其中得以体现并在产品设计过程中发挥作用。因此,作为集成电路设计方向的本科生,无论是选择就业还是选择继续深造,熟悉并掌握一些常用的集成电路设计EDA工具是必备的本领,也是促进工作和学习的重要方式。为了推进EDA工具的使用,很多EDA公司有专门的大学计划,高校购买相关软件的价格相对便宜得多。国家在推进IC产业发展方面也投入了大量的资金,现在也有很多高等院校已经具备购买相关集成电路设计软件的条件,但学生的实际使用情况却喜忧参半。有些高校在培养学生动手能力方面确实下足功夫,学生有公用机房可以自由上机,只要有兴趣学生可以利用课余时间摸索各种EDA软件的使用,这对他们以后的工作和学习奠定了很好的基础。但仍然还有很多高校难以实现软件使用的最大化,购买的软件主要供学生实验课上使用,平时学生很少使用,实验课上学到的一点知识大都是教师填鸭式灌输进去的,学生没有经过自己的摸索,毕业后实验课上学到的知识已经忘得差不多了,在后续的工作或学习中再用到相关工具时还得从头再来学习。动手能力差在学生择业时成为一个很大的不足。[2]

再者,理工分科紊乱,属性不一致。集成电路设计方向从专业内容及专业性质上分应该属于工科性质,但很多高校在专业划分时却将该专业划归理科专业。这就使得很多学生在就业时遇到问题。很多招聘单位一看是理科就片面认为是偏理论的内容,从而让很多学生错失了进一步就业的好机会。而这样的结果直接导致后面报考该专业的学生越来越少,最后只能靠调剂维持正常教学。其实,很多高校即使是理科性质的集成电路设计方向学习的课程和内容,与工科性质的集成电路设计方向是基本一致的,只是定位属性不一致,结果却大相径庭。

二、改革措施

鉴于目前国内集成电路设计方向的本科教学现状,可以从以下几个方面改进,从而更好地推进集成电路设计的本科教学。

1.增加实验教学量

现阶段的集成电路本科教学中实验教学量太少,以“模拟集成电路设计”课程为例,多媒体教学量40个学时但实验教学仅8个学时。相对于40个学时的理论学习内容,8个学时的实验教学远远不能满足学生学以致用或将理论融入实践的需求。40个学时的理论课囊括了单级预算放大器、全差分运算放大器、多级级联运算放大器、基准电压源电流源电路、开关电路等多种电路结构,而8个学时的实验课除去1至2学时的工具学习,留给学生电路设计的课时量太少。

在本科阶段就教会学生使用各种常用EDA软件,对于增加学生的就业及继续深造机会是非常必要的。一方面,现在社会的竞争是非常激烈的,很少有单位愿意招收入职后还要花比较长的时间专门充电的新员工,能够一入职就工作那是最好不过的。另一方面,实验对于学生来说比纯理论的学习更容易接受,而且实验过程除了可以增加学生的动手操作能力,同样会深化学生对已有理论知识的理解。因此,在实践教学工作中,增加本科教学的实验教学量可以有效促进教学和增进学生学习兴趣。

2.降低理论课难度尤其是复杂的公式推导

“教师的任务是授之以渔,而不是授之以鱼”,这句话对于集成电路设计专业老师来说恰如其分。对于相同的电路结构,任何一个电路参数的变化都可能会导致电路性能发生翻天覆地的变化。在国际国内,每年都会有数百个新电路结构专利产生,而这些电路的设计人员多是研究生或以上学历人员,几乎没有一个新的电路结构是由本科生提出的。

对于本科生来说,他们只是刚刚涉足集成电路设计产业,学习的内容是最基础的集成电路相关理论知识、电路结构及特点。在创新方面对他们没有过多的要求,因此他们不需要非常深刻地理解电路的各种公式尤其是复杂的公式及公式推导,其学习重点应该是掌握基础的电路结构、电路分析基本方法等,而不是纠结于电路各性能参数的推导。例如,对于集成电路设计专业的本科必修课程――“固体物理”和“晶体管原理”,冗长的公式及繁琐的推导极大地削弱了学生的学习兴趣,同时对于专业知识的理解也没有太多的益处。[3]另外,从专业需要方面出发,对于集成电路设计者来说更多的是需要学生掌握各种半导体器件的基本工作原理及特性,而并非是具体的公式。因此,减少理论教学中繁琐的公式推导,转而侧重于基本原理及特性的物理意义的介绍,对于学生来说更加容易接受,也有益于之后“模拟集成电路”、“数字集成电路”的教学。

3.增加就业相关基础知识含量

从集成电路设计专业进入本科教学后的近十年间本科生就业情况看,集成电路设计专业的本科生毕业后直接从事集成电路设计方向相关工作的非常少,多数选择继续深造或改行另谋生路。这方面的原因除了因为本科生在基本知识储备方面还不能达到集成电路设计人员的要求外,更主要的原因是随着国家对集成电路的大力扶持,现在开设集成电路设计相关专业的高等院校越来越多,很多都是具有研究生办学能力的高校,也就是说有更多的更高层次的集成电路设计人才在竞争相对原本就不是很多的集成电路设计岗位。

另外一方面,集成电路的版图、集成电路的工艺以及集成电路的测试等方面也都是与集成电路设计相关的工作,而且这些岗位相对于集成电路设计岗位来说对电路设计知识的要求要低很多。而从事集成电路版图、集成电路工艺或集成电路测试相关工作若干年的知识积累将极大地有利于其由相关岗位跳槽至集成电路设计的相关岗位。因此,从长期的发展目标考虑,集成电路设计专业本科毕业生从事版图、工艺、测试相关方向的工作可能更有竞争力,也更为符合本科生知识储备及长期发展的需求。这就对集成电路设计的本科教学内容提出了更多的要求。为了能更好地贴近学生就业,在集成电路设计的本科教学内容方面,教师应该更多地侧重于基本的电路版图知识、硅片工艺流程、芯片测试等相关内容的教学。

三、结论

集成电路产业是我国的新兴战略性产业,是国民经济和社会信息化的重要基础。大力推进集成电路产业的发展,必须强化集成电路设计在国内的本科教学质量和水平,而国内的集成电路设计本科教学还处在孕育发展的崭新阶段,它是适应现代IC产业发展及本科就业形势的,但目前还存在很多问题亟待解决。本文从已有的教学经验及调研情况做了一些分析,但这远没有涉及集成电路设计专业本科教学的方方面面。不过,可以预测,在国家大力扶持下,在相关教师及学生的共同努力下,我国的集成电路设计本科教学定会逐步走向成熟,更加完善。

参考文献:

[1]王为庆.高职高专《Protel电路设计》教学改革思路探索[J].考试周刊,2011,(23).

