地质测量论文范文

时间:2023-02-26 14:58:02

地质测量论文

地质测量论文范文第1篇

地质测量是煤矿安全生产的技术保障从实际工作中可知,煤矿的煤层分布和煤层周边的岩石的种类都不尽相同,所以在生产过程中不同地方的地质条件也有所差异。在这种情况下,就要针对不同的煤层和地质以及面积的大小运用与之相适应的作业方法。坚持因地制宜的原则,能够在煤矿生产中科学合理的进行人力资源和生产设备的配置,从而提高生产效率,同时减少甚至避免不必要的劳动强度。同时,也可以参考历史经验来进行相关作业,这样可以增加生产过程中的安全性,与此同时能够对生产过程中遇到的相似问题进行综合分析,找到问题的根源,从而从根本上解决问题以加大生产的安全性。首先,根据《矿井地质规程》中的相关内容,在与开采之前两年与地质部门进行良好的沟通,并且在设计开采方案之前三个月形成系统的详细的地质说明。这些地质信息材料对于煤矿开采中的巷道掘进的方式和所用的相应设备等有重要的参考作用。地质测量信息准确,能够避免开采方案设计失效,进而导致安全事故的发生。其次,地质测量部门提供的测量数据信息要应用到煤矿开采设计、施工过程和回采过程等整个煤矿生产过程。但煤矿生产作业过程中,如果实际作业生产环境和地质测量部门提供的数据存在较大的差距,要暂停生产作业并及时与地测部门联系,对其所提供的测量信息数据进行修正和解释。因此,要将地测部门在生产过程中各个阶段所提供的各项数据进行归档保存,同时要准确详细记录生产作业流程的内容,以便在出现问题的时候能够通过数据分析高效地解决问题。另外,地质的变化也受到天气和季节的影响,所以,要与地测部门协调好相关事宜,定期做地质测量报告。再次,回采工作之前也要设计生产方案,此时地质材料信息的处理数据非常重要。对其数据进行综合分析能够掌握地面的变化趋势,对影响回采工作的因素进行分析,趋利避害,对潜在的安全隐患进行回采前科学处理,同时针对回采的实际情况,及时调整生产过程中的安全事故处理预案。在每一工作面回采结束后,都要认真进行采后总结工作,对提供的掘进、回采地质说明书的准确程度做出评价。另外,地质部门还要对有岩浆岩侵入的煤炭测定煤的变质带范围及变质程度,测定煤层冲刷及其他原因引起的薄煤带范围对煤质及回采的影响,通过核实后的煤厚,计算工作面储量,为生产衔接提供可靠的依据。

2煤矿地质测量在煤矿生产中的工作方法

2.1了解煤矿开采的地理状况

地测部门要对于煤矿开采作业的设计、施工、财会等部门提供的地质、测量材料进行分析,根据煤矿开采作业的情况给煤矿作业带来较为准确的指导,而且煤矿的开采要集中在地理测量中,才能保障其生产作业具有安全性。地理情况不是表面看到的现象,而是根据其内部的构造原理和结构特点来判断是否具有安全性和可靠性,所以在煤矿的地质测量中首先掌握地理情况才是进行地质测量工作的首要方法,周围的建筑特点、地表承受力度、水文情况、山势结构等地理情况一定要进行及时的排查,全面的落实煤矿开采的地理情况。

2.2应用地质测量数据进行方案设计

由于地质性质的差异,开采方案的设计一定要根据地测部门提供的各项数据进行综合分析,然后制定科学合理的开采方案,遵循地质变化规律,根据自然状况的客观条件,进行与之相适应的开采活动。这样能够避免生产过程中安全事故的发生,减少意外矿难给工作人员生命和煤矿企业经济效益带来的双重损害。另外,每种开采方案都要有相应的矿难应急预案,应急预案应该由三部分组成,一是该地质开采过程中技术设备引发问题的应对方案,二是所提供的地质测量数据失误引发问题的对应方案,三是任何安全事故发生后相关工作人员的逃脱方案。

2.3提高地质测量工作地位,增强工作安全意识

由于地质测量工作开展过程中涉及到的范围非常广泛,并且其数据的准确度要求比较高,所以地测人员的工作任务非常艰巨,但是煤矿生产企业常常将关注焦点放在开采过程当中,而忽视地质测量部门的作用。有的煤矿将地测的准备工作仅仅当做是例行公事,但是实际上地测数据贯穿于整个生产当中,对于煤矿开采的安全性至关重要,因此,要提高地质测量部门在煤矿开采作业过程中的地位,引起相关部门的高度重视。由于从事煤矿开采作业的相关人员的平均学历不是非常高,对于地质结构和生产流程以及生产流程的重视程度不够,这就使得由于人为操作失误导致的矿井安全问题时常出现,这些问题完全可以通过提高相关从业人员的安全意识来解决。

3结语

煤矿产业是我国经济发展的原动力,煤炭的开采工作中也存在很多安全隐患,通过地质勘测能够加深对所开采煤层的了解,从而保证开采方案设计的合理性和科学性,进而保证煤矿生产能够安全进行。这里,一方面需要提高对地质测量工作的重视程度,另一方面也提高所有作业人员的安全意识。另外,运用信息技术手段进行工作也非常重要,这样能够提高其工作的效率和精确度,相关工作人对此项研究还有很大的提升空间。

地质测量论文范文第2篇

1.1为煤矿安全生产提供灾害预报

煤矿企业在煤矿开采的过程中,难以避免会遇到一系列的突发事件,这些事件有人为造成的,也有自然原因造成的。而自然原因造成的突发事件,往往与区域内的地质构造存在较大关系。要想有效地对这些由地质问题所引发的灾害加以预防,就应当充分借助煤矿地质测量的力量。从煤矿地质测量的功能性来说,其无法对地下的所有地质情况进行完整的、全面的测量,单凭煤矿地质测量是无法对井下开采过程中遇到的自然灾害采取预防措施的,但是由于煤矿地质测量工作可以对地下的水文情况实施有效的把握,所以,在很大程度上能够避免开采过程中水患灾害的发生,减少水患灾害对煤矿开采所造成影响。随着现代科技的不断发展,煤矿地质测量工作越来越精确化,能够对井下的储水层予以准确定位,这对于提升煤矿开采工作的质量发挥着积极作用。

