地下工程论文范文

时间:2023-03-16 17:26:57

地下工程论文

地下工程论文范文第1篇

【论文摘要】:主要论述了地下工程的排水系统的特点及分类,排水管道的设计,集水池的容积计算,排水泵房的设计。

近几年来城市建设飞速发展,土地资源日趋紧张,地下空间的利用越来越得到重视,地下空间不断得到开发,出现了越来越多的地下工程。由于地下工程所处的位置不同,排水设计也就有其特殊之处。

1.地下工程的排水系统

地下工程的排水设计就是将工程中使用的污废水收集后排放到室外。

根据所排污水的性质,地下工程的排水可分为生活污水、生活废水、生产废水(包括机械废水)、消防废水以及洗消污水。

⑴排水系统的特点

①地下工程内应设集水池和提升泵。其污废水需经重力管道排到集水池,然后由水泵提升到室外地面窨井。

②地下工程的排水点应相对集中。它的排水管道一般埋设于地下混凝土底板中,管道敷设不宜过长,以防堵塞。因此排水点不宜分散,在无法集中时应分散设排水提升设备。

③地下工程中应考虑消防废水的排放。一方面可保证消防设备的正常运行,另一方面可保证人员的疏散,以减少损失。

④由于地下工程内生活粪便污水排放量较少,不宜分流,以防污水在集水池中沉积,无法提升。

⑵排水系统的分类

①生活污水系统,它包括卫生间和盥洗室的粪便污水和生活洗涤废水。

②人防洗消污水系统,主要指人防工程人员和建筑部门冲洗、消毒的排放污水。

③废水系统,它用于各种生产废水、消防废水等的收集、排放。

作为生活污水,在室外必须经化粪池后再派入市政污水管网;厨房、食堂以及油库的废水,须经隔油池后才可排放;设在地下室的浴室废水,须在室外设毛发聚集器后再接入窨井。

在建筑布置时,可将用水设备直接布置在集水池上,以便排水,并尽量将集水池设在排水点附近。

2.排水管道的设计

地下多层的工程,上部的排水管道可设在楼板下,尽量贴梁布置;地下最底层的排水管可直接敷设在混凝土底板内。由于管道为掩蔽埋设,管道必须保证有足够的坡度坡向集水池,同时必须防止管道敷设过长而穿出地板。管道埋深过大后,接入集水池的深度也大,这样也减小了集水池的有效容积。其水平衡管一般可采用生活污水的标准排水坡度。

厕所间可设在污水集水池上,缩短管道长度,便于污水排放。个别清洁废水(如凝结水)的管道敷设较长时,应在管段上设清扫口,长度不宜大于10m。

为减少管道的埋设深度,地漏采用直埋式或方型铸铁地漏,或分设集水池。

所有的集水口均应设水封,防止臭气从管道中跑出。机械设备的排水,应采用漏斗接至排水管道,间接排水。为保证管道水流畅通,排水管道交叉连接时,尽量采用45°三通或90°斜三通和四通。

排水管道的水力计算同地面建筑。埋设在底板内的水平横管,检修有一定的困难,宜适当放大管径或加大管道坡度。

过去,排水管材采用排水铸铁管,人防的洗消污水和埋设在底板中较长的管道以及压力排水管采用镀锌钢管,现应按新规定调整。地下车库的排水宜采用明沟形式。

3.集水池的设计

⑴集水池容积的确定

污水集水池的容积与流入的污水量、水泵的工作情况有关。一般来说,集水池的容积不小于最大一台水泵5min的出水量;对于分散的集水坑,其容积可不小于水泵3min的出水量,或水泵每小时启动次数不超过6次。值得注意的是,地下工程内集水池的容积也不宜大于平均日污水量的一半。

工业废水集水池的容积,可根据工艺要求确定。

为保证消防电梯在消防时的正常运行,在消防电梯的井底旁应设集水井,其容积不小于2立方米,相当于2支水枪3.3min的流量。

地下室的消防也可利用消防电梯井旁的集水井排水。对于有消防给水要求而又无消防电梯的地下室,也应设消防排水,其容积应不小于2立方米。

⑵集水池的设计

①集水池必须有一定的有效水深。在设计中要防止池面积大、池的深度浅及排水管淹没倒灌现象。池的超高可取得大些,一般0.3~0.5m。

②集水池内还就设水位指示装置、检修孔口,对有大块杂质的污废水,还就在集水池入口设格栅等设备。

③集水池底应设集水坑,坑深一般0.4m左右。在仅排废水的集水池池底须有0.1~0.2的坡度坡向吸水井。

④密闭盖板的集水池应设透气管,避免水泵开启后产生负压,破坏水封。污水池的透气管宜直通室外。人防工程中的透气管在接出有困难时,可将其就近接入排风管。

⑤从卫生和环保的要求出发,生活污水集水池应远离生活给水池,一般保证8m以上的距离。

⑥专用消防集水池应尽量设在走道的顶端,采用盖板封住上部。消防排水应尽可能考虑设地漏将水集中到废水坑。

【论文关键词】:地下工程;排水设计;集水池;排水泵房

【论文摘要】:主要论述了地下工程的排水系统的特点及分类,排水管道的设计,集水池的容积计算,排水泵房的设计。

近几年来城市建设飞速发展,土地资源日趋紧张,地下空间的利用越来越得到重视,地下空间不断得到开发,出现了越来越多的地下工程。由于地下工程所处的位置不同,排水设计也就有其特殊之处。

1.地下工程的排水系统

地下工程的排水设计就是将工程中使用的污废水收集后排放到室外。

根据所排污水的性质,地下工程的排水可分为生活污水、生活废水、生产废水(包括机械废水)、消防废水以及洗消污水。⑴排水系统的特点

①地下工程内应设集水池和提升泵。其污废水需经重力管道排到集水池,然后由水泵提升到室外地面窨井。

②地下工程的排水点应相对集中。它的排水管道一般埋设于地下混凝土底板中,管道敷设不宜过长,以防堵塞。因此排水点不宜分散,在无法集中时应分散设排水提升设备。

③地下工程中应考虑消防废水的排放。一方面可保证消防设备的正常运行,另一方面可保证人员的疏散,以减少损失。

④由于地下工程内生活粪便污水排放量较少,不宜分流,以防污水在集水池中沉积,无法提升。

⑵排水系统的分类

①生活污水系统,它包括卫生间和盥洗室的粪便污水和生活洗涤废水。

②人防洗消污水系统,主要指人防工程人员和建筑部门冲洗、消毒的排放污水。

③废水系统,它用于各种生产废水、消防废水等的收集、排放。

作为生活污水,在室外必须经化粪池后再派入市政污水管网;厨房、食堂以及油库的废水,须经隔油池后才可排放;设在地下室的浴室废水,须在室外设毛发聚集器后再接入窨井。

在建筑布置时,可将用水设备直接布置在集水池上,以便排水,并尽量将集水池设在排水点附近。

2.排水管道的设计

地下多层的工程,上部的排水管道可设在楼板下,尽量贴梁布置;地下最底层的排水管可直接敷设在混凝土底板内。由于管道为掩蔽埋设,管道必须保证有足够的坡度坡向集水池,同时必须防止管道敷设过长而穿出地板。管道埋深过大后,接入集水池的深度也大,这样也减小了集水池的有效容积。其水平衡管一般可采用生活污水的标准排水坡度。

厕所间可设在污水集水池上,缩短管道长度,便于污水排放。个别清洁废水(如凝结水)的管道敷设较长时,应在管段上设清扫口,长度不宜大于10m。

为减少管道的埋设深度,地漏采用直埋式或方型铸铁地漏,或分设集水池。

所有的集水口均应设水封,防止臭气从管道中跑出。机械设备的排水,应采用漏斗接至排水管道,间接排水。为保证管道水流畅通,排水管道交叉连接时,尽量采用45°三通或90°斜三通和四通。

排水管道的水力计算同地面建筑。埋设在底板内的水平横管,检修有一定的困难,宜适当放大管径或加大管道坡度。

过去,排水管材采用排水铸铁管,人防的洗消污水和埋设在底板中较长的管道以及压力排水管采用镀锌钢管,现应按新规定调整。地下车库的排水宜采用明沟形式。

3.集水池的设计

⑴集水池容积的确定

污水集水池的容积与流入的污水量、水泵的工作情况有关。一般来说,集水池的容积不小于最大一台水泵5min的出水量;对于分散的集水坑,其容积可不小于水泵3min的出水量,或水泵每小时启动次数不超过6次。值得注意的是,地下工程内集水池的容积也不宜大于平均日污水量的一半。

工业废水集水池的容积,可根据工艺要求确定。

为保证消防电梯在消防时的正常运行,在消防电梯的井底旁应设集水井,其容积不小于2立方米,相当于2支水枪3.3min的流量。

地下室的消防也可利用消防电梯井旁的集水井排水。对于有消防给水要求而又无消防电梯的地下室,也应设消防排水,其容积应不小于2立方米。

⑵集水池的设计

①集水池必须有一定的有效水深。在设计中要防止池面积大、池的深度浅及排水管淹没倒灌现象。池的超高可取得大些,一般0.3~0.5m。

②集水池内还就设水位指示装置、检修孔口,对有大块杂质的污废水,还就在集水池入口设格栅等设备。

③集水池底应设集水坑,坑深一般0.4m左右。在仅排废水的集水池池底须有0.1~0.2的坡度坡向吸水井。

④密闭盖板的集水池应设透气管,避免水泵开启后产生负压,破坏水封。污水池的透气管宜直通室外。人防工程中的透气管在接出有困难时,可将其就近接入排风管。

⑤从卫生和环保的要求出发,生活污水集水池应远离生活给水池,一般保证8m以上的距离。

地下工程论文范文第2篇

岩爆是深埋地下工程施工过程中常见的动力破坏现象,它是由于岩石积聚的应变能大于岩石破坏所消耗的能量时,多余的能量导致岩石碎片从岩体中剥离、崩出。强烈的岩爆常常带来灾难性的后果,如人员伤亡、施工设备毁损甚至地下工程报废等等。针对这一问题,很多学者根据现场调查及室内模型试验对岩爆的发生机理、预测方法、及控制手段等方面做了大量的工作[1-9]。但由于岩石固有的一些特性如各相异性、不均匀性,许多研究成果仅限于某些方面的事后验证,没有形成统一的认识。因此岩爆问题的研究还远没有形成系统的研究成果。

本文简要介绍了国内外目前在岩爆的数学描述、发生条件以及预测方面进行的工作,旨在为相关的研究工作提供借鉴。

2.岩爆的数学描述

在分析岩爆发生机制时,人们注意到,地下洞室岩爆是岩体由于几何及力的边界条件发生变化导致岩石材料力学性质发生改变,从而导致岩体突然失稳。这种失稳是一种突变现象,它具有多个平衡位置、突跳、滞后、发散和不可达等特点。应用现代数学中的突变理论可以对此过程进行较好的描述,例如初等突变理论中的尖点突变模型[10,11]。

尖点突变模型的标准势函数为[12]:

