主体结构工程施工要点范文

时间:2023-11-14 22:22:22

主体结构工程施工要点

主体结构工程施工要点篇1

关键词:建筑;主体结构;工程;施工技术

当前我国城市化发展越来越快,在城市化推进的过程中,建筑是城市化发展的特色产物,在城市化发展的全过程中扮演了重要的角色,所以,保持建筑主体结构工程较高的施工技术质量便显得尤为重要,从整体上确保我国整个建筑施工良好的施工水平,产生良好的建筑施工整体效果,为人们营造舒适的居住环境。对施工质量的筹划及施工质量的管控实施研究,结合施工特点,采取有效的施工工艺,掌握施工中的重点,采取各种施工管理手段,以项目施工质量所需。

1 建筑主体结构工程施工技术一般步骤

对建筑主体结构施工而言,结合较高的施工效率及施工质量,通常流水施工的方式,自下而上产生了一体的施工技术过程。一般建筑主体结构施工要按照下述施工流程进行:

建筑主体施工进行前,先测定前期数据,确定施工位置,并开展钢筋与柱的绑扎作业;在建筑施工中,先安装主体施工模板,紧接着进行混凝土浇筑施工;振捣、压实混凝土,待混凝土凝固后,拆掉建筑柱模板,同时维护主体结构混凝土;建筑物梁板模板安装结束后,同时加入建筑预应力钢筋,采用混凝土以浇筑建筑物梁板结构,维护混凝土施工;对主体结构预应力钢筋实施拉伸,拆掉建筑物模板。审视建筑主体结构施工整个过程不难发现,在建筑主体结构施工中,建筑钢筋、模板及混凝土的工程在建筑主体结构施工中占了很大的比例,在建筑柱体结构施工中,建筑钢筋、模板及混凝土工程的施工技术相当重要。

2 建筑主体结构工程施工技术水平提升的必要性

建筑工程主体结构的组成主要包括两方面:地质部分与地基以上部分,其组成了建筑工程较为重要的一部分,建筑工程主体结构对整体建筑工程产生的影响是积极的,这表现在下述几个层面:(1)建筑主体结构工程施工对整体工程外观构成影响,不稳定的建筑施工,极大影响了工程,稳定的施工有助于整体提升建筑工程美观;(2)建筑主体结构工程施工技术水平的高低直接影响了建筑工程较高质量的获得,离不开建筑主体结构工程施工良好的技术水平,其中,前期施工是一部分,后期施工是另外一部分;(3)建筑主体结构工程施工在建筑工程中尤为必要,对用户切身利益产生直接影响,从中能够看到,建筑主体结构工程施工技术水平的提升对建筑工程施工产生了积极影响,这种优势是比较明显的。

3 建筑主体结构工程施工技术的应用

建筑主体结构工程施工技术广泛应用在施工建设中,先以某市建筑主体结构工程施工为例。建筑工程主体结构选取的是框架式与剪力墙结构,建筑结构主要是住宅层、设备层、办公层、人防层不同功能的建筑部分构成,本工程建筑总占地面积为2629m2,楼层数量为6层,每层框架在设计上使用了梁柱、剪力墙的连接,需要大量的钢筋与配筋。建筑主体结构工程施工技术的具体应用包括以下几方面:

3.1 建筑主体结构钢筋工程。依据钢筋不同直径,将钢筋划分为钢筋与钢丝。钢筋一般卷成圆盘状,也被称之为盘圆抑或盘条。粗钢筋的直径>22mm,中粗钢筋的直径12~22mm,细钢筋的直径6~12mm。一般钢筋均在车间进行,经过了许多施工工序,包括冷拔、接长、剪切等。钢筋安装时,必须要注意保证钢筋依照设计要求,调整、根数与直径等。

依照规范标准,调整好绑扎接头的搭接长度,紧固绑扎。在绑扎受力钢筋接头部位时,要错开,不超过受力钢筋直径30倍,具备绑扎接头的受力钢筋截面面积在受力钢筋全部截面中,受力钢筋截面面积所占比值,调整受压区

在混凝土中,钢筋具有相应的保护层。一般工地预先制定水泥砂浆块垫在钢筋与模板中间,调整保护层厚度。施工人员在浇筑混凝土过程中,不可踩低一些面层钢筋,如雨蓬抑或楼板等,避免产生质量问题。一般钢筋工程不宜暴露,混凝土浇筑开始前,一定要验收钢筋与预埋件,并搞好有关记录工作。

3.2 建筑主体结构混凝土浇筑工程。建筑主体框架搭建的主要材料为钢筋与混凝土,混凝土浇筑时,具备对应的施工技术要点,确保组合结构的载荷更大。混凝土浇筑工程包含了众多的层面,许多结构都使用了混个凝土浇筑,如墙体与柱体等。在柱体浇筑过程中,应调整好水泥搅拌时间,调整水泥厚度约40cm,此外,严格把控浇筑施工,避免浇筑表面产生蜂窝。在梁结构浇筑过程中,保证梁体水平面在浇筑过程中得到有效控制,便于后续施工,防止延长施工周期。另外,混凝土浇筑整个过程不要间断,混凝土搅拌时,搅拌均匀,充分全面地进行搅拌,确保石灰与水泥有效接触,确保混凝土强度。

3.3 建筑主体结构模板工程。墙体模板的工艺流程包括准备工作、内纵墙模板、拆模等环节。模板的应用,保护了混凝土浇筑,起到了支撑作用,使浇筑的混凝具有一定的|量。在设置混凝土浇筑部分模板过程中,要合理使用材料,一般将竹木模板用作构造柱材料;将钢质材料用作柱体材料;将竹胶板用作梁体与屋面等。模板工程施工时,技术施工主要集中在模板支设与拆除。尤其模板的搭建抑或支设时,保持低部平整与整齐,避免混凝土产生跑浆的情况,此外,在搭建木板过程中,预先设计装饰厚度固定参数。拆除模版时,尤其依照工程施工标准要求混凝土强度,如果混凝土强度为设计强度一半时,可开展绝大多数模板拆除工作,如果混凝土强度在标准要求范围内,保证混凝土边角与棱等完好,方能充分拆除模板。另外,模板拆除作业要同步混凝土浇筑作业,也就是先拆除浇筑位置,延长后浇筑位置的拆除时间。同时,严格依照施工规范要求技术人员,搞好技术交底工作,并做好监督与检查工作。

4 结语

建筑主体结构施工质量与建筑施工整体质量有着直接关系,保障了建筑物的稳定与安全。建筑施工技术在具体运用时,需要了解施工中各技术部位的重要点,此外,考虑施工技术实际状况,采取先进的施工技术,有效筹划施工程序。建筑工程的施工技术所处的系统环境比较复杂,由施工测量至材料的熟悉,均和施工方法的使用有着分不开的关系,为此,在施工过程中一定要掌握施工工艺与方法,强化技术管控。在保障安全的前提下,延长建筑主体结构的使用寿命,带给建筑企业较高的经济效益与社会效益。

参考文献

[1] 黄龙华.建筑主体结构工程的施工技术简述[J].江西建材,2016(18): 100-101.

[2] 周洪彬.建筑主体结构施工技术重点分析[J].建材与装饰,2015 (49):11-12.

主体结构工程施工要点篇2

1钢结构幕墙一体化深化技术

上海中心大厦钢结构工程与其他相关专业界面众多,涉及土建结构、钢结构、幕墙等专业。各专业系统的空间关系极为复杂,传统的CAD技术无法清晰地表明各专业之间的相互关系,施工图纸上不可避免地存在着“结构碰撞”和“工艺空间不足”等问题。按照传统的按图深化、按图施工,将影响工程推进的效率。借助BIM模型和模拟技术,以及信息化、数据化、参数化的特点,实现设计图纸和深化图纸间的有机衔接。在施工图设计阶段,建立基于施工图的各专业设计BIM模型,通过合模发现和解决各专业施工图纸,尤其是结构与幕墙、结构与机电相互之间存在的“硬碰撞”和“软碰撞”问题,并形成正确的设计BIM模型;在深化图设计阶段,以设计BIM模型为基础,进行土建、钢结构、幕墙等专业一体化深化设计工作,同时协调结构、机电管线及装饰之间的空间定位及界面关系。并通过BIM深化设计的建模和合模,再次校核上述问题,形成准确的深化设计模型,指导或自动生成深化设计图纸,弥补设计图纸深度不足、提高深化设计效率。图3为典型结构分区钢结构幕墙合模进行碰撞检查的案例。

2主楼钢结构施工模拟分析及控制技术

2.1竖向变形分析及控制技术超高层建筑竖向变形分析及施工控制一直是超高层结构施工的关键技术,通过吻合施工流程和工况的全过程施工模拟计算分析确定各施工分段的竖向变形补偿值(见表1)以及伸臂桁架的终固方案(见表2),有限元模型如图4所示。主要计算假定如下:①收缩徐变计算模型考虑巨型柱配筋率和劲性结构的影响;②核心筒剪力墙和巨型柱中使用水泥为快硬高强水泥;③环境湿度取为70%;④巨型柱和核心筒剪力墙的加载龄期均取为5d,施工速度为5d/层;⑤核心筒领先楼面钢结构12层施工,楼板浇筑落后楼面钢结构8层;⑥待楼层施工到第2层伸臂桁架时再把第1层伸臂桁架终固。实际监测结果表明各结构分区相对变形的实测值与理论值差值基本控制在10mm之内,主楼绝对标高的实测值与理论值基本控制在50mm之内,达到设计要求。伸臂桁架终固方案分析和实施:①方案1施工各伸臂桁架时直接固死;②方案2首次施工到伸臂桁架时先临时固定,待施工到第2层桁架层时再把第1层伸臂桁架终固。比较结果如表2所示。方案1竖向变形差异产生的伸臂桁架内力最大,轴力应力比最大值为12.2%;方案2竖向变形差异产生的伸臂桁架内力次之,轴力应力比最大值达到5.5%,其余均控制在5%之下。应力监测结果也验证了理论分析结果的合理性和可靠性。通过比较可以看出,采用方案2对伸臂桁架施工较为合理,基本不会影响其在抵抗风荷载或者地震荷载时发挥作用,且根据工程总进度计划,外幕墙钢支撑施工必须进行流水搭接施工,如若不对伸臂桁架进行终固,整个幕墙系统的变形控制将变得更为复杂和难以控制。