1.2为矿井的建设提供数据支持

矿井在建设的过程中,往往需要对矿井加以适当的选址,还会涉及到矿井的设计等工作,而煤矿地质测量工作是上述工作的基础,只有借助于煤矿地质测量工作,才能真正实现对相关区域内的地质特征的有效的测量,并通过数据的形式将其有效地展现出来,才能保障煤矿工程设计的正确性。同时也只有通过煤矿地质测量工作的展开,才可以科学地确定所选区域是否适合煤矿的建设,这对于保障煤矿的生产安全是至关重要的,如果煤矿的选址出现问题,不仅将导致煤矿企业在经济效益上受到影响,并且由于地质环境上的不确定,还会对煤矿开采工作人员的生命安全造成威胁。所以,在进行煤矿地质测量的过程中,煤矿地质测量工作人员需要做好如下工作。一方面,提供基础的地质预测信息。基础的地质预测信息主要是对煤矿选址进行初步的确认,这一部分的工作主要包括对煤层储量、开采难度、地质构造等方面进行基础的测量。另一方面,对相关部门的资料进行整合。煤矿地质测量工作并不是一项单方面的工作,要综合多方面的因素,才能得出最正确的结果。因此在进行测量的过程中,有关测量人员不仅要对地质进行一定的测量,还要与其他部门进行一定的沟通,将各部门的资料进行有效的收集,以保障测量工作的准确性。在进行部门资料搜集的过程中,测绘人员尤其要注重对设计部门以及施工部门资料的搜集,这对于确保煤矿建设的顺利进行有着重要的意义。此外,要进行针对性的精密测量。为了确保煤矿开采工作的安全进行,在对相关资料进行整合后,煤矿地质测量工作人员会对地质情况进行精密性的测量,这部分的工作一般是为了完善回采工作面的设计,通过确定具体的煤层情况以及地质构造,确保工程设计以及施工的正确性,保障煤矿投入使用后的安全生产。

2煤矿地质测量工作应注意的问题

2.1重视准备工作,搞好基础测量

鉴于煤矿地质测量工作在煤矿安全生产中的重要性,有关工作人员在日常的工作中应对测量的基础工作有足够的重视。首先要重视准备工作。准备工作往往包括两个方面,其一是要对测量器材、测量技术进行充分的准备,其二则是要对测量人员开展系统化的培训,此类培训主要是侧重技术的应用以及设备的操作,确保测量工作人员具有良好的专业素质。除此之外,要搞好基础测量。基础测量是一切工作展开的基础,所以,在测量的过程中,煤矿地质测量工作人员应积极地搞好基础测量,严格遵守相关的法律法规,按照国家有关标准对煤矿地质进行测量,以保障测量结果的准确性。

2.2强化技术应用,注意设备更新

煤矿地质测量由于是对地表下方的地质的测量与预测,这便要求测量工作人员借助大量的设备与技术以弥补人力上的不足,为了保障测量工作的顺利进行,在煤矿地质测量工作的过程中,必须强化技术的应用。煤矿地质测量用到的技术是多种多样的,其中包括了计算机技术、电子技术等。为了让技术在煤矿地质测量中发挥出最大化的作用,工作人员应积极地对测量技术进行一定的管理,全面认识到技术本身存在的弊端,通过内部创新、外部引进等方式保持技术的先进状态,减少测量技术不足对煤矿地质测量工作造成的阻碍。同时,还应当注重设备的更新。在煤矿地质测量的过程中会应用到大量的测量设备,这些测量设备是针对人力自身的不足而制造的,可以实现对地下环境的测量。因此,务必要注重设备的更新,加强设备的维护与检修,并减少外界环境对设备带来的影响,保持设备处于灵敏状态,使其更好地为煤矿地质测量工作服务。

2.3严格测量标准,维护企业利益

我国政府部门以及煤矿企业都对煤矿地质测量制定了许多测量标准,这些标准对于规范煤矿地质测量、修正煤矿选址等均发挥着重要的作用,所以,在实际的工作中,测量人员应当重视对国家相关标准的了解与掌握,严格测量过程中的测量标准,并时刻注重对企业利益的维护,加强测量过程中的严谨度,逐步形成有效的自我修正体系,通过企业监督或个人反省等方式,来强化煤矿地质测量工作的准确性,为煤矿企业的安全生产打好坚实的基础。

3结语

煤矿地质测量在煤矿安全生产中是极其重要的,同时还是煤矿安全生产的基石。所以,煤矿企业管理人员应当大力促进煤矿地质测量工作作用的发挥,从而为煤矿安全生产提供可靠保障。

地质测量论文范文第3篇

从实际工作中可知,煤矿的煤层分布和煤层周边的岩石的种类都不尽相同,所以在生产过程中不同地方的地质条件也有所差异。在这种情况下,就要针对不同的煤层和地质以及面积的大小运用与之相适应的作业方法。坚持因地制宜的原则,能够在煤矿生产中科学合理的进行人力资源和生产设备的配置,从而提高生产效率,同时减少甚至避免不必要的劳动强度。同时,也可以参考历史经验来进行相关作业,这样可以增加生产过程中的安全性,与此同时能够对生产过程中遇到的相似问题进行综合分析,找到问题的根源,从而从根本上解决问题以加大生产的安全性。首先,根据《矿井地质规程》中的相关内容,在与开采之前两年与地质部门进行良好的沟通,并且在设计开采方案之前三个月形成系统的详细的地质说明。这些地质信息材料对于煤矿开采中的巷道掘进的方式和所用的相应设备等有重要的参考作用。地质测量信息准确,能够避免开采方案设计失效,进而导致安全事故的发生。其次,地质测量部门提供的测量数据信息要应用到煤矿开采设计、施工过程和回采过程等整个煤矿生产过程。但煤矿生产作业过程中,如果实际作业生产环境和地质测量部门提供的数据存在较大的差距,要暂停生产作业并及时与地测部门联系,对其所提供的测量信息数据进行修正和解释。因此,要将地测部门在生产过程中各个阶段所提供的各项数据进行归档保存,同时要准确详细记录生产作业流程的内容,以便在出现问题的时候能够通过数据分析高效地解决问题。另外,地质的变化也受到天气和季节的影响,所以,要与地测部门协调好相关事宜,定期做地质测量报告。再次,回采工作之前也要设计生产方案,此时地质材料信息的处理数据非常重要。对其数据进行综合分析能够掌握地面的变化趋势,对影响回采工作的因素进行分析,趋利避害,对潜在的安全隐患进行回采前科学处理,同时针对回采的实际情况,及时调整生产过程中的安全事故处理预案。在每一工作面回采结束后,都要认真进行采后总结工作,对提供的掘进、回采地质说明书的准确程度做出评价。另外,地质部门还要对有岩浆岩侵入的煤炭测定煤的变质带范围及变质程度,测定煤层冲刷及其他原因引起的薄煤带范围对煤质及回采的影响,通过核实后的煤厚,计算工作面储量,为生产衔接提供可靠的依据。

2煤矿地质测量在煤矿生产中的工作方法

2.1了解煤矿开采的地理状况

地测部门要对于煤矿开采作业的设计、施工、财会等部门提供的地质、测量材料进行分析,根据煤矿开采作业的情况给煤矿作业带来较为准确的指导,而且煤矿的开采要集中在地理测量中,才能保障其生产作业具有安全性。地理情况不是表面看到的现象,而是根据其内部的构造原理和结构特点来判断是否具有安全性和可靠性,所以在煤矿的地质测量中首先掌握地理情况才是进行地质测量工作的首要方法,周围的建筑特点、地表承受力度、水文情况、山势结构等地理情况一定要进行及时的排查,全面的落实煤矿开采的地理情况。