(1)

式中,为势函数,为状态变量,为控制变量。

令,可以确定其平衡位置,如下式。

(2)

方程实根的数目由判别式决定。

根据突变理论,为稳定的平衡,为不稳定平衡,为两者间的转折点。同时,在状态-控制变量空间中,曲面M:称为平衡曲面,参数空间曲面B:称为分叉集,如图1所示。在平衡曲面的上、中、下三叶分别代表可能的三个平衡位置,其中上下叶为稳定平衡,中叶为不稳定平衡。

图1尖点突变模型[12]

用尖点突变模型可以对岩爆现象进行解释。设为表征洞室稳定状态的变量,为影响洞室稳定性的变量,在图1中可以观察到不同的路径上洞室的稳定状态发生的变化。

路径始终处于上叶,在该路径上洞室一直处于稳定的平衡状态。虽然该路径上洞室也有可能进入破坏状态,但这种破坏是一个连续的过程,如围岩较软,其单轴抗压强度较低,高地应力区的应力值超过了岩石的长期强度,洞室出现加速蠕变直至破坏的一种流变过程,而不是突然失稳。路径开始处于稳定平衡的上叶,当到达上叶与中叶的皱折时,系统由稳定向非稳定过渡。此时若围岩受到轻微的扰动,如爆破振动导致控制变量发生微小变化,路径继续往前时,洞室的状态不可能进入中叶,因为中叶是不稳定的亦即不可能达到的状态,洞室控制变量经过调整,其状态直接跳跃到下叶,发生岩爆,洞室失稳。该路径下洞室的状态的不连续变化称之为突变。

由于岩爆与围岩的储存和释放的能量有关,因此一般从能量角度对洞室和围岩组成的系统进行定量分析。

文献[10]根据最小位能原理建立圆形洞室的尖点突变模型并定量地研究了岩爆的发生过程,得出了岩爆发生时系统必须满足的条件。

假设外力作用在圆形洞室外的无限远处,在围岩应力作用下,围岩分为弹性区和软化区,相应的应变能分别为e和s。

(3)

(4)

总应变能:

(5)

系统的势能由应变能和外力功组成,外力作用点在无限远处,该处位移为零,故外力势能为零,。

当势能取极值时,系统处于平衡位置即,或

(6)

将(6)式变换成(2)相同的形式:(7)

(8)

(9)

各符号的意义见文献[10]。

为围岩弹性区广义刚度与软化区广义刚度绝对值之比。

发生岩爆时,系统处于非稳定平衡状态,此时,得。

由(8)可知,若,则。根据的定义,发生岩爆时弹性区广义刚度小于软化区广义刚度。广义刚度不仅与岩石参数,,而且与外荷载有关。由于该条件是在发生岩爆的前提下得出的,故称为围岩发生岩爆的必要条件。

3.与岩爆事件相关的几个因素

岩爆的发生与很多因素有关,一般分为以岩性为主的内因条件和以围岩应力、结构及施工荷载为主的外因条件。

3.1岩性因素

岩爆是由于围岩储存的弹性应变能大于岩石破碎所消耗的能量,引发岩石碎片从岩壁突然飞崩出来。因此,发生岩爆的围岩必然有较高的储存弹性应变能的能力。一般来讲,坚硬、完整的岩体,其储存应变能的能力高,发生岩爆的倾向性也高。

判断岩石发生岩爆的倾向性大小可以通过多种指标测试,目前较常用的指标有岩石的脆性系数,弹性变形能指数,岩石冲击能指标。

人们很早就注意到岩爆与岩石脆性有很大的关系,岩石的脆性越大,岩爆的倾向越高。现代细观力学通过室内试验及现场采样的断口扫描电镜分析[1,2],也证明了这种关系。文献[2]研究发现,岩爆是一渐进破坏过程:劈裂成板剪断成块片、块弹射,在这个过程中,最基本的现象就是岩体脆性断裂破坏。从这个意义上讲,可以认为岩爆与岩石的脆性破裂有关。

岩石的破裂是岩石内部微裂纹产生、发展的宏观结果。脆性破裂是指岩石破裂之前末出现任何明显永久变形的破裂形态。由于岩石结构的复杂性(非均质、不连续),因此宏观破裂之前的岩石形态决不是纯弹性的,故脆性破裂概念指的是那种在很小(与弹性应变相比)的非弹性应变之后发生的破坏。岩石的单轴和三轴压缩试验均可以看出,脆性大的岩石峰值后很快发生宏观破坏,相对来讲破坏消耗的能量较少。

由岩爆的破坏过程可知,岩石的脆性破坏是岩爆发生的必不可少的先决条件之一,因此岩爆倾向性指数在很大程度上取决于岩石的脆性。

岩石的脆性系数用下式表示:

文献[14]建议根据下式计算岩石的脆性系数,并划分岩石的岩爆倾向:

式中为调节参数,一般取0.1,、分别为岩石单轴抗压、抗拉强度(),、分别为单轴压缩条件下峰值前后的应变。

无岩爆;轻微岩爆;严重岩爆。

弹性变形能系数是通过岩石单轴压缩试验得出的结果。当轴向荷载时,卸载,求出卸载过程中试样所释放的弹性变形能及岩石发生塑性变形和微破坏所消耗的能量,如图2。两者的比值称为弹性变形能指数。根据KwasnieskiM1994年研究结果[15],越大,发生岩爆的强度越高。以下是根据煤岩试验得出的指标:

当时,无岩爆;

当时,弱到中等程度岩爆;

当时,强岩爆。

图2岩石的加载卸载曲线[15]

岩石的冲击能指标是指岩石在单轴压缩的应力应变全过程曲线中,以应力峰值为界的左右部分曲线与应变坐标所围成的面积,亦即岩石加载过程中所吸收的能量与破坏过程中所消耗的能量,,如图3

图3应力应变全过程曲线

冲击能指标旨在建立岩石在破裂过程中释放的能量与消耗能量的关系,当时,认为该岩石有发生岩爆的倾向。实际上,该指标仅对坚硬的岩石才有意义,如前所述,中包含岩石发生塑性变形和微破坏所消耗的能量,而不是峰值后区岩石破裂所释放的能量。对坚硬岩石才几乎等于岩石中储存的弹性应变能。因此,该指标在预测岩石的岩爆倾向时较弹性变形能系数方法偏保守。文献[9]建议在中减去岩石加载过程中所消耗的能量,即取卸载曲线下的面积代替加载曲线下的面积,见图3,用该方法确定的冲击能指标的更能反应岩石的岩爆倾向。

除了上述三种关系外,有些学者还提出其它方法确定岩石的岩爆倾向,如松弛试验法,能量比及动态法等等,并建立了相应的判别准则,这些方法在一定程度上预测岩石岩爆的倾向。

3.2岩爆发生的应力条件

在有岩爆倾向的岩体中进行地下工程施工时,高的地应力使岩体聚集较高的应变能,在满足一定的条件时导致岩爆的发生。根据国内一些工程统计,地应力场中最大主应力与单轴抗压强度满足以下关系时有可能发生岩爆[14]:

地下工程施工过程中,开挖卸载使围岩应力重新分布,和按一定的比例同步上升,洞壁上,岩爆在和上升的过程中发生[6]。此时控制洞室稳定的主导因素为洞室的切向应力,据文献[4]的研究结果,切向应力与岩石单轴抗压强度间满足以下关系时有可能发生岩爆:

3.3工程地质与水文地质因素

由于围岩是一个复杂的结构体,其结构面对地下工程的稳定性将产生严重的影响。就岩爆而言,岩体的结构及结构上的各相异性对岩爆起控制作用,表现为不同结构面的岩体其储能和释放能量的差异很大,文献[3]称之为岩体的“岩爆的结构效应”。当主节理与最大主应力夹角为时,储存与释放的能量较小,常产生剪切破坏,而不产生岩爆;时,储能能力越强,产生剧烈岩爆;或大于时,由于能量被结构面本身的永久变形所消耗,储存下来的弹性能量较少,即使产生岩爆,强度不高。

岩爆的发生与围岩的水文地质情况也有关。相同岩性及构造的围岩,干燥的围岩较存在裂隙水的围岩更容易发生岩爆。这是因为结构面中的裂隙水使岩石的破裂强度降低,其储存与释放能量的能力比围岩处于干燥环境下的能力低。

另外,岩爆还与地下空间的剖面形状,施工顺序,支护方式及爆破、地震有关,这些因素表现为影响围岩的应力分布,或是当围岩处于临界平衡时,动力扰动使围岩失稳。

4.岩爆的预测预报

以上分析可知,岩爆的影响因素很多。虽然各判别准则都是建立在室内试验或现场调查的基础上,但仅凭一两个岩石指标就对岩体岩爆进行准确预测很不现实。因此,在预测岩爆时有必要全面综合考虑这些因素。

众所周知,岩体是一种多相不连续介质,其工程力学行为及变形和破坏机制在主客观两方面的相当程度上都是随机的,模糊的,也就是不确定的,且更由于获取信息与数据等方面限制和不完全,不充分,它又是不确知的,因此通过经典的力学方法对其描述往往不完备[17],对于岩爆尤其如此。冯夏庭教授开创的智能岩石力学在岩爆预测方面独树一帜,它撇开数学力学对岩体的精确描述,通过专家经验及工程实例,建立输出模式到输出模式的非线性映射,再通过网络推理待识别岩爆发生的可能性及烈度。该方法综合考虑了各方面的因素,如岩石的性质、岩体结构、洞室结构、开挖和支护方式等等,是其它方法无法比拟的。采用智能岩石力学方法开发的综合智能系统成功地预测了南非金矿中的一些岩爆事件[16,17]。

根据对一些岩爆事件的统计,岩爆一般发生在洞室开挖后几小时到几十小时,因此洞室开挖过程中的岩爆监测预报对保证施工安全有重要的意义。

从岩爆发生的机制可知,岩爆发生的过程实际上是围岩应变能释放、应力重新分布的过程,可以通过对洞室的微地震事件(或声发射)的监测来反映能量释放过程[18,19]。然而现场监测表明,微地震事件的频度与岩爆事件并不存在对应的关系。文献[20]发现,地下洞室开挖过程中的微地震事件的位置分布具有分形特征,其分形维数与能量释放率间存在某种关系。用分形几何对岩爆描述为:岩爆实际上等效于岩体内破裂的一个分形集聚,这个破裂的分形集聚所需能量耗散随分形维数的减少而按指数率增加,即:

如果将其监测结果采用分形几何进行处理,可以较准确地预报岩爆事件。

5.结语

现有的研究结果表明,岩爆的产生过程是一个突变过程,可以通过尖点突变模型进行解释;岩爆产生的最主要因素包括岩石性质,围岩应力状态,水文与工程地质条件等;地下工程岩爆预测必须综合考虑各种相关因素。

随着能源地下储存、核废料深埋处理、深部矿产资源开采及高地应力地区的隧道建设等大量地下工程建设的发展,岩爆问题成为人们成为目前岩石力学研究的焦点问题之一。深入分析岩爆发生机理、条件、提出岩爆的预测和控制方法对于确保工程安全具有非常重要的意义。

参考文献

1.张梅英,李廷芥等.岩爆形成机理的细观力学实验分析[J].内蒙古工业大学学报,16(3)112-117.