2.2塔冠钢结构施工模拟分析及控制技术从8区加强钢桁架层以上直至632m属于塔冠钢结构的范围,由核心筒、转换层(斜柱+楼面钢梁+混凝土楼板)、八角钢框架、鳍状钢桁架4部分结构组成(见图5)。由于转换层结构的存在,其施工流程及方案确定变得极为重要,否则将造成转换层钢结构的应力和平面扭转变形的增大,从而造成施工完成状态无法满足设计的要求。通过多个施工方案的施工全过程模拟分析,最终确定了如下施工流程:①126F~128F八角框架结构施工;②129F~132F八角框架结构施工,同时穿插119F~121F南北两侧转换层钢结构施工;③119F~121F东西侧转换层钢结构施工;④按照从121F~119F的顺序进行楼面混凝土浇筑;⑤分节段进行鳍状桁架钢结构施工。施工模拟分析结果表明,在塔冠钢结构持续施工的过程中,转换层的扭转变形从最初的2.8mm发展到最终的10mm左右;应力的分布和大小均满足设计要求。

3外幕墙钢支撑结构施工技术

外幕墙钢支撑结构具有其独特的结构特性,整个系统由柔性拉棒、水平钢支撑、悬挑主结构、变形协调群支座等部分组成。柔性拉棒主要提供竖向刚度,水平钢支撑提供水平刚度,群支座协调由于风或地震产生的主楼侧向摆动引起的主体结构与钢支撑系统不均匀变形,整个系统吊挂于加强桁架层的悬挑结构上。外幕墙钢支撑结构作为外幕墙板块的支撑系统,其施工的精度和进度将直接影响后道工序(内外幕墙系统)的施工,所以结构变形分析和施工控制,以及解决在悬挑加悬空的位置进行结构安装难题是创新研究的重点。

3.1变形分析及控制技术外幕墙钢支撑与主体结构相互关系如图6所示,施工阶段产生的变形主要由3部分组成:悬挂结构所依附的主体结构竖向变形、悬挂结构产生的竖向变形、钢支撑结构的竖向变形。其中,悬挂结构所依附的主体结构竖向变形已在主体结构竖向变形中进行分析和控制,限于篇幅,本文将以2区为例重点对其余2个变形进行分析和研究。1)悬挂结构产生的竖向变形分析及设计优化外幕墙钢支撑结构及幕墙板块依靠25组挂点吊挂在顶部加强桁架层悬挑楼面下方,其吊挂点位的变形对外幕墙系统的竖向变形影响较大,尤其是相连挂点之间不均匀变形将会对外幕墙系统存在较大危害。2区幕墙支撑体系悬挂点位布置及悬挂点楼面梁体系如图7所示。经过计算比较和设计调整优化,最终通过对悬挂吊点楼面体系的刚度进行调整的方法(悬挂点区域主结构钢梁截面增加,以及增加吊点梁杠杆效应),将吊挂点的绝对和相对变形均控制到幕墙板块允许的范围之内。在吊点区域楼面刚度调整前后,25组吊挂点的竖向变形对比如图8所示,刚度调整得到极大改善。同时,刚度调整后,钢支撑逆作施工和幕墙板块顺作施工引起的不均匀变形控制在20mm之内,如图9所示,达到幕墙设计的安全性和功能性要求。2)钢支撑结构施工变形分析及控制2区外幕墙钢支撑结构施工时,变形主要由2部分构成:幕墙支撑的钢拉棒顶部悬挂点位竖向变形、钢拉棒伸长变形,施工过程也将根据2部分的数值分别进行预变形控制,2区钢支撑楼层及吊点编号如图10所示。钢支撑结构顶部吊挂点位标高预调整控制:根据变形分析计算结果,对加强桁架层对应钢支撑结构吊点位置的标高进行施工预调整,确保钢支撑及幕墙板块施工完成后标高控制在设计允许的误差范围之内(±10mm)。钢支撑结构施工标高预调整控制:每层钢支撑结构的环梁安装时,需要综合考虑顶部吊挂点位的变形、钢支撑施工引起钢拉棒的变形、幕墙板块施工引起钢拉棒的变形,最后汇总得到“外幕墙钢支撑结构施工各阶段变形控制图”。并以此为依据对钢支撑的安装标高进行标高预调整,确保幕墙板块施工完成时,25个吊点水平度能够满足设计要求。在实际施工过程中,及时跟踪实测了25个悬挂点位变形情况,并与理论计算进行比对,图12为2区的对比结果,两者趋势基本一致,且数值较为吻合,误差基本控制在10mm之内,考虑到温差影响及测量误差的影响,施工精度和变形控制的效果达到预期效果。

3.2施工技术钢支撑结构属于独立施工线路,且亦属于关键线路,主体结构施工塔式起重机除服务好主体钢结构施工外已无法满足此分项工程的施工进度要求,所以创新使用了3轨行走式塔式起重机以满足施工需求。行走式塔式起重机设置在各结构分区顶部悬挑楼面上,塔式起重机型号为QD10B。另外,为满足钢支撑结构在悬挑及悬空区域施工操作需要,创新设计了超大型整体悬挂式升降式平台。平台设计时充分考虑上海中心大厦8个结构分区外幕墙钢支撑结构旋转内收的特点,采取模块化的思路,在保证施工平台安全的同时,尽量做到通用以适用于8个分区钢支撑的施工要求,节约施工成本和提高施工效率,并具有可推广和应用的价值。钢支撑结构施工工艺如图13所示。

4巨型动臂式塔式起重机外挂施工技术

上海中心大厦主楼选用4台2450t•m的巨型塔式起重机,十字对称外挂于核心筒墙体外侧。需要设计安全可靠的爬升支架系统确保大型塔式起重机的使用、爬升和平移,以配合完成主体钢结构工程的施工任务。借助广州电视塔等工程实践经验对传统爬升支架进行改进创新,将塔式起重机的荷载直接传递至核心筒结构墙体节点区域,避免了核心筒外墙的加固,从而减小对核心筒内部施工的干扰,并节约了施工成本。同时,随着爬升支架外挂核心筒外墙体厚度的减小,外挂塔式起重机的中心与核心筒外墙壁的距离将增大,创新实践了塔式起重机高空平移的新工艺,突破了爬升支架加长改造的传统工艺。爬升支架荷载传力情况如图14所示,三维模型如图15所示。

5外幕墙钢支撑结构滑移支座国产化研发技术

为了协调上海中心大厦外幕墙体系与主体结构之间由于风荷载或地震作用产生的竖向差异变形,在外幕墙钢支撑结构上设置了众多(近千套)机械滑移支座。原本根据设计要求,滑移支座需要采用全进口支座,但经过多方讨论研究和试验,全进口成品支座不仅存在自锁以及与结构系统不匹配等技术问题,而且采购周期长、成本高,无法满足工程实际需求。于是,经过长达2年的研究,立足于结构体系的高度,通过传力路径优化、减磨材料选型、滑移构造优化、增加滑动主动力等一系列措施,创新研发了满足工程需求的国产化机械滑移支座:短于2m径向支撑滑移支座、底部水平滑移支座、底部垂直滑移支座、凸台滑移支座、关节轴承支座。

6电涡流阻尼器国产化研发及施工装配技术

在超高层建筑的顶部往往设置调谐质量阻尼器来进行风振和地震响应控制,一般采用液体阻尼杆调谐质量阻尼器,如台北101大厦。电涡流调谐质量阻尼器作为一种新型的阻尼器已逐渐推广和应用至超高层建筑,具有高效、环保及免维护等优点,当超高层建筑发生摆动时,吊挂在超高层建筑顶部的质量箱系统将带动电涡流系统的磁钢组件在电涡流系统的铜板上发生相对移动,从而将结构振动的能量转化为热能。上海中心大厦阻尼器设置在125层上方中庭之中,通过4组12根钢索悬挂在131层楼面系统上,结构质量约1000t,由电涡流系统、质量箱、吊索和锚固、调谐框架等部件组成,是第1个国产化电耦流阻尼器,如图16所示。电涡流阻尼器的施工较为复杂,且没有成功的经验可借鉴,根据电涡流系统和质量箱系统施工精度要求高及施工周期长的特点,创新提出一种并行施工装配技术,包括隔离胎架施工技术、同步顶升和下降施工技术、电涡流系统组装技术、质量箱系统组装技术和质量箱与电涡流系统对接施工技术等。此组合施工技术不仅给高精度的装配提供了良好的施工环境和操作空间,而且极大地提高了施工速度。

7超高空塔式起重机置换及拆除施工技术

超高层建筑巨型塔式起重机的置换及拆除历来属于施工领域的重点和难点,在上海中心大厦建造过程中,充分利用塔冠八角框架的主体结构,结合局部加固处理的技术成功设计了新型塔式起重机基础,实现了超高空4台巨型塔式起重机到M900D塔式起重机置换,图17为M900D塔式起重机转换基础设计。另外,针对结构立面急剧收分的不利工况,应用“中拆大、小拆中、小自拆”技术成功实现了超高空M900D塔式起重机的拆除。施工创新技术如下:①充分利用塔冠外侧主体螺旋式的空间桁架结构设置拆塔机械基础转换基础,转换基础由平面框架、立柱和抗侧支撑等部分组成,其中平面框架与拆塔机械进行连接,立柱分别与平面框架和主体桁架钢管柱连接,立柱之间设置抗侧支撑;②合理优化拆塔流程,利用ZSL380双机抬吊拆除M900D塔式起重机,利用ZSL200拆除ZSL380;③根据结构立面收分20m和超高空的不利工况,定型设计ZSL120塔式起重机产品,用于拆除ZSL200;④ZSL120完成自拆,并通过永久电梯运输至地面。

8结语

通过上海中心大厦钢结构工程的成功实践,本文将科技创新与工程实施有机结合,从深化设计、结构安装、施工装置、施工工艺等多个方面重点提炼和总结了工程实施中成功应用的施工创新技术,将为今后超高层建筑施工技术的发展提供技术手段和参考资料。1)借助BIM模型和模拟技术,将钢结构与幕墙进行一体化深化技术,不仅可以通过合模发现和解决各专业施工图纸上存在的矛盾和问题,尤其是专业之间的软硬碰撞问题,而且可以实现设计图纸和深化图纸间的有机衔接,提高深化设计的效率。2)通过对主楼进行竖向变形模拟分析,为结构标高的施工控制和伸臂桁架终固实施确定提供了理论依据;对塔冠施工流程进行事先的模拟分析,确定了合理的施工顺序和方法,有效地控制了施工过程中转换层结构的扭转变形。3)通过对外幕墙钢支撑结构与主体结构进行施工模拟分析,调整和优化了悬挂点位的吊挂刚度,并给出了钢支撑施工预变形的理论数值;同时,创新设计和使用了弯轨式行走塔式起重机和整体悬挂式升降平台,成功解决了吊挂钢支撑结构在悬挑加悬空的位置进行结构的高精度施工难题。4)创新研发巨型动臂式塔式起重机外挂爬升支架装置,不仅实现了塔式起重机所依附的核心筒墙体免加固处理,而且通过塔式起重机的高空平移,成功解决了由于核心筒外墙厚度减少所带来的爬升支架加长改造难题。5)立足于结构体系的高度,通过传力路径优化、减磨材料选型、滑移构造优化、增加滑动主动力等一系列措施,创新研发了满足工程需求的外幕墙钢支撑结构所需的国产化机械滑移支座。6)实现了千吨级电涡流阻尼器在超高层建筑上首次应用,并根据电涡流系统和质量箱系统施工精度要求高及施工周期长的特点,创新提出一种并行施工装配技术。7)充分利用塔冠八角框架的主体结构,结合局部加固处理的技术成功设计了新型塔式起重机基础,实现了超高空4台巨型塔式起重机到M900D塔式起重机置换;针对结构立面急剧收分的不利工况,应用“中拆大、小拆中、小自拆”技术成功实现了超高空M900D塔式起重机的拆除。

主体结构工程施工要点篇3

关键词:主体结构;施工技术;钢筋工程;模板工程;混凝土工程;

Pick to: in order to ensure the quality of the main structure construction, reduce the template, reinforcing bar, concrete construction quality problem, need to study how to reduce the construction quality. Three aspects from the template, reinforcing bar, concrete engineering construction technology control measures of body structure was studied, about main body structure to ensure the construction quality control is important.