2.2应用地质测量数据进行方案设计

由于地质性质的差异,开采方案的设计一定要根据地测部门提供的各项数据进行综合分析,然后制定科学合理的开采方案,遵循地质变化规律,根据自然状况的客观条件,进行与之相适应的开采活动。这样能够避免生产过程中安全事故的发生,减少意外矿难给工作人员生命和煤矿企业经济效益带来的双重损害。另外,每种开采方案都要有相应的矿难应急预案,应急预案应该由三部分组成,一是该地质开采过程中技术设备引发问题的应对方案,二是所提供的地质测量数据失误引发问题的对应方案,三是任何安全事故发生后相关工作人员的逃脱方案。

2.3提高地质测量工作地位,增强工作安全意识

由于地质测量工作开展过程中涉及到的范围非常广泛,并且其数据的准确度要求比较高,所以地测人员的工作任务非常艰巨,但是煤矿生产企业常常将关注焦点放在开采过程当中,而忽视地质测量部门的作用。有的煤矿将地测的准备工作仅仅当做是例行公事,但是实际上地测数据贯穿于整个生产当中,对于煤矿开采的安全性至关重要,因此,要提高地质测量部门在煤矿开采作业过程中的地位,引起相关部门的高度重视。由于从事煤矿开采作业的相关人员的平均学历不是非常高,对于地质结构和生产流程以及生产流程的重视程度不够,这就使得由于人为操作失误导致的矿井安全问题时常出现,这些问题完全可以通过提高相关从业人员的安全意识来解决。

3结语

煤矿产业是我国经济发展的原动力,煤炭的开采工作中也存在很多安全隐患,通过地质勘测能够加深对所开采煤层的了解,从而保证开采方案设计的合理性和科学性,进而保证煤矿生产能够安全进行。这里,一方面需要提高对地质测量工作的重视程度,另一方面也提高所有作业人员的安全意识。另外,运用信息技术手段进行工作也非常重要,这样能够提高其工作的效率和精确度,相关工作人对此项研究还很大的提升空间。

地质测量论文范文第4篇

1.前言

随着信息科学技术的快速发展以及社会经济发展的稳步前进,信息技术逐步广泛地应用于社会的不同领域;信息化与网络化己成为各个行业数字化的重要基础手段,在企业应用中起到十分重要的作用。客观世界的事物是无穷无尽的,要研究、认识、利用和改造它们,就必须进行概括与抽象(即理想化或模型化),以便揭示客观事物演变的基本规律,并将其作为利用和改造客观世界的手段。模型是现实世界本质的反映或科学的抽象,反映事物的固有特性及其相互联系和运动规律。数据模型是地理信息系统中关于数据和联系的逻辑组织的形式表达,以抽象的形式表述一个部门或系统的业务活动与信息流程。基础信息分类与编码需要把现实世界抽象到数字世界与信息世界。

2.煤矿地质测量信息涉及的范围及其特征

煤矿的开发活动是一个复杂的系统工程,在生产过程中,产生了大量的相关信息。从信息来源看,可将其分为内部数据源和外部信息源。内部数据源是指煤矿日常生产和销售活动有关的数据,主要包括煤矿地质测量信息数据、采掘工程数据,以及安全与调度、设施与耗材、通风、运输等生产数据,还包括财务、劳动与人事、原材料消耗等运营数据;外部信息源是指国家政策、法规、上级单位指令、原材料市场、矿产品市场等信息。

煤矿地质测量信息主要针对煤矿这一特殊的空间系统,它的对象主体是煤层及其围岩等地质实体。从涉及的专业角度看,煤矿地质测量信息主要包括地质、测量、水文、资源量/储量、三量(开采煤量、准备煤量、回采煤量)等。从信息的表现形式上看,可概括为两类,一类以图的形式纪录、分析和传递;另一类以文字资料、表格的形式纪录、分析与传递。煤矿地质测量信息除具有一般的空间性和海量性外,还有以下一些特征。首先是信息数据的隐蔽性。煤矿数据对地质实体的表达,是一个从隐式到显式的过程。例如:煤田的形成和分布主要是受沉积作用和构造作用等多种因素控制的,通过重磁、地震等地球物理方法可获得地层(岩层和煤层)空间分布的数据;通过钻井、测井等方法可获得岩石物理特征以及煤层厚度、结构、空间位置等方面的数据。对这些数据进行分析,同时对地质条件进本文由论文联盟收集整理行综合分析,即可确定煤矿(区)的范围、资源/储量等情况。其次是信息数据的时间序列。煤矿数据是一个动态的积累过程,从资源勘查、矿井开拓到生产,由于矿山实体的层次逐步细化,地质体客观现象、规律的准确程度逐步提高,数据量越来越大。在资源勘查阶段,主要通过野外地质调查、钻探、物探获取数据。矿井开拓阶段,主要是补充钻探与测量资料、井筒资料及井下巷道实际揭露的数据。生产阶段主要通过各种岩巷(石门、上下山)、煤巷、井下物探和钻孔,以及相应的工程测量获得数据。第三是信息数据的关联性。煤矿地质实体间存在相互作用关系,例如煤层和围岩、两个相邻或不相邻地层、构造与煤矿瓦斯等都具有关联性。第四是信息数据的多源性。煤矿数据的多源性,主要表现在数据获取方式上的多样性,存在空间尺度上的差距。遥感、摄影测量可获取整个煤田、矿区的数据;勘查、地面测量及井下测量可得到矿区规划、矿井设计所需的数据;而各种井巷工程、井下物探可获得矿山日常生产数据。此外,同一地质特征可充当不同的角色,比如断层,可以是井田的边界,也可以是采区的边界。

从地理信息系统角度出发,煤矿地质测量信息是矿区与地理空间分布有关的各种要素的图形信息、属性信息、统计信息以及时空关系的总称。大体可分为基础信息、专题信息和综合信息:基础信息是矿区最基本的地理信息,包括各种井下和地面测量控制点、高程点、水系、地形、地貌、地物、地名以及某些属性信息等。mgis的基础信息具有空间性、统一性、精确性、基础性和时效性等特点。

专题信息是指各种专业性信息,如采矿要素的空间分布及其规律,包括地层结构、煤层储量与分布、井巷设施、采掘工作面、机电运输、瓦斯、水文等。mgis的专题信息具有专业性、统计性、空间定位性和时效性等特点。专题信息是基础信息的拓展,基础信息是专题信息的公共空间定位基础平台。

综合信息是在完善基础信息和专题信息的基础上,针对特殊应用提取、生成的综合性信息,包括矿区环境规划、矿区交通运输规划、矿区土地整治规划等。mgis的综合信息具有综合性、全面性、空间分布性和时效性等特点,是基础信息、专题信息的拓展。

