无线通信技术概述范文

时间:2023-12-07 17:45:50

无线通信技术概述

无线通信技术概述篇1

关键词:5G;无线通信;关键技术;应用

15G无线通信技术的概念分析

1.15G无线通信技术

5G通信技术是以之前的无线通信网络技术为基础进行技术升级和改造,使其各项性能均优于之前的无线通信网络技术,为用户提供更多、更优质的业务服务。相比较2G、3G、4G无线网络通信技术而言,5G通信技术继承了它们的优势,并且在此基础上引入更加先进的技术,使得通信技术更加完善,一旦投入运行,势必会占据较大的通信市场份额。从5G通信技术的发展现状来看,其在建设中运用了纳米技术、隐私保密技术,更重视通信传输的安全性、便捷性和灵活性,大幅度提升传输速度,降低能量损耗,5G无线网络的拓扑结构,5G无线通信技术能够更好地保护个人通信信息,若在信息传输中遇到问题,5G通信技术会及时分析和解决问题,加大对通信信息的保护力度。

1.2技术优势

1.2.1传输速率更快

5G通信技术是最为先进的移动通信技术,相比较4G通信技术而言,是其数据传输速度的十倍以上,具备传输速率快的显著优势。从5G通信技术的实践应用来看,可在波段为28GHz的情况下保证传输速度可达1Gbps,而4G通信技术在同等条件下的传输速度只能达到75Mbps,并且非对称的数据传输能力仅高于2Mb/s,由此可见5G通信技术实现了传输速度的大幅度提升。

1.2.2兼容性更好

5G通信技术是一项兼容2G、3G、4G网络通信技术于一体的全通信平台,该平台不仅能够支持多种网络通信技术的使用,而且还能够接入BLUETOOTH、WIFI等无线技术,拓展通信服务功能,使5G通信技术具备良好的兼容性。尤其在网络平台支付方面,能够提高支付操作的安全性。

25G无线通信技术的应用

2.15G无线通信关键技术

在5G无线通信网络中,MIMO和D2D是两项较为关键的技术。2.1.1MIMO技术MIMO即多端口输入与输出技术,其通过加大对发射功率的复用及通信带宽的复用,从而使无线通信网络的性能变得更加完善。早期的MIMO只能实现单点对单点,随着技术的不断进步,现在已经可以实现单点对多点,具体的技术方案是将多根天线置于发射或接收端,由此可满足时频资源下,空间多路复用增益最大化,这样能够提升整个通信链路的可靠性,通信系统的总吞吐量将会随之大幅度提升。目前,业内的专家学者加大了对集中布设天线的研究力度,有的学者提出可以融合云无线接入网,获得一种全新的MIMO系统,如果该系统开发成功将会使整个5G无线通信网络的性能获得进一步提升。2.1.2D2D技术这是5G无线通信的关键技术,它的主要作用是对蜂窝系统进行补充,使无线数据流量的增长成为可能。D2D能够对资源进行精简,并且还可以减少外界的干扰,同时,传输效率的提升,使传输成本大幅度降低。在对D2D技术进行具体应用时,需要重点解决的问题是无线资源管理和通信实时性的保障,这将成为D2D技术的研究关键,上述问题解决后,D2D技术在5G无线通信中的作用将会得到最大限度地发挥。

2.25G无线通信技术的具体应用

安卓系统是以开放源代码和Linux为基础开发的操作系统,被广泛应用于平板电脑、智能手机系统中。安卓系统采用了分层架构,从高到底总共分为4层,分别为应用程序层、框架层、运行层和内核层。在分层架构中,5G纳米核心技术被应用于系统内核层,可以完全分离安卓基础文件与硬件的驱动系统。利用5G通信技术的高速无线传输优势,可保证云储存端与终端同步实现硬件驱动,从而缩小储存数据信息所占用的空间,并且还能够提高终端硬件外设装置的丰富性。安卓系统具备开放性强的特点,这也对信息数据的安全性带来了严峻考验,而利用5G通信技术中的纳米技术,能够对通信进行加密,引入量子密码学的相关技术避免通信中出现信息泄露问题,保护安卓终端设备的安全性。

3结论

综上所述,5G无线通信是网络技术的发展趋势,它的出现不但会带来更加安全和高速的网络之外,还能使全球网络的无缝连接成为可能。同时,5G无线通信的良好兼容性,使其能够在更多领域中获得应用。在未来一段时期,应加大对相关方面的研究力度,为5G的发展提供强有力的技术支撑。

参考文献

[1]王景尧,白岩,孟祥娇,崔雪然.5G无线通信技术发展跟踪与分析[J].现代电信科技,2014(12):1-4.

[2]马子嘉.5G无线通信技术概念及相关应用[J].电子测试,2017(z1):64-65.

[3]张培培.5G无线通信技术的应用前景分析[J].无线互联科技,2016(24):32-33.

[4]朱玉春,刘涛.5G无线通信系统的关键技术分析[J].中国科技纵横,2017(04).