Key words: the main structure; The construction technology; Reinforced engineering; Template engineering; Concrete engineering;

中图分类号:TU74文献标识码:A文章编号:2095-2104(2013)

1引言

主体结构施工主要包含模板,钢筋以及混凝土等三大分项工程。模板工程中经常存在局部拼缝不严,局部梁底、板底木屑等垃圾未及时清理等问题,而导致柱板节点,柱墙梁板节点处拆模后混凝土外观较差、漏筋,部分区域咬模,变形且成锯子口,局部预留洞不方正,胀模漏砼或模板封闭不严导致漏砼等问题。钢筋工程中常见的质量问题包括局部柱墙钢筋偏位,柱墙钢筋间距不均匀,局部墙钢筋未及时绑扎,个别电渣焊不符合要求,直螺纹未拧到位且加工时未设标记,,局部梁底筋未及时绑扎,板底出现露筋,局部板钢筋无垫块,马凳放置不符合要求。混凝土工程常见的质量问题包括:水平施工缝未按要求括平、振捣,预留洞口处板未浇平,板面平整度局部偏差较大,板面收光毛糙,蜂窝、麻面等质量通病,局部修补随意[1-3]。

以上列举的模板,钢筋,混凝土工程施工常见质量问题不仅影响了主体结构的审美功能,也影响了其使用功能甚至结构安全。因而,有必要研究如何控制这些质量问题。笔者根据工程技术经验,从模板,钢筋,混凝土浇筑三个方面来论述了控制其质量问题的技术措施,对于保证结构主体施工质量控制有重要意义。

图1模板工程施工质量示意

图2砼工程施工质量示意

2 主体结构施工控制技术措施

主体结构施工控制技术主要由模板工程,混凝土工程,钢筋工程三大部分构成。表1列出了其施工技术要点。

表1主体结构施工技术要点

3结 论

(1)主体结构施工主要包含模板,钢筋以及混凝土等三大分项工程。

(2)本文从模板,钢筋,混凝土浇筑三个方面来论述了控制其质量问题的技术措施。模板工程要测量定位,阴、阳角的处理,梁的起拱等要求。钢筋注意绑扎,设置垫块等要求。混凝土工程注意养护,浇筑,振捣等要求。

(3)本文研究的内容对于保证主体结构施工质量具有一定的参考价值。

参考文献:

卞国祥,孙谨,孟咸苏. 皇达东方雅苑工程几项施工技术改进措施[J].建筑技术,2003,34(5):371-372.

王晓华、刘秀红、顾斌华: 上海光源工程低收缩混凝土研究和应

用[J].建筑施工, 2007.38(3):201.

严培明: 上海光源工程超级混凝土隧道的裂缝控制[J].建筑施工.

主体结构工程施工要点篇4

【关键词】深大基坑;基坑支护;施工与管理

1.引言

随着我国经济建设的发展,城市的大型和高层建筑大量建设。深基坑工程施工场地紧凑、临近既有建筑近、凸显基坑越来越深、大等特点。目前国内深基坑深度已超过-30多米,而深基坑支护结构技术无疑是保证深基坑顺利施工的关键[1]。更重要的是,做好基坑支护的质量控制对保证施工安全、临近建筑物及施工人员生命、财产安全极其重要。

2.深大基坑支护的特点、要求与分类

2.1 深大基坑的支护特点

深大基坑工程主要包括基坑支护体系的设计、施工以及土石方开挖,这些具备以下特点:

(1)基坑支护体系大多为临时结构物,安全储备小,一般具有较大风险;

(2)基坑工程地质、水文条件复杂,不同工程地质及水文条件下基坑工程的重难点差异很大;

(3)城市深大基坑工程环境复杂,基坑支护结构不仅要保证基坑自身的安全稳定,还要尽可能减低基坑施工队周围环境的影响。

2.2 深大基坑的支护要求

根据以上总结的深大基坑工程特点,可以得出深大基坑对其支护体系的要求,总结起来可以分为以下三个方面:

(1)保证基坑槽壁的安全、稳定,满足坑槽的空间要求;

(2)保证基坑附近相领建筑物及地下管线在基坑施工期间不影响其安全、正常使用,要求基坑附近地面沉降和水平位移在允许范围以内;

(3)尽可能地保证基坑工程施工作业面在地下水位以上(可通过降水、截水、排水体系来实现)。

2.3 基坑支护结构形式的分类

根据支护结构的受力特点和被支护土体的作用机理,可以将基坑支护结构分为以下5种:

(1)重力围护结构

目前在工程中用的较为广泛的是水泥土重力式围护结构,大多选用深层搅拌桩构成,部分工程也采用高压喷射注浆法,最终依靠天然土与水泥土组合而成围护结构用以支挡周围土体。

(2)内撑围护结构

该结构分为两部分:围护体系和内撑结构。其中围护体系主要有钢筋混凝土桩墙和地下连续墙等;内撑结构按照形状可分为水平支撑和斜支撑,按照材料可分为混凝土支撑和钢管支撑两种。该结构主要承受挡墙结构所传递的水和土压力。

(3)悬臂围护结构

单纯的悬臂式围护通常借助地下连续墙、木板桩、钢筋混凝土排桩墙、钢板桩等结构,依靠足够的入土深度以及结构的抗弯能力来维持基坑整体的稳定和结构的安全,这种结构对开挖深度的变动十分敏感,易发生较大变形。一般适用于开挖深度较浅且土质较好的基坑工程。

(4)拉锚围护结构

拉锚围护结构包括围护和锚固结构体系两部分,其中的锚固体系大多由锚杆以及喷射混凝土等构成。

(5)土钉墙围护结构

土钉墙围护结构通常使用钻孔、注浆、插筋或者通过打入的方法在基坑侧壁中设置土钉,组成近似重力挡土墙的结构。

(6)放坡开挖

放坡开挖是一种简单且成本较低的施工方式,它主要适用于开挖较浅,项目可利用工作面大,附近土质较好的基坑。施工时要注意保证开挖的过程中边坡足够稳定,不会发生边坡破坏。

各种基坑支护结构的特点如表1所示:

总结起来,支护结构类型归纳为图1形式:

3.基坑支护形式的选择

对于基坑众多的支护方式,如何针对工程特点选取恰当的支护方式,是基坑支护施工与管理的重点。

尽管基坑支护有以上多种形式,但深基坑支护结构的选择,应优先考虑施工单位现有施工技术水平,优先使用与工程基础桩相同、相近类型的桩体作为基坑支护结构,例如当工程桩采用钢筋混凝土灌注桩,则基坑支护结构应尽量选用这种桩型,如此一来可减少机械设备进场费用。如果基坑较深并且围护桩空间布置允许时,应尽量选用两排支护桩。这是因为该种布置方式力学性能较好,前后排桩与桩顶圈梁能够形成刚架结构,桩间土可以参与支护工作,最终改善围护桩的受力状况,降低桩的配筋数量[2]。

在当下的基坑支护施工中,要综合考虑安全性和经济性两方面。实际施工中,有些工程侧重于安全性或者支护选型,设计就偏于保守,这样就需要增加投资,会造成一定的浪费;有些工程片面追求经济性,降低对基坑稳定性、变形控制以及安全方面的要求,从而引发了工程事故,导致了更大的经济损失。解决这一矛盾的合理方式是研究基坑的施工与管理,既要在设计上对支护选型上优化管理,也要在支护施工过程中进行恰当的管理。

4.深基坑工程中存在的主要问题

在基坑支护的施工工程中,主要进行的管理主要包括变形、强度、稳定性三个方面。岩土工程技术人员经过多年的实际工程经验和对计算方法、土力学理论的研究以及多次的分析和修正,得出了大量并且十分重要的成果。然而,随着基坑工程要求的逐渐提高,深基坑工程中依然存在一些尚未解决的问题,总结起来主要包括以下四方面:

(1)施工单位在实际的作业中,存在一定的随意性,无法满足理论方法的要求程度;

(2)不同计算方法(尤其是仿真数值模拟)得出的结果差异较大,与实际工程结论的差异也较大;

(3)对一些新型的支护方式的计算理论发展滞后;

(4)无法及时准确的得到现场的支护结构的受力情况,导致支撑和锚固时产生偏差。

4.1 基坑变形的三个主要特征

基坑支护施工的主要目的是为了防止或者使基坑变形满足规范要求,基坑变形主要包括围护结构位移、基坑周围地表沉降和坑底隆起三个方面,基坑变形主要有一下三个主要特征:

(1)围护结构位移变形

在基坑的开挖施工和支护过程中,支护结构变形主要表现为支护体水平变形和竖向变形两个方面。

当基坑开挖深度较浅时,围护结构的变形主要为朝向基坑方向的水平变形,地表也相应发生变形;随着开挖深度的增加,土体变形逐渐增大;与此同时,支护结构产生上升或下沉,进而导致插入坑底的深度发生变化。由此可知,支挡结构水平位移的大小,主要取决于支护结构的刚度以及入土深度、基坑的开挖深度、开挖土体的力学性质等。

(2)基坑周围地表沉降变形

基坑开挖过程中,所产生的地表沉降一般是由支护结构位移变化和地下水疏干两方面叠加的作用造成的。其中,基坑围护结构的侧向位移发生变化而引起的地面沉降,主要集中发生在基坑的四周;而另一方面,当地下水疏干造成水位降低过大时,就会产生不均匀沉降,这种差异沉降可能引起建筑物产生倾斜、甚至会导致墙体产生开裂。这种沉降大多发生在以基坑为中心的环形区域的较大范围内。