[2]宋伟.“数字电路”课程设计教学改革探索[J].江苏技术师范学院学报,2011,(8).

集成电路设计研究方向篇4

关键词 高速列车;系统集成;试验工艺

中图分类号 U2 文献标识码 A 文章编号 1674-6708(2016)160-0172-01

1 国内外技术现状比较

目前,国外已有少数铁路发达国家基本掌握了时速300km~350km高速动车组的设计、制造技术。2004年前,在铁路普通客车方面,我国铁路装备制造企业已掌握了时速160km及以下速度等级铁路机车车辆成套技术;在动车组方面,“十五”期间,随着铁路电气化改造进度的加快,也适时地试制出了各种形式的动力分散电动车组,但性能、速度上,均处于初始阶段,未能形成批量生产能力。

2004年10月铁道部全面组织实施了时速200km及以上动车组技术引进和国产化项目,以国内铁路动车组制造企业为核心,以国内铁路动车组核心部件、主要部件和配套零部件制造企业为支撑,以市场换技术,从而快速提高我国轨道装备的研发水平和制造能力,并打造了中国自有的高速铁路动车组品牌;2005年底为巩固技术引进消化吸收再创新形成的技术、制造和管理平台,铁道部再次实施了时速300km动车组项目,全面提升国内企业持续研发与自主创新能力,建立我国高速动车组技术体系,实现了高速动车组自主设计和国内制造,并进一步提高国产化率。我国目前已基本掌握了时速200km~300km动车组的设计、制造技术,更高速度等级动车组的自主研发。

2 技术应用前景分析

动车组是集机械制造、电力电子、信息技术、材料科学、空气动力学等多门学科于一体,具有速度快、效率高、能耗低以及节能、环保等优越性能。高速列车包含动车组总成、车体、转向架、列车网络系统、制动系统等关键技术,这些关键技术含量高,价值比重大,是市场核心竞争力的体现,是决定动车组技术成败的关键。其中:

动车组系统集成技术:是为了实现高速动车组各系统之间性能相匹配,保证列车的整体性能和可靠性。

转向架技术:围绕转向架在高速运行时的稳定性、平稳性和可靠性,进行悬挂参数的相关性分析和总体设计验证。

车体轻量化技术:采用新工艺、新材料,不断优化车体设计结构,实现车体轻量化,同时进行车体强度、刚度、疲劳强度、吸能结构、固有频率等的匹配研究;新型流线型车头的设计与制造,高速列车空气动力学试验研究;车体气密强度研究。

电磁兼容性和噪声控制技术:检测并研究高速列车在电磁兼容性、噪声等性能指标,从而保证产品的安全性和可靠性。

电磁兼容性和噪声控制技术可不断提高是产品核心竞争力的体现。产品电磁干扰直接影响高速列车运行的安全和性能,同时对环境也将造成污染,噪声将直接影响乘客的舒适度和车辆的寿命,对周边环境的影响将制约高速动车组的长远发展。是系统提高我国高速列车技术水平,改善周边环境,提高乘坐舒适度,促进产品长远发展的关键因素。

3 系统集成实验

3.1 主要任务

以整车滚动综合性能试验台为中心,通过网络控制综合试验台,联合制动模拟试验台、辅助供电试验台、空调配套试验台等模拟车辆实际运行状态,对整车如牵引系统、制动系统和列车网络控制系统等之间的相互作用,系统的匹配关系进行试验,完成各系统的参数匹配和优化。同时完成车辆临界速度的测试。

3.2 试验内容

进行整车系统集成及关键部件的设计验证;进行整车牵引、辅助、列车网络、制动等系统的研究;进行列车控制、监测、诊断等功能的技术研究;进行整车系统集成及关键部件标准、技术模式的研究;进行整车线性稳定性研究。

3.3 试验项目

主要包括交流电传动系统、列车辅助供电系统配套试验、制动系统性能参数及制动控制模式、列车通讯网络实验等。

主要设施配置:整车滚动综合性能试验台、辅助供电系统试验台、制动模拟试验台、整列车网络控制综合试验台、空调配套试验台、车端关系综合试验台、人机工程试验台、静态调试厂房及设备、动态试验线、环线及正线综合性能试验装备等。

4 车体及部件气密性实验

4.1 主要任务

主要任务是围绕车体结构轻量化开展高速列车车体及其零部件的车体气密性研究和能量吸收研究。

4.2 试验内容

整车结构气密疲劳强度、研究车体材料、焊缝对气密疲劳强度的影响。

4.3 试验项目

整车结构气密疲劳强度试验、零部件的气密性试验。

主要设施配置:车体及部件气密性试验台。

5 振动模态实验室

5.1 主要任务

主要任务是开展车体、转向架及整车的振动模态试验,通过路谱再现等方法,对转向架悬挂参数与车体模态响应进行深入研究,解决列车振动、噪音等问题。

5.2 试验内容

实现整车、车体的路谱回放,用以研究整车的振动性能、悬挂系统减振效率,研究车体、内装及车下吊挂的结构振动特性;研究车上局部结构弹性振动特点,为提高乘坐舒适性提供研究工具。

测定转向架的特性参数,包括:悬挂系统的刚度、阻尼,转向架的质量特性参数,柔度系数、倾覆系数;验证动力学强度仿真分析模型;研究不同转向架结构形式对整车振动状态的影响;噪声源研究。

5.3 试验项目

整车振动模拟试验、噪音试验。

主要设施配置:整车模拟振动试验台、噪音试验台。

6 可靠性实验室

6.1 主要任务

通过开展转向架构架、轮轴、车体及其它与之相关的核心关键零部件试验研究,从而优化结构,提高产品可靠性。

6.2 试验内容

对高速动车组轮轨关系进行研究,主要包括轮轨接触区域的力学计算分析;车轮踏面接触区域的几何特性分析;车轮踏面对行车安全性的影响,及车轮踏面和钢轨型面的几何匹配关系。