无线通信技术概述篇2

关键词:5G网络技术;移动通信;互联网

1.前言

从目前网络技术发展现状来看,4G是现阶段使用最多的技术,但是整个业界已经开始了对5G的研讨和研发,5G简单的来说是形成人与物和物与物之间的高速连接,实现整个网络,终端,无线和业务的进一步融合。5G可以说是人在感知方面的获取和控制能力更强,5G的服务对象是将公众用户向行业用户拓展,网络也将更智能和更加的广泛。从目前的研究现状来看,欧盟于2012年启动METIS项目,正式开始研究5G技术,现阶段METIS共有8个工作组进行相应横向课题研究,目标是为建立5G移动和无线通信系统奠定基础,为未移动通信和无线技术达成共识,目前已经在5G的概念和关键技术上获得了较为统一的认识。韩国从2013年开始研发5G技术,成立了5G Forum,积极推动6GHz以上频段为未来IMT频段,韩国计划以2020年实现该技术的商用为目标,全面研发5G移动通信核心技术。日本于2013年成立了ARIB研究所,开始正式对5G进行研究,计划在2020年东京奥运会上推出5G服务,日本研究者认为5G代表着接入网容量增加1000倍,通过使用大量高频频谱,再加上大规模MIMO技术来实现容量的增加,可以说未来5G将会是人们通信生活的核心。

2.5G网络关键技术概述

2.1超密集异构网络

从目前的发展来看,为应对未来持续增长的数据业务需求,密集异构网络部署将会成为当前无线通信发展所面临挑战的一种解决方案。超密集异构网络的出现能够解决5G中提出的无线数据速率提高1000倍的问题,提高空间谱利用率及增强室内覆盖等问题,在超密集异构网络中,网络的密集化使得网络节点离终端更近,带来了功率效率,频谱效率的提升,大幅度提高了系统容量,以及业务在各种接入技术和各覆盖层次间分担的灵活性。

2.2大规模MIMO

MIMO系统简单的来说是即时发送端和接收端均放置多个天线,从而形成MIMO通信链路,因此对于5G技术来说可以通过添加多个天线,为无线信道带来更大的自由度,以容纳更多的信息数据。MIMO可以在不增加带宽或总发送功率耗损的情况下大幅增加系统的吞吐量及传送距离,使得此技术近几年颇受瞩目,而且从目前的发展来看,天线数量越多,频谱效率和可靠性提升越明显,因此当发射天线和接收天线数量很大时,MIM0信道容量将随收发天线数中的最小值近似线性增长。

2.3同时同频全双工技术

从目前的发展态势来看,同时同频全双工技术获得了广泛的关注,因为利用该技术可以再在相同的频谱上,通信的收发双方同时发射和接收信号,与传统的TDD和FDD双工方式相比,从理论上可使空口频谱效率提高一倍。全双工技术能够突破FDD和TDD方式的频谱资源使用限制,使得频谱资源的使用更加灵活,然而全双工技术需要具备极高的干扰消除能力,这对干扰消除技术提出了极大的挑战,同时还存在相邻小区同频干扰问题,特别是在多天线及组网场景下,全双工技术的应用难度更大。

2.4D2D技术

传统的蜂窝通信系统的组网方式是以基站为中心实现小区覆盖,而基站及中继站无法移动,其网络结构在灵活度上有一定的限制。随着无线多媒体业务不断增多,传统的以基站为中心的业务提供方式已无法满足海量用户在不同环境下的业务需求。D2D技术无需借助基站的帮助就能够实现通信终端之间的直接通信,拓展网络连接和接入方式,由于短距离直接通信,信道质量高,D2D能够实现较高的数据速率,较低的时延和较低的功耗,通过广泛分布的终端,能够改善覆盖,实现频谱资源的高效利用,支持更灵活的网络架构和连接方法,提升链路灵活性和网络可靠性。从现阶段来看,D2D采用广播,组播和单播技术方案,未来将发展其增强技术,包括基于D2D的中继技术,多天线技术和联合编码技术等。

2.5钠光技术

纳米技术指的是将纳米科学运用在操作控制上,将精度控制在0.1-100nm的范围之内,纳米技术将成为通信行业迅速转向下一代的里程碑技术。在5G通信中,移动终端将被植入纳米技术的芯片,称为纳米终端,将具有前所未有的计算和通信等能力。对于无线领域来说,环境智能的概念将作为中心理念之一被广泛应用,纳米终端将以智能的方式随时给用户提供完美的计算和通信。当然这些纳米终端将被人们在不同的场所进行运用,因此纳米终端将提供一个崭新的平台。

2.6云计算

云计算简单的来说是一种运用于中央控制服务器上的技术,主要是在中央服务器上储存数据和执行应用,可以说是运用云计算做到不在任何一个终端上储存文件和安装应用软件,而是通过互联网的网络连接来进行读取与应用。同样的概念也被应用于纳米核心技术,纳米核心技术运用于云端储存技术中,用户可以通过自己的隐私账户来管理全球性云端储存服务器中的文件,云计算的发展孕育了极大的潜力,由于云计算要依靠网络,所以它将是网络发展的重要指标,并促使网络不断发展。

