无线通信系统范文

时间:2023-10-14 16:03:36

无线通信系统

无线通信系统篇1

关键词:串行通信无线通信机器人

足球机器人是一个极富挑战性的高技术密集密集型项目,融小车机械、机器人学、机电一体化、单片机、数据融合、精密仪器、实时数字信号处理、图像处理与图像识别、知识工程与专家系统、决策、轨迹规划、自组织与自学习理论、多智能体协调以及无线通信等理论和技术于一体,既是一个典型的智能机器人系统,又为研究发展多智能体系统、多机器人之间的合作与对抗提供了生动的研究模型。它通过提供一个标准任务,使研究人员利用各种技术获得更好的解决方案,从而有效促进各个领域的发展。其听理论与技术可应用于工业生产、自动化流水线、救援、教育等实践领域,从而有效推动国家科技经济等方面的发展。机器人足球从一个侧面反映了一个国家信息与自动化领域的基础研究和高技术发展水平。

目前,国际上有机器人足球比赛分为两大系列——FIRA和Robocup。本文所要论述的系统所应用的F-180小型足球机器人比赛就是RoboCup系列中应用较广泛的一种。

F-180小型足球机器人足球比赛的示意图如图1所示,比赛双方各有5名机器人小车在场上。足球机器人系统在硬件设备方面包括机器人小车、摄像装置、计算机主机和无线发射装置;从功能上分,它包括机器人小车、视觉、决策和无线通信四个子系统。

其中无线通信系统是衔接主机和底层机器人不可缺少的一环,它必须保证从主机端到机器人底层之间的数据传送是可靠的,从而使得机器人比较能够顺利流畅进行。由于比赛双方都有多个机器人同时在场地上跑动,要求无线通信有一定的抗干扰性。无线通信系统的性能相当程度上直接影响着机器人的场上表现。

1系统的设计及实现

比赛中从摄像头来的视频信号经过计算机处理之后得到控制小车用的数据信息,而无线通信系统的就是将这些数据信息及时准确地送达场上的每一个机器人小车,系统采用广播方式,各机器人根据特定标志识别发给自己的有用数据,从而进行决策与行动。整个系统的框图如图2所示。

1.1发送端的硬件设计

发送端主要用PIC16F877单片机实现编码和对发射机的控制,计算机通过串行口发送数据,经过PIC16F877编码后再通过PTR3000无线通信模块将数据发送出去。

所采用的PIC16F877单处机是MICROCHIP公司推出的8位单片机。采用RISC指令系统和哈佛总线结构,最高运行的时钟频率可达20MHz,因而指令运行速度快。它有很宽的工作电压范围,可直接与3.3V的PTR3000无线通信模块配合使用。

TR3000无线数据收发模块是一种半双工收发器,采用NORDIC公司的nrf903无线收发芯片,工作频率采用国际通用的数传频段ISM,频段915MHz,工作频率可以在902MHz~928MHz可变。采用GMSK调制,抗干扰能力强,特别适合工业控制。灵敏度高,达到-100dBm,最大发射功率+10dBm,工作电压为2.7V~3.3V。它最多有169个频道,可满足需要多频道的场合,最高数据速率可达76.8kbps。因而完全可以满足小型组机器人通信的数传速率与距离的需要。

本系统中PIC16F877就是采用20MHz的时钟信号,能够满足即时收发数据以及编码的需要。整个系统中包含两种电源,无线通信模块的电源为3.3V,而MAX232又需要+5电源。信号线的连接也要考虑两种电平的匹配问题,在必要的地方要加上电平转换电路。

首先单片机要接收来自计算机端的数据,计算机串口输出的信号经过MAX232由232电平转换为TTL电平。但是由于单片机采用3.3V电平,因而MAX232输出的信号需经过电平转换才能输入单片机,电平转换可以采用TI公司提供的典型电平匹配电路(见图3),也可采用74LVCXX系列逻辑门来转换。

由于PIC16F877只有一个异步串行口,因而要通过16C550通用同步异步收发器(USART)芯片来扩展一个异步串行口。这样就可以保证从计算机串口输出的数据与无线通信的数据速率不同,从而使原始数据经过通信编码及打包数据量增加之后也能及时传送,并且在必要时也能将接收数据送回计算机端,实现半双工通道。系统的电路图如图4。从图4可以看出PIC单片机采用并口对16C550进行初始化配置。由于16C550共有10个寄存器,且占用了8个地址,因而PIC单片机用RA0、RA1、RA2三个通用I/O口做地址线选择16C550的各个寄存器。单片机可以不断通过RB1、RB2引脚检测TXRDY、RXRDY信号获知ST16C550是否接收到数据,还是已经发送了数据。还可以通过把16C550设置成中断方式使每接收到一个字节数据便产生一次中断使INT信号有效,单片机进入中断处理程序,从而使单片机的执行效率更高。

单片机通过自带的异步串行口输出数据到PTR3000通信模块。由于nrf903芯片接收和发送数据共用一个引脚,因而需要其他电路来解复用。最简单的方法就是在单片机的TX引脚先接一个10kΩ的隔离电阻,再与RX和PTR3000的DATA引脚相连。但是这种方法有两个缺点,它会造成发送的数据串入到单片机的接收引脚中,另外发送信号的驱动能力受到了极大的限制。因此,本系统采用了74HC244三态缓冲器作为隔离(见图4中虚线框内所示),并且通过单片机的RB4控制收发状态,因而在半双工方式下发送信号与接收信号可以互不干扰地传送。

对于通信模块工作状态的控制主要包含表1所列的这几个信号,通过单片机的普通I/O口即可控制。

表1PTR3000工作工作模式配置表

PTR3000工作模式STBYPWR-DWNTXENCS

正常工作:接收0000

正常工作:发射0010

掉电模式01XX

待机模式10XX

1.2发送端的软件设计

当系统复位时,单片机首先要对PTR3000无线通信模块和16C550的寄存器进行编程初始化。PTR3000的初始化编程是通过同步串行信号进行的,总共有三个信号CFG_CLK、CS和CFG_DATA,分别连接到单片机RC3、RB7、RC5引脚。PIC16F877单片机本身就有同步串行口功能模块,但是由于PTR3000的同步串行数据位为14位,并非整数字节,而且14位数据必须一次初始化完成,因此实际通过普通的I/O口编程来实现这14位的同步串行信号更方便一些。在整个初始化期间CS信号必须一直为高电平。这14位初始化字的定义见表2。在初始化同步串行信号输出时最高有效位在先。在对PTR3000编程前先其状态为接收状态以免在其他频率造成无线干扰,编程完成后就可以将状态改为发射状态了。

表2PTR3000初始化控制字各位定义

Bit参数名称符号参数

位数

0~1频段FB必须为了10(表示为选择频段915±13MHz)2

2~9频点CHf=902.1696+CH·0.1536(MHz)

10~11输出功率POUT发射功率≈-8dBm+6dBm·POUT2

12~13时钟分频输出Fup"00"=>Fup=fxtal

"01"=>Fup=fxtal/2

"10"=>Fup=fxtal/4

"11"=>Fup=fxtal/82

接下来对16C550的初始化设置。由于PIC16F877自身的并行口对16C550进行初始化编程设置各个寄存器,需要注意的只是在输出每一个字节之前先要通过RA0~RA2输出相应字节的地址信号。在初始化设置时将16C550的波特率设置低于76.8kbps,以保证接收的数据能够通过PTR3000即时发送。

1.3接收端的硬件设计

接收端装在每个机器人小车上,由于机器人小车的控制采用DSP控制器TMS320LF2407,因而在接收端PTR3000无线通信模块就采用TMS320LF2407来控制。通过PTR3000接收的数据直接输入DSP,由DSP进行解码,从而做出决策和发出控制信号。因而无线通信系统的接收端电路相对发送端要简单得多,只需用TMS320LF2407代替发送电路中的单片机与PTR3000模块相连接即可。PTR3000的初始化编程也就由2407的普通I/O口来实现,只不过在初始化编程之后依旧保持PTR3000处在接收状态。