对转向架动力学性能进行可靠性研究,主要包括转向架安全通过曲线模型的建立、非线性运动稳定性和运行平稳性的研究、转向架两系悬挂参数的动力学仿真等。

对研究转向架的参数进行可靠性研究,主要包括转向架系统的性能与零部件性能匹配性研究;转向架零部件损伤与运营环境的关系;关键部件损伤对转向架系统整体性能的影响等研究。

对转向架的结构进行可靠性研究,主要包括车轴与车轮的疲劳强度、构架的疲劳强度、弹簧的疲劳强度等,同时实验研究制造工艺、材料选择对其的影响。

铝合金轻量化车体结构及其强度研究、大型中空薄壁挤压型材研究、焊接结构变形控制技术研究、其他关键部件强度分析技术。

6.3 试验项目

转向架静强度及疲劳试验、轮轴试验、列车集成结构件振动冲击试验、车体强度试验。

主要设施配置:转向架静强度及疲劳试验台、轮轴试验台、列车集成结构件振动冲击试验台、车体强度试验台。

7 结论

针对高速列车系统集成、车体、可靠性等关键技术的研发,是自主开发200km/h以上等级自重轻、性能好、满足不同层次需求和不同运用条件的新型客车系列产品;开发满足既有线提速要求的200km/h等级摆式列车系列产品,是掌握时速350km及以上动车组核心技术的技术保障。

参考文献

集成电路设计研究方向篇5

关键词:集成电路工程;专业学位研究生;培养实践

中图分类号:G643 文献标志码:A 文章编号:1674-9324(2016)29-0221-02

一、引言

2000年6月,国务院了《鼓励软件产业和集成电路产业发展的若干政策》(国发18号文),并陆续推出了一系列促进IC产业发展的优惠政策和措施。国家科技部在863计划中安排了集成电路设计重大专项。在863计划集成电路设计重大专项的实施和带动下,北京、上海、无锡、杭州、深圳、西安、成都等七个集成电路设计产业化基地的建设取得了重要进展。与此同时,为了适应我国集成电路发展对高层次专门人才的大规模需要,改善工科学位比较单一的状况,经国务院学位委员会批准,在我国设置集成电路工程专业学位研究生的培养,培养了一批“用得上”的工程技术人才。集成电路工程专业学位研究生自设置以来,取得了蓬勃的发展,受到用人单位的肯定和好评。由于其生源广泛、数量巨大,培养方法和模式更需要一定的创新性。近年来,在集成电路工程专业学位研究生培养过程中,经过多年的办学积累,探讨了一些办学和培养集成电路工程专业学位研究生的经验。

二、专业学位研究生培养过程中的关键事项

1.优选导师,确保培养质量。集成电路工程专业学位研究生教育形式较新,最初专业学位研究生的培养在众多地方借鉴了学术型研究生的办学经验,目前很多学者认为,只要能够胜任学术型学历研究生教育的导师就能胜任专业学位教育。这恰恰忽视了专业学位的知识背景和面向的行业领域。专业学位研究生教育规律与学术型研究生存在相当大的差异,首先,两者专业基础及学术背景不一样,专业学位研究生的系统性方面不如学术型研究生。其次,两者的治学环境不同,专业学位研究生与实际工程应用相结合。根据专业学位研究生特点有针对性地开展培养,应该选拔具有较强工程背景的教师进行指导。指导教师在进行指导时,应与学术型研究生指导工作有所不同,应更加注重专业学位研究生工程实践经验的培养。而且在学生的课题研究中,指导教师与学生多沟通,将自身融入到学生的实践研究中,带领学生参与技术上的创新和解决实际工程技术难题,这样才能确保学生的培养质量。

2.做到课堂理论与工程实际相结合。专业学位研究生培养的多年实践经验告诉我们,在指导过程中必须注重理论与工程实际应用结合,抽象概念与实际应用结合,激发学生学习兴趣,使理论易于理解和掌握。因此,教师要了解专业学位研究生的本科学历背景、知识结构和现在的工程方向等,在此基础上,做到课程理论联系工程实际,为专业学位研究生培养工作打下良好的基础。为了满足微电子领域内不同行业的需求,在多年的专业学位研究生培养中进行了积极的探索。首先,学生可以根据研究方向,在教师的指导下进行专题理论课程的选择。例如,进行SOC设计的可以选择《SOC及IP技术讲座》课程,研究无线传感器网络的可以选择《无线传感器网络技术》或《计算机网络与通信》专题讲座,研究空间通信的选择《深空通信技术专题》等等。有针对性地,使学生不是单纯盲目的学习,这样的培养才能做到理论与工程实践真正结合。实践结果表明,那些课堂上刻苦学习,能够将理论用于实践并努力钻研的学生,将有更好的培养效果和未来发展空间。

3.学位论文选题恰当,工程背景好。选题重要性要放在首位,要求“论文选题来自于工程实践,工程背景明确,应用性强”,有的放矢,结合工程实际问题才是最好的选题。从现实意义上讲,专业学位论文的选题是发现工程问题并确认研究方向。当前有些专业学位论文质量不高、没有创新性,一个重要原因就是选题不恰当。因此,在选题时,学生应急科研工作之所急,通过论文工作,使自己既能解决工程实际问题,又能提高科研工作能力。

集成电路工程专业学位论文的选题与学术型研究生的选题不同,其选题应来源于工程实践,应有明确的应用价值,其可以是一个完整的工程项目、技术改造或技术攻关专题,也可以是新工艺、新设备、新产品的研制与开发。论文是否合格不仅看其理论水平的高低,还要看是否有实际的应用价值。因此,由于论文选题时,应该从以下几点之一进行把握。①研究性,是否在工程实际中有技术改进和提高。如果是结合重大工程实际课题,在技术上的创新将具有研究性。②创造性,是否在工程领域中有所突破和有所创新,如果一般通过查新,能够申请发明专利的都具有创造性。③实用性,是否能解决生产实际中的问题。