(3)基坑底部隆起变形

随着基坑开挖深度的增加,基坑内外的标高差不断扩大,当开挖到一定深度时,基坑的围护结构外侧土体向基坑内侧移动,使得基坑坑底向上隆起变形,基坑隆起会对工程产生严重的影响,必须加强监测和控制管理。

4.2 基坑的变形机理

基坑开挖的过程也就是土体卸载的过程,卸载施工发生在基坑的开挖面上。由于卸载的进行,坑底土体发生以向上为主方向的位移,进而导致基底发生隆起变形。此外,在卸载过程进行中,支护结构在坑壁土压力差的作用下产生水平向位移,进而导致墙外土体产生位移。由此得出,基坑开挖引起周围地层移动的主要原因是围护结构的位移与基底隆起变形,下面主要从两方面重点阐释基坑的变形机理。

(1)围护结构位移变化

基坑开挖后,围护结构在力的作用下产生了变形。在基坑侧壁内侧的卸荷过程中,围护结构外侧受到主动土压力的作用,而坑底的支护内侧则受到被动土压力。开挖总是先于支护,因此在开挖过程中,当安装每道支撑或者锚杆以前,围护墙就己经发生了位移。这一变化使支护结构的主动压力区和被动压力区的土体也产生了位移。围护结构外侧的主动土压力使得土体向基坑内部发生水平移动,剪应力增大,导致支护结构背部土体水平应力减小,产生了塑性区。基坑开挖面以下的墙内侧,被动压力区的土体向基坑内水平移动,坑底土体水平应力增大,加上剪应力水平挤压,基底发生隆起变形,坑底形成局部塑性区。支护结构的变形不仅引起了地面的沉降,而且扩大了墙外侧的塑性区,因而加剧了墙外土体向坑内的位移和相应的坑内隆起。

(2)坑底土体隆起

由以上分析可知,坑底隆起变形主要是由于围护结构外侧土体在自身重力和外部荷载的作用下在坑底向坑内方向移动,以及底部土体竖向卸载两方面原因造成的。当开挖面积较小时,基坑主要产生弹性隆起,其中中部的隆起量最高。而当开挖较深且开挖面较大时,基坑底部的隆起是塑性的,隆起量呈现出中间小周围大的形式。

在基坑支护施工中,支护结构的变形和基底的隆起不仅发生在施工阶段,由于地层损失引起基坑周围地层移动,而且地层移动使土体受到扰动,因此在施工后期相当长的时间内,基坑周围地层还会产生逐步收敛的固结沉降,需要工程技术人员进行长期的变形观测。

5.施工与管理协调同步

深基坑的支护施工要重点把握过程控制,一旦施工质量出现问题,事后补救的难度很大。因此一定要严格控制施工的标准化和管理规范化,应当把基坑支护的施工与管理协调、同步进行,最终确保基坑施工的安全、顺利进行。

5.1 前期地质勘探与施工方案探讨

深大基坑的支护施工与管理首先要重视前期的地质勘察工作,设计方和施工方都要了解并熟悉工程的地质勘察资料,清楚了解基坑所在地的地形、地貌以及地质特点,分析深基坑借助何种支护才能满足自身稳定性的要求,对影响基坑稳定的重点区域、地层和土质指标参数做到心中有数。

基坑支护的施工方案必须由有关专家组对其进行技术论证;由满足相关资质的设计单位和支护施工单位对其进行施工方案的设计与施工。对于深大基坑的支护施工,还要聘请具备丰富经验的专家组进行设计、施工方案的评审,降低基坑开挖的风险,杜绝工程事故的发生。

5.2 施工前做好充分准备

在施工单位按照设计方案组织施工之前,应当做到以下几条准备工作:①熟知地勘资料、周围环境以及设计图纸;②确保降水系统设备正常工作并备好应急抢险排水系统,保证必须的施工设备满足正常工作要求;③施工单位在施工过程中不得随意改变支撑所在位置,钢支撑的型号、长度、数量等;④如需对设计方案变更时必须提出申请,待专家评审合格、得到批复后才能生效。

5.3 严格把关施工质量

在基坑开挖过程中,监理工程师要随时督促施工单位对基坑的开挖深度、边坡坡度和水平标高进行检查,并密切观察基坑周边的沉降及变形。监控观测重点区域要日夜巡查,如若出现险情需立即报告。对进场材料、设备要严格把关,做好隐蔽工程的验收工作;监理工程师要对注浆配比、注浆量,地下连续墙厚度,钢筋笼尺寸等支护结构仔细检查,按规定留置现场混凝土试块等。

5.4 深基坑支护的应急预案

要加强管理针对深基坑支护的应急预案,要做好信息采集与反馈、风险预估、控制与决策等方面的内容。由于深大基坑在开挖过程中,边坡稳定存在很多潜在的危险和破坏的可能性,地下工程受地质、水文等各种条件的影响,尤其当基坑临近高层或重要建筑物,亦或是有重要的地下光缆、电缆和管线等穿过基坑施工范围等,基坑支护的施工难度与复杂性更是大大增加。

综合以上分析,必须加强基坑支护的应急预案及其管理工作,一旦出现问题,立即按照预先计划的方案进行救险施工,根据土层位移的时空效应,及时掌握土体的变形特征、基坑槽壁的稳定性以及支护效果,发现异常情况及时采取措施,杜绝基坑塌陷和临近建筑沉降等事故发生。

5.5 基坑支护施工的监控量测管理

深大基坑支护的施工管理重点就是针对基坑开挖与支护的监控量测,监测项目包括有:支护结构的水平位移,基坑附近管线、周围建筑物的变形,地下水位的变化,支撑轴力,立柱变形,基坑桩、墙的内力值,土体分层竖向位移,支护结构面的侧向压力等[3]。对于监测工作要做到以下几点:位移观测基准点不应少于两处,并且不能影响基坑支护的正常工作;所有监测项目在基坑开挖前应测量并记录初始值,且不少于两次;各个项目监测的时间间隔可跟随施工进度相协调,监测值不满足相关标准或监测结果变化明显时,要适当加密观测次数;基坑开挖监测过程中,监测单位应根据合同要求提交阶段性监测报告,工程结束时应提交完整的监测报告。

5.6 其他施工细节的管理

基坑支护施工不仅要关注基坑支护施工阶段的安全与稳定,同时还要考虑到下阶段的施工能顺利、有序地进行。因此,基坑施工的细节管理应包括如下方面的内容。

(1)基坑顶部堆载的管理

坑顶堆载的控制要结合现场实际情况,充分考虑结构施工阶段的现场堆载要求,在进行基坑支护设计荷载选择时要做到全面考虑。在现场说明中,要明确坑顶堆载量与基坑距离的控制值。以便将来的结构施工时明确基坑坑顶的堆载要求,避免基坑顶部过量堆载而导致基坑边坡变形或破坏。

(2)临建的布置与管理

在进行基坑支护施工时,应结合现场情况,要尽可能的提前规划施工单位的临建布置位置,以便在设计时考虑坑顶荷载。

6.结论

当前,随着我国土建行业高速发展,深大基坑施工项目迅速增多,深基坑支护施工难度逐步加大。由于深大基坑地质条件复杂、不确定因素较多,加上许多城市繁华区域的基坑工程常常同时要面临管线迁移、临近建筑物安全、施工场地狭小、地面交通疏导等问题。因此,基坑支护的施工与管理必须同步、协调进行,用科学的管理手段指挥施工,用合理的施工方法处理复杂的工程问题。这其中包括了充分的前期准备,详尽的设计施工方案探讨与对比,事无巨细的工作态度,科学合理的施工方法等等。只要科学运用施工技术和管理方法,精心施工,深大基坑支护的工程质量及安全是完全可以保证的。

参考文献:

[1]龚晓南,高有潮.深基坑工程设计施工手册[M].北京:中国建筑工业出版社,1998.

[2]冶金部建筑研究总院编著.深基坑的开挖与支护[M].北京,冶金工业出版社,1994.

主体结构工程施工要点篇5

关键词:水务工程;超大超深;双基坑;设计选型

1引言

上海某水务工程超大超深基坑,开挖面积35650m2,基坑开挖深度18.10m~26.00m,基坑工程安全等级为一级。基坑大面积开挖会引起坑内土体卸载隆起“时空效应”明显,导致基坑周边产生较大范围的土体沉降及水平变形等一系列问题,围绕着基坑支护结构施工要求高、施工组织难度大、基坑分区施工工期较长、地下水控制难度高、周边环境保护困难等设计、施工难题,在高水位软土地基中开挖如此面积和深度的基坑工程,存在较大的风险性,需要合理选择设计方案,确保基坑工程安全顺利的实施。

2基坑设计总体方案选择

针对本工程的基坑面积及基坑开挖深度,根据目前上海地区在基坑工程方面的设计、施工经验和科研技术水平,基坑工程总体方案可考虑采用以下几种。

2.1“顺作法”设计施工方案

“顺作法”设计施工方案即采用传统的板式围护结构+内支撑的方案,其中板式围护结构可选取地下连续墙,内支撑可选取钢筋混凝土围檩+支撑。“顺作法”的优点:施工工艺成熟,施工方式简单、便捷。目前绝大部分基坑均采用此种支护形式。“顺作法”的缺点:与逆作法相比,支撑刚度相对较小,变形控制能力较弱,对周边环境影响可能较大。

2.2“逆作法”设计施工方案

“逆作法”设计施工方案即考虑利用主体结构的楼板体系作临时挖土支撑系统,并在楼板上预留出土洞口,逆作法围护结构通常采用地下墙,且同时利用地下墙作为地下结构的外墙,即“两墙合一”,并利用地下结构楼板作为内支撑体系。“逆作法”的优点:利用刚度较大的地下结构楼板体系作为支撑,支撑体系刚度较大,围护结构及土体变形较小,更有利于保护环境安全;楼板施工完成后,可为施工提供作业场地,解决施工场地狭小的问题。“逆作法”的缺点:技术复杂,垂直结构续接处理困难,接头施工复杂;对施工要求高,例如对一柱一桩的定位和垂直度控制要求较高,立柱之间及立柱与地下墙之间差异沉降控制要求较高等;采用逆作暗挖,作业环境差,结构施工质量易受影响;基坑支护设计需与主体结构密切配合,需增加较多梁柱节点处理,基坑支护设计施工难度相对较高。选用逆作法,可节省部分临时内支撑体系的造价,降低能耗、节约资源,而且对周边环境影响也相对较小,当必须考虑地上、地下结构同步施工,或周边环境变形控制要求较高时,可考虑采用逆作法。