2.谭以安.岩爆岩石断口扫描电镜分析及岩爆渐进破坏过程[J].电子显微镜学报,1989年第2期,41-48

3.谭以安.岩爆特征及岩体结构效应[J].中国科学B辑,1991年9月第9期,985-991

4.王文星,潘长良.现场岩爆发生条件探讨[J].西部探矿工程,2002,74(1),54-56.

5.唐礼忠,王文星.一种新的岩爆倾向性指标[J].岩石力学与工程学报,2002,21(6),874-878.

6.许东俊,章光等.岩爆的应力状态研究[J].岩石力学与工程学报,2000,19(2)167-172.

7.李长洪,蔡美峰等.岩石全应力-应变曲线及其与岩爆的关系[J].北京科技大学学报,1999,21(6),513-515.

8.冯涛,王文星,潘长良.岩石应力松弛试验及两类岩爆研究[J].湘潭矿业学院学报,2000,15(1)27-31.

9.唐宝庆,曹平.引起岩爆因素的探讨[J].江西有色金属,1995,9(4),4-8.

10.潘一山,章梦涛,李国臻.洞室岩爆的尖角突变模型[J].应用数学和力学,1994,15(10),893-900.

11.费鸿禄,徐小荷,唐春安.地下洞室岩爆突变理论研究[J].煤炭学报,1995,20(1),29-33.

12.钱伟长主编,非线性力学的新发展-稳定性分叉突变混沌[M].华中理工大学出版社,1988年.

13.冯涛,谢学斌等.岩石脆性及描述岩爆倾向的脆性系数[J].矿冶工程,2000,20(4),18-19.

14.陶振宇,潘别桐著.岩石力学原理与方法[M].中国地质大学出版社,1991年.

15.J.A.Wang,prehensivepredictionofrockburstbasedonanalysisofstrainenergyinrocks[J].TunnelingandundergroundSpaceTechnology,16(2001)49-57

16.冯夏庭.地下洞室岩爆预报的自适应模式识别方法[J].东北大学学报,1994,15(5),471-475.

17.冯夏庭著.智能岩石力学[M].科学出版社,1999年.

18.C.Srinivasan,S.K.Arora,R.K.Yaji.Useofminingandseismologicalparametersaspremonitoryofrockburst[J].Int.J.RockMech.Sci.Vol.34,No.6.pp1001-1008,1997

19.V.A.Mamsurov.Predictionofrockburstsbyanalysisofinducedseismicitydata[J].Int.J.RockMech.Sci.38(2001)893-901

地下工程论文范文第3篇

中国是目前地下工程利用范围最广、开发力度最大的国家。解决城市人口集中等客观问题的迫切需要以及废旧矿井多功能利用等主观积极因素的推动均标志了我国必将走向大型地下工程开发利用新时代。

自建设部下发《地铁及地下工程建设风险管理指南》以来,地下工程风险管理引发了学者多方思考。地下工程因其施工难度大、建设周期长、投资数额大、风险系数高、对周边环境依托和影响大等特点,一直为学者广泛关注。近年来,地下工程事故的多发大多可以归结到以下两个方面:环境因素引起的风险事故和工程地质、水文地质引起的风险事故,其中尤以后者引起的事故居多。因此,通过SGIS技术建立系统的数字管理平台对于地下工程风险管理具有重大意义。

2. SGIS技术概述

SGIS即综合地质信息系统,它是在基于一般GIS优秀的各项功能的基础上对其工程地质、岩石力学等地质特点信息系统的再开发,以使其更加适应地下工程建设需要。

SGIS由三大系统构成:区域地质及工程信息系统、工程地质信息系统以及地质工程信息系统。其中区域地质及工程信息系统包含了地质调查与钻孔信息系统、环境地质及灾害评估系统、区域水文地质信息系统、区域工程地质信息系统和工程布局信息系统。工程地质信息系统包括综合地质可视化分析系统、水文地质信息系统、地质快速勘察成图系统、环境地质信息系统、工程地质信息系统。地质工程信息系统包括超前地质预报系统、工程地质力学分析系统、信息化施工决策信息系统、可变更优化设计成图系统及地质工程监测信息系统。

3. 大型地下工程风险管理现状及存在问题

3.1 国内地下工程风险管理研究现状

早从20世纪初开始,国内学者对地下工程的发展展望就延伸到了风险分析和风险管理层次,其中尤以隧道建设、地铁建设等地下建设的环境分析及力学分析为首。2007年,建设部下发的《地铁及地下工程建设风险管理指南》将这一研究再次推向高潮。然而《地铁及地下工程风险管理指南》等法规、条例和文件仍不能实践性得解决许多具体工程问题和突发状况。普遍研究认为,地下工程风险管理的“政策性研究”和“技术性研究”应当两手抓、两手都要硬。

3.2 国内地下工程风险管理现存问题

(1)政策性指标不明

虽然国内关于该问题已了一系列指导性文件,但目前关于地下工程管理的相关法律法规仍不够健全,其强制性力度不够及操作性不强的问题均导致了其不能系统地改善如今地下工程建设施工不规范、建设事故频发、事前控制力度不够的现状。

(2)地下工程风险管理的局限性

①基础理论研究不足造成的局限性

由于地下工程建设对地质条件及相关力学要求极高,但国内外岩石力学研究的脚步显然跟不上地下空间发展的脚步。地质及力学等基础理论的发展不能够满足大量得、范围更广的地下空间建设。

②风险管理范围的局限性

目前地下空间建设的风险管理主要局限于地铁建设方面,对其余方面的研究较少,这直接导致了大型地下工程风险管理研究发展不平衡的问题,适应于地下工程风险管理的软件平台不具有普遍操作性。

(3)工程地理信息以及监测、控制平台的局限性

地质信息系统性了解的局限性、施工期间周边地质环境变化分析的局限性、前期工程测量阶段与事前控制的局限性均使得地下工程建设始终处在一个建设不明朗的瓶颈阶段。地下工程建设的局限性直接导致了事故突发、解决工程问题难度极高以及处理事故耗资巨大等问题。

4.SGIS在地下工程风险管理中的实践性应用初探

4.1 基于SGIS的风险预测评估系统

虽然从宏观上看,地下工程的风险产生是突发的、偶然性极强的、与当地的地质条件密切相关的,但从微观角度仔细观察,不难发现,大多数地下工程事故产生前均是存在先兆的,即地下工程事故的发生在一定程度上是可以减少甚至消除的。

基于“区域地质及工程信息系统”的风险评估系统就是这样一种事前控制系统,它是指在施工开始前,根据SGIS海量数据库所集合的地质调查结果、钻探信息、水文地质实时信息及发展历史、区域工程地质要求、工程地质力学分析信息、施工场地周边环境信息及施工技术信息和工程布局信息,结合当地地质条件变迁历史、超前地质预报信息、近年自然灾害发生情况、地质薄弱环节与施工技术难点,经计算机分析及有关专家建议,预估事故发生可能性及可能发生事故的概率,并对可能发生问题的关键部位采取预控措施,以减小事故发生可能性。对可能由自然灾害引发的施工事故,应预先提出风险应对策略,以保证将事故的影响降至最低。

4.2 基于SGIS的施工过程监控系统

(1)基于SGIS的施工过程监测系统

SGIS系统在综合考量地质分析、数值分析及专家意见的基础上,确定最容易发生事故的施工段重点监测区。监测系统的提出必须基于硬件支持与软件支持上,即必须拥有经济适用的施工现场实时检测仪器及先进的监测软件。

(2)基于SGIS的施工过程控制系统

传统的地下工程信息管理系统片面突出强调了信息管理在监测方面的巨大作用,但在信息管理的控制层次的涉及却了了。SGIS系统在提供信息化监测平台的基础上,结合时事更新的“地质快速勘察成图系统”、“信息化施工决策支持系统”及“可变更优化设计成图系统”,对于工程微小变更的发生,在第一时间内从地质勘探、设计成图到施工决策全方位实现施工技术科学化化管理控制。

4.3 基于SGIS的运营期监测系统

运营期监测系统强调在信息化基础上实现更加自动化,它是以自动检测为主、人为监测为辅,结合GIS技术与WEB技术的一种实时监测系统。通过传感器等监测仪器传递的工程信息,经网络中心枢纽至SGIS系统中进行集合和重组,自动同原设定的运营模式进行无缝校核,一旦出现信息不符,随即由网络中心枢纽自动分配人为监控单位进行事故信息核对,以更高效得达到全面、科学化、可视化的监控。

参考文献:

【1】崔玖江,崔晓青 《地铁工程建设风险控制与管理》(期刊论文)施工技术 2011年5月

【2】钱七虎,戎晓力 《中国地下工程安全风险管理的现状、问题及相关建议》(期刊论文)岩石力学与工程学报 2008年4月

【3】刘大安 杨志法 《综合地质信息系统及其应用研究》(期刊论文)岩土工程学报 2000年3月

地下工程论文范文第4篇

【关键词】锚杆;临界锚固长度;对策

中图分类号:X752 文献标识码:A 文章编号:

【引言】目前,在我国边坡、基坑和矿井、隧洞以及一些地下工程中进行支架固定的是岩土锚杆,而岩土锚杆在地下工程中得到了广泛的应用。基坑、边坡、矿井和隧洞的支架锚杆为多少,锚杆的临界长度和承受的极限承载力就随着锚杆的临界锚固长度所计算,而现今的锚杆临界锚固长度的计算还只是施工人员凭着经验而得出,出于对地下工程的安全考虑,我们对锚杆长度正确的理论公式的需求也日益迫切。

1锚杆

在大型地下工程施工人员看来,锚杆并不陌生,它处于地下工程施工中一个支架的作用,也是最基本的组成部分,对地下工程的边缘也起了一个主动加固的作用[1]。锚杆并不像我们想象的那么巨大,你可以把它想象为是一根比螺丝起子还稍大一些的钉子就可以了。锚杆的组成因素有三点。

⑴在强度上,锚杆的拉力强度和抗压强度要高于岩土的质量,这样才能够支撑起整个庞大的地下工程;

⑵锚杆在和岩土相互接触时要软硬皆施,在对待岩土支架问题上它要比岩土的质量更加强硬;在与岩土进行融合的时候,又要能够与岩土形成摩擦阻力,与其紧密结合;

⑶锚杆的杆体对于整个巨大的地下工程而言相对娇小,但并不是将其埋入其中,而是要将其另一端伸出岩体外部,对整个岩土主体形成一份径向阻力。

锚杆与岩土主体相互产生拉力,中间粘结的摩擦力越大,临界锚固承受的压力就越大。

1.1锚杆的基本作用

锚杆的基本作用分为宏观作用和微观作用:

宏观作用:在岩土的表层产生纵向拉力作用,增加了岩土主体的粘聚性,克服了岩土主体的低抗压能力;