三、集成电路工程专业学位研究生培养过程中的方法和步骤

专业学位研究生的培养过程包括课程学习、题目确定、开题报告、中期检查、学位论文撰写和论文答辩等环节。我校专业学位研究生的培养年限一般为二年,原则上用0.75-1学年完成课程学习,用1-1.25学年完成硕士学位论文。这些环节是一个有机的整体,需要合理安排,搞好各个环节的链接,进行一体化考虑。只有严格要求,才能够保证专业学位研究生在两年的时间内保质保量的达到国家硕士生培养的要求。作为集成电路工程专业学位研究生的培养,其专业基础相对学术型研究生存在一定的差距,不进行合理的引导就会使得学生失去学习的兴趣。专业学位研究生的培养不能以单纯拿到毕业证为目标,应更加严格管理、严格把关,保证培养质量。通过近几年的经验积累,以专业学位研究生的培养为例,一般按照下列的步骤进行:第一学期,主要以课程学习为主,并在课堂学习中,定期安排相关教师对本实验室从事的科研项目进行学术讲座,让学生了解实验室开展的课题研究方向和从事的科研项目,从总体上进行了解和把握,逐渐培养学生的钻研兴趣。开展教师或高年级学生关于研究课题的专题讲座和基本软件使用方法技能培训,使学生尽快掌握相关领域的专业知识和所需要的基本软件操作方法,如从事ASIC接口电路的学生在第一学期就要求掌握Hspice和Candece等软件。在学期末对学生进行相关领域知识进行摸底考核,对优秀学生进行奖励,末位学生进行督促教育,使其尽快的减小自身差距。第二学期,在学习专业课程的同时,学生进入实验室参与科研工作,将从事科学研究的方法和经验有针对的进行训练。在进入实验室期间,可以将科研任务进行分解,将非核心技术部分交给学生独立去完成,让学生提前进入科研状态,完成一些力所能及的科研任务,坚定他们从事科学研究的信心。定期通过实验室的学术活动检查学生课题的完成情况,从总体上把握学生的研究方向和研究方法。第三学期,根据专业学位研究生的学习情况和所掌握的知识水平,有针对性的指导学生进行课题实践,让学生根据自己的特长进行课题研究。在学生进入课题研究工作时,导师指导学生了解本研究领域国内外技术发展的现状,培养学生创造性思维能力和独立思考、解决问题的能力。培养学生阅读国内外文献的能力,使其在科研工作中大胆实践,理论联系实际,使学生在科研工作中有所发明、有所创造。学生明确了课题目标,知道为什么做、做什么、怎样做,就能有目标有方向地开展课题研究工作。第四学期,主要是督促检查学生毕业论文工作,在其课题研究过程中应当定期进行检查,避免学生课题研究偏离方向,选择错误的方法。导师应当积极鼓励学生在本学期多发表学术论文。发表学术论文不仅能够提高学生的文字表达能力,还能够让学生勤于思考,提出自己的创新方法,对学生后期的毕业论文撰写打下良好的基础。因此,踏实的论文工作是提高个人学术素养和掌握综合知识的最佳途径,为学生毕业后从事科研实践养成良好的工作作风,培养自主从事科研工作的能力。

总之,通过加强基础知识、基本技能训练与能力培养的相融通;实践与课程学习、业务培养与素质提高有机结合,使集成电路工程专业学位研究生养成了较强的自我获取知识的能力,自我构建知识的能力及自我创新的能力。已经毕业的专业学位研究生就业形势一直是供不应求。孔子曰:知之者不如好知者,好知者不如乐知者。学生只有好知并乐知,才能使集成电路工程专业学位研究生培养的质量不断稳定和不断提高。

参考文献:

[1]谭晓昀,刘晓为.信息企业集成电路工程领域工程硕士培养的探讨[J].科教论坛,2009,(2):7-9.

[2]朱宪荣.改革实验教学培养创新人才[J].化工高等教育,2007,(6).

[3]朱高峰.新世纪中国工程教育的改革与发展[J].高等工程教育研究,2003,(1):3-9.

[4]张华,沈毅.对硕士研究生培养模式改革的认识与思考[J].科教论坛,2008,(5).

集成电路设计研究方向篇6

关键词:集成电路设计;应用型人才;课程改革

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2016)14-0059-02

一、引言

在过去的20多年来,中国教育实现两大历史性跨越。第一是实现了基本普及义务教育,基本扫除青壮年文盲的目标;第二是中国高等教育开始迈入大众化阶段,高教毛入学率达到17%。据《2012年中国大学生就业报告》显示[1],在2011年毕业的大学生中,有近57万人处于失业状态,10多万人选择“啃老”;即使工作一年的人,对工作的满意率也只有47%。2012年,全国普通高校毕业生规模达到680万人,毕业人数再创新高,大学生将面临越来越沉重的就业压力。面对这样的困境,国家相关部分提出了一系列的举措,其中对本科毕业生的培养目标逐渐向应用型人才转变[2-4]。集成电路作为信息产业的基础和核心,是国民经济和社会发展的战略性产业,已成为当前国际竞争的焦点和衡量一个国家或地区现代化程度以及综合国力的重要标志。本文将在对集成电路设计专业特点分析的基础上,以北京信息科技大学集成电路设计专业课程设置为例,介绍面向应用型人才培养目标地集成电路设计本科课程现阶段存在的问题并给出相关可行的改革方案。

二、集成电路设计专业特点

进入本世纪后,我国的集成电路发展迅速,集成电路设计需求剧增。为了适应社会发展的需要,国家开始加大推广集成电路设计相关课程的本科教学工作[5]。经过十年多的发展,集成电路设计专业特色也越来越明显。

首先,集成电路设计专业对学生的专业基础知识要求高。随着工艺的不断进步,集成电路芯片的尺寸不断下降,芯片功能不断增强,功耗越来越低,速度越来越快。但随着器件尺寸的不断下降,组成芯片的最基本单元――“器件”的高阶特性对电路性能的影响越来越大。除了器件基础,电路设计人员同时还需要了解后端电路设计相关的版图、工艺、封装、测试等相关基础知识,而这些流程环环相扣,任何一个环节出现问题,很难想象芯片能正常工作[6]。因此,对于一个合格的电路设计人员,深厚的专业基础知识是必不可少的。