2协议的设计

2.1物理层的编码设计

物理层的编码设计要根据所采用的物理器件和物理信道的特性来决定。本系统采用PTR3000无线通信模块在接收模块中为了获得0直流电平就需要在所传输的数据中逻辑“0”和逻辑“1”的数量相等。只有满足上述条件接收部分才会获得很高的接收正确率。长时间空闲也会导致接收部分的0直流电平漂移,因为长时间的空闲实际上一直发送的是逻辑“1”。

由于PTR3000的这些特性,很自然就想到采用曼彻斯特编码(Manchester)(也称为数字双向码(DigitalBiphase)或分相码(Biphase,Split-phase)。它采用一个周期的方波表示“1”,而且它的反向波形表示“0”。由于方波的正负周期各占一半,因而信号中不存在直流分量。在异步串行通信中有一个起始位“0”,因此将停止位“1”长度也设为一位,这样在一个字节共10位信号中也就不存在直流分量了。只是加了曼彻斯特编码之后原来一个字节的数据现在要两个字节才能传送。

图4

有一些数字节,不会在进行曼彻斯特编码之后的数据串口出现,但是在一个字节中也具有0直流分量的特性,也有很高的接收正确率。这类数据字节如:0xF0、0x0F、0xCC、0x33等。从码型看来其中0xF0码型定时性能是最好的(其码型见图5),它很容易使异步接收器达到同步并且不会发生错误。由于0xF0的这种特性就可以用它做同步码元,在空闲的时间内通信系统就通过一直发送同步码元,使接收端保持同步,而且也可以保持接收模块的0直流电平状态。

2.2纠错编码设计

为了在有一定外界干扰的情况下,保证主要与机器人之间的无线通信依然稳定可靠,必须采取一定的抗干扰措施,这可以采用纠错编码来实现。可以选择纠错编码方案有(14,8)分组码、(7,4)分组码和循环码,需要使用两字节的长度发送一字节的有效信息;(5,2)分组码和循环码,交错码、(21,8)分组码和缩短循环码、(21,9)BCH码、(21,12)BCH码,需要使用三字节的长度发送一字节的有效信息。

系统中使用了(7,4)分组码,并在实际中取得了较好的效果。它的构成方式如下:

假定不做任何处理的原码格式为:

其高四位的监督码为:

A2A1A0

其低四位的监督码为:

B2B1B0

则编码后成为两个byte长度:

1X7X6X5X4A2A1A0

0X3X2X1X0B2B1B0

其中每个字节的最高位作为标志位,用于表示高四位和低四位,高四位用“1”做标志,低四位用“0”做标志。接收端通过检测标志进行重组和解码。对于译码基本方法有维特比译码和使用监督矩阵译码,可根据具体的编码方案灵活选用。

2.3帧格式设计

一般数据帧包括帧头、机器人标识、数据、数据校验、保留字节等内容,通常按照下面的格式排列:

帧头机器人标识数据保留字数据校验

为了保证帧能够准确接收,帧头的设计至关重要。一般帧头需要两个或两个以上的字节,并且应该选择数据中出现几率较低的数值和组合。在这个系统中可以采用一般数据中根本不会出现的数据字节如0xF0、0xCC作为数据帧头。而其它类型的帧(如开球或暂停等命令帧),则可以选择在0xF0之后加上其它的字0x33、0xC3、0x3C、0x0F等构成。这种帧头组合在一般的数据中是不会出现的,因而可保证帧同步不会出错。场上的每个机器人通过数据帧中的机器人标识来识别属于自己的数据,由于场上只有5个机器人,因而机器人标识只占用一个字节。

这套通信系统采用了PTR3000无线通信模块进行无线传输,并运用了单处机的编解码使这套系统工作更加稳定可靠,使数据通信及时正确地传送到场上的每个机器人,完全满足小型组足球机器人比赛的通信速率和正确率要求。

无线通信系统篇2

无线电通信技术在社会生活的发展中具有重要的作用,没有无线电通信技术的应用,就不能实现现代化的发展与建设,并且在不断推动的过程中,这一技术的应用范围也呈现出广泛发展的趋势,尤其是在消防通信系统中的应用,为消防通信系统的建立提供了重要的保证。

【关键词】

无线通信 消防通信 应用 发展

在我国的消防通信系统中应用无线通信技术对于通信系统的发展与建设来说是一项重要的变革与创新,通过无线技术的应用,可以更加快捷的接收到相关的信息,大大缩短了信息通讯的时间。在无线通信技术中,主要包含了两项主要的内容:①微波通信;②卫星通信,这两项通信技术都为消防系统的发展提供了重要的保障。

1消防通信系统的现状和存在问题

在通信消防系统中,消防人员主要通过这一系统接收信息,完成信号的传输,开展指挥调度以及实施消防的救援工作,可以说,消防系统的建立贯穿着消防救援工作的始终,为城市的发展与建设提供了重要的保障,由此可见,要想进一步实现更加快捷的救援工作,首先应该以通信系统的建立为前提,从当前的形势来看,关于这方面的工作依然存在较多的不足之处。

(1)在经济建设与发展的今天,消防安全就更加重要了,如果不能实现通信的全覆盖,就无法有效的开展消防工作的建设,这是当前工作中主要存在的问题,消防盲区的居高不下不仅会影响到人们的生命财产安全,更重要的是会对现代化事业的发展产生严重的影响,因此,要想降低消防盲区,就要在无线通信技术上多下功夫。

(2)在过去的消防通信过程中,手段比较单一,因为无线通信技术是在近几年才应用在消防通信系统中的,因此适用范围上还没有得到大面积的推广应用,仅仅在局部地区进行试点。此外,消防部门对这一技术应用的积极性不高也是主要的问题,不具备相应的应用意识就不能将其应用在实践之中,更不会获得相应的成果,因此这是限制消防通信系统得到发展的限制性因素,要想实现这一目标,就需要在意识管理上加强对无线通信技术的推广,以实现消防通信的现代化建设。

(3)传统的消防通信系统在救援的工作中作用不大,因为在实施救援工作的过程中,经常处在一种高温的状态之下,这时消防通信系统就无法发挥其功能,电子信号不能进行传输,在一定程度上影响到救援工作的实施,但是无线通信技术就不会具有这样的问题,这也是无线通信技术的优势所在,为了保证在消防救援工作中第一线的人员的安全,更加有必要开展无线通信技术的应用,实时了解救援的实际情况,为保障消防人员的安全性提供重要的基础。

2无线通信技术在消防通信系统中的应用

在现代化发展的今天,无线通信技术的应用在我国已经具有了悠久的历史,但是在实际使用方面却没有较大的成效,在近几年间,相关的研究人员对这一问题开展了深刻的研究,最终发现其所具有的真正价值,并且应用在的各个领域中,其中消防领域就是其中之一,在消防通信系统中应用无线通信技术具有重要的作用,其应用性的价值主要体现在如下几个方面:

(1)在消防现场中的应用。

众所周知,无线通信技术具有较多的优点,在这方面的应用中,主要利用了无线通信技术具有高传播性的特点,通过高频率的传播速度而与消防现场达到了契合的效果,通过消防人员在救援现象进行实时信息的传播,有助于总指挥处在第一时间作出决定,从而为消防工作的顺利实施节省大量的时间,并且无线通信技术在火灾现场的实际覆盖面上具有较高的要求,不得低于95%的覆盖面,最大化的保证了该技术在现场中的应用。根据我国对消防救援的相关规定,在5min之内要完成初步的救援措施,而传统的消防通信系统由于具有滞后性是无法有效的完成的,因此无线通信技术的作用是十分重要的。

(2)在消防信号的反馈方面上,无线通信技术可以做到及时、高效,这在现代化的消防通信系统的建设中具有重要的实践价值,能够有效的促进预警水平的提高。反应机制的建立可以降低火灾造成的损失,减少人身伤亡的风险,反馈系统作为消防通信系统中重要的组成部分之一,采用无线通信技术可以提高反馈的效率,从而实现消防现场与消防控制室的联系,在短时间内就能实现信号的通信。除此之外,消防通信信号的反馈系统大多有自身专用的通信线路,现场消防人员可以通过现场设置的无线通信装置和消防控制室进行联络与沟通,这对于火灾的及时预防有着重要的影响。除此之外消防系统通过建立无线中继站和无线基站发射功率提升等手段的合理应用可以有效减少在消防通信信号反馈过程中信号衰弱、信号不稳定等现象的发生并能有效减少干扰因素对消防通信信号及时反馈的影响,从而更好地促进我国消防工作的高效进行。

3结语

综上所述,无线通信技术在消防通信系统中的应用具有重要的影响力,是现代化发展的成果,通过本文的论述可以得知在消防火灾的现场以及在信号的反馈方面,无线通信技术均具有良好的效果,因此在今后的工作中需要人们的进一步推广。

作者:余松蓉 单位:齐齐哈尔消防支队

参考文献

[1]张琦.浅析目前无线通信存在的问题及解决对策[J].民营科技,2012(08).