3.结论

从目前的发展情况来看,5G移动通信系统的基本发展目标还不够明确,但是随着新需求和新技术的不断出现,5G必然成为未来移动通信领域的主导技术,5G网络技术的出现可以提供一个更好安全的网络,更多地是带来全球化网络的无缝连接,可以说给各国通信行业带来了一个新的平台,在平等的条件下,中国的营运商如何提高服务,如何合理地建设网络形成了挑战。

参考文献

[1]尤肖虎,潘志文,高西奇,曹淑敏,邬贺铨. 5G移动通信发展趋势与若干关键技术[J]. 中国科学:信息科学,2014,05:551-563.

[2]曹越. 移动通信网络中5G技术的探究[J]. 无线互联科技,2014,09:52.

[3]夏威,刘冰华. 5G概述及关键技术简介[J]. 电脑与电信,2014,08:51-52+55.

[4]熊必成. 5G网络通信技术应用的前瞻性思考[J]. 信息通信,2014,11:230.

[5]月球,王晓周,杨小乐. 5G网络新技术及核心网架构探讨[J]. 现代电信科技,2014,12:27-31.

[6]肖清华. 蓄势待发、万物互连的5G技术[J]. 移动通信,2015,01:33-36.

[7]李晖,付玉龙. 5G网络安全问题分析与展望[J]. 无线电通信技术,2015,04:1-7.

无线通信技术概述篇3

【关键词】水下无线通信技术;跳频;同步捕获技术;应用

1水声通信实现方案概述

1.1水声通信可行性分析

水声信道是一个十分复杂多径传输信道,特性参数随着时一空一频的变化而随机变化,加上它的环境噪声高、带宽窄、可适用的载波频率低、传输时延大等诸多不利因素,使之传输误码率高、传输数据率低等瓶颈问题难以解决,由此水下通信技术也成为当今最为复杂的通信技术之一,水声通信技术是水下通信技术领域中一个极具挑战性的研究课题,水声通信技术研究已经成为近年来通信及信号处理领域研究的热点之一。

1.2水声通信具体实现方案

就水声通信而言,在其实际的作业过程中,主要是由发送方和接收方两部分组成,主要工作原理如下:水声通信发送方首先通过对温度传感器的应用对通信传播水域的温度信息进行收集,然后应用微控制器实现对于接收到的数字信号进行跳频处理,待处理完成后应用数模转换以及水声换能器,经过两次转换后将其转变为声信号,同时在水下传递给接收方。在这一过程中,其主要应用到的技术就是跳频技术,具体来讲,就是接收方的换能器首先将受到的信号转变为数字信号,然后在通过对微控制器带通滤波器来实现同步捕获过程[1]。待获得所需要的频率信号后,相关工作人员就可以将相应的信号转变为所需要的温度信息进行显示。总体来讲,对于水声通信而言,要想实现水下无线通信的高效应用,其中两项技术最为重要,一项为发送方的跳频技术,一项为接收方的同步捕获技术。只有将这两项技术应用到水声通信过程中,才能更好地实现水下无线通信技术的长效发展。

2跳频技术概述

2.1跳频技术含义

所谓的跳频技术,指的就是根据帧的改变,对每个载波按照某种跳频序列对预先设定的一组频点进行跳变的一种技术,是当前通信技术中较为常用的扩频方式之一。对于跳频技术而言,其工作原理为:按照预定的规律形式,对收发双方传输信号的载波频率进行离散变化。这种技术主要有两种形式,一种为基带跳频,一种为射频跳频[2],主要被应用于发送方,在发送端,通过对这一技术的应用,可以在较大程度上保证信息的安全性和隐蔽性。

2.2跳频技术实现原理

基于当前水声通信技术发展现状,将跳频技术应用其中,可以更好地保证信息的安全性和隐蔽性,要想将跳频技术应用到水声通信技术当中,并以此来提升水下无线通信技术整体水平,首要的就是应对跳频技术实现原理进行准确的把握。对于跳频技术而言,其主要的实现原理为:首先,相关工作人员应根据潜水换能器的带宽以及水声通信的工作环境将信道资源划分为8个跳频组Fij(i=0,1,2…,7),并在每个调频组分配四个频率,每个相邻频点的间隔为250Hz,在具体应用过程中,每个频率会根据单片机外部晶振所提供的固定频率来对跳频初值进行计算,并规定跳频图案按照F0~F7的顺序进行循环;其次,当信号传输至单片机时,则需要将信号两位为一组,根据具体的跳频图案来对两位所在的调频组进行确定,同时根据具体的两位信息来对某一个分频数进行确定[3];最后,根据所得到的初值,通过对内部计数器的应用,将相应的信号结合数模转换器处理后转变为相应的频率信号,然后应用潜水换能器将声信号进行发出。