微观作用:在力学上将岩土表层与岩土体内形成一个新的复合体,在理论上将二者相互结合,使得岩土本体的承载能力大大加强。

1.2锚固长度

锚固长度是锚杆计算的基本要素,而它是指在大型地下工程中,房梁、底板、支柱以及其他受力钢筋伸入支架或者是地基中的具体总长度,在计算锚固长度的时候,可以是直线锚固或是弯折锚固。

2锚杆临界锚固长度的计算

在目前,我们虽然还未正式报道锚杆临界锚固长度的计算方式,一些经验丰富的大型地下工程人员介绍说,可以采用理想弹塑性荷载传递函数来进行计算,而后计算其极限承载力和锚杆长度的关系。什么是理想弹塑性荷载传递函数。简单来说就是将与土层性质、深度以及桩径等进行参数的极限摩擦阻力和极限位移的计算。

2.1理想弹塑性荷载传递函数

在由于地桩底端阻力所发挥的极限位移明显大于地桩间的侧阻力的发挥所需的极限位移,由地桩侧方的摩擦阻力阻止与地桩前段阻力的发挥。

2.2理想弹塑性荷载传递函数公式[2]

⑴当S

当S> Su 时,qs = qus =Const

⑵剪切变形系数Cs沿深度方向相同。

⑶地桩截面面积垂直上方系数越强,桩长长度就越长。

2.1极限承载力与锚固长度之间的关系

我们从上文可以得知,极限承载力与锚固长度承载力有关,锚固长度承载的力度越大,极限承载力适应力度也就越大,用最大极限承载力Pumax =sh(ky)P得知,锚固层性质和毛固体截面性质确定,极限承载力与锚固长度相互关联。在临界锚固长度内,锚固长度越长,极限承载力随锚固长度增加的速度就越慢,而锚固长度增加的情况不会超过极限承载力的百分之四。为了提高极限承载力的效率的角度来看,锚固长度不会大于0.6米。

2.2锚固长度与摩擦阻力和极限承载力之间的关系

⑴根据上文可得知,当la > lc时,根据锚固长度的概念,锚固长度可随锚固或弯或直,这些长度君不影响锚固长度真正数值;

⑵当0.6 lc < la < lc 时,锚固长度数值的减少之间影响到了摩擦阻力的数值,但是对于提高承载力方面,并没有任何直接影响。根据前文公式可得知,产生锚固长度数值减少的原因是因为摩擦阻力在锚固长度减少时发生了均匀走向的重分布路线,而在锚固长度减小的同时,间接的提高了锚固与岩体的利用率;

⑶当la 0.6 lc ,在此公式时,这阶段的极限承载力随锚固长度的增加而明显的发生变化。因此,在此建议采用的锚固长度不小于0.6la,在此数值下,可获得良好的经济效益及质量。

⑷按照上文方式求解,如600kn外载下实测后三分之一的阶段承担荷载大约为110kn,110/500=0.15。而临界锚杆长度经过计算,介于(0.5~06)之间,稍稍低于工程临界锚固长度的0.1,总体数值在大型地下工程项目数值可取值范围内。这种方法课快速测算出锚杆临界长度,且操作方便,易于操作,差错率较小,具有较大意义上的工程实用性。

【结语】

经过上文例子计算,锚杆临界长度的摩擦系数与之前的平方根成正比,并且与锚固长度的中和弹性模量的平方根成正比,而摩擦阻力在分布均匀的状况下,与锚固长度有关;在摩擦阻力分布不均匀的情况下,与锚固长度无关;而摩擦阻力的分布状况的趋势随着锚固长度的增加而减少。目前,在上文中所运用理想弹塑性荷载传递函数公式的运算方式可大致测算出锚杆长度的大致且在番外内的数值,但是在地下大型工程中仍有瑕疵。在此,为获得良好的经济效率与质量效果,在设计锚杆时,可考虑锚固长度时小于地下工程临界的锚固长度,并且能够在进行测算时,测算出正确的数值。故而相信在不久的将来,将能够测算出运算更加精准的算式,保证地下工程的施工具有更大的保险性和安全性,也更能够作为工程施工更大的工程实用性。

【参考文献】

[1] 代国忠,傅丰均,代玉宝.锚固工程早强型普通硅酸盐水泥浆液的试验研究[J].长春工程学院学报(自然科学版).2009( 03) 17-20

[2] 马晓辉,黄晓东,李国维等.张拉荷载下GFRP锚杆的变形特征[A];《水工建筑物水泥灌浆与边坡支护技术》暨第9次水利水电地基与基础工程学术会议论文集[C].2009(12)

地下工程论文范文第5篇

【关键词】地下工程;防水施工;混凝土;渗漏

混凝土是当前建筑工程施工中最基础的施工材料,应用极为广泛。在地下工程的防水施工中也常常会采用混凝土来进行防水施工。但是由于地下工程的特殊性,其所在环境大都较为潮湿,这对于混凝土的防水质量是有一定影响的。为此,我们在施工中应当格外注意这一点,并积极采取合理的施工技术和防治措施来加强地下工程防水混凝土的施工质量。以下本文就来详细介绍地下工程防水混凝土施工技术。

一、地下工程发生渗漏的原因及危害

地下工程之所以渗漏都是由于外部防水层失效,结构混凝土本身又存在疏松、裂缝等缺陷,加上施工缝、变形缝、后浇带等细部防水没做好而引起的。地下室发生渗漏会降低地下工程结构强度的稳定性,严重时甚至会对整个建筑结构的稳定性带来很大影响。地下工程渗漏的原因主要有:

1、侧墙与底板漏水, 主要是结构混凝土本身存在疏松、蜂窝等缺陷引起。

2、变形缝:包括沉降缝、温度缝和抗震缝等渗漏现象,主要原因有:止水带埋设不当,设置了止水带,混凝土施工质量不好,不密实,造成漏水;止水带本身材质不合格。

3、施工缝引起的漏水,由于在地下室混凝土浇筑过程中留下施工缝和冷缝产生。

4、后浇带引起的漏水,在设计指定的位置预留一定宽度的后浇带。由于新老混凝土收缩值的不匹配,其界面出现裂缝成为渗水的通道。

5、底板及侧墙裂缝漏水,由于地基不稳,设计不当及养护不利等原因,底板及侧墙会出现裂缝。现有的柔性防水材料和刚性材料都很难抵抗这种裂缝引起的破坏。

6、穿管管网上引起的漏水。有些管道在运行过程中伴随有震动和高温,使管道周围刚性防水材料疏松碎裂,柔性防水材料因热老化失去弹性而出现漏水。

二、地下工程防水混凝土的施工技术

地下工程的防水混凝土施工通常可以分为混凝土材料选择、配制、浇筑以及养护等的四个阶段,具体的施工技术方法分别如下所示:

1、施工材料的选择。在选择混凝土的原材料时,必须要严格把关材料质量。一般地下工程施工中所选用的水泥应当是水化热较低的品种,以降低混凝土的收缩性,且严禁出现结块的水泥进入施工现场,所有水泥材料都必须具备合格的质量保证证明。对于骨料的选择要选用大粒径的粗骨料和粗砂等细骨料,且骨料的含泥量必须控制在技术要求的范围之内。混凝土配制时选用的水不得含有腐蚀性等有害化学成分,最好选用洁净地下水或饮用水。根据设计需求而添加的外加剂或粉煤灰的质量都需要具备符合技术要求的特性与质量。

2、防水混凝土的配制搅拌。及时测定砂石的含水率,以便调整混凝土拌合水用量。混凝土搅拌设备须保持洁净。混凝土搅拌上料应严格按照试验室提供的配合比施工,混凝土搅拌时间不得少于规范要求。

3、防水混凝土的浇筑。在混凝土配制完成后,必须要及时进行浇筑,以免降低混凝土的和易性。首先应对混凝土进行塌落度试验,对于塌落度不符合技术要求的不能进行浇筑使用。

在开始浇筑时,需要先振捣出料口的混凝土,使其自然形成一定的流淌坡度,继而再进行全面振捣,以保证混凝土不会在初凝时浇筑形成混凝土堆积的现象。浇筑的过程中确保混凝土的振捣均匀也是保证质量的关键。在振捣时应控制振捣时间与振捣部位的间距大小,一般来讲,当混凝土表面出现浮浆状态且不会产生气泡的时候,就可以停止振捣,振捣时间一般为半分钟左右,尤其需要注意的是不能漏振了某个部位,也不能使振捣时间过长或过短。振捣完成后,要及时用工具将其刮平,并反复搓压至其表面密实,防止表面出现龟裂现象。

由于泵送混凝土的坍落度大,墙体混凝土采用循环浇筑路线,分层、连续浇筑,即“一个坡度,薄层浇筑,循序推进,依次浇筑到顶”,利用自然流淌形成的斜坡浇筑混凝土,每层浇筑厚度控制在500mm 左右。混凝土浇筑时采用溜槽入模,使混凝土从一侧开始逐渐向前推进,并保证上下层混凝土浇筑间隔时间不超过混凝土初凝时间,一般控制在2h 以内。大体积泵送混凝土,排除泌水和浮浆后,表面仍有较厚的水泥浆,在浇完4-5h 后,要用长刮尺刮平,在初凝前用滚筒来回碾压数遍,待接近终凝前,用木抹再打磨一遍,使收水裂缝闭合。

4、防水混凝土的养护。大体积混凝土内外温差大,必须做好养护工作。浇筑时气温一般控制为20℃左右,并进行保湿养护,采用浇水养护并覆盖塑料薄膜,防止混凝土水分蒸发和表面脱水而产生干缩裂缝,养护时间不少于14d。

三、防止地下工程发生渗漏的控制措施

1、减少混凝土中水泥的水化热,应选用低水化热矿渣水泥,其标号不低于425# 最好用525# 标号,水泥用量少,水化热低,同时在混凝土掺些一级或二级粉煤灰,它是一种活性材料,可以代替部分水泥,减少水泥用量,降低水化热,加强了粉末效应,提高混凝土和易性,减少水灰比,增加混凝土的密实性和提高混凝土抗拉强度,降低混凝土的弹性模量,减少干缩。当每立方米混凝土掺入适当粉煤灰,降低水化热,提高混凝土强度,改善裂缝是行之有效的措施。

2、混凝土的收缩随粗细骨料的含泥量增加而增加,随着粗细骨料的粒径加大而减少,石子含泥量必须少1%。砂采用中粗砂,其含泥量应少于2%,这是减少干缩应力,控制混凝土收缩裂缝的重要措施。

3、严格控制水灰比,水是影响混凝土收缩主要因素,因混凝土中水份大部分蒸发引起混凝土内部形成很多毛细孔,降低混凝土抗拉强度、收缩变形也同时发生,因此采用减水剂,减少水灰比,改善混凝土和易性,从而提高混凝土的抗拉强度,减少内约束应力产生裂缝。

4、配制混凝土加入适量缓凝剂、来延长初凝和终凝时间,使混凝土内部升温和降温不出现温度梯度峰值,即是升温最高值,充分发挥混凝土自身强度潜力和材料松驰的特征,使混凝土的抗拉强度大于温差应力,减少裂缝产生。

5、对浇注混凝土采用有效保湿、保养措施,在混凝土表面用麻袋或草袋覆盖,并用清水浇湿,尽量减少混凝土表面温度扩散快、温差大,降低外界环境与混凝土表面的温差值,减少温差应力对结构的影响。

结语

总之,防水砼工程渗漏水问题应引起设计及施工人员的充分重视,只要设计合理、细部构造处理恰当、选择合适的防水材料、材料配合比准确、施工顺序正确,工程质量就能够得到保证,砼渗漏水现象是能够得到有效预防的。

参考文献:

[1]李长伟,刘竞文.关于地下工程防水混凝土施工技术的论述[A].北京市海淀区科学技术协会.第二届“科协文化DD中关村论坛”论文集[C].北京市海淀区科学技术协会:,2013:1.