[2]杨宇林,白日昌.利用动态TDMA无线通信网络技术实现建筑物内部消防警报系统的联动监控[J].辽宁建材,2011(12).

无线通信系统篇3

论文摘要:在轨道 交通 中无线集群通信系统是调度人员对列车运营管理的重要途径。本文主要从系统功能、设备组成等方面介绍了广州地铁五号线无线通信系统。

1系统概述

广州地铁五号线无线通信系统采用了摩托罗拉生产的dimetraip基于tetra标准的数字集群无线通信系统。该系统采用tdma技术、acelp话音编码技术、π?4-dqpsk调制技术,除了满足传统的话音通信需求,还利用无线系统提供的无线数传通道,可以在地面系统与车载系统之间互相传递数据信息。

2系统功能

摩托罗拉dimetraip系统具有强大的功能,主要为调度员、无线用户、 网络 管理者提供服务。

2.1系统基本功能

dimetraip系统能够实现组呼、私密呼叫(即单呼)、紧急呼叫、通播组呼叫、遇忙排队和回叫、优先权排队、动态重组、动态基站分配、跨区组呼、限时通话、系统主要提示音及信号显示等功能。

2.2系统管理功能

dimetraip系统具有强大的网络管理功能,其目的是对系统进行配置、操作和维护,以便能实现系统的高可用性和对系统的有效操作。wWw.133229.COm网络管理功能包括故障、配置、统计、性能和安全管理。

2.3数据传输功能

dimetraip系统支持状态信息业务、紧急告警、短数据业务、分组数据等数据业务。

2.4虚拟专网功能

dimetraip系统支持虚拟专网vpn(virtualprivatenetworks)技术,包括提供多个相对独立(为使用单位所虚拟专有)的调度台、用户管理终端和多个独立的用户ip网络接入。虚拟专网vpn的概念与内容集中在:vpn用户管理与计费终端、针对vpn用户的移动管理、vpn用户的调度指挥中心、vpn用户的分组数传应用。

2.5录音功能

系统的所有调度台gpiom设备可以输出调度员的通话音频信号,提供录音接口,二次开发的录音设备可对调度员的通话进行录音。

2.6调度台基本功能

dimetraip系统调度台支持对正线列车进行组呼、接收rtt请求、发起及接收紧急呼叫、对通话组发起紧急呼叫、发起及接收私密呼叫、向车载台或其他用户台发送短文本信息、刷新列车信息、接收短文本信息、接收状态信息、与其他调度台通话等功能。

2.7用户台主要功能:

用户台具有通话组扫描、优先监视、直通模式操作、紧急通话、缩位拨号等功能。

3设备组成

3.1构网方式

广州地铁五号线无线集群通信系统采用单交换控制设备、多基站的方式形成一个有线与无线相结合的tetra网络。主要设备是由中心交换控制设备、基站、调度台、车载台、便携台、调度台、光纤直放站、漏泄同轴电缆及天线等组成。

3.2设备组成

中央交换设备。中央交换设备主要包括:交换控制设备、数据传输控制台、集中告警、cad服务器、tetra网管终端、录音设备、打印机、调度台等。

数据传输控制台通过系统的分组数据网关接收数据机车台发送来的车辆态信息和向数据机车台发送旅客列车显示信息。数据传输控制台是通过一个rs422接口连接主控系统。

集中告警终端统一接收来自tetra系统、基站电源、光纤直放站的告警信息,并传递给上层告警系统。同时,它可以直接和光纤直放站进行简单的管理和配置。基站电源告警,与光纤直放站管理和配置采用rs232协义,直放站的告警信息和基站电源的告警信息通过rs232/ip转换器及传输子系统所提供的10m以太网接口上传到occ集中告警终端。

cad服务器是经二次开发的设备,与其相连的线缆有网线、ats信号、时钟信号、电源线等。

dimetraip系统网管终端可为网管用户提供不同网管应用的图形用户界面(gui),网管终端可以位于主站或远端站。dimetra系统的网管终端通过以太网接口连接到中心无线设备机柜内的以太网交换机上。

录音设备用于对调度台相关的通话组通话进行录音。与录音设备相连的线缆有音频线和电源线。

3.3基站

ebts基站作为无线网关,提供tetra空中接口协议与节点控制器(zc)和数据网关(包括短数据路由器和分组数据网关)接口协议的转换。ebts将来自移动台的话音、数据、呼叫处理、信令和网络管理信息集成到一个e1基站链路。

ebts工作在直流-48v,通过电源转换设备可连接220v交流电源。ebts基站设备包括电源子系统和e1电路终端设备。

ebts由下列各模块组成:tetra基站控制器(tsc)、收发信机(br)、环境告警系统(eas)、射频分配系统(rfds)。

基站控制器(tsc)提供到tetra 网络 的e1远端链路,并通过以太网控制收发信机。tsc同时包括基站 参考 isa(sri)时间和频率基准模块,此模块包含高稳定度晶振提供频率参考及时钟参考。tsc基本工作系统软件包括依据tetra标准实施的动态射频功率控制和单站集群(localsitetrunking,lst)功能,另外,tsc基本工作系统软件还可以支持短数据传送服务(sdts)和分组数据服务(pds)。

收发信机(br),一个ebts机柜可安装高达4个收发信机,每个收发信机具备高达3个分集接收机和25khz信道间隔的发信机,每收发信机4个时隙,第1个收发信机载频的第1个时隙为控制信道,每个ebts提供高达31个话音信道(8个收发信机)。冗余备份是ebts的特性,一旦其中1个收发信机出现故障,tsc将关闭故障收发信机并将控制和话音通信容量转移到其它收发信机,尽管系统容量受到影响,但系统照旧运行。在系统繁忙期间,此转换过程对无线用户是透明的。

环境告警系统(eas)每个dimetraebts采用一个环境告警系统(eas)去提供在ebts基站的故障报告和远程控制,eas提供48个(已包含内部告警)本地输入用于监测ebts功能和基站环境条件。射频分配系统(rfds)可接收ebts里的发信机的输入信号,并可将这些信号进行合路,以便发信机能向天线馈送信号。rfds采用腔体合路,以便实现更低的插入损失、最大射频功率和更大的信道容量。空腔合路器的最小频率隔离度为150khz。接收机多路耦合器(rmc)在逻辑上被视为rfds的一部分,rmc可提供来自单一天线的多个接收信号端口,每个分集天线都与接收机多路耦合器连接,这样三分集系统将使用三个接收机多路耦合器,每个rmc将相应地与每个br里的接收机连接,接收机放大器和功分器可支持接收分集,以实现多载频工作。

3.4接入设备

五号线信号覆盖使用到的设备主要有光纤直放站、漏缆、天线。光纤直放站是用于基站场强的延伸,起到场强中继的作用,其安装在车辆段远用库及区庄occ。泄漏电缆提供射频覆盖,地上和地下部分的轨道都使用泄漏电缆。根据所覆盖轨道长度的不同,泄漏电缆的尺寸为11/4英寸、15/8英寸和7/8英寸。泄漏电缆是同轴电缆,其中,铜箔是外导线。外导线上的铣槽使能量通过电缆辐射和耦合,充当了分布天线和传输线路的双重角色。

天线是一种无源设备,无线信号从天线辐射至自由空间。车辆段和车站利用天线实现射频覆盖。室内天线将安装在车站适当位置,使射频可覆盖中央大厅、站台区域。室外天线将安装在停车场,用于覆盖停车场区域。