2.3“顺、逆结合”设计施工方案

充分发挥“顺作法”施工便捷和“逆作法”与主体结构相结合的优势,取长补短,结合工程自身特点而进行的组合方案。

2.4基坑设计方案选择

本工程顶板标高8.50m,底板顶标高-12.10m、-15.30m及-20.00m,顶、底板间并未布置楼板结构,采用逆作法施工无法体现支撑刚度较大的优点,而且“逆作法”、“顺、逆结合”等方案基坑支护设计与主体结构关联度高,“逆作法”节点设计复杂。根据基坑及主体结构的特点,考虑采用传统“顺作法”施工方案。

3基坑开挖方案选择

针对本基坑的特点,超大、超深基坑的开挖,所面临的主要问题是“时空效应”较为明显,坑底隆起量较大,基坑开挖引起的环境变形影响范围广,因此不建议采用一次整体开挖方案,现对分块开挖方案进行比较。

3.1二分区开挖方案

根据主体结构内部布置的特点,将基坑平面划分为南北两个分区开挖,北区基坑开挖面积19120m2,南区基坑开挖面积16530m2,按先南区后北区的次序分两次开挖,南区主体结构出地面后,北区支护结构方可允许开挖。

3.2三分区开挖方案

为进一步减少“时空效应”的影响,提高支撑刚度,控制基坑变形,提出将基坑平面划分为西区、东北区、东南区三分区开挖的方案,单个基坑开挖面积控制在13000m2左右,按先东南区,再东北区,最后西区的次序分三次开挖,前一区主体结构出地面后,后一区支护结构方可允许开挖。3.3基坑开挖方案选择从基坑计算成果分析,二分区开挖方案及三分区开挖方案稳定及变形验算均能满足规范要求,当然由于内支撑刚度的不同,二分区开挖方案的地墙内力及基坑变形量均较三分区开挖方案大。但根据初步估算,二分区开挖施工时的基坑工程施工总工期较三分区开挖施工时的基坑工程施工总工期可以节省约11个月。综合考虑,基坑工程采用二分区开挖方案。

4基坑围护方案选择

上海地区常规基坑围护可采用的围护方案有地下墙、SMW工法、灌注桩等,各种围护方案的一般特点如表1所示。本工程邻近存在多处重要水处理构筑物,基坑本身变形控制及防水要求均较高,根据本工程的基坑面积、开挖深度等特点,考虑各种围护结构的适用性、环境影响情况,综合考虑基坑围护方案采用“地下墙”围护方案。

5基坑支撑结构选择

基坑支撑结构选择包括支撑材料的选择、结构体系的选择以及支撑结构的布置等内容。从支撑材料上来说可分为钢支撑、钢筋混凝土支撑、钢筋混凝土支撑与钢支撑结合等形式。从结构体系上来说可分为水平支撑体系和竖向抛撑体系。各种形式的支撑体系根据其材料特点具有不同的优缺点和适用范围。

5.1钢筋混凝土支撑的优缺点

钢筋混凝土支撑能有效加强支撑刚度,减少基坑变形,有利于环境保护,同时钢筋混凝土支撑布置灵活,便于分块施工,可以预留较大的出土空间,方便土方开挖,缩短工期。此外,钢筋混凝土支撑与挖土栈桥相结合,可以进一步加快土方开挖的速度,方便施工,缩短工期。但由于各层钢筋混凝土支撑的施工及养护均需要相当的时间,总体来说,钢筋混凝土支撑系统的施工工期较钢支撑长。

5.2钢支撑的优缺点

钢支撑的最大优点就是施工方便,安装速度快,支撑拆除方便,但钢支撑系统的支撑刚度较小,围护体变形较大,而且对于长、大基坑,要确保整个支撑体系的整体性和平直度,对施工质量要求较高。钢支撑系统的平面适用性不强,当作为对撑时,受力明确,效果较好,但作为角撑时,受力效果较差。钢支撑不适用于大面积基坑。本工程基坑面积大,开挖深度深,变形控制要求高,为确保工程安全、顺利地实施,选择采用钢筋混凝土边桁架结合对、角撑的支撑结构体系,钢筋混凝土支撑的竖向道数根据稳定及变形计算成果综合确定,基坑平面分为南、北两区,其中北区四道支撑,南区调蓄池部分四道支撑,南区泵房部分六道支撑。

6主体结构与支护结构结合方式选择

本工程主体结构主要功能比较简单,即分为调蓄存水功能及泵房提升出水功能,主体结构内部除贴近底板的水力渠道及拍门外,无其他设备布置,总体来说,主体结构内部布置的自由度较高。结构设计考虑主体结构及支护结构的受力特点,在满足主体结构及支护结构设计合理、安全可靠的前提下,也考虑到减少拆换撑、降低能耗、节约资源、便利施工的原则,提出主体结构与支护结构相结合的设计方案。主体结构与支护结构结合方式选择主要包括地下结构外墙与围护墙的结合方式选择、地下结构水平构件与支撑结构的结合方式选择。

6.1地下结构外墙与围护墙结合方式选择

采用地下结构外墙与围护墙相结合(两墙合一)的地下墙时,一般采用地下墙作为围护结构,地下墙结构刚度大、整体性好、抗渗能力良好,使用阶段可直接承受主体结构的垂直荷载,充分发挥其竖向承载能力,减小基础地面地基附加应力,无需再施工换撑板带及回填土施工,“两墙合一”的结合方式主要分为“单一墙”“分离墙”“复合墙”“叠合墙”等几种。6.1.1单一墙地下墙直接作为主体结构外墙,既承受水平向水土压力,通常还应承受结构竖向荷载,地下墙槽段间应有较好的防渗性能,可在接缝位置设置结构壁柱以增加防渗止水性能,也可在地下墙内侧设置砖砌内墙,两墙间设排水沟,“单一墙”以防、排结合原则为主。6.1.2分离墙地下墙墙体应满足基坑开挖及永久使用两种不同阶段的水平受力和变形要求,主体结构外墙仅承受竖向荷载,与“单一墙”类似,“分离墙”防水也以防、排结合原则为主,但“分离墙”型式也可转换为在地下墙与结构墙之间增设柔性防水层,结构墙采用抗渗混凝土浇筑,从而使主体结构防水达到一级防水要求,以防为主。6.1.3复合墙地下墙作为地下结构外墙的一部分,以刚度分配的原则与内衬墙共同承受水平荷载及变形,但二者间不传递竖向剪力,即地下墙不承受主体结构竖向荷载,复合墙内衬通常采用抗渗混凝土浇筑,作为刚性防水层,地下墙与内衬墙间通常设置1~2层柔性防水层,增强主体结构抗渗能力,从而使主体结构达到一级防水的要求,结构防水以防为主。6.1.4叠合墙地下墙作为地下结构外墙的一部分,与内侧设置的结构内衬墙共同承受水平荷载及竖向荷载,地下墙与结构内衬墙间需设置抗剪钢筋及抗剪键,加强整体性,叠合墙的结构内衬墙采用抗渗混凝土浇筑,结构防水以防为主。6.1.5“两墙合一”方案对比分析①结构竖向受力。“单一墙”“分离墙”“复合墙”方案中地下墙只全部或部分承受水平水土荷载,无法承受竖向荷载,而本工程调蓄池使用阶段不同受力工况差异非常明显,调蓄池内水位变动幅度极大及频率极高。受建设用地限制,调蓄池顶板上不同区域还要叠加种植土、粗格栅池、细格栅池、提升泵房上部建筑及变配电间、除臭设备基础等建、构筑物,与调蓄池满水工况下的竖向荷载相叠加,调蓄池基础底面压力很大,需要考虑地下墙参与共同承受竖向荷载。而在调蓄池空池工况下,主体结构的自重抗浮验算又不能满足规范要求,需要考虑地下墙、主体结构、桩基共同承受竖向水浮力。因此,从结构竖向受力的角度来说,选择“叠合墙”方案显得更为合理。②结构水平受力。“单一墙”与“分离墙”方案均仅由地下墙独自承受施工阶段及使用阶段水平水土荷载,导致地下墙墙厚偏大,经济性不足,“复合墙”与“叠合墙”方案施工阶段仅由地下墙承受水平水土荷载,使用阶段由地下墙与内衬墙共同承受水平水土荷载,地下墙墙厚可以相对减小,经济性较强。③结构防水。“单一墙”以防、排结合原则为主,防水效果一般。“分离墙”“复合墙”“叠合墙”在采取相应措施后均能达到较好的防水效果。本工程防水等级为“二级”,“分离墙”“复合墙”“叠合墙”均能满足要求。6.1.6“两墙合一”方案选择综合考虑,本工程基坑采用“两墙合一”的“叠合墙”方案。地墙两侧采用Φ850水泥土搅拌桩作为槽壁加固,搅拌桩桩底标高以隔断3夹层灰色砂质粉土为原则,槽段接缝采用MJS墙缝止水措施。由于地下墙作“两墙合一”的“叠合墙”考虑,设计考虑对地下墙墙底作注浆加固,每幅地下墙绑扎钢筋笼时均应预埋三根注浆管,地下墙的墙身混凝土浇筑完毕并完成初凝后,通过低压慢速的渗透注浆,对槽底沉渣进行充填处理,提高地下墙的墙身竖向承载力,减少与主体结构间的差异沉降。本工程地下墙采用十字钢板作为刚性接头。

6.2地下结构水平构件与支撑结构结合方式选择

本基坑采用钢筋混凝土边桁架结合对、角撑的支撑结构体系,平面支撑体系设计时尽量考虑主体结构的内部布置特点,争取做到平面支撑体系杆件不影响主体结构内部设备布置,立柱位置不影响主体结构内部设备布置及水流流态,基坑平面支撑体系作为使用阶段主体结构水平框架的一部分,支撑系统的水平杆件的内力及配筋设计时,同时考虑承受水平向水土压力以及竖向结构荷载,支撑系统的钢结构柱外包钢筋混凝土作为使用阶段永久柱,在考虑承受基坑施工阶段的竖向荷载的同时,也考虑承受使用阶段的全部竖向荷载。

7基坑坑底加固选择

根据勘察资料中间成果揭示的土层分布,本工程基坑浅坑开挖面位于④淤泥质粘土与⑤1层灰色粘土的交界面,基坑深坑开挖面位于⑤1层灰色粘土中,而⑤1层灰色粘土仍属高压缩性的软塑土,含水量也较高。为控制基坑变形,对基坑坑底作加固处理,采用Φ800旋喷桩作裙边加固,根据基坑开挖深度的不同,裙边加固的宽度也作相应调整,裙边加固厚度为4m,南、北区坑底裙边加固一次施工,分区开挖。

8结语

本次设计选型最终确定了该超大超深基坑采用双基坑设计,总体方案采用传统“顺作法”施工方案,土方开挖采用双基坑分区开挖方案,围护结构采用“地下墙”围护方案,支撑结构采用钢筋混凝土边桁架结合对、角撑支撑结构体系,主体结构与支护结构相结合,其中“两墙合一”采用“叠合墙”方案,坑底加固采用Φ800旋喷桩裙边加固等。根据工程实际,该双基坑克服了软土地基、地下水位高、施工场地小、周边构筑物保护要求高等困难,基坑安全监测各项数据均满足规范设计要求。本次双基坑设计选型的成功,为后续类似基坑设计选型提供了宝贵经验与参考。

参考文献

[1]刘国彬.基坑工程手册[M].北京:中国建筑工业出版社,2009.