综上所述,从勘探到生产,随着煤矿基础数据信息的增加,对地质体控制程度、精度和认识程度越来越高。煤矿数据是海量数据,无论是地物、地貌等几何信息、拓扑信息和属性信息,煤矿系统的运作,还是在时间和空间上,时时刻刻都在发生变化。因此,如何合理、科学地对煤矿基础信息进行分类编码,有效地管理、利用煤矿基础数据,充分发挥其增值作用,是煤矿空间信息管理的一个重要内容。

3.数据模型

数据模型以抽象的形式表述一个部门或系统的业务活动与信息流程,在地理信息系统中,是有关数据和联系的逻辑组织之形式表达。选择与建立数据模型的目的,是希望用最佳的方式反映本部门的业务对象及信息流程,并为用户提供访问数据库的逻辑接口。数据模型是一种较高层次的数据描述,它是独立于任何数据库管理系统(dbm)的。每一种数据模型都是以不同的数据抽象与表达能力来反映客观事物的,有不同的处理数据联系的方式。地理信息系统主要涉及空间数据、属性数据及可能的拓扑关系的组织和管理。它的数据量大,应用面广,数据模型相当复杂。因此,虽然人们对地理信息系统的数据进行了大量的研究,开发了许多商业化软件,但gsi至今没有统一、完善的数据模型。一般从软件工程开发的基本过程(用户需求、概念设计、逻辑设计和物理设计)出发,将gsi数据模型按层次分为概念数据模型、逻辑数据模型和物理模型。概念数据模型是关于实体及实体间联系的抽象概念集;逻辑数据模型表示概念数据模型中数据实体(或纪录)及其间关系;物理模型是数据抽象的最低层,主要包括空间数据的物理组织,空间存储方法和数据库总体存储结构等。煤矿地质测量信息分类与编码主要考虑煤矿地质测量信息的概念数据模型和逻辑数据模型。

4.结语

地质测量论文范文第5篇

关键词:CAD 3D地质测量模型 面向对象技术 地质测量图形

1. 引言

随着数字化矿山和煤矿信息化建设的需要,采用人工检索、分析和处理地质、测量信息资料,难以满足煤矿现代化生产与技术管理的需要,尤其是为了准确预防和快速处理矿井重大灾害事故,及时提供采矿设计与经营决策的基础数据,更有必要利用计算机和网络技术来实现煤矿地质测量数据的自动化管理,各种基础图件的自动生成和快速、准确地进行分析与预测。煤矿地质测量信息系统MSGIS 2.5是2002年底新升级完成的。该系统是一个高度集成化,以32位Windows操作系统(Win95,98,NT,XP)为基本运行平台的专业软件包。它由4个(地质、测量、水文、储量)基础数据管理模块和一个专业的CAD系统,及一个3D可视化模块所组成,能全方位贴近煤矿地测部门实际工作需要。

2. 系统功能和结构

2.1 系统功能

煤矿地测信息系统MSGIS 2.5跟踪了煤矿地测部门日常工作的全过程,所有设计均满足煤矿生产的实际工作方式与作图规范。该系统有地质、测量、水文地质和储量数据库72种,可处理台账和报表88种、地测图件33种。具有以下特点:

a. 系统功能全面,系统化程度高,具有适用于地测专业的面向对象的海量图形数据库和图形编辑系统。

b. 图件生成的自动化程度高,可直接生成地测常用的基础图件,包括柱状图、对比图、剖面图、巷道素描图、采掘工程平面图及各类等值线图等。

c. 独特的三维多层地质模型和网状巷道模型,并可实现地质体及井巷工程的三维显示与漫游。

d. 具有高效快捷的平面和剖面对应与任意切剖面功能。

e. 在基础图件上可对某一范围的煤层厚度、导线点、断层、地层倾角、工作面布置方式、采掘工艺等信息进行统计与查询。

f. 系统稳定,容错能力强,并提供多种辅助决策工具。

g. 标准Win32全中文操作界面,易于用户的学习与掌握。

2.2 系统结构

本系统的各子系统和模块间的关系示于图1。

3. 数据管理系统

本系统的数据管理系统包括地质、测量、水文地质和储量4个子系统。它能满足用户对地测数据录入、查询、修改、统计分析、编制报表及制图工作的需要。在设计上遵循以下原则:a.系统以E―R(Entity―Re―lationship)关系数据库模型[1]建立数据库系统;b.信息全面化,能全面跟踪煤矿地测部门生产过程中各类原始数据的采集、分类与汇总;c.编码规范化,全面遵循国家有关技术规范,系统化地建立了点型、线型、图案、岩石符号、钻孔等信息的编码方案;d. 高度共享,各类数据之间以及数据与图形之间的信息能双相流动,动态修改,高度共享。

4. 地测制图CAD系统

本系统的图形子系统是一个面向对象的具有多文档用户界面的专业CAD系统。它由面向对象的图形数据库、图形编辑器、地测常用图件的自动生成模块、空间属性查询与辅助决策分析等部分组成。

4.1 系统设计原则

4.1.1 分类 叠加 组合原则

在主菜单中将专题制图分为柱状图类、剖面图类、矿井平面图类、开采工作面类、采掘工程图类及小插图等6个大类的图形。每个图形通过一个或几个命令自动生成,图形文件之间可以通过图层的方式进行叠加与组合,从而派生出一些需要的图件。

4.1.2 开放性原则

系统在保持其专业性和独立性的前提下,还充分考虑了与其他通用CAD系统和GIS系统之间图形文件及资源数据之间的共享与交流。该系统提供了开放的DXF接口;支持用户通过命令行方式对系统功能进行扩充;允许用户通过数据库、文本文件、交互式手工方式进行计算制图。

4.1.3 实用性原则

系统在制图过程中,除了支持标准的数学坐标外,还支持地理坐标方式,并可根据煤矿用户习惯通过已有的导线点(或其他参考点),由边长与方位来定位目标点。

4.2 地测常用图形的自动处理

4.2.1 柱状图的生成

本系统允许用户以5种标准格式或自定义格式绘制单孔柱状图;能自定义岩性符号;自定义煤岩层对比图的输出格式;可读取测井数据文件直接绘制测井曲线。系统采用“最小厚度法”和“图元组合法”技术来解决薄层(缓冲线)处理和岩性符号的定义。

4.2.2 剖面图的生成

本系统以改进的剪纸法(单层平移法)自动生成剖面图,并可处理任意落差、任意倾角的断层及其各种切割交错关系的断层组合。通过系统内部定义的3D地质模型,能快速实现剖面图与平面图的数据对应。

4.2.3 矿井平面图的生成

本系统通过组合的方式,以向导式引导用户绘制图框、钻孔标志、煤层小柱状、各类等值线、储量计算块段、各类边界曲线和采掘工程等内容。系统能通过构造限制Delaunay三角形[2]方式实现等高 本论文由