3同步捕获技术概述

3.1同步捕获技术含义

同步捕捉技术指的是应用于通信接收方的一项扩频通信技术。对于通信接收方而言,在其实际的工作过程中,扩频通信为了更好地对发送方信息进行恢复,通常会对下变频后的基带信号进行同步捕获,以此来保证信息获取的完整性和有效性。但是在当前水下无线通信技术应用过程中,同步捕捉技术的应用是亟待解决的一项实际问题,只有采取相应的措施,才能更好地对整个通信系统性能进行保证。

3.2同步捕获技术实现原理概述

无线通信技术概述篇4

【关键词】认知无线电谱感知技术配谐波器检验作检验谱管理

认知无线电频谱感知技术的基础是对频谱状态的监测,需要确定频段的应用和授权状态,并确定认知用户和授权用户的地位,达到利用空闲被认知频段进行通信的目的。

一、认知无线电频谱感知的监测方法

1.1认知无线电频谱感知的基本检验方法

匹配谐波、能量、循环平稳特征是认知无线电频谱监测的基本方法。匹配滤波器监测方法是已汇总相干监测方法,能接收加大的信号噪声比,并对信号进行迅速的增益处理,但是这种监测方法对相位同步有着较高的要求。能量监测方法是认知无线电频谱感知中常用的手段,具有简便和迅速的优势,是一种非相干监测的技术,但是存在信噪比较低时局限性较大的缺陷。循环平稳特征监测,这种方法能够有效区分信号和噪声,适于调制信号的循环平稳特性来进行频谱监测,同时也存在着计算复杂、监测时间过长等劣势。

1.2认知无线电频谱感知的多天线与协同监测方法

一是,似然比监测,似然比监测的实质是比较在有约束条件下的似然函数最大值与无约束条件下的似然比函数最大值,从而进行监测判决,似然比监测可以使统计检验的监测概率最大,但似然比函数监测需要知道信道增益和噪声分布等信息,特别需要对授权用户信号的特点和分布需要及时掌握,所以难度较高。三是,空间相关性监测,空间相关性监测考虑了各个天线接收端信号的差异,性能要优于传统的能量监测法。三是,协作监测,这是一种多个认知用户分布在不同地点时,通过协作对大范围的频谱进行监测,从而获得更加可靠的监测性能。

二、认知无线电频谱感知技术在频谱管理中的应用要点

2.1窄带噪声的控制

从一个特定频段提取信号时,需要用到一个或多个数字或模拟的窄带滤波器。只有当滤波器是理想的时候,信号才能被准确地提取出来从而被精确地量化,离散的噪声样本才能是独立同分布的。

2.2寄生信号的干扰

认知用户接收端接收到的信号可能不仅含有授权用户信号和噪声信号,还含有其他杂散信号,这会导致判决时的虚警概率升高,进而使频谱利用率下降。

2.3截断认知无线电频谱感知误差

由于硬件的设计原因,很多方法在硬件上都是采用定点运算来实现,这会造成截断误差的产生,从而限制监测方法的精度。一种好的监测方法应该对这种不可预见的误差有较强的健壮性。

2.4实现认知无线电频谱宽带的感知

由于认知用户本身对频谱使用权较低,通常认知无线电设备可能需要监听很大一段频率范围,以寻找最好的可用频带来进行信号传输,因此需要在超宽带无线射频前端和高速的信号处理设备,以采用提高采样速率面的形式实现无线电频谱宽带感知。

三、结语

综上所述,为了解决无线电频谱资源固定、僵化的问题,预防频段匮乏现象的发生,现代无线电通信行业提出了认知无线电频谱感知技术,这一技术具有高度的自动化和智能化特点,特别对于频谱管理工作来说有重要的价值和作用。实际中我们应该通过关键的认知无线电频谱感知技术的应用,取得突破,进而达到推进认知无线电频谱感知技术普及进度和强化频谱管理工作的目的。

参考文献

[1]韩昭芳,蒋挺,赵成林,周正.一种优化的认知无线电频谱感知策略[J].无线电工程,2011(05)

[2]许建霞,刘会衡,刘克中.基于能量检测的频谱感知技术研究与仿真[J].武汉理工大学学报(交通科学与工程版)2011(03)

[3]胡首都,郭龙,仵国锋.一种认知无线电系统频谱分配和频谱感知联合设计[J].信息工程大学学报,2011(02)

[4]梁红玉,陈宏滨,赵峰.认知无线电协作频谱感知技术综述[J].广西通信技术,2011(02)

无线通信技术概述篇5

【关键词】TD-SCDMA;TD-LTE;3G

1.概述

1.1 TD-LTE技术概述

TD-LTE即TD-SCDMA Long Term Evolution,是指TD-SCDMA的长期演进。TD-LTE采用了众多先进的无线技术,诸如OFDM、MIMO/BF、HARQ、AMC等。可以提供上行超过100Mbps和上行超过50Mbps的用户峰值速率;由于去除了RNC网元,网络结构简化且更加扁平;结合了其它和一些先进技术,使得无线接入网时延降至10ms;频谱利用率也提高了很多,使得TD-LTE在性能与成本上都具有很大的优势。下面介绍一下其关键的几个技术特点:

1.1.1 OFDM(正交频分复用技术)

实际上OFMD是多载波调制的一种。其主要思想是将信道分成若干正交子信道,将高速数据信号转换成并行的低速子数据流,调制到在每个子信道上进行传输。正交信号可以通过在接收端采用相关技术来分开,这样可以减少子信道之间的相互干扰 ICI。每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道上的可以看成平坦性衰落,从而可以消除符号间干扰。而且由于每个子信道的带宽仅仅是原信道带宽的一小部分,信道均衡变得相对容易。在向B3G/4G演进的过程中,OFDM是关键的技术之一,可以结合分集,时空编码,干扰和信道间干扰抑制以及智能天线技术,最大限度的提高了系统性能。

1.1.2 MIMO(多输入多输出)

所有的无线技术都面临信号衰落、多径、不断增加的干扰和受限制的频谱的挑战。MIMO(多输入多输出)技术在不需要占用额外的无线电频率的条件下,利用多径来提供更高的数据吞吐量,并同时增加覆盖范围和可靠性。它解决了当今任何无线电技术都面临的两个最困难的问题,即速度与覆盖范围。由于OFDM的子载波衰落情况相对平坦,十分适合与MIMO 技术相结合,提高系统性能。MIMO 系统在发射端和接收端均采用多天线(或阵判天线) 和多通道。多天线接收机利用空时编码处理能够分开并解码数据子流,从而实现最佳的处理。若各发射接收天线间的通道响应独立,则多入多出系统可以创造多个并行空间信道。通过这些并行空间信道独立地传输信息,数据速率必然可以提高。

1.2 论文的主要研究内容

本文首先叙述了TD-SCDMA在我国的发展现状和当前的建设情况及TD_LTE技术然后重点分析了TD-SCDMA关键技术及向TD-LTE演进,最后介绍并分析了TD-SCDMA与TD-LTE共平台方案。

2.TD-SCDMA与TD-LTE共平台方案

2.1 TD-SCDMA向TD-LTE演进概述

从TD-SCDMA 向TD-LTE的演进,首先是在TD-SCDMA 的基础上采用单载波HADPA技术,速率达到2.8Mbps;其后实现多载波HSDPA,其速率能达到7.2Mbps;持续发展到HSPA+阶段,速率将超过10Mbps,并继续逐步提高它的上行接入能力。最终在2010年之后,从HSPA+演进到LTE,实现20MHz带宽下行峰值速率100Mbps,上行峰值速率50Mbps。综上所述,由于技术发展的快速,需要充分考虑TD与LTE的共存和演进方式。在TD向LTE演进的过程中,需要采用TD与LTE共平台的方案,以实现更高端的技术应用并最大化降低网络投资成本。

2.2 TD与TD-LTE共平台方案简析

2.2.1系统共平台概述

TD与LTE共平台的研究和实现,比较复杂的部分在于基站设备。通常来说,对于系统无线设备BBU和RNC来说,TD与LTE共平台方案分为共机框方案;共硬件平台的共模方案;以及基站系统未来实现的基于软件无线电技术的多模基站,即硬件平台复用,通过软件下载支持TD或LTE方式。图1为TD与LTE共平台的方式分类示意。对于RRU和天线系统而言,可采用TD与LTE共RRU以及共天馈的方案。目前双极化天线已成为TD-SCDMA天线应用的主流方向,双极化天线可以较好支持向MIMO天线平滑演进,为LTE部署奠定基础;采用双极化天线后,其宽度、重量都减少一半,性能与常规八阵元智能天线相当。采用TD-SCDMA及TD-LTE均可工作的宽频段天线,即可支持TD-SCDMA与TD-LTE共天馈,无需变更天面施工,即可满足未来TD-LTE网络对站址天面的需求。需要特别注意的是,在具体实施过程中,需要认真考虑并分析TD与LTE共RRU及共天馈的方案,分别在同频段和异频段情况下的施工难易度、后期维护问题以及干扰隔离等问题,以选用最合理的共用方案。

2.2.2系统共平台方案简介

系统共平台方案的共机框方式是实现TD与LTE共平台方案的最基本方案,其主要特点是:两个系统独立运行;共用电源和背板;所有硬件板卡不复用。因此共机框方案只是一种TD向LTE演进的最简方案,并不是完全意义上的共平台方案。最大化保有现有TD-SCDMA网络投资的方式,是共硬件平台的共模方案。该方案可分为单模方式和双模方式两种,单模方式是系统中TD与LTE两个系统独立运行,硬件板卡可复用;支持TD系统在不更换任何硬件的前提下,直接软件升级为LTE系统。双模方式是系统中TD与LTE两种制式协作运行,两系统共用同一套硬件板卡,软件同时运行TD-SCDMA和TD-LTE的工作模式。可见共模方案是目前最为合理的共平台方案,但在实际网络运行中,TD与LTE两种制式协作运行的双模方式需要占用大量的系统资源并成倍增加系统设计复杂度,在实际应用中不推荐采用TD与LTE共平台的双模方案,因此下文将主要对BBU设备TD与LTE共平台的单模方案进行介绍及分析。