其次,集成电路设计专业需要学生对各种电子设计自动化工具熟悉,实践能力强。随着电子设计自动化工具的不断发展,在电路设计的每一个阶段,电路设计人员可以通过计算机完成电路设计的部分或全部的相关内容。另一方面,电子设计自动化工具的相关比较多,即使是同一家公司的同一种软件的更新速度相当快,集成电路设计工具种类繁多,而且没有统一的标准这对集成电路设计教学增加了很大的难度。

再次,集成电路设计专业的相关教学工作量大。正如前面所介绍,要完成一个电路芯片的设计,需要电路设计人员需要了解从器件基础到电路搭建、电路仿真调试、版图、工艺、封装、测试等相关知识,同时还要通过实验熟悉各种电子设计自动化工具的使用。所有相关内容对集成电路设计专业的教学内容提出了更多的要求,但从现有的情况看,相关专业的课时数目难以改变,所以在有限的课时内如何合理分配教学内容是集成电路设计专业教师重要的工作。

最后,集成电路设计专业对配套的软、硬件平台要求高,投入资金成本高。从现有的情况看,国际上有4大集成电路设计EDA公司,还有很多中、小型EDA公司。每个公司的产品各不相同,即使针对相同的电路芯片,设计自动化工具也各不相同。在硬件方面,软件的安装通常在高性能的服务器上,因此,硬件方面的成本也很高。软硬件方面的成本严重地阻碍了国内很多高等院校的集成电路设计专业发展。

三、集成电路设计专业课程设置及存在的问题

在集成电路设计专业课程设置方面,不同的学校的课程设置各不相同。但总的来说可以分为三类:基础课、专业课和选修课。在三类课程的设置方面,每个学校的定义各不相同,主要是根据本校集成电路设计专业的侧重点不同而有所区别。从国内几大相关院校的课程设置看,基础课主要包括:《固体物理》、《半导体物理》、《晶体管原理》、《模拟电子技术》、《数字电子技术》等;专业课主要包括:《模拟集成电路设计》、《数字集成电路设计》、《信号处理》、《高频电路》等;选修课主要包括:《集成电路EDA》、《集成电路芯片测试》、《集成电路版图设计》、《集成电路封装》等。

从现有的课程设置可以看到,针对国家应用型人才培养目标,现有的课程设置还存在很多问题,具体地说:

首先,课程设置偏于理论课程,实践内容缺乏,不符合应用型人才的培养目标要求。从上面的课程设置情况可以看到,各大高校在课程安排方面都侧重于理论教学,缺乏实践内容。比如:《模拟集成电路设计》课程总学时为48,实验学时为8,远远低于实际需求,难以在短短8学时内完成模拟集成电路设计相关实践活动。虽然集成电路设计专业对于专业基础知识要求宽广,但并不深厚,因此,浪费太多时间在每个设计流程相关的理论知识的阐述是不合适的,也不符合我国大学生的现状。

其次,实践活动不能与集成电路设计业界实际需要相结合,实践内容没有可行性。从目前各大高等院校的课程内容方面调研结果表明,对于本科教学情况,90%以上的实践内容都是教师根据理论教学内容设置一些简单可行的小电路,学生按照实验指导书的内容按相关步骤操作即可完成整个实验过程。实验内容简单、重复,与集成电路设计业界实际需要完全不相关,这对学生以后的就业、择业意义不大。

最后,没有突现学校的专业特色,不适于当今社会集成电路设计业界对本科毕业生的要求。但在竞争激烈的电子信息产业界,如果想要毕业生择业或者就业时有更强的竞争力,各大高校需要有自己的专业特色,但现在各个高校的现状仍然是“全面发展,没有特色”。这对于地方高校的集成电路设计专业毕业生是一个劣势。

四、面向应用型人才培养目标的课程改革

针对上面阐述的相关问题,本文给出了面向应用型人才培养目标的集成电路设计专业课程改革的几点方案,具体地说:

首先,削减理论课的课时,加大实验内容比例。理论课时远远高于实践课时是当今大学生教育的一个重要弊端,这也直接导致了大学生动手能力差、实践活动参与度低、分工合作意识薄弱。而在不增加授课学时的前提下要改变这一现象,唯一的方法就是改变授课内容,适当削减理论课的课时,加大实验内容的比例。这样既能满足国家对于本科毕业生应用型人才的培养目标,也符合创新型本科生的特点。

其次,积极推进“校企联合办学”,让学生更早接触业界发展,指导择业、就业。正如前面介绍,现在各大高等院校的教学内容理论性太强,学生在大学四年学习到的相关知识与实际应用相脱离。这也造成很大一部分本科毕业生在入职后的第一年难以进入工作状态,工作效率差,影响后面学生的就业、择业。如果能在学生在校期间,比如大学三年级或更早,推进“校企联合办学”,使学生更早了解到业界真正工作模式以及业界关注的重点,这对于学生后续进入工作非常有利,同时也能推进学校科研工作。

最后,实现优质教学资源的共享。这里的教学资源,除了包括授课笔记、教案、教学讲义外还包括高水平教师。虽然现在高等教育研究相关机构也开设了一些青年教师课程培训相关内容,但真正取得的成效还相对比较小。另外,针对集成电路设计专业来说,跟随业界发展的相关知识更新较快,配套的软硬件代价较高,如果能实现高校软硬件教学资源的共享,尤其是高水平高校扶持低水平高校,这将更有利于提高毕业生的整体水平。

五、结论

本文详细分析面对应用型人才培养目标的集成电路设计专业的特点,并在对国内相关院校集成电路设计专业调研基础上给出集成电路设计专业的基础课、专业课、选修课课程的内容以及教学方式情况,指出面向应用型人才培养目标现在课程设置方面存在的问题。同时,文章给出了在当今大学生招生人数剧增情况下,如何合理安排集成电路设计专业课程的方案从而实现应用型培养目标。

参考文献:

[1]王兴芬.面向应用型人才培养的实践教学内涵建设及其管理机制改革[J].实验技术与管理,2012,(29):117-119.

[2]殷树娟,齐臣杰.集成电路设计的本科教学现状及探索[J].中国电力教育,2012,(4):64-66.

[3]侯燕芝,王军,等.实验教学过程规范化管理的研究与实践[J].实验室研究与探索,2012,(10):124-126.

[4]张宏勋,和荫林,等.高校实验室教学文化变革的阻力及其化解[J].实验室研究与探索,2012,(10):162-165.