3.5移动台

五号线使用的移动台主要有:车站固定电台、便携移动台、话音车载台、车载数据电台。

车站固定台为采用固定安装方式的mtm800移动台,固定台设备采用交流220v供电,同时包括桌面式麦克、电源、喇叭等配件。

话音车载台与cad子系统共同完成调度通信的特殊功能。它方便列车司机的使用,如调度员对列车的广播功能,呼叫请求等。车载台以摩托罗拉mtm800车载电台为平台,加装控制面板、电源变换电路及附属设备。

数据车载台主机结构与话音车载台基本相同,它配置独立的mtm800电台主机、电源和天线,但不配置扬声器、mic等音频附件。

mtp850是一款小型轻便并具有结实耐用特性的便携式移动台。为用户提供了按键、高分辨率显示屏和声音接口(麦克风和扬声器),可以方便地访问无线通信服务。mtp850是专门为专用无线通信网而设计的,能够满足在恶劣环境下的使用,包括潮湿脏乱和暴露在灰尘和高温之下,仍能保持不间断的工作。

总结

无线通信系统篇4

关键词:自动列车控制,无线通信,定位,轨道交通

 

1、 概述

列车自动控制(Automatic TrainControl,简称ATC)系统由列车自动防护(AutomaticTrain Protection,简称ATP)、列车自动运行(AutomaticTrain Operation,简称ATO)、列车自动监督(AutomaticTrain Supervision,简称ATS)三个子系统组成。ATC系统早在20世纪60年代开始研制试用,世界上第一条使用ATC系统的线路——维多利亚线——于1968年在英国伦敦投入运行。。随着通信技术、计算机技术、控制技术的快速发展, 20世纪80年代以来,出现了基于通信的ATC系统(Communication Based Train Control,简称CBTC)。基于通信的ATC系统(CBTC)是指利用不依赖于轨道电路的高精度的列车定位、双向连续、大容量的车——地数据通信以及车载、地面的安全功能处理器, 实现连续自动列车控制的一种系统。基于通信的ATC系统(CBTC)又分为采用轨间电缆为传输通道的CBTC(称为IL CBTC)和采用无线数据通信的CBTC(称为RF CBTC)。近年来随着无线通信技术、计算机网路技术、安全处理技术的飞速发展,基于无线通信技术的ATC系统(RF CBTC)在我国轨道交通中已经进入了实用阶段,并成为ATC系统发展的主要方向。

2、 基于无线通信的ATC系统的基本结构

基于无线通信的ATC系统(RF CBTC)车——地间通过无线数据通信方式实现连续、高速、双向、大容量的信息交换,能够满足移动闭塞车——地通信的要求,它代表着ATC发展的最新方向,一般采取移动闭塞制式。从结构上看,整个系统由联锁设备、RF CBTC地面设备、无线通信网络和RF CBTC车载设备组成,如图1 所示。但从功能上分为ATP子系统、ATO子系统、ATS子系统和联锁子系统。RF CBTC地面设备实现地面轨旁ATP功能,RF CBTC车载设备实现车载ATP、ATO功能,ATS在ATP、ATO子系统及联锁设备的支持下完成对全线列车运行的自动管理和监控。

3、 基于无线通信的ATC系统的基本原理

基于无线通信的ATC系统(RF CBTC)的基本工作原理如图2所示。调度控制中心(DCC) 位于整个架构的最顶层, 它负责控制多个车站控制中心(SCC) , 以实现相邻SCC 之间的控制通信。每个车站设一个车站控制中心。每一列车装备有RF CBTC车载设备(OBE) , 车站控制中心控制其范围内所有列车的运行。SCC 通过其管辖范围之内的多个基站(BS) 与覆盖范围内的RF CBTC车载设备实时双向通信。信息的发送范围就是车站无线通信系统的覆盖范围, 因此列车在运行过程中, RF CBTC 车载设备要依次与各个SCC 建立通信联系, 接收SSC 发送的信息。每一SCC 要向其控制范围内的所有列车发送信息, 因此一个SCC 要同时与多个RF CBTC车载设备(OBE )保持通信联系。而一列车不能够同时与多个SCC 通信, 在经过不同的车站控制信号区域时, RF CBTC车载设备(OBE)会自动地采取信号区域的切换。列车在区段内运行时,OBE利用无线方式通过BS将列车位置、速度信息发送给SCC。BS通过无线信道向空间发送信息,所在区域的列车根据自身的编号地址,接收发送给自己的信息,不会发生信息窜码事件。SCC通过BS周期地将前行列车的位置、速度及线路参数等信息发送给后行列车;后行列车的OBE收到信息后,根据前车运行状态(位置、速度)、线路参数(弯道、坡度等)、本车运行状态、列车参数(列车长度、牵引重量、制动性能等) , 采用车上计算、地面(SCC) 计算或是车上、地面同时计算, 预期列车在一个信息周期末的状态能否满足列车追踪间隔的要求,从而确定合理的驾驶策略,实现列车在区段内高速、平稳地以最优间隔追踪运行, 从而为实现移动闭塞分区提供可靠的技术支持。

4、 基于无线通信的ATC系统的车地通信方式及定位技术

(1)车地通信方式及特点

基于无线通信的ATC系统的车—地通信方式有三种。

1)无线电台方式

采用自然空间作为车地信息传输的主要媒介。无线信号在空气中自然传播,衰耗相对较大,并且要考虑不同电磁环境下的防干扰问题。但轨旁设备简单,工程投资相对较少,设备可以采用高度通用化模块,直接采用商业现货,维修工作量小,长期运营费用低。

2)漏泄电缆方式

采用漏泄电缆作为车地信息传输的主要媒介。。漏泄电缆安装于轨旁或顶部,沿线贯通敷设,无线信号沿漏泄电缆传输。其特点是场强覆盖效果均匀,传输速率高,传输衰耗较小,但漏缆价格较贵,工程投资较大。漏泄电缆系统可提供较宽的带宽,不仅可传输车地双向连续的数据,还可传输音频和视频信号。

3)裂缝波导方式

采用裂缝波导作为车地信息传输的主要媒介。波导管沿线贯通敷设,安装于线路的一侧,无线信号沿波导管传输。其特点是波导传输方式衰耗小,且衰耗均匀,无反射波、邻频干扰、传输死区等情况。微波波导系统具有较宽的带宽,不仅可传输车地双向连续的数据,还可传输语音和视频信号,而且传输衰耗小。。但波导价格贵,工程投资相对大。对于裂缝波导还可以完成列车的辅助定位功能。

(2)定位技术

基于无线通信的ATC系统的列车定位主要通过车载定位设备和地面定位设备共同实现。车载定位设备主要有:编码里程计、测速雷达、测速电机(OPG)、车载测速传感器、加速计、接近传感器、车载扩频电台等;地面定位设备主要有:应答器、信标、裂缝波导、地面扩频电台等。应答器(或信标)主要用于确定列车在线路中的绝对位置,对于两个应答器(或信标)之间的位置车载设备通过测速设备计算其走行距离加上上一应答器(或信标)的绝对位置计算而得。系统的定位精度取决于应答器(或信标)在线路上安装密度和车载设备测速误差。目前开通或将要开通的绝大多数RF CBTC系统主要采用这种定位方式,通过应答器(或信标)加车载测速设备共同实现列车定位。

另外一种定位方式就是利用扩频电台实现列车定位。扩频无线电台定位的原理是:在地面沿线设置无线基站,无线基站不断发射带有其位置信息的扩频信号,车载扩频电台同时接收到3个以上的无线基站信息,并分别计算出列车与基站的距离,即可以确定列车的即时位置。扩频定位的精度取决于伪随机编码的频率,编码频率越高,定位精度越高。150MHZ频率的编码可以实现1m以下的测距误差。

5、 小结

基于无线通信的ATC系统(RF CBTC)应用无线通信技术,实现列车与地面之间的双向、实时、可靠、大容量的信息传输。车地间通过无线网络可以实现实时、双向、安全、可靠的控车信息和列车运行状态信息的传输,实现列车的实时、连续、闭环控制,不仅能实现先进的移动闭塞,缩短列车的行车间隔,大幅度提高列车的运行效率,而且还可以实现语音、视频信息的传输,为旅客实现各种增值业务服务,满足旅客多元化的旅行要求。基于无线通信的ATC系统(RF CBTC)是轨道交通信号系统发展的主要方向,随着无线通信技术、计算机技术、安全处理技术的进一步发展和完善,以及设备国产化率逐步的提高,基于无线通信的ATC系统(RF CBTC)在我国轨道交通中将会得到更加广泛的推广与应用。

参 考 文 献

1 IEEE Standard forCommunications-Based Train Control (CBTC)

Performanceand Functional Requirements. 1999.