2.3 TD与TD-LTE的BBU共平台单模方案分析

从上文分析可知,TD与LTE共平台的最佳实现方案是共硬件平台的共模方案(单模方式和双模方式)。这种共平台方案可以完全实现BBU设备TD和LTE两种制式的共传输、共背板、共BBU架构以及共用主控及时钟单元;TD-SCDMA BBU通过软件升级即可支持平滑演进至TD-LTE。

2.3.1基带处理单元的TD与LTE共平台分析

对于基带处理单元而言,在支持LTE情况下对于处理器的能力有更高要求;其处理能力会根据处理时延的要求和LTE支持的天线及带宽数有不同要求。图3给出了在不同时延要求情况下,TD与LTE各种天线及带宽要求下的处理器能力要求,可以看到TD系统现有处理能力,基本可以实现5ms时延要求下的LTE各种带宽下的处理能力需求。

2.3.2接口单元的TD与LTE共平台分析

TD与LTE共用接口单元,需要重点考虑接口单元的流量;接口单元除提供与上级网络设备的接口外,还提供对RRU单元的接口。对于上级网络设备的接口Iub、X2/S1带宽来说,TD系统的Iub接口流量主要在于BBU的多个载波业务数据和控制数据总流量;对于LTE系统X2/S1接口,在空口速率下行100Mbps,上行50Mbps情况下,3个20M带宽小区总吞吐量在450Mbps之内,同时还要处理eNB之间的交互数据以及网络管理数据。综合计算分析可知,千兆物理端口完全能够满足TD与LTE共平台接口带宽需求。对BBU与RRU之间的Ir接口带宽来说,LTE采用2天线时,不管是10M带宽还是20M带宽,都可以在1条2.5G的链路中完成;当采用8天线时,必须采用两条链路。如果是10M带宽,则采用2条2.5G链路,如果是20M带宽,则采用两条3.072G高速链路。对BBU设备而言,TD系统接口单元不需要修改任何硬件就可以实现所有带宽的数据传输。 [科]

【参考文献】

无线通信技术概述篇6

关键词:物联网 RFID 传感网 M2M

1、物联网概念与原理

物联网的概念有许多,2010年总理的政府工作报告附录中给出的物联网解释比较具有权威性。中国物联网专家委员会主任委员邬贺铨院士对这个物联网的概念又进一步做了修正:“物联网是指通过信息传感设备,按照约定的协议,把需要联网的物品与网络连接起来,进行信息交换和通讯,以实现智能化识别、定位、跟踪监控和管理的一种网络,它是在网络基础上的延伸和扩展应用”。物联网是在计算机互联网的基础上,利用RFID、无线数据通信等技术,构造一个覆盖世界上万事万物的“Internet of Things”。在这个网络中,物品(商品)能够彼此进行“交流”,而无需人的干预。其实质是利用射频自动识别(RFID)技术,通过计算机互联网实现物品(商品)的自动识别和信息的互联与共享。而RFID,正是能够让物品“开口说话”的一种技术。在“物联网”的构想中,RFID标签中存储着规范而具有互用性的信息,通过无线数据通信网络把它们自动采集到中央信息系统,实现物品(商品)的识别,进而通过开放新的计算机网络实现信息交换和共享,实现对物品的“透明”管理。

2、应用与技术

物联网可以以电子标签和EPC(Electronic Product Code,产品电子代码)码为基础,建立在计算机互联网基础上形成实物互联网络,其宗旨是实现全球物品信息的实时共享和互通。物联网的系统结构由信息采集系统、PML信息服务器、产品命名服务器(ONS)和应用管理系统四部分组成。物联网通过Internet信息世界 的互联实现物理世界任何产品的互联,实现在任何地方、任何时间可识别任何产品,使产品成为附有动态信息的“智能产品”,并使产品信息流和物流完全同步,从而为产品信息共享提供了一个高效、快捷的网络平台。

3、物联网的发展与市场培育

从国际上看,欧盟、美国、日本等国都十分重视物联网的工作,并且已作了大量研究开发和应用工作。我国中长期规划《新一代宽带移动无线通信网》中有重点专项研究开发“传感器及其网络”,国内不少城市和省份已大量采用传感网解决电力、交通、公安、农渔业中的“M2M”等信息通信技术的服务。作为国家层面成立了《传感器的网络标准工作组》。而中国通信标准化协会也启动了基于互联网的物联网和基于电信网的物联网的相关标准和研究课题的申报工作。在温总理关于“感知中国”的讲话后我国“物联网”的研究、开发和应用工作进入了高潮。