[2]朴春霞.地下工程防水混凝土施工技术[J].科技创业家,2013,23:7.

[3]金霞,张渺.浅谈地下工程防水施工技术措施[J].科协论坛(下半月),2012,07:1-2.

地下工程论文范文第6篇

关键字:地下工程 施工技术 现状分析 信息化设计

中图分类号:TU74文献标识码:A 文章编号:

自21世纪以来,我国地下工程建设项目数量不断增多,建设规模不断扩大。此外,地下工程建设不仅包括民间个人行为,也包括政府行为,例如南水北调工程、青藏铁路工程等,这些工程中隧道工程占据的比例相当大。与此同时,城市高层或超高层建筑的发展,其地下部分多配备有停车场或商场等。以上所谓的个人行为或政府行为均涉及到地下工程问题,且其施工质量及施工安全均牵绊着每一个社会人的心。本文就地下工程施工技术的现状及发展予以讨论。

一、地下工程施工技术的发展现状分析

经过多年的研究与努力,我国地下工程施工技术或方法的发展令人欣慰。目前,地下工程主要施工技术包括盾构法(泥水平衡盾构/气压平衡盾构/土压平衡盾构)、新奥法、TBM法、浅埋暗挖法、非开挖施工、顶管法、沉管/沉井/沉箱法、ECL法、明挖法/盖挖法等。本章节就沉井法施工技术、顶管法施工技术、盾构法施工技术及新奥法设计新技术展开讨论,以探明我国地下工程施工技术的发展现状。

(一)沉井法施工技术

沉井法施工技术在我国地下工程建设中的应用时间较长,但就现代地下工程建设中,沉井法施工技术的应用范围依然较广。沉井法施工技术的优点包括:技术简单、占地面积小、挖土量少、造价低等。此外,沉井结构可用作地下构筑物的围护结构,这样一来,沉井结构的内部空间亦可被利用。钻吸法沉井新工艺是传统沉井法施工技术的创新,其由上海隧道工程公司首创。中心岛式槽挖法也是基于传统沉井法发展而来,其亦是由上海隧道工程公司首创。实践证明,钻吸法沉井新工艺及中心岛式槽挖法在地下工程的应用具有可行性。

(二)顶管法施工技术

水下长距离顶管施工方法是在地下水位以下直接长距离顶进管道,该施工技术的优点包括:无需在水下开挖土方或挖槽、无需任何降低水位的辅助措施、造价低、施工速度快、降低特殊环境中的施工难度系数等。现阶段,水下长距离顶管施工技术在国外多个国家亦得到了广泛的应用。随着地下工程施工规模的扩大及施工要求的提高,我国钢质管道长距离顶进施工方法取得了新的突破,并在实际的工程施工中取得了成功。

(三)盾构法施工技术

盾构法施工技术多用于隧道掘进施工中,尽管其起步较晚,但其发展速度较快,则其发展前景一片光明。就盾构法施工技术掘进隧道而言,占据世界前两位位的国家包括:日本、德国,该两国的盾构法施工技术的发展水平相当高。盾构掘进隧道对施工环境的适应能力加强,特别是施工难度系数较大的纵长地下结构,亦可正常施工,且其覆盖层浅,尽管在含地下水的底层或稳定性较差的底层施工,其均不会引发大面积沉陷或地表断裂。根据盾构法施工技术的施工特点,其亦可用于高压强地层或松散土质的底层(例如:流动地层或软塑性地层等)。此外,盾构法施工技术在暂时稳定的地层亦可正常施工作业,但此时的盾构仅发挥顶部保护作用。总而言之,盾构法施工技术的应用前景一片光明。就盾构法施工技术的优点及缺点进行归纳总结,如下表所示:

(四)新奥法设计新技术-典型类比分析法

新奥法设计新技术-典型类比分析法源自于对工程实践的总结,其首创者为中国学者李世辉。实践证明,新奥法设计新技术-典型类比分析法适应中国国情,且其应用效果较佳。典型类比分析法属于一项初步的综合集成技术,其是用于预测与控制一种具有开放性的复杂巨系统在特定时刻的行为。此类开放的复杂巨系统的特点包括:信息不完全、不一致且不确定,数据匮乏、机理不清,不支持从整体角度使用理论分析方法进行描述、预测或控制;系统整体行为,允许通过量测个别宏观参数来实现有效控制等。

典型类比分析法组成成分包括典型分类与类比、个体测试数据、理论分析等子系统,且三者间存在相互渗透的关系。典型类比分析法在获取、表达或处理信息时主要借助计算机技术的特点知识,其亦是一种人机结合的智能化系统。

二、地下工程信息化设计施工技术

地下工程的稳定性与岩土体材料的物理力学特性、地下水作用、围岩构造等因素有关。现有设计方法多以事先确定的影响因素为基础创建数学及物理模型,并以各数值方法及解析方法等为手段对工程的稳定性予以判断,从而得到最优开挖方案。实践证明,该设计方法受到岩土体、地应力的分布及岩土应力与渗流间的耦合关系制约。通过对现有地下工程施工技术设计方法存在的局限性的分析,地下工程信息化设计应用而生。

研究结果表明,若把地下工程信息化施工技术结合原有计算方法及计算模型使用,有助于把各自的优点充分发挥出来。地下工程信息化设计融合了力学计算、监测技术及经验评估等,其是一种以施工监测、监测信息为显著特征的地下工程设计方法。该设计方法可对围岩开挖过程的稳定性及支护过程的施工状态予以全程监控,并将获取到的信息准确记录下来。这样一来,工作人员仅需对相关信息予以分析研究,便可准确掌握支护的作用及围岩的稳定性,并获取支护参数及围岩参数,从而为设计决策技术施工决策提供参考依据。此外,在地下工程信息化施工阶段,量测信息可对围岩的物理力学参数予以反演计算,从而对地质信息的正确性予以检验,再通过反演分析法获取围岩力学参数,并利用有限元等数值方法计算分析围岩的稳定性,以此对工程后续施工发挥指导性作用。地下工程信息化设计技术包括信息采集-施工监测、信息处理-反演分析、信息反馈-稳定分析等三个环节。

三、结束语

综上所述,我国地下工程施工技术或方法多样,且经过多年的研究及努力,我国在部分施工技术方面已经取得了较大的突破,特别是盾构法等应用前景较广的施工技术,对其的研究及创新应该进一步加强。此外,就地下工程施工技术设计方法而言,地下工程信息化施工技术在确保地下工程施工安全及施工质量方面具有重要的作用,值得我国地下工程施工企业深入研究及广泛应用。在研究及发展地下工程施工技术时,应该始终坚持“安全可靠、技术可行、环境良好、经济合理”的原则及理念,对各种可能技术手段予以灵活搭配、综合运用,以适应我国地下工程综合化、大型化、复杂化、深层化的发展趋势。

参考文献:

[1] 钱七虎,戎晓力.中国地下工程安全风险管理的现状、问题及相关建议[J].岩石力学与工程学报,2008,27(4):649-655.

[2] 陈锋.我国城市地下工程施工技术的研究现状及发展趋势[J].城市建设理论研究(电子版),2012,(10).

[3] 梁波,洪开荣,梁庆国等.城市地下工程施工技术在我国的现状、分类和发展[C].//中国土木工程学会第十三届年会暨隧道及地下工程分会第十五届年会论文集.2008:20-26.

[4] 李美玉.浅谈水利水电工程土石方施工技术的发展[J].科技致富向导,2011,(11):382-383.

地下工程论文范文第7篇

地下工程的排水设计就是将工程中使用的污废水收集后排放到室外。

根据所排污水的性质,地下工程的排水可分为生活污水、生活废水、生产废水(包括机械废水)、消防废水以及洗消污水。

⑴排水系统的特点

①地下工程内应设集水池和提升泵。其污废水需经重力管道排到集水池,然后由水泵提升到室外地面窨井。

②地下工程的排水点应相对集中。它的排水管道一般埋设于地下混凝土底板中,管道敷设不宜过长,以防堵塞。因此排水点不宜分散,在无法集中时应分散设排水提升设备。

③地下工程中应考虑消防废水的排放。一方面可保证消防设备的正常运行,另一方面可保证人员的疏散,以减少损失。

④由于地下工程内生活粪便污水排放量较少,不宜分流,以防污水在集水池中沉积,无法提升。

⑵排水系统的分类

①生活污水系统,它包括卫生间和盥洗室的粪便污水和生活洗涤废水。

②人防洗消污水系统,主要指人防工程人员和建筑部门冲洗、消毒的排放污水。

③废水系统,它用于各种生产废水、消防废水等的收集、排放。

作为生活污水,在室外必须经化粪池后再派入市政污水管网;厨房、食堂以及油库的废水,须经隔油池后才可排放;设在地下室的浴室废水,须在室外设毛发聚集器后再接入窨井。

在建筑布置时,可将用水设备直接布置在集水池上,以便排水,并尽量将集水池设在排水点附近。

2.排水管道的设计

地下多层的工程,上部的排水管道可设在楼板下,尽量贴梁布置;地下最底层的排水管可直接敷设在混凝土底板内。由于管道为掩蔽埋设,管道必须保证有足够的坡度坡向集水池,同时必须防止管道敷设过长而穿出地板。管道埋深过大后,接入集水池的深度也大,这样也减小了集水池的有效容积。其水平衡管一般可采用生活污水的标准排水坡度。

厕所间可设在污水集水池上,缩短管道长度,便于污水排放。个别清洁废水(如凝结水)的管道敷设较长时,应在管段上设清扫口,长度不宜大于10m。

为减少管道的埋设深度,地漏采用直埋式或方型铸铁地漏,或分设集水池。

所有的集水口均应设水封,防止臭气从管道中跑出。机械设备的排水,应采用漏斗接至排水管道,间接排水。为保证管道水流畅通,排水管道交叉连接时,尽量采用45°三通或90°斜三通和四通。