[5]茹少峰,宫胜,李文斌.建立实验教学团队合作机制培养创新型人才[J].实验技术与管理,2010,(6):5-6.

集成电路设计研究方向篇7

关键词:超大规模集成电路;系统级;寄存器传输级;逻辑级;晶体管级;可靠性评估

中图分类号:TP311文献标识码:A文章编号:1009-3044(2012)01-0204-03

An Overview of the Reliability Evaluation of Very Large Scale Integrated Circuits

ZHU Xu-guang

(Department of Computer Science and Technology, Tongji University, Shanghai 201804, China)

Abstract: To meet the high performance requirements of SoC (System on Chips), the density and complexity of VLSI is increasing contin? ually, and these have negative impacts on circuit reliability. Hence, accurate reliability estimation of VLSI has become an important issue. This paper has introduced the problems and the existing reliability techniques of reliability estimation based on the early achievements. Fi? nally, this paper described the further work, the deficiency and difficulties of the current work combined with the author’s working.

Key words: VLSI; system level; register transfer level; logic level; transistor level; reliability evaluation

超大规模集成(very large-scale integrated, VLSI)电路及其相关技术是现代电子信息技术迅速发展的关键因素和核心技术,对国防建设、国民经济和科学技术的发展起着巨大的推动作用。人们对信息技术产品(主要指数字计算系统)的依赖程度越来越大,这直接牵涉到人们的生活质量,甚至关系到人类生命、财产的安全问题。因此,当前人们在应用这些产品的同时,必然会提出更高的要求,即除了传统意义上的要求和标准以外,还提出了更重要的评价体系---系统所提供服务的“可靠性”标准问题[1]。

目前,军事电子、航空航天、工业、交通、通讯,乃至普通人的个人生活都对VLSI电路和系统提出了越来越高的可靠性要求,而同时随着集成电路技术的发展,尤其是深亚微米、纳米工艺的应用、电路规模不断扩大,特征尺寸不断缩小,电路密度不断提高,给芯片的可靠性带来了严峻的挑战。因此,对VLSI电路的高可靠性研究变得越来越重要。可靠性技术研究一般包括可靠性设计与模拟、可靠性试验与评估、工艺过程质量控制、失效机理与模型研究,以及失效分析技术等五个主要的技术方向。

传统上对VLSI电路可靠性的研究主要是针对制造过程的,内容包括成品率计算模型、缺陷分布模型、软(硬)故障影响的可靠性模型、电路的串扰与延迟、电路可靠性与成品率的关系等。在集成电路制造过程中,由于各种工艺扰动会不可避免地在硅片上引入缺陷,从而引起集成电路结构的局部畸变。这些局部畸变可能改变电路的拓扑结构,导致集成电路成品率下降。因此,缺陷的几何模型、粒径分布是影响成品率的重要因素之一。另外,在深亚微米和纳米工艺下,软故障的干扰越来越严重,相关的研究包括软故障影响下导线可靠性模型、故障关键面积计算等。已有的研究表明可靠性和成品率存在正相关关系,其正相关性需要考虑线宽、线间距等版图的几何信息和与工艺相关的缺陷粒径分布等参数。面向制造过程的可靠性研究准确性好但存在较大的计算开销。

于是在制造出集成电路产品后,通过筛选和可靠性试验估计其可靠性,并采用加速寿命试验确定产品的平均寿命。如果发现可靠性不满足要求,就要从设计和工艺角度进行分析,并加以改进。长期以来,评价器件质量和可靠性的方法分为三类[2]:(1)批接收抽样检验,检验该批产品是否满足产品规范要求;(2)可靠性寿命试验,评价产品的可靠性水平;(3)从现场收集并积累使用寿命数据,评价相应产品的使用质量和可靠性。

近年来,VLSI电路集成度不断提高,同时可靠性水平也迅速提高,传统的评价方法暴露出了各种各样的问题,如批接收抽样检验方法因分辩能力有限而不能有效区分高水平产品质量之间的区别;可靠性寿命试验方法因要求的样本数太多而导致成本上升;基于现场数据收集的方法因存在“滞后性”而不能及时对产品质量进行评价等,这就促使人们开始研究新的评估技术。

当前对可靠性研究主要的数学模型有[3]:可靠性框图模型、故障树模型、马尔科夫模型、Petri网模型、状态空间分解模型及概率模型等。

虽然这些模型较好的解决了一系列的问题,但是在对VLSI电路进行分析时,由于没有涉及到电路的具体逻辑结构,也就是说只是粗略的分析了一下电路的可靠性,这是不够准确的,当然也是具有现实参考价值的。

在下一步工作中,作者将深入到电路的具体逻辑层和现实的环境当中,对其进行更加深入和具体的研究,以便给出更加准确和 更有价值的计算值。

1不同层面可靠性评估

对数字VLSI电路进行模型化或设计描述,按照抽象级别由高到低大致可以分为行为级、寄存器传输级、逻辑级、电路级、晶体管级。目前,可靠性评估方法的研究主要集中在电路逻辑级以上,通过故障注入或模拟的方法分析信号可靠性。

一般而言,电路可靠性分析基于抽象级别越高,时间开销越少,能用于大规模电路或者处理器系统的评估,但是由于远离物理实现,准确性低。反之,分析的抽象级别越低,必然考虑低层实现中的缺陷分布,环境因素等参数,越接近芯片制造的真实过程,所以更加准确,但是存在一个普遍问题是耗时大,无法用于复杂电路。

1.1行为级可靠性评估

在高层测试可以及早地发现设计错误,便于及时修改,减少设计成本,缩短研发时间。当前集成电路高层测试所面临的最大困难是:缺少能准确描述高层故障实际类型的故障模型,并且模型的评估方式也较单一。

目前,国内外学者对高层故障模型的研究已做了许多有益的工作,如:模仿软件测试的覆盖方法(包括状态覆盖、语句覆盖、分枝覆盖等)、基于电路结构提出的故障模型等。这些故障模型在处理某类电路时都表现出了一定的优势,但是并非对所有类型电路都有效。这也表明,当前高层故障模型依然不够成熟;高层故障模型与门级网表中的SA(固定型故障模型)故障之间的关系依然不清晰;模型的评估也有待于改进。现存的故障模型中,比较成功的有:传输故障模型[4],变量固定型模型[5]。对模型的评估,常用的方法是覆盖率评估,一般分为两步,如图1所示:(1)依提出的故障模型作测试生成,得到测试向量;(2)将测试向量在门级网表作模拟,计算其对SA故障的覆盖率。另外还有一些是考虑电路的可观测性的测试生成与评估方法[6]。总之,这些评估方法,都是基于对SA故障覆盖率的计算。