3.1 遥知矿山

3.1.1 遥知矿山的物联网的概念及目标

作为物联网应用的一个重要领域,”遥知矿山”是通过各种感知、信息传输与处理技术,实现对真实矿山整体及相关现象的可视化、数字化及智慧化。其总体目标是:将矿山地理、地质、矿山建设、矿山生产、安全管理、产品加工与运销、矿山生态等综合信息全面数字化,将遥知技术、传输技术、信息处理、智能计算、现代控制技术、现代信息管理等与现代采矿及矿物加工技术紧密相结合,构成矿山中人与人、人与物、物与物相联的网络,动态详尽地描述并控制矿山安全生产与运营的全过程。以高效、安全、绿色开采为目标,保证矿山经济的可持续增长,保证矿山自然环境的生态稳定。

3.1.2 遥知矿山的物联网的特征

近些年在矿山提出过许多概念,如数字矿山、矿山综合自动化、信息化矿山、智能矿山等,而”遥知矿山”是在综合了这些概念的基础上,更加具体、全面、动态、详尽地描述真实矿山。

而在物联网矿山的概念下,这些都不需要去作任何解释。这是由于物联网本身就是基于统一网络的应用;物联网本身就是要在GIS(地理信息系统)和GPS(全球定位系统)下实现定位的应用;物联网本身就是控制与网络一体化的应用;物联网本身就是分布式应用等等。此外,物联网还明确提出了物与物相联的概念,而在以前的数字矿山等诸多概念中,基本是人与人、人与物相联的概念为主。

3.2 遥知交通

3.2.1 打的找车不再困难

如果大部分城市90%以上的出租车装上了智能定位管理系统,每辆车的位置都清晰地现实在中央平台上。市民只需一个电话就能叫来车。系统还有同事防盗报警、定位查车、轨迹回放、广告信息等多项功能。不仅保障了司机的安全,更大大方便了乘客。

3.2.2 智能公交助力市民优先

无锡移动助力打造的“智能公交”平台将能“遥知”车辆位置、运行状况,并实现智能调度。它让车辆调度员足不出户就可以知道车辆行驶到什么位置了,车内是否出现过度拥挤,哪条线路需要增派车辆了。

4、结语

总之,由于物联网是基于现代高新技术,将感知技术、传输技术、信息处理、智能计算、现代控制技术、现代信息管理等与现代高效生产及加工技术紧密相结合,构成现实中人与人、人与物、物与物信息、属性相联的网络,动态详尽地描述并控制安全生产与运营的全过程。以高效、安全、绿色环保为目标,保证经济的可持续增长,保证自然环境的生态稳定与和谐统一。

参考文献

[1]田美花.基于RFID技术的生产执行系统关键技术研究.青岛:中国海洋大学,2007.

[2]肖慧彬.物联网中企业信息交互中间件技术开发研究.北京:北方工业大学,2009.

[3]马宇健.基于电子标签的签名系统设计与实现.北京:北方工业大学,2009.

无线通信技术概述篇7

关键词:Zigbee技术;无线通讯技术

1、Zigbee技术概述及其特征

1.1Zigbee技术概述

Zigbee技术是一种可以实现短距离内双向无线通讯的技术。Zigbee技术以其复杂程度低、能耗低、成本低取胜于其余的短距离无线通讯技术。其主要应用于短距离内,传输速度要求不高的电子通讯设备之间的数据传输和典型的有周期性、间歇性和地反应时间的数据的传输。

1.2Zigbee技术的主要特征

Zigbee技术相对于其他的无线通迅技术,资源消耗更少,复杂性更低,其主要特点有:

(1)功耗低:Zigbee终端工作六个月到两年的时间所需要的能量只是普通的两节五号电池的能量。功耗低是Zigbee技术的一个主要特点。

(2)成本低:Zigbee技术成本低是因为其协议简单,因而所需的内存空间小。Zigbee不仅协议是免专利费的,而且芯片价格低,每块只需要两美元。

(3)较小的传输范围:一般来说,在Zigbee节点的有效传输范围内,普通的办公区域或是家庭都能覆盖到。

(4)数据传输时的可靠性较高:Zigbee技术中避免碰撞的机制可以通过为宽带等预留时隙而避免传送数据时发生竞争或是冲突。并且,通过Zigbee技术发送的每个数据包是否被对方接收都必须得到完全的确认,这就使Zigbee技术在数据传输环节中具有较高的可靠性。

1.3Zigbee技术的应用

Zigbee技术由于其功耗低、成本低等的技术特点,在实际应用中有着巨大的优势,其主要应用的几大领域有:

家庭网络中的应用:Zigbee技术的出现会使家庭控制步入一个自动化的阶段,如应用了Zigbee技术可以降低灯具、电视、窗帘等的远程控制的成本,而且可以更加节能,一些家庭中的自动检测系统的灵敏度可以提高,从而提高其安全性。

工业中的应用:Zigbee技术和传感器的结合使数据的处理变得更加简单,提高了工厂中机器的运作效率。

还有在PC外设和医疗设备等中的应用,这里就不一一介绍了。

2、MAC层

2.1MAC层概述

为了使系统的兼容性得到提高,IEEE802.15.4在介入控制层时沿用的是载波多路帧听访问技术方式,这种方式在传统的局域网中也有应用。MAC协议中的功能有:和同步的网络设备或是信标(如宽带网)之间产生三个步骤:建立、维护、结束;对系统模式的帧的传送与接收进行确认;对于信道接入进行控制;对与帧的校验;还有对于广播信息的管理和预留时间间隙的管理。