[2]邹艳磊,李田俊,杨帆.某深基坑工程方案设计比选分析[J].青岛理工大学学报,2012,33(05):117-121.

[3]袁静,宫达,何勇兴,等.软土地基超大深基坑工程整体设计与施工技术[J].四川建筑科学研究,2020,46(S1):56-64.

[4]陈东越.超深基坑支护方案分析与决策研究[D].华侨大学,2013.

[5]胡琦,宋均国,陈赟,等.邻地铁隧道超大深基坑工程围护与支撑体系选型[J].施工技术,2019,48(S1):735-738.

主体结构工程施工要点篇6

文献标识码:B文章编号:1008-925X(2012)07-0124-02

摘要:

转换层作为高层建筑的重要结构部分,起着“承上启下”的作用。因而,骑在施工中,需要明确施工工艺、施工要点,进而确保工程施工的质量。本文主要基于梁式转换层展开论述,进而阐述结构施工的工艺和要点。

关键词:高层建筑;转换层结构;施工工艺;施工要点

1前言

随着现代高层建筑的发展,转换层结构已成为高层建筑的重要组成部分。其既是结构的装饰部分,也是重要的结构系统。因而,在结构施工过程中,需要明确施工工艺、施工要点,进而确保结构施工的质量,尤其是施工要点的明确是施工有效性的基础。

2梁式转换层结构综述

建筑转换层是基于上下结构的功能差异,对楼层间结构进行结构转换,进而保障整体结构的稳定性。转换层结构作为上下结构的关键连接点,其维系着下层结构的稳定,同时作为了上层结构的基础。因而,在建筑施工中,对于其施工工艺、施工技术都有着严格的要求。

转换层在施工的过程中,具有较强的灵活性,也就是说,基于结构的设计需求,可以在楼层间进行灵活的布置。从实际的转换层结构看,其结构空间的布置主要用于下水管道、消防设施等的安装。因而,转换层结构在一定程度上,对于整体结构的优化,起到重要的作用。

梁式转换层作为主要的转换层结构,其具有施工工艺简捷、设计合理、结构明确的优势,进而受到设计者的青睐。

3梁式转换层结构的施工特点

3.1结构受力面大,尤其是受力比较集中。梁式转换层结构,其在整体结构中起到“承上启下”的作用。因而,其结构的受力面大,而且受力比较集中。

3.2钢筋施工控制难度大。在结构的施工中,注重结构预应力的构建。钢筋结构作为主要的预应力体系,其在钢筋铺设上,具有密度大、规格多的特点。

3.3转换层结构的有效布置。基于楼层间的功能蝉翼,不同楼层间的转换层结构存在较大的差异。

3.4受力支撑系统的布置。支撑受力系统的布置施工,主要基于转换层结构的需求。

4梁式转换层结构施工工艺的控制要点

基于转换层结构的特殊性,其对于施工工艺有着严格的要求,尤其是对于模板质量、水泥施工等方面的工艺控制,关系工程质量的控制。

4.1模板质量的控制,尤其是模板平整度、自重量的控制。基于梁式转换层结构的受力特殊性,因而,在施工过程中,特别注重结构自重量的减少,进而需要控制好模板的自重,进而减少结构自重量过大,而造成的结构下挠程度过大的问题。同时,模板的平整度的控制,便于结构预应力的形成。

4.2预应力的施工工艺。转换层结构的预应力的形成主要基于混凝土、钢筋两方面。尤其是混凝土施工工艺比较复杂,其在施工中需要注意施工的流程、施工的温度控制。同时,钢筋作为主要的预应力体系,其在钢筋铺设、其钢筋受力弯曲上都要着严格的工艺要求。

4.3浇筑施工工艺。混凝土施工中,其温度变化、模板形变都需要进行严格的控制。尤其是浇筑的温度监测,浇注温度变化差过大,容易造成结构水泥板的开裂。同时,基于钢筋的密度大,水泥施工的有效受到一定的影响,因而在浇筑中,要确保振压的有效性。

5梁式转换层结构的施工要点

基于上述,我们知道:梁式转换层结构的施工,在施工特点、施工工艺上都有着严格的控制。因而,基于施工要点的认识,是实现有效施工的基础,进而确保了施工的质量。

5.1施工材料要点。基于转换结构的特殊性,其对于施工材料有着严格的控制,尤其是对于水泥和钢筋的材质而言,直接影响着施工的质量。

5.1.1施工用料。水泥作为主要的施工材料,其强度和延性是材料施工的要点。水泥的强度需要基于设计数据,进行合理的选购。而水泥延性的有效很大程度上需要基于水泥搅拌中,添加剂的有效成分。钢筋作为主要的预应力体系,其刚度的有效直接影响着预应力的构建。而且,钢筋在铺设中,其铺设的间距、铺设的顺序,以及钢筋的弯曲都是钢筋施工的要点。

对于材料的管理也是一项重要的施工环节。水泥在施工期间,需要严格避免受潮或掺入杂质,这样影响其结构的成型,同时结构的延性也受到很大的影响。钢筋在保管中,避免钢材的表面腐蚀,这样有利于结构预应力体系的构建。

5.1.2材料施工要点。水泥在施工中,其在水化中,水量需要严格的控制。基于梁式结构的特殊性,因而,水泥的用水量相对较少,进而提高水泥的硬化强度。水泥混凝土中的添加剂也是施工的要点,其添加量、添加顺序都需要严格的控制。同时,水泥混凝土中的骨料主要采用中砂或粗砂,进一步的提高水泥混凝土的强度。混凝土在施工中,其表面的温度需要进行急速的降温,进而避免施工温度差而造成的结构开裂。

5.2混凝土浇筑施工。混凝土的搅拌施工,是浇筑施工的基础。在水泥混合物的搅拌中,需要基于各材料的物理性质,合理地控制搅拌顺序。尤其是关于添加剂和骨料的添加,需要控制其添加量和添加的顺序。在搅拌过程中,需要控制好搅拌的水量,避免搅拌中出现离析或过稀的问题出现。

基于转换层结构的钢筋较为密集,施工中的浇筑施工的有效控制比较困难。施工过程中,要控制好浇筑的速率,进而控制好水泥混凝土的表面温度。离析是高强度水泥浇筑最为容易出现的问题,因而在施工过程中,需要控制好浇筑的工艺,避免施工造成的结构质量问题。基于钢筋密集的缘故,在混泥土的振压过程中,要做到混凝土的“充实”,增大振压的强度,进而确保钢筋密集处的水泥量。

5.3混凝土硬化成型的施工维护。混凝土在硬化成型的过程中,容易受到温度变化的影响。因而,对于浇筑完成的混凝土,需要进行有效的维护,进而确保施工的质量。对浇筑完的结构进行不间断的浇水,进而避免温差变化,造成结构内部开裂的状况出现。同时,为了保持结构表面温度,可以在其表面铺设草袋或塑料膜,进而对结构进行保温。

6结束语

随着高层建筑的发展,转换层结构已成为建筑施工的重要部分。梁式转换层结构作为“承上启下”的关键结构,其在施工要点、施工工艺上都有着严格的控制。

参考文献

[1]莫文龙;高季峰.结合实践探讨高层超高大梁转换层施工技术[J].大科技;2012(02)

[2] 肖山.综述高层建筑钢筋混凝土梁式转换层的施工技术[J].大科技;2012(02)

[3] 韩志华.高层建筑结构结构转换层施工技术要点探讨[J].科技与生活;2012(01)

主体结构工程施工要点篇7

本文将4D技术与BIM引入到施工期支撑体系安全分析领域,通过建立4D施工安全信息模型,将支撑体系与4D施工信息动态地链接起来,快速建立支撑体系的3D模型,并根据当前施工进度及工序、材料、结构构件等施工信息,自动生成随进度变化的支撑体系安全分析模型,从而简化支撑体系的力学分析过程,提高计算精度和效率。本文所提出的方法,为支撑体系的分析计算提供了新的途径和方法。

14D施工安全信息模型的引入

1.1现有的支撑体系计算方法

根据支撑体系的结构特点,其结构计算方法主要分为排架模型[4]和框架模型[5―6]两种。前者认为支撑系统是上下两端铰接的多层排架,如图1(a)所示,其稳定性分析可以简化为一根两端铰接的等代柱的稳定性问题,能直观地反映模架稳定承载力随高度增加而减小的规律。然而,排架在自身的平面内承载力和刚度较大,而排架间的承载能力则较弱。相比之下,框架模型更接近于模板支撑体系的空间关系以及结构现实。文献[7]从特点、适用性、精度等方面对上述两种模型进行了分析比较,并最后建议采用框架模型对支撑体系进行分析。然而,在实际的计算分析中,所建立的框架模型通常为不考虑支撑体系和主体结构的相互关系的理想模型,与施工的实际支撑情况存在差别,造成计算不准确。支撑体系结构计算的另一重要组成部分是施工荷载计算。由于建筑在施工期的结构形式及受力模式与使用期存在很大区别,因此需要进行区别于使用期的施工期结构荷载计算。通常参考《建筑结构荷载规范》(GB50009-2001)确定荷载取值[8],包括:1)模板支撑系统及新浇筑钢筋混凝土自重;2)施工人员及设备荷载;3)混凝土楼板的施工荷载;4)混凝土梁的施工荷载等。本研究以此作为荷载计算的基础。

1.2现有方法的局限性

上述现有的支撑体系计算方法,能针对支撑体系这一特殊的临时结构,对建筑物建造过程的支撑行为进行分析,很大程度上保证了施工过程结构及支撑体系本身的安全问题。然而这种计算方法在实际应用方面存在着很大的局限性,导致目前这种分析方法难以对施工过程支撑体系进行连续动态而又准确地安全分析,很大程度上制约了支撑体系进行安全验算的实际应用。这些局限性主要表现在以下几方面。