线跨断层处理技术。

4.2.4 添加开采信息

在矿井平面图或采区平面图的基础上,截取出开采工作面的范围,可以此为基础添加探煤厚点、井峒石门见煤点、工作面揭露断层、地层倾角和采掘工程等开采信息,还能修改相应煤层底板等高线,其最终成果又能反馈到矿井或采区平面图上。

4.2.5 跨断层任意切分剖面

通过系统内部定义的多层地质体3D模型,采用面向对象技术,自动识别煤层、断层、巷道等信息,从而有机地构造任意方向的地质剖面信息。

4.3 基础图件上地测信息的统计与查询

用户可以用交互方式在基础图上圈定封闭区域,通过系统定义的面向对象的图形数据库属性指针,完成对该范围内的煤层厚度、导线点、断层、地层倾角、工作面布置方式、采掘工艺等信息进行统计与查询。

4.4 分析预测辅助决策

通过系统构建的全要素多层地质体模型,实现空间任意点处煤层底板标高、煤层厚度、煤层倾角等参数的分析与预测。

5. 3D可视化模块

地质测量论文范文第6篇

[关键词]地质工程测量 数字化测量 技术

[中图分类号] P258 [文献码] B [文章编号] 1000-405X(2014)-8-128-1

1前言

地质工程测量工作一般是指基于工程地质理论,详细描述以及细致查看关系到各种建设工程的地质现象,进而根据所规定的比例尺大小以及建设工程所属区域的地质条件,在地形图上按照精度要求标出建设工程所属区域的各个地质条件,最后将已经标注好地质条件的地形图结合测试、勘探等资料并设计出地质工程图。过去我国的地质测量工作只能够依靠平板仪、经纬仪以及水准仪等简单工具,局限性较强。随着信息时代的来临,我国的地质测量技术已经逐步走上了现代化以及自动化发展之路,数字化测量技术已经被应用于地质测量工作中,并受到了众多地质测量工作人员的一致认可。

2数字化测量技术

大部分的地质工程测量工作均需要制图,同时制图工作的需要在野外进行,不仅需要制图人员的体力以及脑力相互配合,而且还需要处理很多的室内数据,不但绘图周期非常长,而且产品较为单一,已经满足不了日益发展的城市需求。随着现代化以及电子化的测绘仪器的出现,只需一套较为完善、完整、可靠的测绘系统就能够自动完成整个绘图工作或者是数据采集工作,不仅节省了人力以及物力,同时还提升了测绘的效率以及准确性。在地质工程测量中广泛应用开展数字化测量技术使得地质图以及比例尺较大的工程图发展越来越趋向于信息化方向,有效提升了地质测量工的准确性,不断推动了城市工程建筑的发展。

3在制图过程中数字化测量所存在的问题

3.1不能正确处理等高线

想要利用数字化地形测绘系统绘制等高线,首先需要采集野外某个地貌点的高程大小,然后选取等值内插法,再根据基本等高距手法对等值点进行绘制,并将等值点连接为曲线,最后再利用小同的圆滑方法施以圆滑而成。但是在实际的应用过程中发现,仍旧有部分野外地貌点不能施以等高线内插,如果使用全自动方式对这部分野外地貌点施以数字地面模型DTM,极易导致出现失真情况,所以若野外地貌点不能施以等高线内插,则需施以适当的人工干预工作,也就是将自动组网中不能使用内插等高线的部分三角边删除掉,但若是想要做好这点绘图人员一定要具有丰富的绘图经验以及高超的技术水平。

3.2野外数据采集工作不完善

由于数据采集的主要工作地点是野外,而野外的地形变化非常丰富,在绘图工程中往往会出现一些不周全的情况:在地形出现变化的地点所标示出来的地形点不够细致全面,提高了计算机绘制等高线的难度,另外所绘制出的图像也常常会出现失真情况,不能够全面准确地反映所测量地点的真实地貌;工作人员在拾取地形点时如果自身能力不强或者是没有强烈的责任心,常常会无意识的忽略到各种线状地物,像各种管线、暗沟或者是电讯线等等,不能够做到有始有终,不能够清楚的了解绘图的来龙去脉;在进行野外测量工作时,由于草图的质量直接影响着最后成图是不是能够符合规范化要求,所以草图绘制人员担负着极为重要的责任,就此为了保证草图的质量草图绘制人员一定要根据正规图的标准对草图进行绘制。在实际测量工作中,绘制人员可以说是为忙碌的,但绘制人员不能因为忙碌而忽视到一些小细节,比如说绘制人员一定要正确记忆测点的顺序,一定不能颠倒,一定要确保地貌以及地形这两者之间的连线关系一定要与实地保持一致,同时也需要记清绘图上需要详细标示的但是跑尺员忽视的地物的确定位置,并将这些地物的确定位置明确标示在草图中,如果绘制人员不重视细节问题,有意或无意的忽视部分小问题,则会导致整个测量工作失败。

4提高数字化测量技术可靠性的方法

因为数字化测量技术确实是存有某些问题,所以在地质工程测量工作的实际应用中需要改进这些问题或者是格外注意避免这些问题的出现。

其中以下几方面需要尤其注意:尽管现在大部分的测量人员已经具有非常好的编程水平以及计算机操作水平,但是这些测量人员没有丰富的现场绘图经验,不能有效、正确绘制等高线。尽管数字化测量技术的自动化程度非常高,但还是有部分内容需要进行人工干预,如果测量人员自身存有问题,不仅会导致等高线的绘制不到位,甚至会导致整个测量工作失败,所以相关部门一定要对测量人员开展各种各样的技能培训,比如说对测量人员开展野外实训,在真实的野外场地训练测量人员,使测量人员能够将课本知识真正的应用到实际中。另外测量工作不是只靠一人完成的,而是需要整个团队的共同努力,是集体合作的结果,不管是哪一个测量环节出现问题都会导致最后的绘图结果受到影响。

5结语

在地质测量工作中应用数字化测量技术不仅能够提升地质测量的准确性,减少出错率,还能够有效提升地质测量人员的工作效率,防止地质测量走弯路。由于数字化技术已经逐渐成熟,并在多方面得到了广泛应用,比如说地理信息系统。不断开展以及提升数字化测量技术水平已经成为了个地质测量部门开展市场竞争、获取更大经济效益的有效途径。

参考文献

[1]李小明,谭凯旋;地质热年代学及其应用[A].第八届全国同位素地质年代学、同位素地球化学学术讨论会资料集[C];2005.

[2]邹振兴.数字化测绘技术的特点及在工程测量中的应用探讨[J];中国高新技术企业;2008(19).

[3]马德蕻.地质要素评序法在探矿权评估中应用问题探讨[D];中国地质大学(北京);2007.

[4]商悦."基础地理信息与数字化技术"省重点实验室学术委员会会议召开[J];山东科技大学学报(自然科学版);2003(02).