排水管道的水力计算同地面建筑。埋设在底板内的水平横管,检修有一定的困难,宜适当放大管径或加大管道坡度。

过去,排水管材采用排水铸铁管,人防的洗消污水和埋设在底板中较长的管道以及压力排水管采用镀锌钢管,现应按新规定调整。地下车库的排水宜采用明沟形式。

3.集水池的设计

⑴集水池容积的确定

污水集水池的容积与流入的污水量、水泵的工作情况有关。一般来说,集水池的容积不小于最大一台水泵5min的出水量;对于分散的集水坑,其容积可不小于水泵3min的出水量,或水泵每小时启动次数不超过6次。值得注意的是,地下工程内集水池的容积也不宜大于平均日污水量的一半。

工业废水集水池的容积,可根据工艺要求确定。

为保证消防电梯在消防时的正常运行,在消防电梯的井底旁应设集水井,其容积不小于2立方米,相当于2支水枪3.3min的流量。

地下室的消防也可利用消防电梯井旁的集水井排水。对于有消防给水要求而又无消防电梯的地下室,也应设消防排水,其容积应不小于2立方米。

⑵集水池的设计

①集水池必须有一定的有效水深。在设计中要防止池面积大、池的深度浅及排水管淹没倒灌现象。池的超高可取得大些,一般0.3~0.5m。

②集水池内还就设水位指示装置、检修孔口,对有大块杂质的污废水,还就在集水池入口设格栅等设备。

③集水池底应设集水坑,坑深一般0.4m左右。在仅排废水的集水池池底须有0.1~0.2的坡度坡向吸水井。

④密闭盖板的集水池应设透气管,避免水泵开启后产生负压,破坏水封。污水池的透气管宜直通室外。人防工程中的透气管在接出有困难时,可将其就近接入排风管。

⑤从卫生和环保的要求出发,生活污水集水池应远离生活给水池,一般保证8m以上的距离。

⑥专用消防集水池应尽量设在走道的顶端,采用盖板封住上部。消防排水应尽可能考虑设地漏将水集中到废水坑。

【论文关键词】:地下工程;排水设计;集水池;排水泵房

【论文摘要】:主要论述了地下工程的排水系统的特点及分类,排水管道的设计,集水池的容积计算,排水泵房的设计。

近几年来城市建设飞速发展,土地资源日趋紧张,地下空间的利用越来越得到重视,地下空间不断得到开发,出现了越来越多的地下工程。由于地下工程所处的位置不同,排水设计也就有其特殊之处。

1.地下工程的排水系统

地下工程的排水设计就是将工程中使用的污废水收集后排放到室外。

根据所排污水的性质,地下工程的排水可分为生活污水、生活废水、生产废水(包括机械废水)、消防废水以及洗消污水。⑴排水系统的特点

①地下工程内应设集水池和提升泵。其污废水需经重力管道排到集水池,然后由水泵提升到室外地面窨井。

②地下工程的排水点应相对集中。它的排水管道一般埋设于地下混凝土底板中,管道敷设不宜过长,以防堵塞。因此排水点不宜分散,在无法集中时应分散设排水提升设备。

③地下工程中应考虑消防废水的排放。一方面可保证消防设备的正常运行,另一方面可保证人员的疏散,以减少损失。

④由于地下工程内生活粪便污水排放量较少,不宜分流,以防污水在集水池中沉积,无法提升。

⑵排水系统的分类

①生活污水系统,它包括卫生间和盥洗室的粪便污水和生活洗涤废水。

②人防洗消污水系统,主要指人防工程人员和建筑部门冲洗、消毒的排放污水。

③废水系统,它用于各种生产废水、消防废水等的收集、排放。

作为生活污水,在室外必须经化粪池后再派入市政污水管网;厨房、食堂以及油库的废水,须经隔油池后才可排放;设在地下室的浴室废水,须在室外设毛发聚集器后再接入窨井。

在建筑布置时,可将用水设备直接布置在集水池上,以便排水,并尽量将集水池设在排水点附近。

2.排水管道的设计

地下多层的工程,上部的排水管道可设在楼板下,尽量贴梁布置;地下最底层的排水管可直接敷设在混凝土底板内。由于管道为掩蔽埋设,管道必须保证有足够的坡度坡向集水池,同时必须防止管道敷设过长而穿出地板。管道埋深过大后,接入集水池的深度也大,这样也减小了集水池的有效容积。其水平衡管一般可采用生活污水的标准排水坡度。

厕所间可设在污水集水池上,缩短管道长度,便于污水排放。个别清洁废水(如凝结水)的管道敷设较长时,应在管段上设清扫口,长度不宜大于10m。

为减少管道的埋设深度,地漏采用直埋式或方型铸铁地漏,或分设集水池。

所有的集水口均应设水封,防止臭气从管道中跑出。机械设备的排水,应采用漏斗接至排水管道,间接排水。为保证管道水流畅通,排水管道交叉连接时,尽量采用45°三通或90°斜三通和四通。

排水管道的水力计算同地面建筑。埋设在底板内的水平横管,检修有一定的困难,宜适当放大管径或加大管道坡度。

过去,排水管材采用排水铸铁管,人防的洗消污水和埋设在底板中较长的管道以及压力排水管采用镀锌钢管,现应按新规定调整。地下车库的排水宜采用明沟形式。

3.集水池的设计

⑴集水池容积的确定

污水集水池的容积与流入的污水量、水泵的工作情况有关。一般来说,集水池的容积不小于最大一台水泵5min的出水量;对于分散的集水坑,其容积可不小于水泵3min的出水量,或水泵每小时启动次数不超过6次。值得注意的是,地下工程内集水池的容积也不宜大于平均日污水量的一半。

工业废水集水池的容积,可根据工艺要求确定。

为保证消防电梯在消防时的正常运行,在消防电梯的井底旁应设集水井,其容积不小于2立方米,相当于2支水枪3.3min的流量。

地下室的消防也可利用消防电梯井旁的集水井排水。对于有消防给水要求而又无消防电梯的地下室,也应设消防排水,其容积应不小于2立方米。

⑵集水池的设计

①集水池必须有一定的有效水深。在设计中要防止池面积大、池的深度浅及排水管淹没倒灌现象。池的超高可取得大些,一般0.3~0.5m。

②集水池内还就设水位指示装置、检修孔口,对有大块杂质的污废水,还就在集水池入口设格栅等设备。

③集水池底应设集水坑,坑深一般0.4m左右。在仅排废水的集水池池底须有0.1~0.2的坡度坡向吸水井。

④密闭盖板的集水池应设透气管,避免水泵开启后产生负压,破坏水封。污水池的透气管宜直通室外。人防工程中的透气管在接出有困难时,可将其就近接入排风管。

⑤从卫生和环保的要求出发,生活污水集水池应远离生活给水池,一般保证8m以上的距离。

地下工程论文范文第8篇

【关键词】:地下工程;风险管理;应用

中图分类号:X820文献标识码: A 文章编号:

引言

我国迅速发展的经济带动着基础设施建设的步伐,地下工程如雨后春笋蓬勃发展,城市化进程不断加快,同时也带来了一定的风险。不完善的施工管理和环境的复杂性,导致在施工建设地下工程项目时事故频发,造成人员伤亡,使经济遭受重大损失。这些事故引发了地下工程研究人员的深思,如何才能预防事故的发生,减少损失?通过风险管理的研究可以合理、科学的解决这些问题。

一、地下工程中风险因素的分析

地下工程建设的特点是:社会影响范围较大、作业场地狭小、较多的不可预见风险因素、复杂多变的施工环境、较多的施工项目、较长的施工周期以及较大的投资规模。

风险的发生包括外在和内在因素两个方面,主要包括以下几个方面:

1、环境的影响

(1)、自然环境的影响

自然环境包括水文地质条件、天气气候条件等,这些是我们宏观可见的。还有就是地下工程通常对地上的交通也会带来影响,而地上交通的压力本来就很大,再加上地下的工程就使得地质更加脆弱从而更易受到侵害而导致地质灾害。而地下的环境更是有很多不可预测性。这对我们的勘探特别是工程中的勘探以及数据的更新提出了更高的要求。

(2)、施工环境的影响

施工现场周围的建筑物和周边环境,无论在地下工程施工建设时采取何种工艺和手段,都会不可避免地受到一定程度的影响。周边环境包括:周边社会群体和环境、周围道路和管线状况、具有文物价值的建筑物、地下工程与建筑物的距离以及地面建筑物的类型等,工程建设的风险系数会因各种因素而升高。

2、工艺水平和工程施工技术

施工队伍的业务水平和施工机械设备的精度,直接影响地下工程的工程建设风险。由于地下工程工艺水平和工程施工技术一般比较复杂,因此如何选择施工工艺和执行好施工方案,是风险技术控制的关键。根据不同的地质条件、工程特点和难点、工艺要求,选定不同的施工方法。工程建设会因为人为失误或操作失误增加工程风险。此外,工程建设风险也受到施工人员的技术水平、安全经验和意识,以及施工条件和工程周期的影响。

3、工程体系不够完善

在地下工程规划、设计、施工、运营期的全寿命周期中,工程建设的决策、工程项目管理及施工组织设计是最为重要的环节。比之于其他项目,地下工程具有较大的风险投资和极强的隐蔽性等特点,任何一个阶段都会在组织、管理和决策上遇到困难。因此从立项开始,如何合理选择施工工艺、设计方案、工程场地;如何使环境所受到的工程影响降至最低限度;如何使工程建设的社会效益和经济效益得到提高,以及如何使“可持续性”和“和谐”因素贯穿整个工程建设,每一个步骤的执行和决策都影响着工程建设的风险系数。由此可见,种类繁杂和多样性,是地下工程项目风险因素的特点。较大的风险始终存在于工程运营、实施和决策等各个阶段,同时整个工程项目的寿命周期也都有风险贯穿其中,为了保证顺利实现工程建设项目,引入风险管理理论指导实际施工过程的做法迫在眉睫。

二、地下工程的风险管理方法

风险管理办法,是组成项目管理的重要部分。风险机理在隧道等地下工程中对于风险环境的孕育,以城市软土地区盾构隧道工程施工为例,其承险体有生态环境、地下管线、地面建筑物和盾构隧道等等,不同的环境情况又会造成不同的损失模式。其中直接损失包括施工人员和盾构隧道构成的承险体;间接损失则包括破坏生态环境以及造成的对社会和环境的影响等。为避免因风险机理造成的直接或间接的损失而进行的风险管理,其过程主要分为风险监控、风险分析、风险应对、风险评价四个步骤,其中又包括风险辨识、风险估计、风险评价、风险应对、风险追踪和风险控制六个部分。第一是风险辨识。对潜在于地下工程中所有的风险因素进行整理归类和筛选,当部分风险因素严重影响到目标时,应给予重点考虑。风险辨识的方法包括流程图分析法、事故树分析法、现场调查法和风险清单分析法等。第二是风险估计。估计和分析风险因素发生的后果和概率。第三是风险评价。评价的基础为风险分析,以相应的风险标准为根据,对可否接受地下工程中的风险进行判断,以及安全措施是否需要更进一步。第四是风险应对。将实际情况和风险大小相结合,使处理风险的对策的提出更具有针对性和合理性。常用的手段包括:风险修正、风险合并、风险分散、风险自担、风险转移、损失控制和风险回避等。第五是风险追踪。对风险采取应对措施后,跟踪观察风险的变化发展情况,督促实施风险应对措施。第六是风险控制。以风险追踪为基础,以风险的变化情况为根据,使风险应对措施能够及时进行调整。

1、风险辨识

风险辨识是进行风险管理首先要进行的重要工作,当进行地下工程施工时,能引起风险的因素很多,后果也各异,具有不确定性,风险辨识就是要缩小这种不确定性。地下工程风险辨识的方法有很多,如:核查表法、专家调查法、情景分析法、故障树分析法等,但以专家调查法应用较广。专家调查法是通过对多位专家的反复咨询、反馈,专家成员应包括从事与工程项目相关领域的工作人员以及从事项目风险管理的技术人员等组成,通过对专家意见的统计和处理,确定影响项目的风险因素。此方法利用专家的经验,发挥集体智慧,对各种模糊的、不确定的问题做出较为准确的确定回答。

2、风险估计

风险估计又称风险测定、估值和估算等,是对工程项目各个阶段的风险事件发生的可能性的大小、可能出现的后果、可能发生的时间和影响范围的大小的估计,这是工程项目风险管理中最为重要的一项工作,也是最困难的一项工作,它的准确性直接影响到风险决策的质量。风险估计的方法很多,如专家评议法、故障树法、事件树法、蒙托卡罗数值模拟法、CIM模型法、人工神经网络法、模糊综合评价法等等,这些方法基本是从金融领域发展起来的,也适用于地下工程风险估计,这些方法大致可以分为两类,一类是利用专家和工程技术人员的经验,对风险值进行主观估计,一类是?