2.2MAC层的管理与服务

MAC层的管理服务有MAC层的关联操作和解关联操作,以及MAC层的孤立操作和信道扫名

2.3MAC层帧的格式

MAC层有四种不同的帧的格式:信标帧、确认帧、MAC命令帧以及数据帧。另外,协议数据单元的长度不会超过127字节。

2.4MAC层的安全机制

安全机制是Zigbee用来加密除数据帧之外的另外三种帧的,MAC帧的真实性、完整性以及机密性是通过一种名为AES的加密算法来保证的。在MAC头部的部位是有一个比是特地用来指示该帧是否为加密过后的。如果使用MAC层的加密方法来传送帧,会有一个和帧的源地址有关的密匙,只有使用和这个密匙相匹配的安全组合来处理,才能完成该帧的传送或者接收。

3、关于应用层规范问题的论述

3.1关于应用层的概述

组成Zigbee应用层的有三个部分:包含应用商自己定义的应用对象以及APS子层和ZDO,ZDO中包含ZDO管理平台。

APS的接口的服务是由两个实体实现的,这两个实体有APS的数据实体和管理实体。同时,APS的接口是从应用商定义的应用对象到ZOD之间的服务集。APS数据实体提供的数据通讯是在相同的网络中,在一个或者多个应用实体之间的。APS管理实体提供的主要是维护数据库的服务,也有绑定设备等服务。

3.2应用层框架

Zigbee技术中的应用框架是用来为应用对象提供其活动环境的,这些应用对象是存在于Zigbee设备中的。对于应用对象,其端点编号均是从1到240的,而最多可以定义的应用对象的数目为240个。此外,0这个端点编号是固定在ZDO接口的,而255这个端点编号固定使用于所有对象的广播数据接口。这是两个特殊附加的终端节点。

3.3Zigbee技术设备对象

设备对象即ZDO,ZDO的基本作用有:ZDO描述的是一个基本的功能函数,它用来初始化网络层和应用支持子层,以及对安全服务进行规范。此外,它还可以根据配置的信息来对于安全管理、绑定管理、网络管理进行确定。

4、结语

本文对于Zigbee技术的介绍仅仅是Zigbee技术的皮毛,Zigbee技术所包含的东西实际上还要更加博大精深,其所带来的现实意义也更加广泛,而且还有许多潜在的东西是有待我们去继续探讨的。

在Zigbee中定义了物理层、MAC层,安全服务层和应用层、网络层。Zigbee技术在实际中具有十分迅猛的发展势头和良好的发展契机,可以广泛应用于军事、工业,以及家庭及建筑物的自动化控制中,其所涉及的领域及其广泛,可以应用于各种短距离的无线通讯系统、自动缴费系统、以及各种检测系统等。总而言之,今后,Zigbee技术还将继续被人们开发利用其更多、更新的功能,应用于更广的领域。

参考文献:

[1]李珂,Zigbee协议分析以及MAC层软件实现[D].四川:成都信息工程学院,2001

[2]金纯,罗祖秋,罗凤,Zigbee技术基础及案例分析[M].北京,国防工业出版社,2008

无线通信技术概述篇8

>> 物联网技术在海事监管的应用和发展展望 物联网技术在医疗信息化中的应用和展望 2016年大数据和工业物联网技术趋势展望 物联网技术发展前景展望 物联网技术在军事领域的应用展望 嘉绍大桥物联网技术应用与展望 物联网技术在公安领域应用展望 物联网技术及其发展前景展望 物联网技术现状及应用前景展望 “物联网技术”教学实践与思考 高职《物联网技术概论》教学思考与实践 物联网技术概述 物联网技术探析 浅析物联网技术 物联网技术浅谈 物联网技术论文 浅谈物联网技术 浅谈物联网技术和建筑智能化 浅谈云计算和物联网技术的结合 浅谈物联网技术在医院的应用现状与展望 常见问题解答 当前所在位置:l.

[5] 戴国华,余骏华. NB-IoT的产生背景、标准发展以及特性和业务研究[J]. 移动通信, 2016,40(7): 31-36.

[6] 杨旭,李俊宏. 无线多址接入网络编码中继的信道分配算法[J]. 无线电通信技术, 2014,40(1): 21-25.

[7] 鄢林. 物联网中有线与无线通信接入选择研究[D]. 成都: 电子科技大学, 2012.

[8] 张景柱,柴焱杰. 60 GHz宽带超大容量无线接入技术研究进展[J]. 无线电通信技术, 2014,40(4): 27-32.

[9] 李轶. 基于物联网的无线接入安全管理机制应用研究[D]. 兰州: 兰州大学, 2011.

上一篇:青少年体能训练方法范文 下一篇:微电影的制作方法范文