1)支撑体系建模困难。由于支撑杆件和模板不易定位,数量庞大,使得支撑杆件和模板的建模工作量很大,而建立整个支撑体系模型更为困难。

2)难以建立精确的计算模型。支撑体系的设计应该与建筑的主体结构密切相关。然而,实际工程中支撑体系设计是在施工方案阶段进行,其计算模型的建立独立于建筑结构设计。另一方面,施工过程中常有的设计变更、施工方法改变等情况也经常出现,都有可能导致支撑体系中出现杆件与主体结构发生冲突和碰撞。在实际施工过程中,通常直接忽略与结构构件冲突的支撑杆件,不予架设,致使实际的支撑体系与其计算模型存在较大差距,影响安全分析精度。

3)无法实时更改计算模型。一旦变更设计或修改施工方案,支撑体系的分析计算模型也需要进行相应的更改,包括支撑体系模型、荷载效应等方面。上述两个局限性致使实时更改其计算模型的工作量巨大,而在实际工程中无法实施。

1.3引入4D技术与BIM对现有方法的改进

4D模型是在三维模型的基础上附加时间因素所形成的时空模型,最早由美国斯坦福大学的CIFE实验室于1996年提出[9]。4D技术则是基于4D模型的信息化技术,其目的是将模型的形成过程以动态的3D图形方式表现出来,实现对整个形象进度过程进行控制和动态管理。目前,4D技术已逐步应用到建筑领域的许多方面,包括建筑施工模拟[10]、建筑施工管理[11]、物业管理[12]等,CommonPointProject4D、4DSuite等4D-CAD相关的商品化软件也逐渐面市[13]。BIM是一个智能化的建筑物3D模型,它能够连接建筑工程全生命期的设计、施工、使用和维护等各个阶段的数据、过程和资源,是对工程对象完整的信息化描述。清华大学本课题组长期致力于4D技术的研究,将施工资源、成本分析、场地布置等施工管理要素相结合,提出了一个扩展的4D施工管理模型4DSMM++[14],开发了建筑工程4D施工管理系统(4D-GCPSU)。在此基础上,结合BIM的研究,提出子信息模型(sub-BIM)的概念,并建立了一个基于4D技术,面向施工过程安全分析的4D施工安全信息模型。此sub-BIM在3D模型信息基础上,附加了时间因素(施工计划或实际进度信息),并包含与施工过程安全分析相关的资源、场地、材料和荷载等设计和施工信息,应用于建筑施工过程时变结构安全分析[15]。

由于施工期支撑体系的结构形式及荷载效应随时间而变化,与4D施工安全信息模型有着“几何模型+时间”的共通模式,因此,将4D施工安全信息模型引入到支撑体系安全分析,可以为全过程分析提供随进度变化的体系模型和完整的数据支持,能大大简化分析过程,提高计算精度,实现连续动态地支撑体系安全分析,为施工期安全分析的实际应用提供可行的途径和方法。具体而言,基于4D施工安全信息模型的支撑体系安全分析具有以下特点:

1)根据4D施工安全信息模型中包含的建筑结构3D实体模型,附加支撑设计参数,可自动建立支撑及模板的3D模型,并与建筑结构模型进行碰撞检测,自动识别并剔除空间冲突的支撑布置点,从而实现支撑体系计算模型的快速和精确建模。

2)基于4D施工安全信息模型,4D施工过程模拟可动态表现结构施工工序以及支撑体系随工序变化的实际状况,如架设模板及支撑、浇混凝土、拆除模板及支撑等,反应了支撑体系的结构形式、所承受的施工荷载等动态受力状况,从而能自动生成任意时间点支撑体系的计算模型,用于支撑体系随进度变化的受力状况分析和稳定性分析。

3)一旦施工方案调整,4D施工安全信息模型将随之变化和自动调整,从而保证支撑体系计算模型与实际施工情况保持一致,且不需要重新录入数据。

4)获取4D施工安全信息模型中所包含的相关信息,可针对各种施工操作进行支撑体系的力学分析、性能验算和安全性识别,建立相应的安全指标和评价体系,对施工期支撑体系进行安全性分析和评价。

2基于4D施工安全信息模型的支撑体系

3D建模传统的手工3D建模方式建立这些构件需要进行大量的重复性工作,费时费力且效率较低。为解决这些问题,本研究针对木模板和钢管扣件式满堂支撑组成的框架支撑体系,基于4D施工安全信息模型,提取建筑楼板外轮廓特征及相关信息,采用简化自动方式建立支撑及模板的3D模型,并在与建筑构件的冲突检测中,排除自动生成算法中的不合理布置点,从而实现支撑体系的快速建模。在支撑体系的快速建模算法中,涉及到支撑杆件建模和模板建模两方面。其中,考虑到楼板的外轮廓可能是由不规则的多边形组成,因此模板的建模分为两种方式:1)根据实际的楼板外形轮廓建模(简称实形建模);2)根据支撑点简化建模。

2.1支撑杆件的3D建模

本研究通过在AutoCAD平台上进行二次开发,实现支撑杆件的快速建模。其快速建模的核心算法流程[16]为假设横向和竖向支撑杆件都是正交布置,且水平方向和竖直方向的间距固定不变,则1)根据楼板轮廓计算外包矩形框;2)根据支撑间距等参数,确定可能布置点(xy平面内);3)判断每个支撑点是否在楼板轮廓范围内,剔除轮廓外布置点;4)根据合格支撑点布置纵横及垂直方向支撑杆件。算法流程如图2所示。

2.2模板的3D建模

采用实形建模法建立模板的3D模型,要求模板轮廓与其所支撑并控制的混凝土楼板轮廓相同。在此基础上,根据支撑间隔和位置参数所建立的支撑3D模型,将其坐标平面投影在模板范围内,取其内部点对原多边形模板进行内部点约束的网格划分。这种情况下,由于内部约束点的位置无法预知,对于不规则的模板外形轮廓,容易出现形状极不规则的网格,从而影响有限元计算的收敛性和计算精度,甚至出现无法进行计算的情况。因此,按楼板外形轮廓实形建立模板的方法无法普遍适用于各种外形的模板,也不适合于计算机自动识别和建模。针对实形模板建模方法的局限性,本研究提出根据支撑点简化建立模板的算法。该算法是在布置支撑点的同时,自动识别临近的支撑布置点,并将模板以临近支撑点为依据划分为形状规则的矩形块,为将来有限元计算前的网格划分带来方便。通过这种方法所建立的模板,与楼板外形轮廓在边界支撑附近会存在一些差异,但由于支撑间隔通常不大,因此差异尺寸较小,不起控制作用。而且标准的矩形轮廓在网格划分中能一定程度上提高结构计算的精度,从而弥补了因外形并不准确所导致的计算误差。通常情况下,根据支撑点简化方法所建立的模板轮廓可以满足施工安全分析精度要求。

2.3支撑及建筑构件的冲突检测建立支撑体系

3D模型的过程中,由于缺乏考虑主体结构构件的空间信息,因此可能产生冲突,比如支撑与柱或墙的空间冲突。因此,需要对已建立的支撑体系3D模型和结构构件进行碰撞冲突检测,并将冲突的支撑删除。现有的碰撞检测算法主要分为两大类:层次包围盒法和空间分解法[17]。其中,层次包围盒法用几何特性简单的包围盒近似地描述复杂的几何对象,并通过构造树状层次结构越来越逼近对象的几何模型[18]。而空间分解法则是将整个虚拟空间划分成等体积的单元格,只对占据同一单元格或相邻单元格的几何对象进行相交测试。这两种方法的主要区别在于,前者是对碰撞对象进行处理,而后者则是对虚拟空间进行划分处理。具体在支撑及建筑主体构件的碰撞检测中,由于实体空间位置不会改变,因此应用层次包围盒法进行检测的效率更高。然而,传统的层次包围盒法应用在支撑及构件的冲突检测中有一定局限性:1)由于建筑构件众多,每个构件又由多个表面组成,导致在细化构件进行“层次”分析的过程中,计算量极大;2)建筑构件在3D建模过程中,本身便存在一定程度上合理的交叉,如梁柱轴线相交,依此建立的3D模型,梁柱必然“碰撞”,而实际上却是合理的。支撑和模板的碰撞、支撑与梁的碰撞亦然;3)由于3D构件空间位置不随时间改变,因此在算法中也可以有明显提高检测效率的可能。因此,本文针对支撑杆件和建筑构件碰撞检测这一特殊应用,提出“轴线-层次包围盒-表面”冲突检测算法。该算法能大大提高传统层次包围盒法的效率。算法中,首先提取支撑的轴线,以代替支撑3D模型作为碰撞检测的主对象,如图3所示A、B、C、D四根竖向支撑。再通过各主对象(即支撑的轴线)与目标对象(即主体结构构件)的包围盒相交检测,从而粗略判断对象间的相交关系。若粗略判断结果为“碰撞”,则再将主对象与相交目标对象的各个表面进行交点计算,计算结果如图所示P1、P2、P3、P4所示。最后判断交点与目标对象相交表面的关系,若在表面内部则主对象与目标对象碰撞冲突(如P2、P3、P4),若交点在表面外或表面边界(如P1),则并无碰撞冲突。其算法流程如图4所示。

2.4支撑体系3D建模的整体流程支撑体系

3D建模的全过程是:将支撑点简化为正交布置,且水平方向和竖直方向的间距固定不变,首先根据多段线构成的外形轮廓,生成外包矩形框,再根据支撑间距等信息,确定支撑可能的布置点,并根据图形学中判断点是否位于多边形内的算法排出外形轮廓以外的布置点,从而确定垂直支撑的位置。水平支撑则根据竖向间距在任意相邻两个布置点中等距布置。最后,根据布置点生成模板3D模型。建模过程及实形模板和简化模板的比较如图5所示。

3基于4D施工安全信息模型的支撑体系安全分析

3.1基于工序的支撑体系及荷载效应

施工过程中,支撑及模板的抗力并不随时间而变化,但支撑体系的结构形式及所承受的荷载则受施工工序的影响很大。因此,在支撑体系安全分析中必须考虑,以确保结构计算的精确度。以横向楼板及梁的施工为例,施工工序主要包括架设支撑体系、绑钢筋、浇筑混凝土和拆除支撑体系。其中,架设和拆除过程影响支撑体系计算的结构模型,为支撑构件是否参与结构计算的依据。而绑钢筋以及浇筑混凝土阶段,通过4D施工安全信息模型,可以获得与施工工序关联的建筑构件体积、密度及材料等信息,从而自动计算支撑系统所承担的结构构件自重、施工荷载,再根据荷载规范或文献[8]转换为标准值或设计值,作为支撑体系结构计算的荷载取值。