2 曾小清,王长林,张树京.《基于通信的轨道交通运行控制》同济大学出版社,2007.5.

3 傅世善. 《闭塞与列控概论》中国铁道出版社,2006.3.

 

无线通信系统篇5

关键词:无线通讯;重要作用;Bluetooth ;UWB

Abstract: With the development of Internet, multimedia and wireless communication technologies, people and information networks have been inseparable. Today's wireless communication plays an increasingly important role in people's lives, and low power consumption, miniaturization of the current wireless communication products, especially the strong pursuit of portable products, as wireless communication technology is an important branch of the short-range wireless communication the technology has given rise to more and more attention. Technical Comparison of Bluetooth and UWB and multi-angle analysis confirmed that Bluetooth + UWB as a next-generation high-speed wireless communication technology may be.Key words: Wireless communication; an important role; the Bluetooth; the UWB

中图分类号:F626.3 文献标识码:A

前言

目前,我国大型石化企业在厂内的通讯方式,一般仍然采用传统的有线传输方式,即依靠有线通讯电缆来传输信号,配合以传统的程控交换机和防爆电话,防爆扬声器等等设备终端来实现在防爆区与非防爆区之间的通讯。这样的通讯系统庞大,线缆众多不易于人员维护,加之厂区内部腐蚀性气体,工作环境,自然环境等经年累月极容易造成设备的线缆损坏,影响通讯,由于是有线电缆连接在事故发生时更加容易遭受破坏。一旦通讯中断,对企业的事故救援,员工的人身安全,都造成巨大的损失。所以要大力发展无线通讯网络在企业的应用。 1、无线通讯技术的重要作用

石化工厂厂区面积大,人员分布散,防爆区内移动作业人员和零散作业人员众多。无线通讯系统对满足人员通讯需要,加强防爆区内分布人员的动态管理,优化厂区网路结构,实现企业安全生产,调度指挥的有线,无线互联互通,相互结合的信息传递,保证企业安全高效的生产具有十分重大的现实意义。

2、常用的无线通讯技术分析 目前广泛应用的无线通讯技术主要有GPRS/CDMA、数传电台、扩频微波、无线网桥及卫星通信、短波通信技术等。 2.1 数字电台用于点对点或点对多点的工作环境,能够提供标准RS-232接口,可直接与计算机、RTU、PLC等数据终端连接,实现透明传输。数传电台的传输速率从1200~19.2Kbit,传输距离20~50公里。具有抗干扰能力强、接收灵敏度高等特点。数传电台技术比较成熟,标准统一。但随着GPRS/CDMA技术的日渐成熟,相应的设备价格的降低,使得在很多应用场合中数传电台被GPRS/CDMA所取代。但同时,数传电台的相关技术也在不断发展,智能化、网络化、高带宽的数传电台也不断涌现。

2.2 扩频微波和无线网桥技术是近几年兴起的一门数据传输技术。扩频微波最大优点在于较强的抗干扰能力,以及保密、多址、组网、抗多径等,同时具有传输距离远、覆盖面广等特点,特别适合野外联网应用。而无线网桥是无线射频技术和传统的有线网桥技术相结合的产物。无线网桥是为使用无线(微波)进行远距离数据传输的点对点网间互联而设计。它是一种在链路层实现LAN互联的存储转发设备,可用于固定数字设备与其他固定数字设备之间的远距离(可达50km)、高速(可达百Mbps)无线组网。这两项技术都可以用来传输对带宽要求相当高的视频监控等大数据量信号传输业务。 3、短距离无线通讯技术简介 “蓝牙(Bluetooth)”是一个开放性的、短距离无线通讯技术标准,也是目前国际上最新的一种公开的无线通讯技术规范。它可以在较小的范围内,通过无线连接的方式安全、低成本、低功耗的网络互联,使得近距离内各种通讯设备能够实现无缝资源共享,也可以实现在各种数字设备之间的语音和数据通讯。由于蓝牙技术可以方便地嵌入到单一的CMOS芯片中,因此特别适用于小型的移动通讯设备,使设备去掉了连接电缆的不便,通过无线建立通讯。 蓝牙技术以低成本的近距离无线连接为基础,采用高速跳频(Frequency Hopping)和时分多址(Time Division Multi-access—TDMA)等先进技术,为固定与移动设备通讯环境建立一个特别连接。作为一个新兴技术,蓝牙技术的应用还存在许多问题和不足之处,如成本过高、有效距离短及速度和安全性能也不令人满意等。但毫无疑问,蓝牙技术已成为近年应用最快的无线通讯技术,它必将在不久的将来渗透到生活的各个方面。 4、超宽带(UWB)技术研究 超宽带(Ultra-wideband—UWB)技术起源于20世纪50年代末,此前主要作为军事技术在雷达等通讯设备中使用。随着无线通讯的飞速发展,人们对高速无线通讯提出了更高的要求,超宽带技术又被重新提出,并倍受关注。UWB是指信号带宽大于500MHz或者是信号带宽与中心频率之比大于25%的无线通讯方案。与常见的使用连续载波通讯方式不同,UWB采用极短的脉冲信号来传送信息,通常每个脉冲持续的时间只有几十皮秒到几纳秒的时间。因此脉冲所占用的带宽甚至高达几GHz,因此最大数据传输速率可以达到几百分之一。在高速通讯的同时,UWB设备的发射功率却很小,仅仅是现有设备的几百分之一,对于普通的非UWB接收机来说近似于噪声,因此从理论上讲,UWB可以与现有无线电设备共享带宽。UWB是一种高速而又低功耗的数据通讯方式,它有望在无线通讯领域得到广泛的应用。UWB的特点如下:

4.1 抗干扰性能强:UWB采用跳时扩频信号,系统具有较大的处理增益,在发射时将微弱的无线电脉冲信号分散在宽阔的频带中,输出功率甚至低于普通设备产生的噪声。 4.2 传输速率高:UWB的数据速率可以达到几十Mbit/s到几百Mbit/s,有望高于蓝牙100倍。 4.3 带宽极宽:UWB使用的带宽在1GHz以上,高达几个GHz。超宽带系统容量大,并且可以和目前的窄带通讯系统同时工作而互不干扰。 4.4 消耗电能少:通常情况下,无线通讯系统在通讯时需要连续发射载波,因此要消耗一定电能。而UWB不使用载波,只是发出瞬间脉冲电波,也就是直接按0和1发送出去,并且在需要时才发送脉冲电波,所以消耗电能少。 4.5 保密性好:UWB保密性表现在两方面:一方面是采用跳时扩频,接收机只有已知发送端扩频码时才能解出发射数据;另一方面是系统的发射功率谱密度极低,用传统的接收机无法接收。 4.6 发送功率非常小:UWB系统发射功率非常小,通讯设备可以用小于1mW的发射功率就能实现通讯。低发射功率大大延长了系统电源工作时间。 4.7 成本低,适合于便携型使用:由于UWB技术使用基带传输,无需进行射频调制和解调,所以不需要混频器、过滤器、RF/TF转换器及本地振荡器等复杂元件,系统结构简化,成本大大降低,同时更容易集成到CMOS电路中。

5、结束语

总之,无线通讯方式由于其建立物理链路简单易行,成本低,可以根据现场需求及时调整项目方案,灵活性好,系统的功能扩展方便,因此特别适合石化行业对通信链路的要求。参考文献: [1]方旭明,何蓉.短距离无线与移动通讯网络[M].北京:人民邮电出版社,2004. [2]刘乃安.无线局域网(WLAN)—原理、技术与应用[M].西安电子科技大学出版社,2004.