地质测量论文范文第7篇

新仪器新设备投入不足:近年来,除专业野外测量队以外,其余野外测量工作还仅滿足于测点放线等工作,新的全站仪、GPS定位等先进设备使用和投入不足,这不仅影响测量工作的效率和质量,也限制了测量工作人员操作和综合能力的提高。新科技新理论新知识接受速度慢:由于地质勘查单位分布分散,长年野外作业,经常远离大城市,接收新科技新理论新知识渠道较少。有些地勘单位野外测量人员长期不足,又忙于工作,没有机会抽出时间系统地接受新理论新知识新技能的培训。加之计算机技术和卫星定位技术的应用,近年来地质测量理论和知识更新发展又快,学习和培训跟不上,与社会拉开了一定的距离。

总体实力机构设置有待加强

测量工作总体实力有待加强:陕西省煤田地质局(公司)现有测量工作人员130多名,其中本科以上学历53名。有两个单位分别具有测量甲级和乙级资质,其它单位仅有丙级资质,这些单位曾经奋战在陕西和西北地质勘探一线,为行业发展和国家建设立下了汗马功劳。但地质测量工作相对于行业总体发展速度和水平还比较滞后。由于种种原因,现有工程测量人员大多忙于常规的地质测量工作,对新理论、复杂工程条件下测量工作接触少,承担较大工程测量的能力和经验不足。机构设置不健全:多年来全局(公司)机关仅有1名测量主管人员,下属各队地质科有的设有测量主管有的没有,各野外分队(除测量分队外)仅有测量人员,没有测量技术行政管理组织,不利于单位测量工作长远规划和接序发展。总之目前地勘测量科研人员数量少,科技攻关能力弱,科技成果较少,难以适应公司“地勘立局,矿业兴局,多元发展”的工作需要。

对策

1建立管理体系更新仪器设备

建立自上而下的组织和管理体系:要建立自上而下“局、队、分队”不同层级的测量技术管理网络,根据不同单位规模和技术要求,赋予相应的技术(行政)管理权限,以便进行技术规划和管理、人员交流和培训、队伍建设和长远发展。根据工作需要,更新仪器设备:相对于地勘其它设备,测量仪器设备投入费用并不大。只要局队重视,根据各单位工作性质配备较先进的仪器设备,可大大提高了生产效率,也促使单位测量人员不断学习,使测量能力和水平与社会科技发展水平同步。

2配足工作人员加强培训

配备和充实足够的工作人员:各野外地勘单位要根据工作需要配备充足的测量人员。要把测量人才发展纳入局队专业技术人才发展规划,从研究生、大学本科、高职、中专技校生中逐年补充优秀学员以充实队伍和培育新鲜血液,形成测量人才在学历、职称和年龄上的梯队结构。加强培训,提高广大测量工作者技能和水平:局队要制定测量人员培训提高计划,分批次分层次逐年提高测量人员专业技术能力。每年安排适量测量人员到高校及工程单位去学习和深造,更新测量人员知识和能力体系,并聘请高校教师、技术专家进行新理论和行业发展前沿动态讲座,拓展测量人员视野,提高业务技术水平。要认真落实局“5511”人才培训工程,实行专业技术人员“导师制”,技术工人“师徒制”,签定“导师(师傅)与学员(徒弟)培养责任书”,落实培训内容,在工作和实践中有针对性地培训学习,加强对测量工程技术人员专业技术继续教育的培训和考核,将培训考核成绩纳入年度考核、职称评定及工资定级等范围,逐年提高测量人员技能和综合素质。

3提高创新和解决实际问题的能力

积极参加省测绘学会及各分会举办的测量年会和技术研讨活动,鼓励测量技术人员撰写测量技术论文,与同行进行技术交流。积极与兄弟单位开展各层次的技术合作,共同解决工程建设中遇到的技术疑难问题。根据国家和行业技术发展需求,结合单位工作实际,有计划地确立不同层次科研课题(或项目),并积极争取上级和同级单位多方面的资金支持,和相关科研单位合作,有步骤地破解工程建设中的系统性技术难题,比如,煤田地质地理信息系统的建立,现代矿井地质与测量信息系统的建立,以及如何发挥其在现代矿井地质预报和地质保障中的作用等。通过这些技术攻关,提高煤田地质勘查单位测量人员综合技术能力,提升单位测量工作实力和核心竞争力。从管理体制和机制上,鼓励引导测量人员从事测量科研工作。建立课题申报立项制度,认真执行科研项目管理和经费使用管理制度,完善科研激励和奖励制度,确保测量科研工作有组织有课题有经费有制度有保障出成果。

结语

地质测量论文范文第8篇

【关键词】GIS技术;煤矿地质测量;信息系统;具体应用

当今社会,以信息技术为核心的知识经济时代,信息技术的飞速发展,由于其广泛的渗透性和先进性,可高效,和谐更好的与传统产业对接。网络和信息已成为数字的基本手段,他们在企业中的应用起着至关重要的作用。由于种种历史原因,我国煤炭矿山企业的信息基础设施十分落后,在粗放阶段煤矿管理,没有统一的信息标准体系和共享机制的矿井生产系统,导致在一个煤矿网络和信息工作落后于时代。矿区作为一个复杂的地理系统,由于其地形变化中,矿体,围岩的影响,结构和围岩压力和采矿活动,以尽量减少由采矿造成的损失,预测,评价的影响,本文将从一些技术方面阐述基于GIS的煤矿地质测量信息系统的应用。

1 地理信息系统

地理信息系统(GIS)是一种存储,收集,管理,和对地球和地理分布的地表空间信息系统数据描述分析。与一般的信息系统不同的是,它收集的信息是基于地理空间分布特征反映了地理实体的结构及其动态变化规律。从学科的角度,GIS是地理地图制图学的一个课题,测量和计算机科学的基础开始发展起来的,具有独立的学科体系;从功能上,GIS与空间数据的采集,存储,显示,编辑,分析,处理,输出和应用功能。

煤矿地理信息系统(煤矿GIS)是用来描述煤矿地质信息,地下环境和设备的应用软件。煤矿地理信息系统可以有效地建立矿山空间数据库,实现矿山的全景显示,动态显示,真实,直观,准确,清楚地表明形成,骨折,矿体与围岩形成,表达的钻井,矿(轴,轴),道路,沟渠,采空区,采空区,采工作面表达形式,配备和各种机械设备,操作空调,表达矿井风流状况、瓦斯浓度、地应力场等现象。煤矿地理信息系统可以有效地利用现有的数据对未采区和回采工作面深部及战线,地质构造,矿体,矿床分带的变化及其他开采条件预测。