图1两个高层故障模型评估

1.2逻辑级可靠性评估

正如上文所述,评估方法所对应的电路抽象级别越高,其准确性则越低。而同一抽象层次上不同类型的方法相比,解析方法最为省时。逻辑级的解析模型方法相对准确,且易于理解和操作。

由于逻辑电路对差错具有一定的屏蔽作用,作为瞬时故障的软差错并非一定会导致电路锁存错误内容或者输出错误结果,因此,建立概率模型来评估逻辑级电路可靠性是合理的。

逻辑级概率模型通过计算发生在电路逻辑门或线节点差错传播到原始输出的概率来衡量其失效率,考虑了电路的拓扑结构和传播路径信息,并与组成电路的各个门类型和连接方式有关,如图2所示,目前典型的方法包括:计算单个输出节点软差错率的TP方法[7],通过计算差错传播率表征电路软差错率的EPP方法[8],以及通过概率转移矩阵模型评测整个电路可靠度的PTM方法[9]。其中,TP方法和EPP方法只计算部分电路的失效率,而PTM可以度量整个电路的可靠性。但是,未经优化的TP、PTM算法的计算时空开销较大,只能适用于小规模电路。基于PTM方法具有良好的完备性,并且模型简单而准确,为解决其因时空复杂度大而不能直接用于大规模电路的问题,文献[2]对PTM方法进行了深入的研究,并提出了合理的改进方法。

1.3晶体管级可靠性评估

超深亚微米下的CMOS电路可靠性是由MOSFET的微观失效机制来决定的,对CMOS电路可靠性的评估和改善应该在失效模式分析和对基本物理失效机制正确理解的基础上进行。因此在对电路可靠性进行评估时,需要进行下面四方面的工作:

1)对MOSFET栅氧层退化机制进行建模。MOSFET中热载流子注入效应、负偏置温度不稳定性、栅氧可靠性的经时击穿效应这三种失效机制是影响到超大规模CMOS电路长期工作可靠性的最主要因素。它们都是由氧化层陷阱电荷作用或界面态积累作用而导致了栅氧层作用的退化而造成器件特性的退化。

2)对产生局部氧化层损伤的MOSFET器件行为进行建模。MOSFET中的HCI和NBTI效应都会对器件的主要I-V特性参数产和程度不同的影响。

3)在电路长时工作条件下,对器件栅氧层退化进行仿真。正常的电路中器件一般都是处在AC应力条件下,要对电路的可靠性进行准确的评价,必须先要能够对AC应力下MOSFET长时间工作后的器件性能进行评价。

4)评价处于失效应力作用下的整体电路的性能。

电路可靠性研究的一个重要部分集中在器件级设计[10],其包括:对失效机制更好的理解和建模;圆片级测试结构的革新以改善可靠性控制;阻止器件退化的结构的研究。其中,器件退化对电路性能的影响受到了更多的关注。在设计阶段预测电路可靠性的方法有着非常大的价值。随着可靠性仿真技术的逐渐成熟,芯片的可靠性设计概念被提上了日程。对最终的电路可靠性评价在IC设计阶段完成,大大降低了芯片设计风险。图3为晶体管级电路的结构。

图3晶体管级电路结构图

从以上可知,可以从不同层面来对VLSI电路进行可靠性评估,不同层面的可靠性评估有其不同的优势与不足。较低层次的可靠性分析通常比较准确,但是其功耗和时间开销大,只能对中小型电路进行分析。高层次的可靠性分析由于远离物理实现,准确性低,但是可处理性好。根据作者的研究认为,兼顾准确性和可处理性是对可靠性研究的突破点,这就要将电路的不同层次间相互映射,以尽可能贴近电路的真实行为。从而在电路的设计阶段就能够比较准确地估计其可靠性,尽早调整改进,避免出现因结构设计上的不足而导致的芯片缺陷,从而提高芯片的可靠性和成品率,缩短芯片的设计和生产周期。

2结论

由IBM、Sony、Motorola等多家知名半导体公司最新研究进展表明,可靠性问题始终伴随着半导体器件与大规模集成电路的发展和应用,随着集成电路技术的发展,VLSI电路的可靠性问题变得越来越突出。加强对半导体器件与集成电路的可靠性分析、模拟、评估和改进已经成为超大规模集成电路发展中的重要课题。目前VLSI电路的可靠性研究得到广泛的关注,对越来越多的失效模式和机理进行了研究,并且从理论和实践上不断提出了改进方法,这些研究成果为可靠性增长提供了评价标准与依据。

参考文献:

[1]徐拾义.可信计算系统设计和分析[M].北京:清华大学出版社,2006.

[2]王真,江建慧.基于概率转移矩阵的串行电路可靠度计算方法[J].电子学报.2009,37(2):241-247.

[3]肖杰,梁家荣.具有失效结点和链路的E-2DMesh网络可靠性研究[J].计算机应用研究,2009,23(3):201-204.

[4] Yi Zhigang, Min Yinghua, Li Xiaowei, et al. A Novel RT-Level Behavioral Description Based ATPG Method [J]. Journal of Computer Sci? ence and Technology, 2003, 18(3): 308-317.

[5] Corno F, Prinettp P, Reorda M S. Testability Analysis and ATPG on Behavioral RT-level VHDL[C]. Proceeding of International Test Con? ference, Washington, 1997: 753-759.

[6] Fallah F, Devadas S, Keutzer K. OCCOM-efficient Computation of Observability-based Code Coverage Metrics for Functional Verifica? tion [J]. Computer-aided Design of Integrated Circuits and Systems, 2001, 20(8): 1003-1015.

[7] Kim J S, Nicopoulos C, Vijakrishnan N, et al. A probabilistic model for soft-error rate estimation in combinational logic[A]. In: Proc. of the 1st Int`l Workshop on Probabilistic Analysis Techniques for Real Time and Embedded Systems[C]. Italy, Elsevier Science, June 2004, pp. 25-31.