无线通信系统篇6

关键词:无线通信系统、机车信号控制技术、GSM- R

中图分类号:C35文献标识码: A

一、前言

近几年来,国家人们发展交通和通信行业,无线通信系统是作为一种行车安全设施,被广泛应用与铁路机车中。目前,我国铁路信号系统应用的色灯信号和机车信号都是基于轨道电路实现的,传统机车信号的功能是复示地面信号机的显示,通过轨道电路实现地面向机车上传递信息,而基于无线通信的机车信号系统是通过无线数据通信取代轨道电路来实现地面与列车之间双向信息的传递。

二、机车信号信息对无线传输系统的要求

无线信道作为无线信号传输通道, 它的主要特征是由于多径传播引起的快衰落时延扩展和由于移动台运动引起的多谱勒频移, 以及由于阴影效应引起的慢衰落, 它属于一种复杂的时变信道, 具有高噪声、高误码率特点。而通过无线系统传输的机车信号控制命令是安全标准级的信息, 该信息正确与否,直接关系到行车安全. 因此, 无线系统传输应满足如下的技术要求:

1、数据传输可靠性高,采取各种容错、纠错和冗余等技术,使系统传输误码率达到10- 6~ 10- 5,平均无故障时间MTBF> 10 000 h。

2、能满足列车运行控制所需信息吞吐量和实时性要求. 对于运行速度为 300 km/ h 的高速列车,选择控制周期为 50~ 100 ms, 设所需传输的信息量为 1 024 bit, 为了在 50 ms 内传输这些信息, 信道无误码传输速率必须达到 20~ 48 kbps.

3、机车信号所用的信道应是专用信道; 未经授权, 禁止任何人通过拨号或其它接入方式使用该信道发送信息.

4、经过无线信道传递的机车信号在格式上是固定的, 有地址信息、控制命令、状态信息等, 这些信息应经过多层编码进行保护.

5、无线信道对所传递的机车信号信息来说应是完全透明的, 也就是说,机车信号经过无线信道传递后,其数据格式、时序不能出现任何修改。任何对数据的分组、储存、错误及丢失后的重传都是不允许的,在保证数据完整性和实时性的前提下,允许进行高阶层传输复用。

三、 GSM- R 铁路指挥调度系统

GSM- R 系统是欧洲铁路专用移动通信系统,它是在 GSM 蜂窝系统上增加调度通信功能构成的一个综合专用移动通信系统. 它所增加的功能有: 优先级和强插、话音组呼及广播, 以满足铁路专用调度通信的要求, 更重要的是利用它可作为传输高速列车运行控制信息的平台。因此,对于 GSM- R, 来自铁路网的特殊要求主要有:

1、列车时速高达 200~ 500 km/ h 的无缝通信;

2、有限频点数( 例如20个) 的有效利用;

3、载干比( C/ I ) 至少 12 dB;

4、在一个规定区域内, 95% 的时段以及 95% 的覆盖率, 信号强度大于- 90 dBm.;

5、即使在 GSM- R 网之间切换, 成功率也必须高于 99. 5%;

6、根据所使用的业务, 传输通道和网络设备必须有很高的可用性;

7、隧道内要求覆盖;

8、在车站和编组站场内覆盖要好;

9、95% 的通话建立时间要求较高, 其余 5% 不高于标准的1. 5倍,典型的GSM- R 网是在沿钢轨方向安装定向天线, 以形成沿轨道的椭圆形小区. 在车站内, 话务量较大( 热点) , 但对速度的要求较低, 因此, 一般采用扇形小区覆盖方式。在国外, 基于GSM- R 传输平台的无线列车控制系统已通过现场试验, 列车最高时速达160 km.。

四、对现有自动闭塞的改造方案

1、现有机车信号的不足现有自动闭塞区段的机车信号的不足之处在于:

(1)在自动闭塞区段, 站内轨道电路制式与区间不同,站内轨道电路只有检查列车占用功能, 不能向机车传送信息, 既有机车信号信息传递是靠叠加在轨道电路上的站内电码化来实现, 不能实现闭环检查; 侧线接发车不能做到全进路电码化; 站内联锁为了满足调车作业与提高效率的要求, 轨道区段划分过短, 因此当列车运行超过一定速度时, 这样的短区段保证不了信息完整接收, 容易出现掉码闪白灯现象;机车信号本身也未按照符合主体化的故障安全原则设计;

(2) 我国的自动闭塞、机车信号、监控装置是在不同的历史阶段, 根据不同的需求, 以搭积木的方式逐步拼装发展起来的, 不是车地一体化的系统设计;

(3) 机车信号工作区段必须敷设相应电缆等设备, 投资高, 维护工作量大, 特别是运输繁忙干线, 这一矛盾更加突出;

(4) 由于受其载体轨道区段的制约, 只有列车到达相应的区段后, 才能接受到新的信息, 对于一些突发信息无法及时与机车信号系统联系, 对行车安全保证存在一定隐患;

(5) 系统的智能化水平较低, 与联锁等其他信号安全系统接口条件复杂;

(6) 无法与其它有关行车安全的系统如列车轴温检测、列车完整性检查、列车定位等共享资源.

2、对现有自动闭塞改造方案

该方案基于 GSM- R 平台的无线机车信号系统及必要的地面点式应答器, 对现有自动闭塞进行改造设计.该系统由地面信号机、轨道电路、点式应答器等组成轨旁设备; 由车载无线系统、测速装置等组成车载系统。系统以车载系统作为控车主要手段,地面信号机起到了绝对停车作用;轨道电路在实现区段占用和列车完整性检查方面具有不可替代的优势; 点式应答器将必要的运行线路的各种参数( 包括点式应答器名称及线路坐标, 下一个点式应答器名称及坐标,前方信号机名称, 坡度, 曲线, 进路长度, 岔区长度,闭塞分区内限制速度, 无线闭塞信息交换触发等信息) 传给车载系统. 具有无线闭塞信息交换触发功能的点式应答器布置以信号机为参考点, 当列车通过时, 应将其线路坐标、闭塞分区长度等信息通过车载系统传给控制中心, 对列车起到定位作用. 控制中心将有关指挥列车的信息通过无线网络传给车载系统, 经车载计算机将其与点式信息、列车测速装置所传信息等有关行车安全信息统一进行处理后给出一个最佳命令指挥行车. 即控制中心将该列车的行进位置, 结合前方车的行进位置, 两车之间的轨道电路性能, 两车有关信号机的显示以及其它地面设备信息经综合运算后, 形成控制命令发向当前列车的车载系统. 车载系统收到该命令后, 综合线路坡度、线路曲线和闭塞分区内限制速度等信息做出合理的列车运行速度限制。

信号系统设备布置示意如图 1 所示,

当列车通过无源点式应答器 B1 处, B1 将自己的序列号及坐标、B3 的序列号及坐标( 注: 在三显示系统, 当3信号机为红灯,2 信号机则为其前方第一架可显示允许信号的信号机) 、2 信号机名称、1G 线路坡度及曲线、无线闭塞交换触发等信息, 传给车载系统. 车载系统及时将这些数据通过无线系统传向控制中心。控制中心在收到该信息后, 立即查询前方列车行进位置, 两车之间轨道电路性能, 信号机显示状态等信息, 做出判断, 并将结果时发向当前列车,一经确认 3 信号机为红灯, 控制中心及时控制车载系统,列车应该减速运行。

随着列车速度的提高和行车密度的加大, 机车信号系统作为实时控车设备, 技术要求越来越高,

五、结束语

综上所述,本文主要对无线通信系统的机车信号控制技术进行了分析,每个系统都是有缺点的,这样就要采取有效的措施和方案,本文主要提出采用无线通信技术彻底来解决机车信号技术的方案,并系统地提出对无线传输系统的技术要求,以此来实现技术、投资、效益的最佳结果,同时也为机车信号主体化运用打下基础。

参考文献:

[1]吴福平.浅谈铁路信号测试系统[J].中小企业管理与科技(上旬刊),2010,3.