2 煤矿安全生产地理信息系统的概念及体系结构

2.1 煤矿安全生产地理信息系统

地理信息系统(GIS)是基于地理空间数据库,描述,存储,和空间信息输出分析一个交叉学科的理论和方法,它是地理模型分析方法的使用,多种空间和动态的地理信息系统,及时提供地理研究和决策服务的计算机技术。目前,煤矿安全生产地理信息系统的开发包括两个方面,一是用计算机语言(VB,VC)与其他组合软件(AutoCAD)拥有自己的知识产权信息系统,二是基于地理信息系统的基础上,利用图书馆的两倍的功能的发展,开发专用软件,地理信息系统。而煤矿安全生产地理信息系统是地理信息技术和信息的煤矿安全生产相结合,充分发挥了GIS的功能,实现共享和煤矿安全生产信息资源的应用,地理信息系统在煤矿中的具体应用。

2.2 基本体系结构

煤矿安全信息管理系统是基于Internet,是煤矿安全监察与当代先进的互联网技术需求相结合构造。基础架构主要包括:文本数据库(包括新闻,政策法规,学术论文,煤矿安全监察类),图形数据库和网络。

基于Web GIS技术的支持,集成的地理空间数据和跟踪井下安全实时监控系统,对所有的数据存储在后台数据库的共享和煤矿安全信息网络平台的决定,由空间数据存储平台,安全专业的阳关应用平台和Web协作服务平台是由三部分组成的。基于GIS的煤矿安全管理系统,以安全生产为中心提供的监测,分析,规划,决策。修复系统可分为:安全生产决策管理(的崇山峻岭生产调度系统),矿山地理信息管理系统,全面的煤矿崇山峻岭和网络服务支持系统的质量控制系统。

综上所述,现阶段国内煤矿安全生产地理信息系统的结构主要是由一个安全系统信息库,图形信息库,属性信息数据库,网络支持系统和用户系统,主要通过企业在企业局域网中实现信息共享。

3 基于GIS的煤矿地质测量信息系统的应用

3.1 GIS应用于矿区开采的数据库建立

GIS是空间数据库发展的主体它所管理的数据主要是二维或三维的空间型地理数据,主要包括地理实体的具体空间位置、拓扑关系和属性。对于这些数据的管理GIS是按照图层的方式来进行的,这样的管理方式对地理数据的修改和提取非常方便。

地理信息系统采用野外数字测图、手工和扫描数字化、遥感与摄影测量等多种方式采集空间数据。对于矿区开采沉陷的监测必须要用到矿区的测量数据、矿区的开采方法、地质采矿条件、地质构造等各方面的资料,这些基本上都是外业的数字测图和手工绘制,对这些采集过来的数据进行有效地数据库管理、更新、维护、进行快速的查询和检索,并且使用多种方式输出所需的地理空间信息,以便于对矿区的沉陷情况作进一步的预测。GIS与面向特定领域的专业应用模型相结合,进行有关数据处理、信息管理、空间分析、反演预测、决策支持等已经成为一种需要。综合多方面的因素考虑地理信息系统对于矿区开采沉陷数据库的建立是非常合适的。

利用GIS技术解决矿区开采沉陷中出现的问题具有很大的优越性:首先GIS理论和技术方法是矿区多层空间以及资源环境等动态时空信息的存储、处理、复合、分析与评价的最好方法。开采沉陷所涉及到的数据都是具有空间内涵的数据,GIS的最大特点就是管理处理具有空间内涵的数据,并且GIS的数据库管理功能可以对大量的开采沉陷数据进行统一的管理;其次二维矿图管理是目前GIS技术非常成熟的应用,利用GIS的制图功能可以绘制出矿区开采沉陷监测所需的各种可视化图形。而且GIS的空间查询和分析功能还可以对开采所引起的一些损害进行全方位动态监测并可以确定损害的程度,在采动过程中随时根据监测所显示的资料对开采方案作出适当的调整。

3.2 GIS应用于矿区开采沉陷预测的可视化系统

可视化(Visualization)是对人脑印象构造一种方针,目的是便于人们理解现象、发现规律和传播知识。由于可视化能迅速、形象的表示空间地理信息。传统开采沉陷的预测的可视化方法工作量大并且复杂、预测的速度慢、绘制出来的图形直观效果较差而且精度低,但是利用GIS进行开采沉陷的预测的可视化在传统方法的基础上大大提高了预测的精度和预测的速度。

矿区开采引发的地表变形,可导致地表的土层破坏、平地积水、地面裂缝、周边的山体滑坡和房屋倒塌等现象。利用ArcGIS中的ArcScene对地面沉降预测数据进行模拟和三维动态显示,能够很直观的得出三维可视化图形,也可以进行等值线绘制、任意的剖面图制作、任意的点位变形数据提取和最大变形方向等多种三维可视化随即应用分析,可进行矿区开采沉陷方面的一系列灾害性的后果预测分析。另外可基于ArcGIS的3D扩展模块生成各种地表变形的三维动态场景和三维动态实时可视化,并且可以进行动态演示。

GIS的可视化系统和空间分析功能在矿区开采沉陷的分析中具有着重大的意义。主要有开采沉陷数据的输入与输出、已开采地区的沉陷预测可视化、未开采地区的沉陷预测可视化、开采沉陷数据的管理和开采沉陷数据的可视化输出等。

目前GIS在矿业领域的应用还包括有:矿区不同比例尺的遥感测图、地质勘测、资源管理应用、矿山规划与设计、工程地质应用、环境污染监测、矿区测量控制网建立、建筑物变形监测等各个方面。

4 结束语

矿区作为一个实时动态地区,矿区的开采沉陷必然会引起地表的变形与破坏,GIS作为一种新兴技术融入到矿区开采沉陷中,对矿区的各种变形进行预测、分析与评价,并且能够绘制出各种具有可视化效果的变形曲线和图形,可以说这两者结合起来具有十分广阔的前景。煤矿地质测量空间信息系统,使煤矿地质测量信息采集的多源化、管理的网络、决策支持的智能化,以及与其它系统的集成得到了实现,具有数据收集、分析、处理、储存和等便捷功能,必将成为煤矿企业地址测量工作的重要发展方向。

参考文献:

[1]姜在炳.煤矿地质测量空间信息系统及其发展趋势[J].煤田地质与勘探,2005(4).

[2]李建民.煤矿地质测量空间信息系统及其在数字开滦中的应用[J].煤田地质与勘探,2004(8).