3.2支撑体系的4D结构计算模型

可通过编制轻量级的程序进行支撑体系的结构计算,但考虑以后扩展为与主体时变结构的安全分析结合的需求,本研究以ANSYS作为支撑体系的有限元计算平台。其中,由于支撑杆件通常采用截面对称的圆形钢管,可选用梁单元“BEAM188”来模拟。同时,模拟中不考虑竖向支撑与横向支撑的连续性,而是从交点处断开(包括横向支撑与竖向支撑的交点、横向支撑与横向支撑的交点),并划分为小单元进行计算。另外,可以采用壳单元“SHELL65”模拟横向大面积的模板,并根据模板与竖向支撑的交点,划分为小模板块进行模拟计算。在4D模拟的过程中,指定任意时间点后,通过当前施工段的工序信息,判断哪些支撑及模板已经搭设完毕,以及该支撑模板所承担的结构,自动导出该时间点的支撑体系框架模型及荷载效应。

3.3支撑体系失稳分析

当支撑体系承受的荷载达到某一极限数值时,荷载有微小的增加时,应力和应变不按比例而显著地增长,这种内部抗力的突然崩溃就是屈曲或失稳。如前文所述,施工过程支撑体系的安全问题,主要发生于支撑失稳或整体失稳,因此如何准确而方便地进行支撑体系稳定性分析是施工过程安全分析的重点。用有限元求解结构稳定问题,通常有两种方法:特征值屈曲分析和非线性屈曲分析[19]。

1)特征值屈曲分析。

特征值屈曲分析是线性屈曲,即结构处于平衡状态,荷载增量为一个微量,其位移增量很大。通过数学转换,特征值屈曲分析将转换为求解矩阵的特征值问题。此方法用于预测理想弹性结构的理论屈曲强度,即欧拉临界荷载。ANSYS中进行特征值屈曲分析由3个步骤组成:按静力方式求得静力解,再按屈曲方式求得特征值屈曲解,最后按扩展求解方式求得扩展解。

2)非线性屈曲分析。

非线性屈曲分析属于全过程大挠度弹塑性有限元方法,通过逐级增加荷载(或位移),不断修正单元的刚度矩阵(考虑应力和位移效应),对结构进行非线性静力学分析,再在此基础上寻找临界点。ANSYS中进行非线性屈曲分析只需要增加如下步骤即可:首先在求解属性中增加特征值屈曲分析,然后打开弧长法追踪以及打开大变形计算,最后实现荷载逐步施加。其分析结果将自动反应在内力和位移形变的最终计算结果上,不需要进行人工参与。

3.4基于4D施工安全信息模型的支撑体系安全分析步骤和流程

基于4D施工安全信息模型的支撑体系安全分析的主要步骤包括:1)建立4D施工安全信息模型;2)支撑体系施工过程模拟;3)支撑体系安全分析。

1)建立4D施工安全信息模型。进行施工过程支撑体系安全分析的前提是支撑体系的4D施工安全信息建模。首先,根据楼板轮廓,应用上述3D建模方法创建支撑体系3D模型,如图6(a)所示。然后对支撑构件和结构构件进行碰撞检测,排除冲突支撑,如图6(b)所示。再将支撑体系3D模型与WBS工序节点关联,实现3D模型与WBS工序的4D关联,并赋予支撑、模板等支撑体系构件工程属性,包括:支撑属性、材料属性、基于工序的荷载效应。这些属性通过统一的对象——支撑实体,进行连接和管理,如图6(c)所示。图6支撑体系4D施工安全信息建模Fig.64Dconstructionsafetyinformationmodelingofscaffoldsystem

2)支撑体系4D施工过程模拟。随着主体结构进行4D施工过程模拟,支撑体系也能实现施工过程的4D动态模拟。与主体结构的4D动态模拟不同的是,支撑体系只有架设与拆除两道工序,而且工序持续时间较短,并且是临时存在的实体构件。因此,支撑体系在架设后至拆除期间,不需要用不同的颜色对不同工序进行区分,而只需要表现出“存在”即可。

3)支撑体系安全分析。进行支撑体系的安全分析具体包括:首先在支撑体系的4D施工模拟过程中,可以针对模拟进度中的任意时间点进行支撑体系的导出和计算分析,即按照当前施工进度模拟情况、支撑体系的支撑情况、支撑体系的承载情况等所构建的计算模型,并考虑支撑构件的工程属性,根据分析模型导出算法[20],自动导出可供有限元计算分析的模型和数据,存储到文本文件或数据库中。然后通过数据接口,将导出的模型和数据导入到结构分析系统进行该时点支撑体系安全性能计算与分析,其中,由于主导支撑体系安全性问题的因素是局部屈曲或整体屈曲,因此需要根据支撑体系的结构形式,对支撑体系进行额外的屈曲分析,求得屈曲临界荷载。计算分析的结果,即该时点的应力、应变、位移以及屈曲临界荷载等数据,可以通过中介文件的形式提供给支撑体系设计人员,也可以通过数据接口返回到4D施工安全信息模型中进行3D形象的动态表现。最后,通过支撑体系的安全分析和评价模型,可以计算该时点支撑体系的安全性能指标,并进行安全性能评价和预警预报。

4应用实例

主体结构工程施工要点篇8

关键词:海洋钢结构;施工设计;新工艺

DOI:10.16640/ki.37-1222/t.2016.13.088

0 引言

因为海洋钢结构所使用的环境是海洋,较陆地环境更为恶劣与控制,因为其施工设计的要求也要高于普通的陆地钢结构。目前我国较为常用的海洋钢结构主要是桩基导管架型平台,其结构设计是在陆地钢建筑的基础上进行调试、改进的。海洋钢结构的是海洋油气开采的重要基础,其施工设计质量自然是重中之重。为了保证海洋钢结构质量的同时,其施工效率也开始成为企业重视的要点,新技术的使用也开始被逐步使用。

1 钢结构施工设计的现状与内容

目前海洋钢结构的施工设计主要以绘制施工所需要的现场施工设计图纸、施工工艺方案、所需要材料及相关的文件[1]。现场施工设计图纸是在按照规范的设计技术规格书所绘制的钢结构施工设计图,并根据施工现场环境对其进行修改,使之能够完全用于现场施工的设计图纸。其内容主要为底钢结构的细化与杆件编号的,帮助施工人员更好的施工的钢结构。

组块建筑程序是钢结构的施工设计中的重要一环。它阐明了组块结构从材料、焊接、涂装及检验的各个环节的施工,并给整个钢结构的施工工艺提供了重要的参考文件。该文件类似与施工工艺的考察文件,证明了其施工工艺的可操作性。该程序不对施工工艺产生直接影响,而是作为证明材料存在。

总体建造方案是对组块建造过程的完整规划,其内容包括总体建造方案的规范书、施工技术要求及流程、现场环境、整个建造的流程与施工环节以、各结构的布置图及相关的材料或文件清单。总体建造方案类似于海洋钢结构的完整企划书,其中详细阐述了施工中的任何一个环节与要素。

从上文可以看出,现有的施工设计主要将重点放在具体的设计图纸、方案与规划程序方面,重视各类的文件与相关规范制度。结构设计工作的重复性大,使得整体设计工作的效率无法得到有效提升。随着人们对海洋资源开采的逐步深入,对钢结构的施工设计效率也有了很大的需求。如何简化不必要、重复的工作程序,最大限度的发挥设计图纸与规划方案的效用,以有效提升其整体的施工效率,是新工艺需要解决的重点问题。

2 钢结构施工设计的新工艺

钢结构设计图纸可变为对具体的零件或构件设计图,直接发到相应的施工单位,让施工人员将其作为参考资料进行施工。这是将整体化为部分的过程。通过对零件、配件机构件的详细设计,以此来保证钢结构的整体设计,并减少了不必要设计方案,如水平预制方案。

将钢结构施工设计所需要的、关于施工技术及施工工艺的方案全部规划编制成统一的建造技术规范方案,参考相关的行业标准、规范制度及其发展,整齐规范的列入到同一本方案中,使之成为整个施工工程的重要的标准。这是一个化繁为简的过程。通过整齐划一的制定规范,以减少多余的设计方案,如划线方案或卷管程序等。

将整个钢结构的施工设计制定成一个完整的方案书,其中详细制定了整体钢结构的施工技术要求与规范,并将其相关结构施工的要求与规范编入中,对整个设计工程起到总体概括与指明方向的作用。

3 新工艺在钢结构施工设计中的应用

3.1 总装配图

总装配图主要是对工程整体施工规范与要求进行阐述,让施工人员对钢结构的整体施工过程及设计方案有一个整体概念,以有效保证对零部件设计规范。随后再在总装配图后面增加各装配图、构建图、零件图与单件图,以控制整个施工设计的过程与节奏。

3.2 装配图

装配图是对结构中的构建与零件组装的参照方案。配件图需要详细的阐述各个零部件的组织过程与程序,并且其中的杆件号必须与其他零部件图纸中的相同。装配图中主要是对甲板整体、吊机立柱平台、防火墙及挡风墙等结构进行详细的阐述。

3.3 零件图

零件图顾名思义就是对结构中每个零件的结构、形式、规格等进行具体的阐述。通过对结构中需要使用到的零件进行统一的规范与描述,是整个施工设计质量的基础保证。文中所谓的零件图主要针对加强筋板、盲板等钢管中的零部件。所有的图纸都必须按照原始比例绘制,并在旁边详细的注明杆件号、材质、数量、规格等信息,并与其他图纸中的信息相同,不能有相互矛盾的地方。在图纸的最后要附上完整的零件清单,以车间工人能够之间进行制作加工,而不需要先制作样品进行比较讨论。详细具体的零件图能有效提升车间工人的工作效率,规范了零部件的使用标准。

3.4 构件图

构件图可以看作是对零件图的补充。构件图将单个部件组合过程具体展现的图纸。在构件图中,需要表明杆件号、使用材料、构件规格与所需要的数量,杆件号必须与其他图纸中的相同。图中主要阐述主要结构预制与相关节点及附属结构与相关节点的详细信息。主要结构主要包括水平片、甲板片;附属结构主要有吊机支架、火炬臂、楼梯、栏杆等。

3.5 单件图

单件图可以认为是构架的补充与延伸,主要可分为钢管单件图与组合梁单件图。组合梁单件图详细表现了各钢板之间拼接的工艺、形式及钢板的具体规格、形状和数量。单件图是施工设计、施工检验的重要工具,对保证整个施工方案的质量有着举足轻重的意义。

4 结论

海洋钢结构的施工中,不仅要重视其质量,也要重视效率、新工艺主要是针对传统工艺中设计重复、程序繁琐等问题,通过制定总装配图,与详细的零件图、配件图、构建图与单件图,逐步建立施工细节及程序的标准与规范,让施工工人能够直接施工,而不必浪费过多的时间在图纸设计、参照行业惯例及研究样品讨论具体施工程序上。

参考文献:

[1]李长龙,沈菲.海洋石油钢结构膨胀型防火涂料施工工艺标准化[J].涂料技术与文摘,2014(03):29-33.

上一篇:传统文化的理由范文 下一篇:初中劳动教育内容范文