[8] Asadi G, Tahoori M B. An analytical approach for soft error rate estimation in digital circuits[A]. In: Proc. of the IEEE Int Symp on Cir? cuits and Systems[C].Kobe, John Wiley & Sons, May 2005, pp. 2991-2994.

[9] Krishnaswamy S, Viamontes G F, Markov I L, et al. Accurate reliability evaluation and enhancement via probabilistic transfer matrices[A]. In: Proc of the Design, Automation and Test in Europe Conference and Exhibition[C].Orlando, IEEE CS Press, March 2005, pp. 282-287.

集成电路设计研究方向篇8

关键词:嵌入式系统 产学研 项目驱动 考核模式

随着物联网、通信技术的发展,嵌入式产品在全球各行业得到广泛应用。但我国嵌入式人才一方面市场供不应求、企业选人难;一方面高校毕业生就业难。主要问题是毕业生不能满足市场对人才的要求,校企合作不够紧密。这种现象不仅存在于本科毕业生中。随着研究生的扩招,提高研究生就业率也提上了议事日程。学校不能向学生提供足够的实践机会,有些教学只有理论讲解,没有实践操作,或者学生做实验仅仅是基于实验箱的步骤完成实验,不能提高学生的动手能力和实际工程项目研发能力,故不能满足嵌入式研发企业对于人才的要求。对于微电子专业而言,芯片设计更新换代很快,系统集成、片上系统甚至片上可编程系统需求大批既懂芯片设计又懂嵌入式系统的复合人才,这方面与国际同行业先进企业对人才的要求还有很大的差距。因此,如何破解这些问题,形成适应市场对嵌入式系统人才需求培养的新模式,是微电子专业嵌入式系统教学面临的一个重要课题。

国内外很多高校和实验室都对嵌入式系统课程进行了教学改革和尝试,如英国雷丁大学、德国波恩-莱茵-锡格大学、新加坡南洋理工大学和加拿大卡尔顿大学等;国内有清华大学、哈尔滨工程大学、江西理工大学和华中理工科技大学等。上述研究往往涉及计算机专业或电子工程专业较多,但是对微电子专业嵌入式系统课程的教学改革研究报道较少,并且大多数嵌入式系统教学改革主要是实验部分的改革。

为了贯彻落实《国家中长期教育改革与发展规划纲要(2010-2020年)》的精神,不断深化本科生、研究生教学改革,提高本科生、研究生教育质量和就业率。旨在探索研究微电子专业嵌入式系统学研产教育新模式,走出一条将实际科研项目、教学环节和企业生产紧密结合的特色之路。以市场甚至国际市场为导向、以企业甚至跨国公司为依托、学研产相结合的新模式,把微电子专业嵌入式系统科学研究、企业技术研发和人才培养紧密结合起来。尤其是对微电子专业研究生的教育,与企业甚至跨国公司合作进行技术研发,提高人才的创新能力、解决工程实际问题的能力和专业工程素养,培养出基础较扎实、实践能力强、专业工程素养较高和企业欢迎的微电子专业毕业生。为破解高校学生就业难、企业选人难的问题;为缩小我国与先进国家微电子专业复合人才的差距,具有重要的现实意义和长远的社会意义。

1 建立微电子专业嵌入式系统学研产平台

嵌入式系统是微电子专业研究生和本科生的一门专业选修课。微电子专业嵌入式系统的特点是紧跟芯片和软件前沿发展动向、涉及学科多、国际性器件多且更新换代快。该课程要求理论与实践紧密结合,企业需求解决工程实际问题的嵌入式人才,这些都促进了微电子专业嵌入式系统学研产教育新模式的开展,提高学生理论联系实际和工程项目研发能力。我校已与北京华芯微特科技有限公司、深圳仙苗科技有限公司和北京飞漫软件有限公司等单位合作,建立了嵌入式联合实验室,正在与跨国公司相关人士洽谈;另外,本研究室在科学研究中已初步建立了小型物联网系统、RFID系统、光栅测量系统、火炮发射计数系统、烟雾报警系统和完成芯片设计并成功流片的项目等,这些为该课程学研产新模式的探索和研究搭建了很好的基础和平台。部分学生在华芯微特公司运用所学的ARM汇编语言进行指令集的测试设计和应用设计。部分学生运用所学软硬件系统设计方法,设计和制作出电子产品,部分产品已应用于企业。微电子专业嵌入式系统学研产新模式的建立,很重要的一项内容就是教学方法和考试方法改革。以实际工程项目驱动为主要形式,以实际课题研究、技术开发为主要内容,整合校企优质资源,优化微电子专业嵌入式系统教学与考试方法,提高学生的知识水平、学习、动手和实际工程实践项目的研发能力,实现与企业的紧密合作,为学生成功走向市场,进入企业增加一份较强劲的推动力。

2 实际项目驱动教学方法改革

基于嵌入式系统学研产平台,紧跟嵌入式学术前沿的发展动向,不断改进企业所需的产品功能,并将实际的研发项目和研发过程引入到嵌入式系统课堂,采用课内外学习、作业和实验相结合的方法,使学生能完成嵌入式系统的实际硬件电路设计、程序编制、调试环境搭建、板级调试、网络通讯、系统集成和文档编写等环节,提高学生的工程项目研发和实际动手能力。将企业一线专家请到校内,使学生近距离聆听企业嵌入式专家的报告和指导,提高学生工程项目经验、创新能力、实践能力,丰富学生的专业素养,也可以提高学生的就业率。同时也为企业产品研发提供人才保障。另外,也使学生和教师及时了解企业对毕业生的要求、对课程内容的建议和企业技术创新的需求等,紧跟嵌入式市场的发展需求,及时调整教学内容和规划,培养符合市场及企业一线需求的微电子嵌入式人才。切实建立以国际市场为导向,以国内企业和国际企业为依托、学研产紧密结合的微电子专业嵌入式系统教育新模式。同时进一步加深与企业之间长期紧密的学研产用合作关系,使平台成为企业技术创新和我校微电子专业嵌入式人才培养的重要基地。

3 结合市场和微电子专业特点细分方向

上一篇:如何提高课外阅读水平范文 下一篇:孩子阅读课外书的方法范文