地质测量论文范文第9篇

1893年,俄国地质学家奥勃鲁契夫院士首次发现了该地层,但没有做更深入的调查。

1922年4月21日,美国纽约自然历史博物馆组成“中亚古生物考察团”,

该考察团组织40人、5辆汽车及数十匹骆驼,由张家口出发,4月25日到达二连盐池西驻扎。

在二连地区伊尔丁曼哈组发现了大量哺乳动物化石,在二连盐池达布苏组首次发现了恐龙及恐龙蛋化石,揭开了二连恐龙动物群研究的帷幕。尤其是恐龙蛋的首次发现,证实了恐龙是卵生的爬行动物。

这项工作进行了10年,有关的考察成果由伯基,格兰杰和吉尔摩分别于1922年、1927年、1933年发表。

发现的恐龙种类有:霸王龙科的欧氏阿莱龙、似鸟龙科的亚洲似鸟龙、蒙古龙属的坦齿蒙古龙、鸭嘴龙科的姜氏巴克龙和蒙古满洲龙以及吉尔摩龙等等。目前,纽约自然历史博物馆依然陈列着二连达布苏组出土的恐龙化石的正模标本及装架标本。1930年有9名中国古生物专家参与了该团的考察工作,其中有著名的古生物学家、中国恐龙研究的奠基人杨钟键教授。古生物学家张席教授担任中方团长。1932年该团结束考察活动回国后,发表了《中亚的新征服》考察报告,立即轰动世界。这次考察工作,在亚洲及世界古生物化石研究史上均占有重要地位。

1958―1999年,内蒙古地质局先后成立了“呼和浩特幅”1/100万区调队、内蒙古区测队、内蒙古第二区测队等单位,先后在全区开展了1/100万、1/20万、1/5万比例尺的区域地质测量工作。通过地质测量及调查,在白垩纪地层中采集到大量的恐龙化石,并对其进行了研究和外检。通过对恐龙化石及其他门类古生物化石的研究,首次在内蒙古地区建立了白垩纪地层系统,并成立了研究古生物化石的古生物组和综合研究分队,专门从事包括恐龙化石在内的多门类古生物化石研究工作,取得了许多重大成果,出版了《内蒙古古生物图册》等多种地层、古生物专著。

1959年,中国与前苏联科学院联合组织的“中国科学院一苏联科学院古生物考察团”在二连进行了大规模的考察、发掘工作,发现了大量的恐龙化石。考察营地设在二连盐池,考察团中方团长是中科院古脊椎动物与人类研究所周明镇教授;苏方团长是洛日杰特文斯基,考察团约80余人,有13辆大小汽车,发掘时使用斯大林100号推土机。1960年考察中止。出土的化石种类有:鸭嘴龙两个属(Bactrosaurus和Gilmoreosaurus)、似鸟龙(Orithomimus)及肉食龙、甲龙、蜥脚龙等。其中部分化石曾在中国古动物馆展出。

1987―1990年,由中国、加拿大科学家和技术人员组成的“中加恐龙考察团”。

在达布苏组又进行了考察、发掘。加方团长为国际知名古生物学家、加拿大国家博物馆馆长戴尔・拉赛尔?罗素博士,中方团长为中国科学院古脊椎动物与古人类研究所恐龙研究专家董枝明,考察队队员40余人。这次考察工作对了解全球恐龙分类、揭示恐龙绝灭之谜、北美与中亚两大陆的连接和分离、远古动物群的迁徙及有关古地理、古气候等都有着十分重要的意义。

1995年,由中国内蒙古博物馆与比利时皇家自然科学院联合组织的“中比联合考察发掘队”,在二连盐池发现了一处分布面积近40平方米的骨化石层,发掘到至少四具巴克龙化石。初步研究表明,二连达布苏组的时代为晚白垩世早期,比原定的晚白垩世晚期大约提前了1,000万年。

1998年,内蒙古国土资源厅(原内蒙古地质矿产厅)接受国土资源部(原地质矿产部)下达的前沿科技项目,开始对内蒙古地区进行首次大范围的恐龙化石专项普查和研究工作,该项研究工作由内蒙古龙昊地质古生物研究所承担。

自2000年起,内蒙古龙昊地质古生物研究所与中国科学院古脊椎动物与古人类研究所合作,先后在二连浩特地区开展了多项科学研究工作,取得了丰硕的科研成果,先后在古脊椎动物学报上,发表了数篇论文,建立了杨氏内蒙古龙、美掌二连龙、锡林郭勒计尔摩龙、赛罕高毕苏尼特龙等恐龙种类。

内蒙古龙是古生物学家在二连盆地首次发现的镰刀龙类恐龙,也是内蒙古的古生物学者首次用内蒙古命名的恐龙。

2004年以来,内蒙古自治区连年为二连浩特市落实地质遗迹保护项目,开展恐龙化石保护和科研工作。2007年,内蒙古自治区国地质遗迹保护项目的实施取得了震惊世界的成果。

地质测量论文范文第10篇

例如,每隔一段时间,都有难以置信的、几乎不可想像的事情发生。由于我们尚不完全理解的原因,我们熟悉的北极和南极会交换位置,地球的磁场会完全颠倒。尽管磁极逆转在文明历史上很少发生,但地质记录表明,磁极逆转在地球的历史上曾经定期发生。在过去7600万年中磁极逆转已经发生了171次,仅在过去450万年中,就至少发生了14次。

尽管磁极逆转肯定是循环的,但此循环似乎是随时间变化的,这使得下一次逆转发生的时间变得不确定。然而,在磁极逆转之前会有各种征兆出现,如气候模式突然变化和地球磁场迅速减弱――现在正发生这两种变化。正是今天这些征兆的出现和我们对磁极改变的预期,导致越来越多的主流科学家认为,我们正处在这种磁极逆转的早期阶段。

2004年7月,美国《纽约时报》严肃地报道了地球磁场逆转的可能性,用了“科学栏目”一整版描述磁场逆转是什么,一旦发生就可能产生什么影响。这篇文章说:“保护植物和控制很多生物生长的地球磁场早在150年前就已经开始崩溃了。”不少人对此颇为怀疑,但至少在一些科学家的心里,地球磁场的逆转已经开始了。

事实上,地质测量确实表明,地球磁场从2000年前的磁场强度峰值开始便逐渐衰退了,现在与那时相比,地球磁场强度值稳定地下降了38%。自18世纪中叶开始的测量进一步支持了磁场衰退这个事实,表明仅在过去100年间,地球磁场强度下降了7%。尽管磁极逆转的征兆存在,但要得到公认却不容易,原因是多方面的,其中之一是,地球磁场逆转的发生是一个漫长的、以稳定的速率发生的过程。

对于该证据的新的解释给出一个强有力的论据,即其他一些现象也许会同时发生。很可能磁场削弱得越多,就削弱得越快。如果情况是这样,过去的逆转也许发生得比我们现在相信的要快得多。例如,在西伯利亚遥远的北纬度地区发现长毛的猛犸在迈步当中被冻死了,口中还含有未吃完的食物,人们相信这是由上一冰纪磁极逆转造成的,这正是气候突然变化的证据!

早在1993年,《科技新闻》杂志就发表了一篇论文,该论文说:“发现精确的磁极逆转记录是最困难的任务,因为在磁极转换方向时磁场大大地削弱了。”正如我们今天所看到的那样。但是问题依然存在,在磁极逆转之前磁场会弱到什么程度呢?尽管这些问题的答案还不肯定,我们却确实知道这些重大的事件不只是发生在地球上,它们和我们的天体邻居那里发生的事件是有联系的,甚至很可能与整个星系有关。

上一篇:文献计量学论文范文 下一篇:家庭理财论文范文

友情链接