3、风险评价

通过风险评估计算得到风险事件发生的概率(P)和风险事件发生后可能造成的损失(R),但项目管理者对这些风险量定性的时候没有参考标准,也就是说这些风险对于项目管理者来说能否接受,该不该采取措施规避风险,应该把风险降低到什么合理经济的水平等。因此,人们必须采用一些方法和标准来衡量风险的大小和量值。

4、风险应对

通过对工程项目风险的辨识、估计、评价,项目管理者对其存在的各种风险以及潜在的损失有了一定的把握,接下来所面临的问题是编制一个切实可行的风险应对计划和选择行之有效的风险应对策略,力图把风险转化为机会或使风险所造成的负面效应降低到最低的程度。

三、地下工程风险管理存在的问题

我国的地下工程风险管理比之于发达国家,仍然处于起步阶段。相对比较短的工程实践和研究时间,较晚起步的地下工程安全风险管理研究应用,而且研究在管理方面的进展也是初步的。不过我国已经在上世纪末陆续开展了相关学科的研究工作。上世纪90年代,丁士昭教授对我国的上海、广州地铁隧道工程中的保险模式及建设风险进行了研究;黄宏伟等人所开展的风险管理研究,其研究重点在地铁运营和建设阶段,在整体上给出如何控制、分析地铁不同阶段中风险因素的思路;分析基坑工程风险方面,毛金萍、仲景冰和李惠强等人在分析深基坑支护结构方案风险时采用了事故树的模式;以同济大学为主,对沪崇通道的财务分析、运营事故控制以及施工风险管理等各个方面所进行的风险评估研究,是国内第一个大型项目中应用到风险分析技术。近些年,实际工程领域中,安全风险管理的发展较为迅速,尤其是在地下工程项目中,风险评估与分析得到了大量的应用。地下工程在实际应用安全风险管理时,其实施负责的主体是各个岩土工程咨询公司和科研单位。一些工程科技公司自主研发的管理系统软件已经在建筑工程、越江隧道和地铁工程等多个领域得到了广泛应用。目前地下工程的安全风险管理实践与研究在我国的发展已经取得了实质性的突破,但风险评估与分析扔是目前侧重的主要方向,监测系统是布置和开展较多的方面,未能深入研究控制方法和风险预警,安全风险管理系统的整合尚不统一,已经开发的安全风险管理系统,其功能较为简单,对基础数据和地理信息系统的支持不够,且较低的信息化水平,使信息化风险管理平台的建设不足,适合地下工程建设实际和符合安全风险管理体系的系统平台极度缺乏。目前我国地下工程风险管理依然存在着如下问题:风险管理体系仍然较为被动;缺乏有效规范的风险管理及风险接受等级和准则;相对分散的风险管理系统以及错误认识风险评估标准和对风险的定义等。

四、风险管理的应用

地下工程中常用的风险应对策略包括:风险规避、风险转移、风险缓解、风险自留、风险利用等,同一种风险可能有多种应对策略,对于不同的工程项目主体也有不同的选择,需要根据工程项目风险的具体情况以及风险管理者的承受能力去确定工程风险应对策略和措施。

1、风险规避。风险规避(Risk Avoidance)是通过变更工程项目计划,从而消除风险或消除风险产生的条件,或者是保护工程项目的目标不受风险的影响,虽然完全消除工程项目的风险是不可能的,也是不经济的,但借助于风险规避的一些方法,对某一些特定的风险,在它发生之前就消除其发生的机会或可能造成的种种损失还是有可能的。比如隧道洞口极不稳定,滑坡、塌方的风险很大,就可以选择合适的地层预加固方式规避风险;围岩破碎段尽量避开雨季施工;选择经验丰富、设备齐全的承包商等。风险规避是风险应对策略的一种最主要的方式,但并不是任何工程项目、任何条件下都可采用,如果风险规避的成本超过了项目管理者的承受能力范围,甚至超过了风险发生可能造成的损失,项目管理者就会选择其他应对应对策略。另外风险规避可能会丧失机会或阻碍创新。

2、风险转移。风险转移(Risk Transference)是设法将某种风险的结果连同对风险应对的权利和责任转移给他方。风险转移包括非保险方式和保险方式,非保险方式主要有:采用担保或履约保函方式转移风险、采用分包方式转移风险、采用适当的合同计价方式转移风险、运用合同条件风险。非保险方式转移风险几乎不需要任何成本,只是在合同条件及合同语言上下功夫,是一种经济的风险应对方式,但它不能消除风险,而主要是转移给别人,这种方式还受国家法律的制约,也用可能丧失赢利的机会,一般来说,非保险风险转移只能作为一种风险应对的补充手段,而不是主要的手段。

3、风险缓解。风险缓解(Risk Mitigation)是指将工程项目风险的发生概率或后果降低某一可以接受的过程,既不消除风险,也不避免风险,而是减轻风险,比如隧道边仰坡加固、洞内注浆加固、储蓄一定量的材料等,风险缓解的方式主要包括:降低风险发生的可能性、控制风险损失、分散风险、后备应急措施等。风险缓解要到达什么目标、将风险降低到什么程度,这主要取决于项目的具体情况、项目管理的要求和对风险的认识程度。

4、风险自留。风险自留(Risk Retention),又称风险接受(Risk Acceptance),是一种项目主体不改变项目计划去应对某一风险,或者找不到其他合适的风险应对策略,而自行承担风险后果的策略。这意味着如果风险发生,项目主体就要承担造成的损失,如果风险不发生,项目主体就可以赢利。风险自留要求项目主体对风险有充分的估计和足够的资金准备,一般应对一些不是很严重的风险,或者用其他措施应对不是很合适,或者采取其他应对措施后残余的一些风险。

5、风险利用。风险利用(Risk Speculation),是因为风险与机会并存,风险中蕴含机会,要获得机会必须冒一定的风险,原则上投机风险大部分有被利用的可能,但并不是轻而易举取得赢利,要充分分析所出环境、把握时机、讲究策略和缜密考虑应对措施。

结束语

综上所述,较差的施工条件、复杂地质环境以及难度较高的施工技术都是地下工程施工过程中的不确定因素,地下工程建设施工所面临的技术核心难题即是地下工程的风险管理。风险管理在地下工程中的应用可以预先了解事故发生的可能性,可以在事故发生前预估事故发生后造成的损失,可以提前采取措施减小事故发生的可能性以及事故发生后的损失程度。所以,只要不断研究和完善该系统的管理方法,就可以有效的控制地下工程事故的发生,加快我国城市化进程的脚步。

参考文献:

[1]张顶立;城市地铁建设中的安全风险分析与管理[A];城市地下空间开发与地下工程施工技术高层论坛论文集[C];2004年

[2]刘继强;陈登伟。新建地铁工程对城市环境的影响与控制研究[J]。四川建筑,2010年第05期。

[3]张顶立;城市地下工程建设的安全风险控制技术[j]。中国科技论文在线,2009年,第四卷。

地下工程论文范文第9篇

世博会期间上海轨道交通维护保障工作的探索与实践

从网络化运营角度看当前城市轨道交通应关注的问题

地下工程中“新叠合墙”结构形式的设想

上海长江隧道管片纵缝力学性能的试验研究

隧道火灾报警试验及其技术比较分析

深圳地铁塘朗车辆段上盖物业开发轨道减振降噪措施研究

超大型深基坑施工技术方案的探讨

上海软土地区盾构遇到的块石成因分析和施工对策

PTN分组传输网在轨道交通中的应用探讨

上海轨道交通5号线车门系统的FMECA分析和应用研究

杭州地铁1号线闸弄口站深基坑换撑方案优化设计

上海轨道交通7号线常熟路站换乘设计实践与思考

特定条件下超长地铁车站的设计对策

从轨道交通工程设计概算角度谈投资控制

用创新技术全力打造中央变频空调——访美的中央空调顺德基地

行业信息

《地下工程与隧道》2010年总目录

中国土木工程学会隧道及地下工程分会防水排水专业委员会第十五届学术交流会论文征集启事

铁道第三勘察设计院集团有限公司

再论地铁车站防水技术

沪、津、渝等城市轨道交通地下工程防水设计综述

《无机防水堵漏材料》及其相关的国家标准介绍

上海城市轨道交通工程混凝土结构耐久性设计与实践

武汉长江隧道盾构管片混凝土渗透性能研究

地铁工程混凝土自防水性能试验研究

沉管隧道防水、防腐设计技术的优化及其探讨

天津火车站交通枢纽地铁换乘中心工程防水设计

防水堵漏材料抗渗性能试验研究

杭州地铁1号线越江隧道管片防水密封垫优化研究

北京西四环暗涵工程防水设计研究

盾构法隧道管片防水材料及其应用三题

XYPEX材料在地铁车站混凝土结构中的应用研究

浅谈地铁隧道管片堵漏的方法

膨润土防水毯在上海轨道交通人民广场站换乘大厅中的应用

轨道交通区间隧道旁通道防水改造施工实践

天津海河共同沟隧道盾构始发井注浆堵水加固技术

新型防水卷材在天津地铁二期工程试验段的应用

地下工程论文范文第10篇

[关键词]城市地下空间工程 实践教学体系 构建 创新

[作者简介]李富荣(1982- ),男,江苏盐城人,盐城工学院土木工程学院,讲师,硕士,主要从事岩土与城市地下工程等领域的教学与科研工作。(江苏 盐城 224051)