[2]陈江兵;;浅谈客运专线CTCS-2级列控中心报文试验方法[J];铁道通信信号;2010年

无线通信系统篇7

通道校准方法可分为两大类,离线校准和在线校准。离线校准是指在系统调试和上电初始化阶段所采取的通道校准措施,主要针对非时变误差。这时由于不考虑对通信的影响,可根据实际需要选择校准算法、参考信号的功率和形式。

在线校准,也称为实时校准,是指系统正常工作阶段所采取的通道校准措施,硕士论文 主要针对时变误差。这时所选择的校准算法、参考信号的功率和形式、以及参考信号的获得方式等,都应该是在不影响正常通信的前提下进行。在线校准是实际通信系统中必须采用的通道校准措施。在此重点研究在线校准方法。

结合实际系统结构,在线校准方法可分为基于校准网络的方法和无校准网络的方法,其中基于校准网络的方法又可进一步分为基于校准通道和基于耦合网络两种方法。无校准网络的方法是采用工作通道轮换发射信号、其它通道接收的方式,从而得到通道之间的补偿系数,该方法由于操作时间较长,而且对通道阵列形式要求较高,因此目前在实际系统中主要采用基于校准网络的方法。

在基于校准网络的方法中,基于校准天线的方法主要应用于均匀圆阵或圆弧阵中,即工作天线均匀分布在圆周上,而校准天线位于圆心。该方法可以对收发通道的所有部分(天线、馈线、射频前端、线性功放和收发信机等) 进行校准,有利于工程实现;基于耦合网络的方法,可以没有校准天线,而是通过耦合器将信号注入,因此无法校准工作天线的幅相误差,但是该方法适用范围更广。

2 通道阵列校准算法

2. 1 基本原理

通道阵列校准(CC) 的功能在于补偿各通道发射( TX) 或接收(RX) 信号之间幅度和相位不一致性,职称论文同时检测某些物理故障。

通道校准算法的基本原理可以等同于信道估计的处理过程。通过估计各个通道的冲激相应,得到相互之间的幅度差异和相位差异,其中,所选择的基本训练序列应该自相关性较强,互相关性较弱。

K 个工作天线通道冲激响应组合成一个矢量,h = [ ( h(1) ) T , ( h(2) ) T , ?, ( h( K) ) T ] T 总长度KW , W为窗长。K 个工作通道对应的训练序列为m( k) =( m( k)1 , m( k)2 , ?, m( k)P + W - 1 ) T , k = 1 , ?K, 其中P 是基本训练序列的长度,接收端利用训练序列估计K 个工作通道的冲激响应,可表示为

em = ( m1 ,m2 , ?,mP) T = Gh + n (1)其中n = ( n1 , n2 , ?, nP) T 是长度为P 的加性高斯白噪声序列, h 为通道冲击响应矢量, G = [ ( G(1) ) T ,( G(2) ) T , ?, ( G( K) ) T ]T , G( k) 为P ×W 阶矩阵, 表示为

G( k) = [ Gkij ](2)

Gkij = m( k)

W + i - j , k = 1 , ?, K, i = 1 , ?, P , j = 1 , ?,W

根据矩阵G的表达式,得到h 的最大似然估计^h 为

^h = [ GH G] - 1 GH em (3)

窗长W =[ P/K]。

如果各工作通道对应的训练序列具有循环特性,则估计通道冲激响应可借用信道估计中FF T 的方法[12 ] ,即

h′= IFFT[FF T(m) ( R) )/FF T( m) ](4)

式中m 表示基本训练序列,m( R) 取决于接收的训练序列。可以证明,在没有噪声的情况下,该估计是无偏的。h′是长度为KW 的通道冲击响应估计矢量。

无论是基于校准通道的方法,还是基于耦合网络的方法,采用的通道校准算法原理相同,研究结论均适用于上述两种校准方法。因此,下面以基于校准通道的方法为例,对通道校准算法进行研究。为分析方便,不失一般性,对8 个通道的系统进行分析。设天线阵列为8 天线单元的均匀圆阵,校准天线位于圆心。在B3G/ 4G系统中,TDD 为一种很有前途的工作方式,此时可选用非盲算法。在FDD 系统,由于上下行频段不同,需要作一定的补偿。训练序列长度P 取32 。

2. 2 发射( TX) 通道校准算法

TX 校准的功能是补偿各工作TX 通道的不一致性。工作天线同时发射各自对应的训练序列,校准天线接收到训练序列后,就可计算各工作天线TX 通道之间的幅度差异和相位差异。TX 校准的训练序列长度为M chip s ,其中基本训练序列为N chip s ,所有工作天线对应的训练序列由N chip s 基本序列循环移位而得到。作为有价值的实例,又不失一般性,取M = 36 , N = 32 。

设实基本训练序列m = ( m1 ,m2 , ?,m32 ) ,对应的复基本训练序列m = (m1 ,m2 , ?,m32 ) ,即

mi = ( j) i- 1 ·mi (5)

根据循环特性,工作天线1~8 发射的训练序列依次为

m( T ,1) = ( m29 , m30 , m31 , m32 , m1 , m2 , ?, m32 )

m( T ,2) = ( m25 , m26 , ?, m32 , m1 , m2 , ?, m28 )

m( T ,3) = ( m21 , m22 , ?, m32 , m1 , m2 , ?, m24 )

m( T ,4) = ( m17 , m18 , ?, m32 , m1 , m2 , ?, m20 )

m( T ,5) = ( m13 , m14 , ?, m32 , m1 , m2 , ?, m16 )

m( T ,6) = ( m9 , m10 , ?, m32 , m1 , m2 , ?, m12 )

m( T ,7) = ( m5 , m6 , ?, m32 , m1 , m2 , ?, m8 )

m( T ,8) = ( m1 , m2 , ?, m32 , m1 , m2 , ?, m4 )

设校准天线接收的训练序列为

m( CA) = ( m( CA)1 , m( CA)2 , ?, m( CA)36 )(6)

由此构造序列

m( R) = ( m( R)1 , m( R)2 , ?, m( R)32 ) (7)

其中m( R)i = m( CA)i+3 , i = 1 ,2 , ?,32

估计天线通道冲激响应可采用式(4) 的方法,则天线通道k 的冲激响应估计为

^h( k) = max[ h′( i) ] , i = ( k - 1) W + 1 , ?, kW , k= 1 , ?, K 此处式中max[ ·]表示从每个用户的冲激响应中取最大值,这是因为,在校准环境下,每个通道总是存在一条最强的直达路径。

接收( RX) 通道校准算法

RX 校准的功能是补偿各工作天线RX 通道的不一致性。校准天线发射训练序列,工作天线同时接收到训练序列后,就可计算各工作天线RX 通道之间的幅度差异和相位差异。RX 校准的训练序列长度为36chip s ,其中基本训练序列为32chip s。

设实训练序列为m = ( m1 ,m2 , ?,m32 ) ,对应的复训练序列为m = (m1 ,m2 , ?,m32 ) ,即

mi = ( j) i- 1 ·mi(8)

校准天线发射的训练序列为

m( CA) = (m29 , m30 , m31 , m32 , m1 , m2 , ?, m32 )

工作天线k 接收的训练序列表示为

m(WA , k) = (m(WAk)1 , m(WA , k)2 , ?, m(WAk)36 ) , k = 1 , ?, K

m( R , k) = ( m( R , k)1 , m( R , k)2 , ?, m( R, k)32 ) , 其中m( R , k)i= m(WA k)

i + 3 , i = 1 , 2 , ?, 32 , k = 1 , ?, K 同样,估计接收通道冲激响应可采用FF T 的方法,即

h′( k) = IFF T[FF T(m( R , k) )/FFT( m)], k = 1 , ?, K(9)

类似地,接收通道k 的冲激响应估计为

^h = max[ h′( k) ] , k =1 , ?, K (10)

3 仿真研究

选择基本训练序列,要求自相关性较强,互相关性较弱。

假设环境为高斯白噪声的通道校准算法的性能仿真:设通道幅度不一致(设方差为0. 1) 时校准算法的统计性能分析。仿真参数: P = 32 , K = 8 。

K 个TX 和RX 通道冲激响应随机生成,幅度服从均值为1 、方差为0. 1 的正态分布,相位服从[0 ,2π]的均匀分布,相位的单位为0 。TX 和RX 通道校准幅度估计均方根误差随信噪比的变化情况以及相位估计均方根误差随信噪比的变化情况分别如图1 到图4 所示, Monte2Carlo仿真结果如下:

由图1~图4 可见,随着信噪比的增大,通道校准算法的幅度和相位估计性能均明显提高。工作总结 RX 通道校准算法的估计精度明显优于TX 通道校准算法。这与TX/ RX 通道校准的实现方法有着密切关系。通道幅度方差为0. 1 、信噪比约为10dB 时,在TX 通道校准中,相位估计均方根误差约为±5°;而RX 通道校准中,相位估计均方根误差约为±4. 5°。

4 结论

无线通信系统篇8

关键词:无线通信系统;铁路;GSM-R LTE

前言

经济及科学技术的发展使得现今社会已经成为了信息化的社会,尤其是以4G为代表的移动互联技术使得人们可以在移动的过程中极为方便、快捷的获得所需要的信息及服务。铁路作为我国重要的陆上出行方式,由于无线通信系统建设的制约使得在高铁或是一些区段还仍然无法对客户提供优质的无线通信服务,存在着通话中断、掉线、通话质量差等等一系列的问题,为适应现今发展越来越迅速的信息通信需求,在铁路建设中应加强无线通信系统的应用及运行以便为用户提供优质的通信服务。

1 铁路通信对于无线通信系统所提出的要求

现今的社会是信息化的社会,随着我国铁路信息化及现代化建设的不断加速,对于铁路移动通信系统提出了以下要求:(1)无线通信系统应当在网络结构、硬件设备以及软件算法等方面满足500km/h速度范围以内的列车通信需求。(2)无线通信系统要能够实现无线列控方式,以便能够更好的对铁路列车的运行进行调度及高速列车运行中的与地面调度中心之间的庞大的数据信息双向传输。(3)无线通信系统应当具有沿着铁路沿线的高速越区切换的能力。(4)无线通信系统应当能够将铁路沿线恶劣的自然环境对于铁路无线通信系统的影响降至最低。(5)无线通信系统的可靠性及稳定性都应当较好以满足故障安全原则,相较于现今所使用的列控系统应当更为安全可靠。铁路通信对于无线通信系统的需求是巨大的,因此对于无线通信系统在铁路通信中的应用,要求新一代的无线通信系统必须要提供一个综合的无线通信平台,且能够根据铁路各部门的需求提供虚拟的独立的专用的无线通信系统,以确保铁路调度的安全及快速。

2 无线通信系统在铁路通信中的应用及发展

2.1 GSM-R无线通信系统

GSM-R无线通信系统是一种应用于铁路通信中的综合专用数字移动通信系统,其主要以2G无线通信基础设施来实现对于区域内列车的高级语音呼叫服务,并在提供语音通信服务的同时承担了一定的列车调度服务。GSM-R无线通信系统可以在一定程度上成为铁路无线通信的承载体,承载列车调度、信号、集群通信和监控数据等的业务。GSM-R无线通信系统是现今在铁路无线通信中应用最为广泛的系统,其基础服务能力继承于3GPP标准,其中3GPP标准主要采用的是以GSM核心网为根本的无线通信技术,其在应用之初就瞄准了铁路通信中对于无线通信的巨大需求,并在集合众多产业链并在不断的完善过程中使得3GPP标准成为了一项可靠而成熟的无线通信制式而在铁路通信调度中得到了广泛的应用。GSM-R无线通信系统中的基础功能模块主要由交换系统、基站系统、运维系统以及终端系统和智能网络系统等组成。GSM-R无线通信系统在现今的运用中也面临着一些挑战,随着移动通信网络经历了由2G到3G再到4G移动通信网络的巨大变革,从而使得铁路通信面临着巨大的挑战和庞大的先进无线通信的需求。现今铁路通信对于无线通信系统的需求已经从原先最基本的信号稳定、沿途覆盖等功能从而向着能够满足铁路通信系统不断发展的通信需求变化进行转变。在这一过程中,GSM-R无线通信系统也逐渐暴露出来了一些技术的局限性。随着技术的发展目前业界对于今后铁路通信系统中的无线通信系统都形成了统一的共识,认为今后铁路无线通信系统的技术必将向着4GLTE的方向发展,长期演进是3GPP系统长期演进的概括描述,通过使用正交频分复用技术和单载波分多址技术来作为发展4G无线通信系统的基础。

2.2 LTE技术

LTE技术标准主要采用的是ALL-IN-IP的无线组网架构以及扁平化的无线网络结构,从而使得无线通信系统的延时大为降低,从而使得无线通信系统的网络通信性能得到了整体性的提高,从而使得不论是在用户无线通信使用感官体验方面还是在控制层面,使用LTE技术能够使得无线通信从空闲模式到激活模式这一模式切换的时间控制在100ms的范围以内,而将无线通信从休眠模式向激活模式切换的时间控制在50ms的时间范围以内,在用户的使用体验中最小延时极小,从而使得用户能够在高速行驶的列车中得到较为良好的无线通信服务,用户无线通信使用感官大为提高。LTE技术在频谱效率方面也有着极大的提高,由于采用的是正交频分复用技术,从而使得无线通信的频谱效率得到了极大的提高,采用多人多出技术后带来速率的成倍数增长。此外,使用LTE技术也使得铁路无线通信的抗干扰的能力有了较大的提高,通过在铁路无线通信中采用OFDM技术,可以使得无线通信在保持高频谱效率的前提下能够更好的实现对于多径干扰进行抑制,并通过使用小区干扰协调技术将原先的干扰信号向有用无线通信信号进行转变。上述LTE技术的优秀特性使得LTE技术成为了今后铁路无线通信技术的重要的基础也为众多信息化应用提供了良好的保障。LTE技术在铁路无线通信系统的应用中需要满足能够对现今铁路无线通信信息业务的全包容,能够实现对现今所使用的基本的语音沟通直至到满足对于图像和视频流等的传输,其传输速率也将由原先的kb/s上升至Gb/s,而使用传统的GSM-R技术由于基础的限制使得其远远无法满足这一通信需求。通过使用LTE技术则可以满足这一通信需求。通过使用LTE技术使得铁路无线通信的信息带宽得到了极大的提高,从而可以实现在列车中提供无线带宽的增值通信服务,比如说可以在各节车厢中加装列车视频监控并通过使用无线通信来对视频监控的视频进行传输,以使得列车乘务员和地面调度人员都能够对行驶中的列车车厢中的状态进行监控,并通过与地面调度人员的协同工作实现对于列车车厢中的突发状况进行及时的响应,并能够通过现场情况的回溯来进行决策举证,通过无线通信技术的发展提高了铁路无线通信系统对于语音、视频图像的传输能力从而使得铁路运行能够更为安全、高效。同时,铁路无线通信能力的提升可以使得铁路部门能够为列车中的乘客提供更多的常规化的增值服务,无线通信能力的增加可以使得能够通过车厢内的视频为旅客提供实时交通路况、列车编次以及沿途天气等的一系列的增值信息服务,从而使得铁路旅客能够更为方便的出行。因此,LTE技术是未来取代GSM-R技术新一代无线通信技术,同时LTE技术还有着更大的潜力能够挖掘,由于其技术在设计中所具有的无线移动切换能力和带宽稳定的特征使得LTE技术能够以百兆的带宽来实现对于铁路无线通信的接入,随着技术的不断进步与完善,LTE技术将有着更为广阔的技术应用前景。

3 结束语

铁路是我国重要的陆上交通运输方式,随着技术的发展使得铁路无线通信系统中的技术也得到了极大的提高,传统的GSM-R通信技术在越来越大的数据通信需求面前也显得越来越力不从心,因此,以LTE技术为代表的新一代的F路无线通信技术的应用使得铁路无线通信能力的提高成为可能。本文在分析铁路无线通信技术特点的基础上对现今所使用的GSM-R技术及LTE技术的应用进行了对比。

参考文献

[1]陈永,胡晓辉.基于GSM-R铁路无线通信系统的越区切换分析研究[J].计算机工程与设计,2009,30(18):4342-4345.

[2]赵旺.GSM-R系统在铁路无线通信系统中的应用与发展[J].中国高新技术企业,2009(2):70-71.

上一篇:通信电子电路范文 下一篇:光纤通信技术范文