[基金项目]本文系江苏省教育科学“十二五”规划课题“地方本科院校土木工程专业应用型人才培养研究”(项目编号:C-c/2013/01/002)和2013年盐城工学院教改研究项目“城市地下空间工程专业实践教学体系的创新性研究”(项目编号:2013-52)的研究成果。

[中图分类号]G642 [文献标识码]A [文章编号]1004-3985(2014)05-0158-03

一、引言

2002年,中南大学首先开设城市地下空间工程专业,该专业是教育部为适应新时期城市建设人才特殊需求而设置的新兴专业,简称特设专业,目前已有30余所高校开设了城市地下空间工程专业。然而,由于高校背景不一,涉及矿业、核能、交通、建筑、水利、铁道等不同行业,办学特色鲜明,虽然课程理论教学基本都可以满足要求,但作为培养和提高学生综合素质能力的实践教学环节却给高校带来了难题,同时该专业尚未成立教学指导委员会,专业建设缺乏统一指导,使得城市地下空间工程专业建设与发展难度较大,这点在实践教学环节尤为明显。目前,城市地下空间工程专业大多是依托岩土工程专业,但该专业已经超出岩土工程专业的范畴,要建设好城市地下空间工程专业尚需城市规划、结构工程等专业的支撑。盐城工学院(以下简称“我院”)在新办城市地下空间工程专业过程中,以培养卓越地下工程师为目标,对城市地下空间工程专业实践教学体系进行了有益的探索与创新。

二、城市地下空间工程专业实践教学体系的构建

1.构建原则。目前,在开设城市地下空间工程专业的高校中,该专业招生人数较少,大多每届招生1个班,30人左右,专业开设较好的中南大学、山东大学、南京工业大学等,每届也仅招生2个班,60人左右。在大力提倡改革与创新高校教学体系的背景下,城市地下空间工程专业实践教学体系的构建要求、方法、原则可以表现出与土木工程等专业不尽相同的特点,使之具有自身特色。构建城市地下空间工程专业实践教学体系的原则是综合性、整体性、独立性、科学性。其中,综合性指城市地下空间工程综合了城市规划、结构工程和岩土工程等专业内容;整体性原则要体现教学上实践与理论相结合的整体功能;由于班级规模较小,学生可以独立完成大多实践教学环节,即学生具有较多的独立实践机会,体现了较好的独立性;科学性是要求实践教学环节的构建与实施要循序渐进,科学合理。

2.构建方案。城市地下空间工程专业实践教学体系是由实践教学活动各个要素构成的有机联系整体,作为特设专业,城市地下空间工程专业实践教学体系要具有前瞻性和系统性,创新实践教学内容,紧密联系城市规划与建设,积极创新工程设计与施工技术,培养符合专业要求且满足社会需求的卓越地下工程师。为此,根据城市地下空间工程专业的培养方案,我们构建了城市地下空间工程专业实践教学体系(见图1),给学生创造各种独立的实践机会,使知识、能力、素质融为一体,增强了学生独立完成工作的能力。

三、城市地下空间工程专业实践教学体系的创新

1.实验教学。城市地下空间工程专业实验教学环节由基础实验、专业实验、创新实验等多种实验构成(见图2),体现了人才培养多层次、模块化、系统化和科学性的统一。其中,由学科基础实验和力学实验构成的基础实验平台,不仅训练了学生的基本技能和素质,还为开展专业实验、培养学生系统设计和综合实践能力打下了基础。以“土力学与基础工程”课程为例,该课程是土木工程专业的主干课程、城市地下空间工程专业的核心主干课程,包括土力学和基础工程两部分,设有土力学实验和基础工程课程设计两个实践环节,兼具理论性、专业性和实践性等特点,是培养卓越地下工程师基本专业素质的基础。为此,在课程实验中,将土力学实验学时调整为16学时,增设土体渗透、击实、孔隙水压力及土压力测试等实验项目,确保学生充分掌握土地工程地质性质、物理力学性质等土力学基本理论,提高学生的实践能力,同时对开展后续专业实验也有很大的益处。专业实验是更高层次和系统地训练学生的实验技术和技能,包括大纲中专业课程实验和设计性、综合性实验。为此,对相关实验内容进行有机整合和改进,设置了土体与岩石力学对比实验,实验内容为采用几种常规实验(如压缩、直剪、三轴)方法,对比分析土体和岩石在物理指标、力学性质、工程应用等方面的异同,由学生自主设计实验方案(包括实验目的、方法、步骤、仪器、要求),并向实验室教师申请实验时间,经批准后在实验教师指导下,独立完成实验报告。最后,结合学生实验能力,根据实验过程、实验结果综合评定实验成绩。在设计性、综合性实验环节中,根据教学大纲设置了原位测试技术训练、工程结构测试技术训练、地下工程设计软件训练,以进一步训练学生的实验能力,使学生学会从实验数据中分析实验现象、得出实验结论,培养学生发现问题、分析问题和解决问题的能力。创新实验是为了充分开发学生的潜能,激发学生对专业知识的兴趣而设置的,可以通过教师的纵横向课题、学生自主申报大学生实践创新训练项目以及参加学科竞赛等方式开展。

2.实习环节。城市地下空间工程专业的实习环节可分为课程实习(测量实习、工程地质实习)和专业综合实习(认识实习、生产实习、毕业实习)两个层次。其中,课程实习由指导教师统一安排、指导,与土木工程专业基本相同。在专业综合实习环节中,实行全周期双导师制,将5~6个学生分为一组,从大二到大四由同一指导教师负责指导,并配有企业兼职指导教师,原则上在校期间不再更换指导教师或企业教师。学生在实习期间,专业指导教师和企业兼职教师共同指导和管理学生,实习结束时,采用校企共同组织的公开答辩方式综合评定实习成绩,形成双导师指导下的“学生自主实习实践、教师有效监控指导”的实践特色。全周期指导是指学生从大二认识实习开始即可与学校专业指导教师和企业兼职教师不间断交流,除实习时间外,学生还可以有针对性地参与纵横向课题、工程项目等,使大学实习间而不断,贯穿始终,最大限度地培养了学生的实践能力。

3.设计环节。一是课程设计。城市地下空间工程专业设计环节包括课程设计和毕业设计(论文)两个环节。其中,课程设计除钢筋混凝土结构和基础工程课程设计外,还包括城市地下空间规划与设计,地下建筑结构、隧道工程和地下工程施工组织设计等课程设计。从教学内容和教学体系上讲,课程之间存在紧密的依存、制约关系,但传统的课程设计均安排在课程理论教学完成后进行,且由该课程理论教学教师独立设计课题、独立编写课程设计任务书和指导书、设定独立的设计参数,各门专业课课程设计内容相对独立。为此,在城市地下空间工程专业课程设计中,实施综合性课程设计方案,编写综合性课程设计任务书和指导书,具体做法是,本着“真题习做,一题到底”的原则,每2~3个学生设置一个工程实例专题,每个工程实例专业均来源于典型实际工程,紧密结合实际应用。各课程内容及设计是相互关联的,建立综合性课程设计的基本思路,最终为毕业设计服务。在综合性课程设计过程中,学生可以深刻体会到地下空间工程各个部分之间的因果关系和制约条件,初步认识工程的复杂性,锻炼逻辑思维能力,加强对地下工程整体性概念认识,有助于学生完成毕业设计。在综合性课程设计环节中,指导教师非常关键,要清楚综合性课程设计的内容、要求、可能出现的问题以及前后课程设计之间的关联要求,对学生给予正确合理的指导。二是毕业设计(论文)。城市地下空间工程专业学生数较少,便于采用校企合作的团队指导毕业设计模式,聘请经验丰富的企业导师参与毕业设计指导工作,有利于毕业设计的质量优化。采用团队模式指导毕业设计,团队有总指导教师,每位学生有各自的指导教师,由3~5个学生共同完成一个总项目课题,内容可以涉及城市地下空间规划设计、地铁车站设计、地铁隧道设计、地铁施工组织设计等,各子课题任务分工明确,研究内容有机联系,设计选题整体性强,内在联系紧密,在毕业设计过程中,团队成员相互交流,团结协作,充分利用专业规范,掌握整个地下工程设计的内容、流程及方法,确保厚基础、宽口径走向社会。除了毕业设计外,也有部分学生选择毕业论文,一般基于省部级以上科研课题项目,由项目主持人担任课题组长,中级职称以上教师担任各子课题导师,也可由科研兴趣或科研方向相近、不同专业背景的教师组成指导团队,由科研素质高的教师担任组长,其他教师有侧重地负责子课题,做到教学与科研相统一。

4.大学生实践和创新能力训练。目前,教育部、教育厅及高校都十分注重学生实践创新能力的培养,设立了各级大学生实践创新项目,学生可以根据自己的兴趣选题,自主选择导师并申报各级大学生实践创新项目,这些项目以学生为主体,在导师的指导下,培养了学生的创新意识,加强了学生自主创新的能力。同时,大学生实践创新能力的培养还可以与教师科研及社会服务相结合,更加贴近工程实践,从中发现问题、分析问题、解决问题,有利于学生创新思维的培养。为此,可与地方人防办、城市规划设计等部门、企业合作,设计一系列开放性、设计性课题,由指导教师负责将创新性实验与社会服务结合起来,取得良好的社会效益。另外,积极鼓励和协助学生参加学科竞赛(如结构创新大赛、交通科技大赛等),培养学生的创新意识、合作精神和工程实践能力。

四、结语

城市地下空间工程专业作为新兴专业,实践教学特别需要创新,以适应城市建设、社会发展、学科建设的新要求。通过城市地下空间工程专业实践教学体系的构建与创新,优化了各实践教学环节的教学内容、教学方式,提高了学生的独立工作和科技创新能力。因此,必须以创新为主线,以培养卓越地下工程师为目标,充分利用校内外资源,调动社会、学校、教师、学生等的主动性、积极性,不断改进、创新、实践,全面提高学生的综合实践能力。

[参考文献]

[1]周莉.土木工程专业实践性教学体系的研究与实践[J].黑龙江高教研究,2005(1).

[2]潘睿.构建土木工程专业实践教学新体系的研究[J].高等建筑教育,2008(3).

[3]康俊涛.国家特色专业实践教学改革研究――以土木工程专业为例[J].黑龙江高教研究,2013(4).

[4]陈奕柏,杨东全,韩建刚,等.地方高校土木工程专业实验教学内容体系改革实践[J].高等建筑教育,2013,22(1).

[5]吴萱,董俊,张鸿儒.土木工程专业实践教学体系的研究[J].高等建筑教育,2008, 17(2).

[6]康爱红.土木工程专业道路工程课程群课程设计改革与实践[J].淮海工学院学报:人文社会科学版,2012(15).

[7]董倩,刘东燕,黄林青.卓越土木工程师实践教学体系构建[J].中国大学教学,2012(1).

[8]李晓丽,张云峰,孙颖,等. 基于“卓越工程师”目标的土木工程专业毕业设计改革实践[J].中国冶金教育,2013(3).

上一篇:建筑大学论文范文 下一篇:基本结构论文范文